高压直流输电PPT课件

合集下载

《高压直流输电》课件

《高压直流输电》课件
针对高压直流输电控制系统的复杂性,研究更为高效、稳定的控制策略,如采用人工智能、神经网络等先进技术进行控制系统优化。
研究高压直流输电线路和换流站对周边电磁环境的影响,制定相应的防护措施和标准,降低对环境和人体的影响。
研究高压直流输电在电网中的稳定运行机制,通过优化无功补偿、有功滤波等技术手段,提高系统的稳定性和可靠性。
高压直流输电系统的核心,负责将交流电转换为直流电或反之。
换流站
直流输电线路
接地极
用于传输直流电,通常采用架空线或海底电缆。
为系统提供参考地电位,并泄放多余的电流。
03
02
01
01
02
03
04
实现交流电与直流电相互转换的核心元件。
换流阀
用于调整电压等级,使换流站能与不同电压等级的电网连接。
变压器
用于滤除换流过程中产生的谐波,减少对周围环境的干扰。
《高压直流输电》PPT课件
目录
高压直流输电概述高压直流输电的基本原理高压直流输电系统的构成与设备高压直流输电的优缺点与关键技术问题高压直流输电的工程实例与展望
01
高压直流输电概述
Chapter
总结词
高压直流输电是一种利用高压直流电进行远距离传输的输电方式,具有输送容量大、损耗小、稳定性高等特点。
详细描述
总结词
换流技术是高压直流输电的核心技术之一,涉及到整流和逆变两个过程。
详细描述
在整流过程中,交流电源转换为直流电源,通过控制晶闸管或绝缘栅双极晶体管的开关状态实现。逆变过程则是将直流电源转换为交流电源,同样通过控制开关状态实现。换流技术的关键在于保证电流的稳定和减小谐波干扰。
VS
高压直流输电的损耗主要包括线路损耗和换流损耗,提高效率是重要目标。

高压直流输电技术优秀课件

高压直流输电技术优秀课件

但是汞弧阀制造技术复杂、价格昴贵、逆弧
故障率高、可靠性较差、运行维护不便等因素
,使直流输电的应用和发展受到限制。
二、直流输电技术的发展
第二阶段:晶闸管阀换流时期
20世纪70年代以后,电力电子技术和微电子技术的 迅速发展,高压大功率晶闸管的问世,晶闸管换流 阀和计算机控制技术在直流输电工程中的应用,这 些进步有效地改善了直流输电的运行性能和可靠性, 促进了直流输电技术的发展。
二、直流输电技术的发展
直流输电的发展与换流技术有密切的关系。
(特别与高电压、大功率换流设备的发展)
第一阶段:汞弧阀换流时期
1901年发明的汞弧整流管只能用于整流。
1928年具有栅极控制能力的汞弧阀研制成功,
它不但可用于整流,同时也解决了逆变问题。
因此大功率汞弧阀使直流输电成为现实。
1954年世界上第一个采用汞弧阀性直流输
但是IGBT功率小、损耗大,不利于大型直流输电 工程采用。最新研制的门极换相晶闸管(IGCT) 和大功率碳化硅元件,该元件电压高、通流能力 强、损耗低、可靠性高。
1949年~2020年我国发电装机容量、用电量图
一、发展特高压电网的必要性
2、发展特高压电网是电源结构调整和优化布局的必 然要求。
我国发电能源以煤、水为主。西部地区资源 丰富,全国四分之三以上经济可开发水能资源分布在 西南地区,煤炭资源三分之二以上分布在西北地区; 东部地区经济发达,全国三分之二以上的电力负荷集 中在京广铁路以东经济发达地区,未来的负荷增长也 将保持这一趋势。
高压直流输电技术优秀课件
目录
一、发展特高压电网的必要性
二、直流输电技术的发展
三、直流输电与交流输电的性 能比较
四、高压直流输电系统的结构 和元件

