流体动力学基础1
流体动力学基础
流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。
本文将介绍流体动力学的基础概念、基本方程以及常用方法。
一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。
2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。
常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。
3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。
流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。
二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。
对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。
2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。
对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。
3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。
三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。
2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。
3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。
流体力学基础知识
目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充
流体动力学基础
ax
u t
2x t 2
ax (a,b, c,t)
3)
ay
v t
2 y t 2
ay (a,b,c,t)
(3-
az
w t
2z t 2
az (a,b,c,t)
4
同样,流体的密度、压强和温度也可写成a、b、c、 的函数,即ρ= ρ (a,b,c,),P=P (a,b,c,),t=t (a,b,c,)。
式中,括弧内D可D( t以) 代 表(描t )述 (流V体 运)(动)的任一物理(量3-,10)
如密度、温度、压强,可以是标量,也可以是矢量。
D( )
称为全导数, 称为当地导数,
称为迁移导D数t 。
( )
(V )( )
t
11
2019/6/14
由上述可知,采用欧拉法描述流体的流动,常常比采 用拉格朗日法优越,其原因有三。一是利用欧拉法得到的 是场,便于采用场论这一数学工具来研究。二是采用欧拉 法,加速度是一阶导数,而拉格朗日法,加速度是二阶导 数,所得的运动微分方程分别是一阶偏微分方程和二阶偏 微分方程,在数学上一阶偏微分方程比二阶偏微分方程求 解容易。三是在工程实际中,并不关心每一质点的来龙去 脉。基于上述三点原因,欧拉法在流体力学研究中广泛被 采用。当然拉格朗日法在研究爆炸现象以及计算流体力学 的某些问题中还是方便的。
零,即
0
t
因此,定常流动时流体加速度可简化成 a (V )V
(3-12) (3-13)
2019/6/14
由式(3-13)可知,在定常流动中只有迁移加速度。例 如图3-2中,当水箱的水位保持不变时,2点到3点流体质 点的速度减小,而4点到5点速度增加,都是由于截面变化 而引起的迁移加速度。若迁移加速度为零,则为均匀流动,
第三章 流体动力学基础
1、在水位恒定的情况下: (1)A®A¢不存在时变加速 度和位变加速度。 (2)B®B¢ 不存在时变加速 度,但存在位变加速度。 2、在水位变化的情况下: (1)A®A¢ 存在时变加速度, 但不存在位变加速度。 (2)B®B¢ 既存在时变加速 度,又存在位变加速度。
图3-19
第二节 流体质点运动特点和有旋流
图3-13
非均匀流——流线不是平行直线的流 动, 。 非均匀流中流场中相应点的流速大 小或方向或同时二者沿程改变,即沿流 程方向速度分布不均。例:流体在收缩 管、扩散管或弯管中的流动。(非均匀 流又可分为急变流和渐变流)
4.渐变流与急变流
非均匀流中如流动变化缓 慢,流线的曲率很小接近平行, 过流断面上的压力基本上是静 压分布者为渐变流(gradually varied flow),否则为急变流。
图3-17
(3)三元流
三元流(threedimensional flow):流动 流体的运动要素是三 个空间坐标函数。例 如水在断面形状与大 小沿程变化的天然河 道中流动,水对船的 绕流等等,这种流动 属于三元流动。(图 3-18)
图3-18
三.描述流体运动的方法
1.拉格朗日法 拉格朗日方法(lagrangian method)是以 流场中每一流体质点作为描述流体运动 的方法,它以流体个别质点随时间的运 动为基础,通过综合足够多的质点(即 质点系)运动求得整个流动。——质点 系法
一、流体质点的运动 特点 刚体的运动是由 平移和绕某瞬时轴 的 转动两部分组成,如 图3-20(a)。
图3-20(a)
流体质点的运动, 一般除了平移、转 动外,还要发生变 形(角变形和线变 形),如图3-20(b)。
图3-20(b)
二、角速度的数学表达式 流体质点的旋转用角速度表征,习 惯上是把原来互相垂直的两邻边的角速 度平均值定义为该转轴的角速度。
1.3、流体动力学
物料
预
热
装
燃料
置
热加工炉
烟 囱
管 路
送风机
排风机
1
§1.3、流体动力学基础
质
量
守
三
恒
大 守
能 量
恒
守
定
恒
律
动
量
守
恒
连
流体运动
续
微分方程组
性
方 程
恒
定
如何应用连续
能 量 方 程
总 方程、能量方程、
流
三 大
动量方程求解流 体动力学问题
动
方
量 方
程 定解条件
程
2
§1.3、流体动力学基础
动能增量ΔE:
E E22 E11
dQdt
g
u22 2
u12 2
dA1
dQdt
u22 2g
u12 2g
(3)
上三式代入功能原理:
p1 Z1
dA2 p2 Z2
WP WG E22 E11
0
dQdt Z1
Z2
p1
p2 dQdt
dQdt
u22 2g
u12 2g
0
28
各项除以γdQdt,按断面分别列于等式两端得:
(2)按欧拉自变量(即描述流动所需的空间坐标数目)分类 一元流动:只有一个坐标自变量 B(x,τ) 二元流动:有两个坐标自变量 B(x,y,τ) 三元流动:三个坐标自变量 B(x,y,z,τ)
11
3、流体流动是如何分类的?