高压直流输电技术PPT课件

高压直流输电技术PPT课件

这篇文章发表后,正弦波立
即在电气工程领域得到应用
。 论文中提出,正弦交流电路如同直流电路一样,电压和电流有效值之比为一
常数,称之为阻抗;因此,在线性电路中是遵守欧姆定律的。他从电气参数
计算上说明了采用正弦函数波形交流电的理由。
10/25/2019
22
传统的直流输电系统
10/25/2019
23 23
10/25/2019
28
传统的直流输电系统
传统直流输电系统是建立在发电和配电均为交流电基
础上的。
传统直流输电是先将送端的交流电整流为直流电,由
直流输电线路送到受端,再将直流电逆变为交流电,送 入受端的交流电网。
传统直流输电系统经历了汞弧阀换流器和晶闸管阀换
流器两个阶段。
10/25/2019
2929
网;二是当两个相同工作频率的交流电网联网形成更大的交流电网后,受 到系统运行稳定性差和短路容量增大等限制。
3.在电缆输电方面,由于电缆电容远大于架空线路,电缆电容的充放电电
流产生很大损耗,严重限制了电缆输电距离和效率。
在一定条件下的技术经济比较结果表明,采用直流输电更为合理,且比
交流输电有更好的经济效益和优越的运行特性。因而,直流输电重新被人 们重视。
机或电动机的故障退出与重新接入以及运行调整,极大地提高了
可靠性。
4台 3kV/300kW
发电机
输电线路16km
避雷器
避雷器
总电压12kV、电流100A
2台 1kV/100kW
电动机
1台 3kV/300kW
电动机 2台
500V/50kW 电动机 2台
3kV/300kW 电动机
典型的 Thury串联 系统

直流输电基础课件

直流输电基础课件
感谢您的观看
03
直流输电的工作原理
电压源换流器工作原理
电压源换流器是一种基于电压控制的换流器,其工作原理是通过调节电压的幅值和 相位,实现直流电的逆变和整流。
电压源换流器采用全控型电力电子器件,如IGBT、IGCT等,通过脉宽调制(PWM) 技术实现对电压和频率的精确控制。
电压源换流器具有高效率、低谐波、快速响应等优点,因此在高压直流输电 (HVDC)和柔性直流输电(VSC-HVDC)等领域得到广泛应用。
02
直流输电系统的组成
电源
01
02
03
电源的作用
为直流输电系统提供电能, 是整个系统的动力来源。
电源类型
包括化石能源、核能、可 再生能源等,根据不同的 需求和环境条件选择合适 的电源。
电源接入
通过换流站将电源接入直 流输电系统,实现电能的 汇集和分配。
换流站
换流站的作用
实现交流电与直流电之间 的转换,是直流输电系统 的核心组成部分。
景。
直流输电的应用场景
大容量远距离输电
直流输电适合于大容量、远距离 的输电需求,例如国家之间的电 网互联、长距离海底电缆输电等。
城市电缆输电
在城市区域内,由于建筑物密集, 采用交流输电难以实现,而直流输 电可以更好地适应城市环境,例如 城市地铁、隧道照明等。
特殊环境输电
在特殊环境下,如矿井、石油平台 等,直流输电可以更好地适应环境 要求,提高输电效率和稳定性。
直流输电的特点
高效稳定
直流输电的电压稳定,没有频 率和相位的变化,因此传输效
率较高,稳定性较好。
损耗较小
由于直流输电的电流在传输过 程中不会产生交流阻抗,因此 损耗较小,传输效率较高。