(3)按运动要素是否随时间变化 稳定流动(恒定流):欧拉法所描述的流场中每一空间点上的所有 运动参数均不随时间变化的流动。 非稳定流动(非恒定流):欧拉法所描述的流场规律与时间有关的 流动。
第4章流体动力学基础1
2、连续性微分方程有哪几种形式?不可压缩流体的连续性 、连续性微分方程有哪几种形式? 微分方程说明了什么问题? 微分方程说明了什么问题? 质量守恒
第二节 元流的伯努利方程
欧拉运动微分方程组各式分别乘以 , , ( 欧拉运动微分方程组各式分别乘以dx,dy,dz(流场任意相邻两点间距 各式分别乘以 ds的坐标分量): 的坐标分量): 的坐标分量
1 ( Xdx +Ydy + Zdz) − ρ ( ∂p dx + ∂p dy + ∂p dz) = dux dx + ∂x ∂y ∂z dt duy dt
dy + duz dz dt
<I> 考虑条件 、 考虑条件 1、恒定流
<II>
<III>
一、在势流条件下的积分
∂p ∂p =0 ∂t
∂ux ∂uy ∂uz = = =0 ∂t ∂t ∂t
∂ux ∂y ∂uy ∂z ∂ux ∂z
= = =
∂uy ∂x ∂uz ∂y ∂uz ∂x
积分得:
z+γ +
p
u2 2g
=c
•
理想势流(无黏性) 理想势流(无黏性)伯努利方程
z+γ +
p
或
u2 2g
=c
p2 u22 2g
z1 + γ +
p1
u12 2g
= z2 + γ +
在同一恒定不可压缩流体重力势流 恒定不可压缩流体重力势流中 物理意义:在同一恒定不可压缩流体重力势流中 ,各点的总比能值相等 即在整个势流场中,伯努利常数 均相等。(应用条件 均相等。(应用条件: 即在整个势流场中,伯努利常数C均相等。(应用条件:“——”所示) ”所示)
流体动力基本概念
2、流线 定义:流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线 方向与该点的流速方向重合。流线是欧拉法描述流体运动的基础。图为流线谱中显示的流 线形状。
流线的作法: 在流场中任取一点,绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近 的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …, 若各点无限接近,其极限就是某时刻的流线。
ρdV 0 A ρv ndA t V
由奥-高公式
A
ρv n dA ( ρv ) dV
V
根据控制体与时间的无关性
ρ ρdV dV t V t V
直角坐标系下连续性方程的微分形式
ρ ( ρv ) 0 t
二、欧拉法与控制体
欧拉法(Euler method)是以流体质点流经流场中各空间点的运动即以流场作为 描述对象研究流动的方法——流场法 。它不直接追究质点的运动过程,而是以充满 运动流体质点的空间——流场为对象。研究各时刻质点在流场中的变化规律。将个 别流体质点运动过程置之不理,而固守于流场各空间点。通过观察在流动空间中的 每一个空间点上运动要素随时间的变化,把足够多的空间点综合起来而得出的整个 流体的运动情况。 (设立观察站的方法) 流场运动要素是时空(x,y,z,t)的连续函数: 速度 (x,y,z,t)——欧拉变量
控制体:将孤立点上的观察站扩大为一个有适当规模的连续区域。控制体相对于坐 标系固定位置,有任意确定的形状,不随时间变化。控制体的表面为控制面,控制 面上有流体进出。
第1章 流体力学基本知识
数学表达式:
二、流体的粘滞性 粘滞性 :流体内部质点间或层流间因相对运动 而产生内摩擦力(切力)以反抗相对运动的 性质。
牛顿内摩擦定律:
F-内摩擦力,N; S-摩擦流层的接触面面积,m2;
τ-流层单位面积上的内摩擦力(切应力),N/
m2;
du/dn-流速梯度,沿垂直流速方向单位长度 的流速增值;
hω1-2 =Σhf+Σhj
二、流动的两种型态--层流和紊流
二、流动的两种型态--层流和紊流
实验研究发现,圆管内流型由层流向湍流 的转变不仅与流速u有关,而且还与流体的 密度、粘度 以及流动管道的直径d有关。 将这些变量组合成一个数群du/,根据该 数群数值的大小可以判断流动类型。这个 数群称为雷诺数,用符号Re表示,即
从元流推广到总流,得:
由于过流断面上密度ρ为常数,以
u d u d
1 1 1 2 2 1 2
2
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv ρ1ω1v 1=ρ2ω2v 2
(1-11)
(1-11a)