直流输电课件

直流输电课件
超高压直流输电技术的研发
随着技术的不断进步,人们开始研究超高压直流输电技术,以进一步提高电力 传输的效率和安全性。
超高压直流输电技术的应用
超高压直流输电技术在跨洲、跨国电力传输以及海上风电并网等领域具有广阔 的应用前景。通过采用先进的绝缘材料、控制技术和设备,超高压直流输电技 术的传输容量、稳定性和经济效益将得到进一步提升。
换流器类型
包括整流器和逆变器,分 别用于将交流电转换为直 流电和将直流电转换为交 流电。
换流器控制
对换流器进行控制,确保 其输出稳定的直流电能。
输电线路
线路类型
线路保护
包括架空线路和地下电缆,根据输电 距离和地形选择合适的线路类型。
对输电线路进行保护,防止其受到自 然灾害和人为破坏的影响。
线路设计
互联。
直流输电的应用场景
大规模风电和太阳能发电基地的并网输送
01
直流输电可以用于大规模可再生能源基地的并网输送,实现清
洁能源的优化配置和利用。
城市和工业园区的供电
02
直流输电可以用于城市和工业园区的供电,提高供电可靠性和
稳定性。
跨区域大电网互联
03
直流输电可以用于实现跨区域大电网互联,提高电网的稳定性
和可靠性。
02
直流输电系统的组成
电源010203电源类型包括化石燃料发电、核能 发电、可再生能源发电等。
电源接入
电源通过换流站接入直流 输电系统,实现电能转换 和传输。
电源控制
对电源进行控制,确保其 输出稳定的直流电能。
换流器
工作原理
换流器通过控制半导体开 关的通断,实现交流电与 直流电之间的转换。
政策和市场环境
政府政策和市场环境对直流输电技术的发展和应用具有重要影响, 需要加强政策支持和市场推广。

高压直流输电控制课件

高压直流输电控制课件

培训与演练
对高压直流输电系统的操 作人员进行培训和演练, 提高其应对故障的能力和 水平。
06 高压直流输电的未来发展 与挑战
技术发展趋势
更高电压等级
随着技术的进步,高压直流输电 系统的电压等级将进一步提高, 以实现更远距离、更大容量的电
力传输。
柔性直流输电技术
柔性直流输电技术以其独特的可 控性和灵活性,将在未来高压直
详细描述
高压直流输电是将直流电能从电源侧通过换流站传送到受端 的过程,其传输容量大、电压等级高,能够实现远距离、大 容量的电力传输,且传输过程中电能损耗较低,稳定性较好 。
高压直流输电的应用场景
总结词
高压直流输电适用于大规模、远距离的电力传输,尤其适用于海底电缆、城市 供电等场景。
详细描述
由于高压直流输电具有稳定、高效、灵活等优点,因此广泛应用于海底电缆、 城市供电、可再生能源并网等场景,能够满足不同地区、不同用户的电力需求 。
控和操作。
控制系统功能
自动控制
远程监控
根据预设的控制策略,自动调节高压直流 输电系统的运行状态,确保系统稳定、安 全、经济运行。
通过通讯设备接收上层调度系统的指令, 远程监控高压直流输电系统的运行状态, 并进行相应的操作。
故障诊断
优化调度
根据传感器反馈的运行数据,对高压直流 输电系统进行故障诊断,及时发现并处理 系统中的异常情况。
智能化与自动化
高压直流输电系统的控制将更加智能化和自动化,能够更好地应对复 杂多变的运行环境和条件,提高电力传输的可靠性和稳定性。
感谢您的观看
THANKS
传感器实时监测高压直流输电 系统的运行状态,并将数据反 馈给控制器,形成闭环控制。
通过通讯设备,控制系统与上 层调度系统进行信息交互,实 现远程监控和操作。

直流输电ppt第六章换流站及其设备

直流输电ppt第六章换流站及其设备

6.2 换流站主接线

直流输电换流站由基本换流单元组成,基本换流单元有6
脉动换流单元和 12脉动换流单元两种类型,每个基本换 流单元主要包括换流变压器、换流阀、交直流滤波器、
控制保护设备、交直流开关设备等。

本节主要介绍:



1、换流器的接线; 2、换流变压器与换流器的连接方式; 3、交流滤波器的接入系统方式; 4、直流开关场的接线; 5、换流站特殊的接线方式。
至极1
LVHS
GRTS
连接线B 母线A
MRTB
至接地极
LVHS NBGS
至极2
(2)大地回线转换开关(GRTS)
GRTS装设在接地极线与极线之间。它是用于在不停运情况下,将直流电流
从单极金属回线转换至单极大地回线。 在GRTS动作之前,MRTB先合闸,建立大地回路和金属回路2个并联的回路, 直流电流被分流,到达稳态之后,GRTS动作进行电流转换操作,转换成功之后, 和GRTS串联的隔离开关将断开,以确保GRTS不承受持续的电压。
15
2012-11-18
A C B
V1 V3
m1
V5
Id
a
iaY
i1 i4 ibY i3 i6 icY i5 i2
V4 V6 V2
一、换流阀组接线
c
b
n1 m2
V3' V5'
Vd
负 载
V1'
a
i a△
i'1 i'4 ib△ i'3 i'6 ic△ i'5 i'2
V4' V6' V2'
c
b
n2

高压直流输电控制.pptx

高压直流输电控制.pptx
第24页/共52页
直流控制软件
紧急停运: 整流侧发生ESOF时,两站的保护闭锁时序为: • 整流侧立即移相,20ms后如果电流低直接闭锁,否则投旁通对。 • 逆变侧在接收到整流侧的闭锁指示信号后,发ALPHA_90命令,约 200ms后投旁通对。 逆变侧发生ESOF时,两站的保护闭锁时序为: • 整流侧收到逆变站发来的闭锁信号后,立即移相,60ms后触发本站 Y_BLOCK,20ms后如果电流低直接闭锁,否则投旁通对。 • 逆变侧立即移相,投旁通对,向对站发闭锁命令,等待对站闭锁后本站 再闭锁。
第28页/共52页
直流控制功能
极功率/电流控制功能概况图 :
Pole Individual Power Control
POWER MODULATIONS
Fast Stop Damping Control [ P] Frequency Stabilization Frequency Control Io Limitation
第33页/共52页
直流控制功能
• 低压限流静态特性 :
第34页/共52页
直流控制功能
• 低压限流的功能概况图 :
RECT TUP INV TUP
TDOWN
第35页/共52页
直流控制功能
• 无功控制 : • 无功功率控制是整个直流极控系统中一个必不可少的重要功能,目的是 控制与换流站相连的交流系统性能(无功、谐波),其包括以下功能: • 根据换流站与交流系统的无功交换量决定投/切滤波器组。 • 根据滤波器组的状态,对可投/切的滤波器组进行优先级排序,决 定投/切哪一类型的滤波器组,以及该类型中的哪一组滤波器。
IO to other station IO from other station TCOM OK (joint)

特高压输电技术PPT讲稿

特高压输电技术PPT讲稿
1974年将单相试验设备扩建为1000~15000kV 三相系统。
美国邦维尔电力局(BPA)有2处特高压试验站。
国外发展概况

意大利
全国各地参 加 1000kV 科研规划的 单位共有7 个试验场和 2个雷电记 录站。
意大利1000kV工程雷电冲击试验
国外发展概况

瑞典
查麦斯大学高电压试验场可进行交流 1000kV 电 气 试 验 , 试 验 场 内 建 有 240m 特 高 压 试验线段。另有180m的绝缘子试验线段。
特高压输电技术课件
电网的发展历程
• 输电电压一般分高压、超高压和特高压
高压(HV):35〜220kV; 超高压(EHV):330 〜750kV; 特高压(UHV):1000kV及以上。 高压直流(HVDC):±600kV及以下; 特高压直流(UHVDC):±750kV和±800kV。
根据国际电工委员会的定义:交流特高压是指 1000kV 以 上 的 电 压 等 级 。 在 我 国 , 常 规 性 是 指 1000kV以上的交流,800kV以上的直流。
国 外 发 展 概 况
国外发展概况

前苏联
1985年建成埃基巴斯图兹——科克切塔夫——库斯 坦奈特高压线路,全长900km,按1150kV电压投入运 行,至1994年已建成特高压线路全长2634km 。
运行情况表明:所采用的线路和变电站的结构基本 合理。特高压变压器、电抗器、断路器等重大设备经受 了各种运行条件的考验。
❖1989年建成±500kV葛洲坝-上海高压直流输电
线,实现了华中-华东两大区的直流联网。
我国电网的发展历程
❖2005年9月,中国在西北地区(青海官厅—兰州
东)建成了一条750kV输电线路,长度为140.7 km。输、变电设备,除GIS外,全部为国产。