(1-11)、 (1-11a) --质量流量的连 续性方程式。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
v
2 2 2
2g
h12
第三章流体动力学基础(1)
A Control Volume is a region in space, mass can cross its boundary 8
2019/3/27
流体力学基础
第三章 流体动力学基础
§2 流体运动中的几个基本概念
一、物理量的质点导数(全导数) • 运动中的流体质点所具有的物理量N(例如速度、压强、 密度、温度、质量、动量、动能等)对时间的变化率称 为物理量N的质点导数。 • 流体质点处于静止状态,则不存在质点导数概念; • 质点导数是针对某一物理量; • 质点导数必然是数学上多元复合函数对独立自变量t的 导数
流体微团的标识:通常取 t0 时刻该流体微团的初始空间坐标 (a, b, c )作为该流体微团的标识 (a, b, c )可以是直角坐标系下,也可以任选,只要能把所 研究的流体微团彼此区别开即可
2019/3/27
流体力学基础
2
第三章 流体动力学基础
• 拉格朗日变数 : ( a, b, c ) 和 t • 任一时刻流体微团(a, b, c )的运动空间坐标(x, y,z)
r t
(2)
2019/3/27
流体力学基础
16
第三章 流体动力学基础
• 欧拉参数转换为拉格朗日参数
若已知欧拉法表示的速度场为 v = v (r, t) = v (x, y, z, t ) 利用流体质点的速度关系式: dr/dt = v(r, t) 或分量形式: dx/dt = u(x, y, z, t) dy/dt = v(x, y, z, t) dz/dt = w(x, y, z, t) 设此组常微分方程组的解为: x = x(c1, c2, c3, t) y = y(c1, c2, c3, t) z = z(c1, c2, c3, t) 由起始条件确定积分常数,t=t0时有: a = x(c1, c2, c3, t0) b = y(c1, c2, c3, t0) c = z(c1, c2, c3, t0) 积分常数由拉格朗日参数(a, b, c)表示,获得拉氏与欧氏 参数关系:x=x (a, b, c, t), y=y (a, b, c, t), z=z (a, b, c, t), 原速度场:v = v [x(a,b,c,t), y(a,b,c,t), z(a,b,c,t), t] = v (a,b,c,t) 完成欧氏参数向拉氏参数转换 流体力学基础 17
(完整版)流体力学
第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。
分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V) 压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变(低速流动气体不可压缩)Ev=dp/(dρ/ρ)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。
质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。
第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程=0 流体平衡微分方程重力场下的简化:dρ=-ρdW=-ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;=C不可压缩流体静压强基本公式z+p/ρg不可压缩流体静压强分布规律p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强-当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。
流体动力学基础习题答案
流体动力学基础习题答案流体动力学基础习题答案一、流体静力学1. 压力是流体静力学中的重要概念。
它定义为单位面积上的力的大小,可以用公式P = F/A表示,其中P表示压力,F表示作用在面积A上的力。
2. 流体静力学中的另一个重要概念是压强。
压强定义为单位面积上的压力大小,可以用公式P = F/A表示,其中P表示压强,F表示作用在面积A上的力。
3. 流体静力学中的重要定理之一是帕斯卡定律。
帕斯卡定律指出,在静止的流体中,任何一个点的压力改变都会传递到整个流体中。
这意味着,如果在一个封闭容器中施加了压力,那么容器中的每一个点都会受到相同大小的压力。