特高压直流输电技.ppt

特高压直流输电技.ppt
• 5. 土地和环保压力 • 输电走廊限制了输电线路的建设,沿海经济发达地区线路
走廊尤其紧张,规划建设的火电基地规模巨大,要求将其 电力输送往负荷中心。如果全部采用500KV及以下电压
• 等级的输电线路,则回数过多,线路走廊紧张的矛盾难以 解决。
• 6. 煤炭的运输 • 近年来,我国经济发达地区燃煤电厂发展较快,而电煤的
二、推动特高压输电发展的因数
从世界其他国家电网发展的历程看,推动超高压电网向特高 压电网发展的因数主要有以下六个方面:
1. 用电负荷的增长 按照引入新的更高输电电压等级的一般规律,当电网内用 电负荷增长达到现有最高输电电压等级引入时的4倍以 上时,开始建设更高电压等级的输电工程是经济合理的。
2. 发电机和发电厂规模经济性 不断增长的用电需求促进发电技术,包括火力、水力发电 技术向单位(KW)造价低、效率高的大型、特大型发 电机发展。发电厂的规模随大型和特大型机组的应用迅 速增大,从而进一步降低了发电厂的建设和运行成本, 形成6000~10000MW的发电中心。水力发电技术的发展 促进了在远离负荷中心的地区建设大型电站和阶梯电站
从而形成水力发电中心。从超高压和特高压各电压等级的输 电能力可看出,大型和特大型机组及相应的大容量发电厂 的建设更增加了对特高压输电的需求。
3. 燃料、运输成本和发电电源的可用性 未来的的燃料和运输成本以及各中燃料的可用性,对电源 的总体结构和各种发电电源在地域上的布局有重要影响。 在燃料运输成本上升,运力受制约而使燃料的保证率变低, 运输燃料的经济性不如输电的情况下,在燃料产地建设大 容量的发电厂,以特高压向负荷中心输电是经济合理的。
• 平均大容量输电距离,将超过500KM,西南水电送出到华 东的距离甚至超过2000KM。西电东送、南北互供的输电 容量在未来的15年将超过200GW。

高压直流输电PPT课件

高压直流输电PPT课件
巴西的伊泰普为两回±600kV,约800km长,容量6300MW
加拿大的纳尔逊河两回±500kV,约940km 4000MW
三峡——华东 三回±500kV,约900~1100km 7200MW
三峡——广东 一回±500kV 960km 3000MW
10
2、背靠背直流联网工程 3、跨海峡直流海底电缆工程
➢三峡-常州 三峡-广东 贵州-广东 灵宝背靠背直流输电 舟山 嵊泗 2006年12月19日开工,云南楚雄—广东 ±800kV,500万kW, 1438km,2009年单极投产,2010年双极投产 2007年5月21日,四川—上海±800kV特高压直流输电示范工程 在上海奠基。 向家坝—四川—(途径重庆、湖南、湖北、安徽、浙江)上 海奉贤,1600万kw,2000km,投资180亿,计划于2011年建成。
11
1.2 直流输电系统的构成
一.直流输电的基本概念
直流输电是将发电厂发出的交流电经过升压变压器后,又 换流设备(整流器)整成直流,通过直流线路送到受端, 再经换流设备(逆变器)换成交流供给交流系统。 按它与交流系统连接的节点数可分为 两端
多端
12
直流输电系统的构成
换流变 压器1
~
+ Id
整 流Vd1 器
4
据了解,目前世界上Байду номын сангаас有日本和俄罗斯两国拥有 1000千伏特高压交流电网,且都是短距离输电。 正负800千伏直流输电技术国际上尚无运行经验, 关键技术和设备有待进一步研究开发。南方电网采 用特高压输电技术,可以有效缓解长距离“西电东 送”输电走廊资源紧张局面,提高电网安全稳定水 平,输电能力也将明显提高。
➢英法海峡 ±270kV 72km 2000MW ➢波罗底海(瑞典-德国)单极450kV 海底250km,架空12km 600MW ➢日本纪伊 ±500kV 海底51km,架空51km 2800MW ➢巴坤(马来西亚) 三回±500kV,海底670km,架空660km 2130MW ➢舟山 嵊泗

高压直流输电的基本控制原理(ppt 65页)