4. 流体静力学中的另一个重要定理是阿基米德原理。
阿基米德原理指出,浸没在流体中的物体所受到的浮力等于物体排开的流体的重量。
这一原理解释了为什么物体在浸没在流体中时会浮起来。
二、流体动力学1. 流体动力学是研究流体在运动状态下的行为和性质的学科。
与流体静力学不同,流体动力学关注的是流体在运动中的力学特性。
2. 流体动力学中的重要概念之一是流速。
流速定义为流体通过某一点的体积流量除以通过该点的横截面积。
可以用公式v = Q/A表示,其中v表示流速,Q表示体积流量,A表示横截面积。
3. 流体动力学中的另一个重要概念是雷诺数。
雷诺数定义为流体的惯性力与黏性力的比值。
雷诺数越大,流体的惯性力相对于黏性力越大,流体的流动趋向于湍流;雷诺数越小,流体的惯性力相对于黏性力越小,流体的流动趋向于层流。
4. 流体动力学中的伯努利定理是一个重要的定理。
伯努利定理指出,在不可压缩、黏性、稳定的流体中,沿着流线的总能量保持不变。
这一定理解释了为什么飞机的机翼能够产生升力,以及水管中的水流速度和压力之间的关系。
三、流体力学习题答案1. 问题:一个直径为0.1米的管道中的水流速度为2米/秒,求水流的体积流量。
解答:体积流量可以用公式Q = Av表示,其中Q表示体积流量,A表示横截面积,v表示流速。
流体动力学基础
例3、如图所示,有一上方开口截面积很大的水槽,槽内水深h = 40 cm ,接到槽外水平管的截面积依次是1.0 cm2, 0.5 cm2 , 0.25 cm2 。 试求: 1)体积流量 QV 。 2)各段水平管中水流速度 vc ,vd ,ve 。 3)与水平管相连的各压强计中水柱高度 hc , hd , he 。
第二章 流体动力学基础
1、理解理想流体和定常流动(稳定流动)的概念 2、掌握运用连续性方程和伯努利方程 3、了解黏滞定律、泊肃叶定律、斯托克斯定律 4、了解测量液体黏度的实验方法。
第一节、理想流体的定常流动 第二节、伯努利方程 第三节、伯努利方程的应用 第四节、黏性流体的流动 第五节、泊肃叶定律和斯托克斯定律
a
h
c
hd :
d
1 2 1 2 Pd v d Pb v b , 其中Pb =P0 2 2 1 2 1 2 gh d P0 v d P0 v b 2 2 2 v b2 v d hc = 30cm 2g
e
b
例3、如图所示,有一上方开口截面积很大的水槽,槽内水深h = 40 cm ,接到槽外水平管的截面积依次是1.0 cm2, 0.5 cm2 , 0.25 cm2 。 试求: 3)与水平管相连的各压强计中水柱高度 hc , hd , he 。
a
h c
d e
b
例3、如图所示,有一上方开口截面积很大的水槽,槽内水深h = 40 cm ,接 到槽外水平管的截面积依次是1.0 cm2, 0.5 cm2 , 0.25 cm2 。 试求: 1)体积流量 QV 。
a h c d e
解(1)
b
QV Sb vb, 其中S b =Se,vb = 2gh
流体动力学基础
第3章 流体动力学基础一、单项选择题1、当液体为恒定流时,必有( )等于零。
A .当地加速度 B.迁移加速度 C.向心加速度 D.合加速度 2、均匀流过流断面上各点的( )等于常数。
A.p B.z+gpρ C.gpρ+gu22D. z+gpρ+gu223、过流断面是指与( )的横断面。
A .迹线正交 B.流线正交 C.流线斜交 D.迹线斜交 4、已知不可压缩流体的流速场为Ux=f(y,z),Uy=f(x),Uz=0,则该流动为( )。
A.一元流 B.二元流 C.三元流 D.均匀流5、用欧拉法研究流体运动时,流体质点的加速度a=( ). A.22dtr d B.tu ∂∂ C.(u ·▽)u D.tu ∂∂+(u ·▽)u6、在恒定流中,流线与迹线在几何上( )。
A.相交 B.正交 C.平行 D.重合7、控制体是指相对于某个坐标系来说,( ).A .由确定的流体质点所组成的流体团 B.有流体流过的固定不变的任何体积 C.其形状,位置随时间变化的任何体积 D.其形状不变而位置随时间变化的任何体积.8、渐变流过流断面近似为( ).A.抛物面B.双曲面C.对数曲面D.平面 9、在图3.1所示的等径长直管流中,M-M 为过流断面,N-N 为水平面,则有( ). A.p1=p2 B.p3=p4 C.z1+gp ρ1=z2+gp ρ2D.z3+gp ρ3=z4+gp ρ410、已知突然扩大管道突扩前后管段的管径之比21d d =0.5, 则突扩前后断面平均流速之比v1:v2=( ).A. 4B.2C.1D.0.5 11、根据图3.2 所示的三通管流,可得( )。