高压直流输电的基本控制原理(ppt 65页)

图6-7 阀的电气连接示意图 (a)晶闸管级;(b)阀组件;(c)单阀(桥臂);(d)换流桥
6.2.2 12脉动换流器
在大功率、远距离直流输电工程中,为了减小谐 波影响,常把两个或两个以上换流桥的直流端串 联起来,组成多桥换流器。
多桥换流器结构 由偶数桥组成,其中每两个桥布置成为一个双
桥。每一个双桥中的两个桥由相位差为30º°的 两组三相交流电源供电,可以通过接线方式分 别为Y—Y和Y—D的两台换流变压器得到。
背靠背直流输电系统是输电线路长度为零(即无直流 联络线)的两端直流输电系统,主要用于两个非同步运行 的交流系统的联网,其整流站和逆变站的设备通常装设 在一个站内。由于背靠背直流输电系统无直流输电线路, 直流侧损耗较小,所以直流侧电压等级不必很高。
图6-5 背靠背直流输电系统结构
6.1.4 高压直流输电系统的结构和元件
6.3.1 高压直流输电系统的谐波特点
直流输电系统的平波电抗器电抗值通常比换相电 抗值要大的多,所以对于与换流器连接的交流系 统来说,换流器及其直流端所连接的直流系统可 以看作一个高内阻抗的谐波电流源。
为了正确估计谐波所引起的不良影响、正确设计 和选择滤波装置,必须对直流输电系统中的谐波 进行分析。在分析谐波时,通常先采用一些理想 化的假设条件,这样不但可以使分析得到简化, 而且对谐波中的主要成分可以得出具有一定精度 的结果,根据这些假设条件,得出有关特征谐波 的结论。然后,对某些假定条件加以修正,使分 析计算接近于直流输电系统实际的运行和控制情 况。
图6-6 双级HVDC系统
以双级HVDC系统为例,HVDC系统的主要元件 :
(1)换流器 (2)滤波器 (3)平波电抗器;电感值很大,在直流输电中有着非常重要的

高压直流输电与柔性交流输电课件

高压直流输电与柔性交流输电课件

应用场景比较
高压直流输电和柔性交流输电在不同应用场景中各有优势。
高压直流输电适用于远距离大容量电力输送、电网互联、城市供电等场景,能够 提高电网的稳定性和可靠性。而柔性交流输电适用于分布式电源接入、可再生能 源并网、城市配电网改造等场景,能够提高电网的灵活性和可调度性。
优缺点比较
高压直流输电和柔性交流输电各有优缺点,适用场景不同。
05
实际案例分析
高压直流输电典型案例
案例一
苏格兰到英格兰的HVDC 输电项目
案例二
魁北克到纽约的HVDC输 电项目
案例三
巴西的伊泰普水电站 HVDC输电项目
柔性交流输电典型案例
案例一
上海南汇风电场的柔性交流输电系统
案例二
丹麦的哥本哈根电网的FACTS应用
案例三
美国加州的San Gorgonio风电场的柔性交流输电 系统
案例对比分析
1 2
技术经济性分析
投资成本、运行维护费用、可靠性等方面的比较
环境和社会影响比较
对环境的影响、对当地经济的影响等方面的比较
3
未来发展趋势和前景展望
高压直流输电与柔性交流输电在未来电网发展中 的地位和作用
THANK YOU
高压直流输电与柔性交流输电课 件
• 高压直流输电技术介绍 • 柔性交流输电技术介绍 • 高压直流输电与柔性交流输电的比
较 • 高压直流输电与柔性交流输电的未
来发展 • 实际案例分析
01
高压直流输电技术介绍
高压直流输电的定义与特点
总结词
高压直流输电是一种利用直流电进行大容量、远距离电力传输的技术,具有输送容量大、损耗小、稳定性高等特 点。
高压直流输电具有输送功率大、控制性能好、受干扰影响小等优点,但设备成本高、损耗较大。而柔性交流输电具有响应速 度快、调节范围广、可实现快速控制等优点,但设备成本较高、对电能质量有一定影响。在实际应用中,应根据具体需求和 场景选择合适的输电方式。

高压直流输电系统课件pptx

高压直流输电系统课件pptx
发展历程
自20世纪初开始研究,随着电力 电子技术的发展,高压直流输电 技术逐渐成熟并广泛应用。
工作原理及结构组成
工作原理
通过换流站将交流电转换为直流电进 行传输,接收端再通过换流站将直流 电转换回交流电。
结构组成
主要包括换流站、直流输电线路、控 制系统等部分。
优缺点分析
优点 线路造价低,适合长距离输电;
没有交流输电的稳定问题,传输容量大;
优缺点分析
• 可实现异步联网,提高电网稳定性。
优缺点分析
01
缺点
02
03
04
换流站设备复杂,造价高;
直流输电对通信有干扰;
不能直接给交流负载供电。
02
换流站设备与技术
换流站功能及类型
功能
将交流电转换为直流电进行传输,同时实现电压等级的变换 。
类型
根据换流站所处位置及作用,可分为整流站、逆变站和背靠 背换流站。
06
高压直流输电系统发展趋势与挑 战
国内外发展现状对比
国内外高压直流输电 系统规模和数量对比
国内外高压直流输电 系统应用领域差异
国内外高压直流输电 系统技术水平比较
未来发展趋势预测
高压直流输电系统技术创新方向 高压直流输电系统市场规模预测 高压直流输电系统应用领域拓展趋势
面临挑战和机遇
01
02
可靠的硬件设备
采用高质量的硬件设备,确保保护系统的稳定性和可靠性。
典型案例分析
案例一
某高压直流输电系统故障 分析
故障描述
某高压直流输电系统在运 行过程中发生故障,导致 系统停运。
故障原因分析
经过检查发现,故障原因 为控制策略失效,导致系 统无法稳定运行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2.3 单桥整流器的电压波形 (a)直流端M、N对中性点的波形 (b)直流输出电压的波形
2.1 整流器的工作原理
在图2.3(b)中,取纵轴y位于t =30处,则曲线 eab的纵坐标可用 2E cost 表示,当其t从 到 这段时间间隔内,可由积分求得其面积为:
66
A
6
2E costdt
1.3直流输电系统的分线或电缆线,以大地或海水作为 直流输电系统。
二、双极线路方式
双极线路方式有两根不同极性(即正、负)的导线,可具有大 地回路或中性线回路。它有双极两线中性点两端接地方式、双极中 性点单端接地方式、双极中性线方式、“背靠背”换流方式四种方式。
2.1 整流器的工作原理
3、既考虑延迟角( 0 ),又考虑换相电感( 0)的情况
1.1 高压直流输电的发展历史
一、国外的发展概况
高压直流输电从1954年世界上第一条工业性直流输电 线路投入运行以来,已有50多年的历史。50多年来,世界 各国已先后投入了60多个直流输电工程,总的输送容量达 到10000万kW左右,其发展概况如图1.1所示。
如果连同1954年以前的直 流工程,我们把直流输电的发 展大致分为如下三个阶段:
葛州坝上海-南桥直流输电工程是我国第一个跨地区、跨系统的 超高压、远距离直流输电工程。
三峽工程; 天-广工程; 贵-广工程; 向家坝 - 上海;云- 广工程; 锦屏-苏南; 我国正在设计或拟议中的其它工程有:西北-华北直流输电互联 工程、宝鸡-成都直流输电工程……
1.2 直流输电的基本原理
图1.2 简单直流输电系统原理图 图中包括两个换流站 CS1和CS2 及直流输电线路。两个换流站的直流端分别接在直流线 路的两端,而交流端则分别连接到两个交流电力系统Ⅰ和Ⅱ。换流站中主要装设有换流器, 其作用是实现交流电与直流电的相互转换。
直流输电的投资增大 4、换流装置几乎没有过载能力,所
以对直流系统的运行不利 5、高压直流断路器的应用困难 6、干扰和腐蚀问题
1.5 交流输电与直流输电比较 的等价距离