A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 12、根据图3.3 所示的三通管流,可得( )。
A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 13、测压管水头坡度Jp=( )。
第1章流体力学基础部分
∵ 液体在静止状态下不呈现粘性
∴ 内部不存在切向剪应力而只有法向应力 (2)各向压力相等
∵ 有一向压力不等,液体就会流动
∴ 各向压力必须相等
1.2.2 静止液体中的压力分布
1、液体静力学基本方程式
质量力(重力、惯性力)作用于液体的所有质点 作用于液体上的力
表面力(法向力、切向力、或其它物体或其它容器对液体、一部
赛氏秒SUS:
雷氏秒R:
美国用
英国用
巴氏度0B:
法国用
恩氏粘度与运动粘度之间的换算关系: ν=(7.310E – 6.31/0E)×10-6
m2/s
三、液体的可压缩性
可压缩性: 液体受压力作用而发生体积缩小性质 1、液体的体积压缩系数(液体的压缩率) 定义:体积为V的液体,当压力增大△p时,体积减小△V, 则液体在单位压力变化下体积的相对变化量 公式:
工作介质: 传递运动和动力 液压油的任务 润滑剂: 润滑运动部件 冷却、去污、防锈
1、 对液压油的要求
(1)合适的粘度和良好的粘温特性;
(2)良好的润滑性;
(3)纯净度好,杂质少; (4)对系统所用金属及密封件材料有良好的相容性。 (5)对热、氧化水解都有良好稳定性,使用寿命长; (6)抗泡沫性、抗乳化性和防锈性好,腐蚀性小; (7)比热和传热系数大,体积膨胀系数小,闪点和燃点高,流 动点和凝固点低。(凝点:油液完全失去其流动性的最高温度) (8)对人体无害,对环境污染小,成本低,价格便宜
υ=q/A
1.3.2 连续性方程--质量守恒定律在流体力学中的应用
1、连续性原理--理想液体在管道中恒定流动时,根据质 量守恒定律,液体在管道内既不能增多,也不能减少,因此 在单位时间内流入液体的质量应恒等于流出液体的质量。 2、连续性方程 ρ 1υ1A1=ρ 2υ2A2 若忽略液体可压缩性 ρ 1=ρ 则 υ1A1=υ2A2 或q=υA=常数
流体力学基础知识
返回 上页 下页
流体力学基础知识
(2)相对压强 相对压强是以大气压强(p0)为零点计算的压强。
用符号p表示。 在实际工程中,因为被研究对象的表面均受大气压
强作用,因此不需考虑大气压强的作用,即常用相对 压强。 p gh
如果液体是自由表面,则自由表面压强:
p gh
返回 上页 下页
流体力学基础知识
对变化量 。
1 dV
V0 dT
流体压缩性的大小,一般用压缩系数β(Pa-1)
来表示。压缩系数是指单位压强所引起的体积相对
变化量。
1 dV
V0 dp
返回 上页 下页
流体力学基础知识
一般结论: 水的压缩性和热膨胀性是很小的,在建筑设备
工程中,一般计算均不考虑流体的压缩性和热膨胀 性。
气体的体积随压强和温度的变化是非常明显的 ,故称为可压缩流体。
参数不随时间而变化的流动。 非恒定流动是指流体中任一点压强和流速等参数
随时间而变化的流动。 自然界的流体流动都是非恒定流动,在一定条件
下工程上近似认为是恒定流。
返回 上页 下页
流体力学基础知识
3.压力流和无压流 压力流是流体在压差作用下流动时,流体各个
过流断面的整个周界都与固体壁相接触,没有自由 表面。
、f Z
FZ m
返回 上页 下页
流体力学基础知识
当流体所受质量力只有重力时,由G=mg可得 单位质量力为:
fX 0、fY 0、fZ -g
2、表面力 表面力是指作用在流体表面上的力,其大小与
受力表面的面积成正比。 流体处于静止状态时,不存在黏性力引起的内
摩擦力(切向力为零),表面力只有法向压力。对于 理想流体,无论是静止或处于运动状态,都不存在 内摩擦力,表面力只有法向压力。
流体力学第三章流体动力学(1)
(2)流线的作法
流线的作法如下:在流速场中任取一点1(如下图),绘出
在某时刻通过该点的质点的流速矢量u1,再在该矢量上取距
点1很近的点2处,标出同一时刻通过该处的另一质点的流速
矢量u2……如此继续下去,得一折线1 2 3 4 5 6……,若
折线上相邻各点的间距无限接近,其极限就是某时刻流速场 中经过点1的流线。
(b)非恒定流
mt1 流线 mt2
迹线 mt3
且与迹线重合。
3. 均匀流和非均匀流 划分依据:按流速的大小和方向是否沿程变化
(1)均匀流
流速沿程不变的流动称为均匀流
在均匀流时不存在迁移加速度,即 auuo s
其流线为彼此平行的直线
例:等直径直管中的液流或者断面形状和水深不变的长直渠道中的水流 都是均匀流。
ux
uz x
uy
uz y
uz