在输送功率相同和可靠性指标相 当的可比条件下,直流输电与交流输 电相比,虽然换流站的投资要高,但 是直流输电线路的投资比交流输电线 路的投资要低。如果当输电距离增加 到一定值时,采用直流输电其线路所 节省的费用,刚好可以抵偿换流站所 增加的费用(即交直流输电的线路和 两端设备的总费用相等),这个距离 就称为交、直流输电比较的等价距离 (break-even-distance)。如右图所 示。
图1.3 交直流输电比较的等价距离
二、 换流电路的工作原理
换流电路主要由换流器组成,换流器功能是进行交流-直流或直
流-交流的变换,前者称为整流,后者称为逆变。
2.1 整流器的工作原理
图中 ea、eb、ec 分别表示换流器交
流侧三相电势;LC 表示交流系统每相
的等值电感。
1、理想情况下的工作原理
所谓理想情况是指换流桥上、下
2E sin t
6
2E
6
6
将A值除 以π/3即可得到直流电压平均值
Vd 0
A/
3
3
2E
1.35E
式中 Vd 0 ―当时的直流电压平均值; E―交流线电压的有效值。
2.1 整流器的工作原理
2、考虑延迟角(即 0 )的情况
从自然换相点到阀的控制极上加以控制 脉冲这段时间,用电气角度来表示,称为延
A 6
2E costdt
2E sin t
2E sin t
6
2E cos
6
6
同理,将A 除以 /3,即得到这种情况下直流电压的平均值
Vd
A
3
32
E cos
Vd0 cos
1.35E cos
从上式可以看出,在考虑到 0 的情况下,与 0 时比较,直流输出电压改
变了一个 cos ,调节值 ,可改变Vd ,从而改变直流输出功率。
迟角 。这时直流母线M、N 对中性点的电 压波形(重叠角 0)如图2.4(a)中的粗 实线所示,直流母线MN之间的直流电压波形
如图2.4(b)中的粗实线所示。
图 2.4 , 0 , 0 情况下的电压波形
(a)直流端M、N对中性点的波形 (b)直流输出电压的波形
2.1 整流器的工作原理
同理,求其直流电压平均值,可取一周的六分之一进行积分,这 段面积为
1.1954年以前——试验性 阶段
2.1954年至1972年——发 展阶段
3.1972年到现在——大力 发展阶段
图1.1 直流输电的发展概况
1.1 高压直流输电的发展历史
二、我国高压直流输电的发展情况
50年代,我国关于直流输电技术的研究工作就开始起步,但发 展曲折而缓慢,而且从设计、运行、制造等方面来看,与世界先进 水平还有相当大的差距。浙江舟山直流输电工程是我国第一个直流 输电试点工程,为发展我国的直流输电技术进行探索、积累经验。
高压直流输电
讲座提纲
一、高压直流输电的基本概念 二、换流电路的工作原理 三、换流站的主要设备 四、高压直流输电的控制 五、直流系统的谐波 六 、高压直流输电线路 七、柔性输电(FACTS)技术
一、 高压直流输电的基本概念
1.1 高压直流输电的发展历史 1.2 直流输电的基本原理 1.3 直流输电系统的分类 1.4 直流输电的优缺点 1.5 交流输电与直流输电比较的等价距离
半桥各有一个阀导通,不考虑变压器
图2.1 单桥整流器原理接线图
漏抗造成的选弧 (即重叠角 =0),
也不考虑阀导通时的延迟(即延迟

)。
图2.2 交流相电压的波形图
2.1 整流器的工作原理
所以理想情况下的整流器的工作 原理是:联系最高交流电压的晶闸管 将导通,电流由此流出;而联系最低 交流电压的晶闸管也导通,电流由此 返回。通过按照一定次序的晶闸管阀 的“通”与“断”,将交流电压变换 成脉 动的直流电压。
1.4 直流输电的优缺点
优点:
1、输送相同功率时,线路 造价低
2、线路有功,无功损耗小 3、适宜于海下输电 4、没有系统的稳定 问题 5、能限制系统的短路电流 6、调节速度快,运行可靠 7、不同频率系统间的联络
缺点:
1、换流站的设备较昂贵题 2、换流站装置要消耗大量的无功功
率题 3、由于要增设交流和直流滤波器使
相关文档
最新文档