uz z
质点的加速度由两部分组成:
auuu t s
欧拉加速度
ax
ux t
ux
ux x
uy
ux y
uz
ux z
ay
uy t
ux
uy x
uy
uy y
uz
uy z
az
uz t
ux
பைடு நூலகம்
uz x
uy
uz y
uz
uz z
①时变加速度(当地加速度)——流动过程中液体由于速度 随时间变化而引起的加速度; ——等号右边第一项是时变 加速度 ②位变加速度(迁移加速度)——流动过程中液体由于速度 随位置变化而引起的加速度。 ——后三项是位变加速度
(1) (a,b,c)=Const , t为变数,可以得出某个指定质点在任意时刻 所处的位置。 (2) (a,b,c)为变数, t =Const ,可以得出某一瞬间不同质点在空 间的分布情况。
第三讲 流体动力学基础
流体静压力矢量: F= -∫ApdAn
三、 流体静压力的两个重要特性。 1、流体静压力的方向总是沿受作用面法线方向。
2、平衡流体内任一点处的静压强的数值与其作用 面的方向无关,它只是该点空间坐标的函数。
10
§2-2 流体的平衡微分方程(欧拉平衡微分方程)
1 p f z
1、流量 单位时间内通过某一过流断面的流体量。体积流量qv或Q表示,质量流量 qm 。 qv vdA v A 体积流量(m3/s): A
质量流量(kg/s):
qm ρ vdA ρv A
A
2、净通量 在流场中取整个封闭曲面作为控制面,封闭曲面内的空间称为控制体。 流过全部封闭控制面A的流量称为净流量,或净通量。
动量修正系数是无量纲数,它的大小取决于总流过水断面的流速分布, 分布越均匀,β 值越小,越接近于1.0。
41
层流流速分布
湍流流速分布
断面流速分布 圆管层流 圆管紊流 旋转抛物面 对数规律
动能修正系数
动量修正系数 β =4/3 β =1.02~1.05
=2.0 =1.05~1.1
42
§3-3 连续方程式(一元流动)
绝对真空 p=0
15
第三章
流体动力学基础
16
3-1描述流体运动的两种方法
流体运动实际上就是大量流体质点运动的总和。
描述流体的运动参数在流场中各个不同空间位置上随时 间 连续变化的规律。
拉格朗日法(Lagrange):流体质点 着眼点不同
跟踪追迹法
欧拉法( Euler):空间 设立观察站法
17
一、 拉格朗日法与质点系
32
流线的性质:
1. 在某一时刻,过某一空间点只有一条流线。流线不能 相交,不能突然转折。三种例外: 驻点 相切点
流体动力学基础
1.3 流体动力学基础 教案目录 电子课件【掌握内容】(1)基本概念:流量、流速、压头等(2)质量流量、体积流量之间关系(3)流态判断(4)连续性方程的表达式、物理意义及计算(5)伯努利方程的表达式、物理意义及计算(6)流体阻力的种类及产生的原因【理解内容】(1)管道截面上的速度分布(2)阻力计算(3)简单管路、串联管路、并联管路计算【了解内容】(1)伯努利方程的应用(2)动量方程1.3.1基本概念1.3.1.1流量与流速(1)流量:单位时间内流过管道任一截面的流体量,称为流量。
①体积流量:单位时间内流过管道任一截面的流体体积,以符号V 表示,单位为m 3/s ②质量流量:单位时间内流过管道任一截面的流体质量,以符号M 表示,单位为kg/s(2)流速:单位时间内流体的质点在流动方向上流过的距离称为流速.FV w = (m/s ) (3)质量流量与体积流量和平均流速间的关系。
wF V =(m 3/s )ρρwF V M == (kg/s )对于气体: 222111T V p T V p = 122112T T p p V V = (m 3/s ) 122111221122T T p p w T T p p F V F V w === (m/s ) [例题1-4] 某硅酸盐窑炉煅烧后产生的烟气量为10万m 3/h ,该处压强为负100Pa ,气温为800℃,经冷却后进入排风机,这时的风压为负1000Pa ,气温为200℃,求这时的排风量(不计漏风等影响)。
解: 1p =101325-100=101225Pa , 2p =101325-1000=100325Pa1T =273+800=1073K 2T =273+200=473K1V =1.0×105m 3/h 2V =1073473100325101225100.15⨯⨯⨯ =4.44×104 (m 3/h)硅酸盐窑炉系统中,可近似认为1p =2p =0p (大气压),1211212273273t t V T T V V ++== (m 3/s ) 1.3.1.2稳定流与非稳定流运动流体全部质点所占的空间称为流场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二维速度剖面 u =u ( x, y)
u =u(x, y, z,t) 三维速度廓线 = v(x, y, z,t) v w= w x, y, z,t) (
B2 流动分析基础
B2.2.1 流量与平均速度 体积流量 质量流量 流量 不可压缩流体
Q= ∫ (v⋅ n d ) A
A
& m= ∫ ρ(v⋅ n d ) A
对抛物线分布, 对抛物线分布,由(B2.2.8a)和(B2.2.9a)式可得 B2.2.8a) B2.2.9a)
α1 =
2 R u1 16 R r rdr = 2 ∫ − 1 2 ∫ 0 V 0 R 1 R R
,
3
2 3
r rdr = −2 − 1 R
讨论: 本例说明虽然给出的是速度分布式(欧拉法), 讨论: 本例说明虽然给出的是速度分布式(欧拉法),即各空间点上速 ),即各空间点上速 度分量随时间的变化规律,仍然可由此求出- 度分量随时间的变化规律,仍然可由此求出-指定流体质点在不 同时刻经历的空间位置,即运动轨迹(拉格朗日法)。 同时刻经历的空间位置,即运动轨迹(拉格朗日法)。
B2 流动分析基础
3. 直圆管一维流动修正因子 用平均速度描述圆管一维流动简化了流量和压强计算。 用平均速度描述圆管一维流动简化了流量和压强计算。但对截面上 动能和动量计算造成偏差,引入动能修正因子和动量修正因子。 动能和动量计算造成偏差,引入动能修正因子和动量修正因子。
12 1 & = α( V2)m ∫A(2u )dm 2 &
为平均速度, 常数, 上式中V为平均速度,设ρ=常数,截面积 A=πR2,微元圆环面积 B2.2.7)式 & dA= 2 rdr。由(B2.2.7)式,m= ρQ= ρVA。 π
&( dm r) = ρ dQ(r) = ρudA= ρu2 rdr π 1 u 3 2 R u 3 α = ∫ ( ) dA= 2 ∫ ( ) rdr AAV R 0 V
A
& m= ρ Q
Q、& 指净流出流量 、 m 体积流量
封闭曲面时
平均速度
V=
Q A
Q=V A
不可压缩流体质量流量
& m=ρVA
B2.2.1]直圆管粘性定常流动 直圆管粘性定常流动: [例B2.2.1]直圆管粘性定常流动:流量与平均速度 已知:粘性流体在半径为R的直圆管内作定常流动。设圆管截面( 已知:粘性流体在半径为R的直圆管内作定常流动。设圆管截面(指垂直管轴 的平面截面)上有两种速度分布( B2.2.1), ),一种是抛物线分 的平面截面)上有两种速度分布(参见图 B2.2.1),一种是抛物线分 另一种是1/7指数分布: 1/7指数分布 布,另一种是1/7指数分布:
R 2 4
=2
0
1/7指数分布 指数分布, B2.2.8b) (B2.2.9b)式可得 对1/7指数分布,由(B2.2.8b)和(B2.2.9b)式可得
2 u 2 120 α2 = 2 ∫ 2 rdr = 2 R 0 V R 98 2
R 3 3
r ∫0 1− R rdr =1.05838
R
3/ 7
按单位质量流体的动量计算,动量修正系数β (2)按单位质量流体的动量计算,动量修正系数β定义为
& & ∫ udm= β Vm
A
可得 对抛物线分布
1 u 2 R u β = ∫A dA= 2 ∫ rdr A V R 0 V
2
R
7×7 98 = 2 R um2 π = um2πR2 = 0.8167um2πR2 15×8 120
(2)平均速度由(B2.2.4)式计算,抛物线分布和1 / 7指数分布的平 平均速度由(B2.2.4)式计算,抛物线分布和1 7指数分布的平 均速度分别为
V= 1
V = 2
Q 1 = 0.5um1 2 πR 1
B2 流动分析基础
B2.2.3 定常与不定常流动 a. 定常流动 b. 准定常流动 c.周期性谐波脉动流 c.周期性谐波脉动流 周期性非谐波脉动流(生理波) d. 周期性非谐波脉动流(生理波) e.非周期性脉动流(衰减波) e.非周期性脉动流(衰减波) 非周期性脉动流 f.随机流动(湍流) f.随机流动(湍流) 随机流动 • 不定常流与定常流的转换
流体力学
中山大学工学院朱庆勇教授 mcszqy@
B2 流动分析基础
B2.1 描述流体运动的数学方法
1.分类 1.分类 随体法 描述方法 当地法 2.比较 2.比较 拉格朗日法
分别描述有限质点的轨迹 表达式复杂 不能直接反映参数的空间分布 不适合描述流体元的运动变形特性 拉格朗日观点是重要的
β1 =
2 R u1 0 R2 ∫ V 1
R
2 2 8 R r 4 rdr = 2 ∫ − rdr = =1.333 1 R 0 R 3 2
2
2
2 u 2 120 R r 50 β2 = 2 ∫ 2 rdr = 2 ( )2 ∫ 1− rdr = ≈1.020 1/7指数分布 对1/7指数分布 R 0 V R 98 0 R 49 2
2
2/ 7
讨论:将例B2.2.1和本例的结果合在一起列表如下: 讨论:将例B2.2.1和本例的结果合在一起列表如下: B2.2.1和本例的结果合在一起列表如下
表B2.2.1 圆管粘性一维定常流动修正系数 平均速度/中心速度 速度分布类型 抛物线分布 1/7指数分布 动能修正系数 2.0 1.058
V /um
(a)
求解一阶常微分方程( 求解一阶常微分方程(a)可得
x = et c +∫te−t dt = et c −(t +1 e−t = c et −t −1 ) 1 1 1 y = et c2 +∫te−t dt = et c2 −(t +1 e−t = c2et −t −1 )
[ [
Q 2 = 0.8167um2 2 πR2
由上可见, 由上可见,速度为抛物线分布的截面上的平均速度为最大速度的一 讨论: 讨论: 1/7指数分布的截面上的平均速度为最大速度的0.8167倍 指数分布的截面上的平均速度为最大速度的0.8167 半,而1/7指数分布的截面上的平均速度为最大速度的0.8167倍, 这是由于后者的速度廓线中部更平坦,速度分布更均匀的缘故。 这是由于后者的速度廓线中部更平坦,速度分布更均匀的缘故。
0
R
0
R
r2 r4 = 2 um1 − 2 = 0.5um1πR2 π 2 4R 0
R
7指数分布的流量为 1 / 7指数分布的流量为
R r = ∫ um2(1− )1/7 2 rdr π Q = ∫ (v·n )dA 0 2 A R
1 )15/7 − (1−r / R)8/7 2 ( −r / R = 2 um2R π 15/ 7 8/ 7 0
] [ ] [
] ]
(b)
x =a 为积分常数, 0时刻流体质点位于 上式中c1 ,c2 为积分常数,由t = 0时刻流体质点位于 ,可确 y =b 代入(b) (b)式 定 c1 = a +1 ,代入(b)式,可得参数形式的流体质点轨迹方程为
c2 = b +1
x = (a+1 et −t −1 ) y = (b+1 et −t −1 )
B2 流动分析基础
B2.2 速度场
• 速度场是最基本的场 v = v (x, y, z, t )
u =u(x, y, z,t) 速度分量: v 速度分量: = v(x, y, z,t) w= w x, y, z,t) (
• 可用速度廓线(剖面)描述空间线或面上的速度分布 可用速度廓线(剖面)
r 2 u1 =um1 − 1 R
r u2 =um21− R
1/ 7
上式中, 分别为两种速度分布在管轴上的最大速度。 上式中,um1、um2分别为两种速度分布在管轴上的最大速度。 两种速度分布的( 流量Q的表达式; 求:两种速度分布的(1)流量Q的表达式; 截面上平均速度V (2)截面上平均速度V。 流量由(B2.2.3)式计算,注意到dA 2πrdr, 解:(1)流量由(B2.2.3)式计算,注意到dA = 2πrdr,抛物线分布的 流量为 R R r2 r3 Q = ∫ ( v·n )dA = ∫ um11− 2 2 rdr = 2 um1∫ r − 2 dr π 1 π A
0.5 0.8167
α
动量修正系数
β
1.333 1.020
由上可见,在直圆管粘性定常流动中,与抛物线分布相比,1/7指数分布 由上可见,在直圆管粘性定常流动中,与抛物线分布相比,1/7指数分布 比较接近平均速度廓线,用一维流动近似计算动能和动量时, 比较接近平均速度廓线,用一维流动近似计算动能和动量时,可取 α=β=1,即不必修正。 α=β=1,即不必修正。
& m ∫ udm= βV&
A
表B2.2.1 圆管粘性一维定常流动修正因子
速度分布类型 抛物线分布 1/7指数分布 1/7指数分布 平均速度/ 平均速度/中心速度 V /um 动能修正因子
α
动量修正因子 β
0.5 0.8167
2.0 1.058
1.333 1.020
B2.2.2]直圆管粘性定常流动 直圆管粘性定常流动: [例B2.2.2]直圆管粘性定常流动:动能修正系数与动量修正系数 已知:粘性流体在半径为R的直圆管内作定常流动。设圆管截面( 已知:粘性流体在半径为R的直圆管内作定常流动。设圆管截面(指垂直管轴 的平面截面)上有两种速度分布( B2.2.1), ),一种是抛物线分 的平面截面)上有两种速度分布(参见图 B2.2.1),一种是抛物线分 另一种是1/7指数分布: 1/7指数分布 布,另一种是1/7指数分布: