如何正确理解正余弦定理解三角形
解三角形正弦定理余弦定理三角形面积公式
解三角形正弦定理余弦定理三角形面积公式三角形是平面几何中的一个基本图形,研究三角形的性质与定理在数学中具有重要地位。
本文将介绍三角形中的三个重要定理,正弦定理、余弦定理和三角形的面积公式。
一、正弦定理:正弦定理是研究三角形中角度和边长之间关系的重要定理。
给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。
那么,正弦定理可以表述为:sin(A) / a = sin(B) / b = sin(C) / c其中,sin(A)表示A角的正弦值,a表示边a的长度。
正弦定理可以从三角形的面积公式推导得出。
二、余弦定理:余弦定理是研究三角形中角度和边长之间关系的另一个重要定理。
给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。
那么,余弦定理可以表述为:c^2 = a^2 + b^2 - 2ab * cos(C)其中,cos(C)表示C角的余弦值,c表示边c的长度。
余弦定理可以用来求解三角形的边长或角度,进而计算三角形的面积。
三、三角形的面积公式:给定一个三角形,设其底边长度为b,对应的高为h。
那么,三角形的面积可以通过以下公式来计算:S=1/2*b*h其中,S表示三角形的面积。
在计算三角形的面积时,还可以使用海伦公式。
海伦公式可以通过三角形的三边长来计算三角形的面积,其公式如下:S=√(p*(p-a)*(p-b)*(p-c))其中,p表示三角形的半周长,计算公式为:p=(a+b+c)/2在使用海伦公式计算三角形面积时,需确保三条边长满足三角不等式,即任意两边之和大于第三边的长度。
总结:通过正弦定理、余弦定理和三角形的面积公式,可以解决三角形相关的问题。
正弦定理和余弦定理给出了通过角度和边长计算三角形的方法,而三角形的面积公式提供了计算三角形面积的途径。
这些定理在三角形等应用中具有重要的价值,对于解题和扩展应用都非常有帮助。
(完整版)解三角形之正弦定理与余弦定理
正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一. 正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R( 其中R 是三角形外接圆的半径)sin A sinB sinC2. 变形:1)a b c a b csin sin sinC sin sin sinC 2)化边为角:a:b:c sin A:sin B:sinC;a sin A;b sin B a sin Ab sinBc sinC c sin C3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC4)化角为边:sin A a;sin B b ; sin A asin B b sinC c sinC c5)化角为边:sin A a sinB b,sinC c2R2R2R3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A; 求出 b 与cc sinC ②已知两边和其中—边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边c sinC4. △ABC中,已知锐角A,边b,则① a bsin A 时,B 无解;② a bsin A 或 a b 时, B 有一个解;③ bsinA a b 时, B 有两个解。
如:①已知 A 60 ,a 2,b 2 3,求 B (有一个解 )②已知 A 60 ,b 2,a 2 3,求 B (有两个解 ) 注意:由正弦定理求角时,注意解的个数。
三角形中的正弦定理与余弦定理
三角形中的正弦定理与余弦定理正文:三角形中的正弦定理与余弦定理三角形是几何学中最基本的图形之一,它包含了很多重要的定理和公式。
在三角形的研究中,正弦定理和余弦定理是两个非常重要且常用的公式。
它们可以帮助我们计算三角形的各种属性,如边长、角度等。
本文将详细介绍这两个定理的含义、推导过程,并给出实际应用的一些例子。
一、正弦定理正弦定理是指在一个三角形中,三条边与三个对应的正弦值之间存在一定的关系。
设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,sinA、sinB、sinC分别为三个角的正弦值。
这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的比例关系。
如果我们已知了三角形的一个角度和两个对应的边长,就可以利用正弦定理来计算第三个边的长度。
例如,已知三角形ABC中,角A的度数为30°,边AB的长度为3,边AC的长度为4,我们可以利用正弦定理求解边BC的长度。
根据正弦定理,我们有:BC/sinA = AC/sinC代入已知条件,得到:BC/sin30° = 4/sinC进一步计算可得:BC = 4*sin30°/sinC ≈ 4*0.5/sinC = 2/sinC通过这个简单的计算过程,我们可以求解出BC的长度。
正弦定理在实际应用中非常有用,可以帮助我们解决各种与三角形边长相关的问题。
二、余弦定理余弦定理是指在一个三角形中,三条边与一个对应的角度之间存在一定的关系。
设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则余弦定理可以表示为:c^2 = a^2 + b^2 - 2ab*cosC这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的关系。
利用余弦定理,我们可以计算三角形的一个边长,当已知该边的两个对应角度和另一边的长度时。
例如,已知三角形ABC中,边AB的长度为3,边AC的长度为4,角C的度数为60°,我们可以利用余弦定理来计算边BC的长度。
例谈用正弦余弦定理解三角形
例谈用正弦余弦定理解三角形三角形是初中数学学习中重要的一个内容,而解三角形则是其中的一个难点。
在解三角形的过程中,我们可以运用正弦余弦定理来简化运算,提高解题效率。
本文将详细介绍如何运用正弦余弦定理解三角形。
首先,我们要了解正弦余弦定理的概念和公式。
正弦定理是指:在任意三角形中,三角形的任意一条边的长度与与其对角的正弦值成比例。
即a/sinA=b/sinB=c/sinC。
其中a、b、c分别为三角形的三条边的长度,A、B、C分别为三角形的三个内角的大小。
而余弦定理是指:在任意三角形中,三角形的任意一条边的平方等于另外两条边的平方和减去这两条边的乘积与夹角余弦值的积。
即a=b+c-2bc*cosA(同理,b=a+c-2ac*cosB,c=a+b-2ab*cosC)。
通过正弦余弦定理,我们可以求解三角形的各边长和内角大小。
具体步骤如下:1. 已知两边和夹角,求第三边根据余弦定理,我们可以求出第三边的长度。
例如,已知三角形的两条边分别为3cm和4cm,夹角为60度,求第三边的长度。
解:根据余弦定理可得:c=3+4-2×3×4×cos60°=25,因此c=5cm。
2. 已知两边和夹角,求内角根据正弦定理,我们可以求出内角的大小。
例如,已知三角形的两条边分别为3cm和4cm,夹角为60度,求第三角的大小。
解:根据正弦定理可得:sinA/3=sin60°/5,因此sinA=3sin60°/5=√3/2,那么A=60°。
3. 已知三边,求内角根据余弦定理,我们可以求出三个内角的余弦值,然后通过反余弦函数求出内角的大小。
例如,已知三角形的三条边分别为3cm、4cm 和5cm,求三个内角的大小。
解:根据余弦定理可得:cosA=(4+5-3)/2×4×5=3/5,cosB=(3+5-4)/2×3×5=4/5,cosC=(3+4-5)/2×3×4=-1/2。
三角函数的正弦定理与余弦定理
三角函数的正弦定理与余弦定理三角函数是数学中一门重要的分支,在几何学、物理学等领域有广泛的应用。
其中,正弦定理与余弦定理是三角函数的重要定理之一,可以用于求解各种三角形的边长和角度。
本文将分别介绍正弦定理与余弦定理的概念与应用。
一、正弦定理正弦定理是用来求解三角形的边长与角度之间的关系的定理。
对于任意三角形ABC,其三条边分别为a、b、c,对应的角度为A、B、C。
正弦定理可以表示为:a/sinA = b/sinB = c/sinC = 2R其中,R为该三角形外接圆的半径。
利用正弦定理,我们可以在已知两边和一个夹角的情况下,求解出第三条边的长度,或者在已知三边长度的情况下,求解出三个角度的大小。
这在实际问题求解中非常有用。
例如,已知一个三角形的两条边分别为3和4,夹角为60°,我们可以利用正弦定理来求解第三条边的长度。
根据正弦定理可知:a/sinA = b/sinB = c/sinC那么代入已知条件,我们可以得到:3/sin60° = c/sinC进而可以得到:c = (3 * sinC) / sin60°通过计算,我们可以求得c的值。
二、余弦定理余弦定理是用来求解三角形的边长和角度之间的关系的定理。
对于任意三角形ABC,其三条边分别为a、b、c,对应的角度为A、B、C。
余弦定理可以表示为:c^2 = a^2 + b^2 - 2abcosC利用余弦定理,我们可以在已知两边和一个夹角的情况下,求解出第三条边的长度,或者在已知三边长度的情况下,求解出三个角度的大小。
例如,我们已知一个三角形的两条边分别为3和4,夹角为60°,我们可以利用余弦定理来求解第三条边的长度。
根据余弦定理可知:c^2 = a^2 + b^2 - 2abcosC代入已知条件,我们可以得到:c^2 = 3^2 + 4^2 - 2 * 3 * 4 * cos60°通过计算,我们可以求得c的值。
(完整版)解三角形1.1正弦定理和余弦定理知识点总结
第一章 解三角形1.1正弦定理和余弦定理一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba 。
二、正弦定理(一)知识与工具:正弦定理:在△ABC 中, R Cc B b A a 2sin sin sin ===。
(外接圆圆半径) 在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。
注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:(1)三内角和为180°(2)两边之和大于第三边,两边之差小于第三边(3)面积公式:S=21absinC=Rabc 4=2R 2sinAsinBsinC 111sin ()222a S ah ab C r a bc ===++(其中r 为三角形内切圆半径) )(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)(4)三角函数的恒等变形。
(5) sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)sin(A+B)=sinC ,cos(A+B)=-cosC ,sin 2B A +=cos 2C ,cos 2B A +=sin 2C 2sin ,2sin ,2sin a R A b R B c R C ===(6)(边化角公式)sin ,sin ,sin 222a b c A B C R R R===(7)(角化边公式) ::sin :sin :sin a b c A B C =(8)sin sin sin (9),,sin sin sin a A a A b B b B c C c C === (10)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(二)题型 使用正弦定理解三角形共有三种题型题型1 利用正弦定理公式原型解三角形题型2 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化。
正弦定理与余弦定理在解三角形中的运用
正弦定理与余弦定理在解三角形中的运用正弦定理和余弦定理是解三角形中非常常用的定理。
它们可以帮助我们在已知一些边长或角度的情况下,求解出其他未知边长或角度。
在本文中,我们将详细介绍正弦定理和余弦定理的概念,并阐述它们在解三角形中的运用。
一、正弦定理正弦定理是解三角形中最为基础和常用的定理之一、它可以用来求解三角形的任意一个角度或边长。
正弦定理的表达形式如下:a / sinA =b / sinB =c / sinC其中,a,b,c表示三角形的三条边,A,B,C表示三个对应的角度。
在应用正弦定理求解问题时,需要注意以下几个方面:1.已知两边和它们对应的夹角,求第三边:根据正弦定理,我们可以将等式重写为 a = b * sinA / sinB 或 a = c * sinA / sinC。
2.已知两边和它们对应的夹角,求第三个角度:根据正弦定理,我们可以将等式重写为 sinA = a * sinC / c 或 sinA = b * sinC / c,然后通过求反函数 sin^-1 求解出 A 的值。
3.已知两个角度和一个对边,求第三边:根据正弦定理,我们可以将等式重写为 b = a * sinB / sinA 或 b = c * sinB / sinC。
4.已知两个角度和一个对边,求第三个角度:根据正弦定理,我们可以将等式重写为 sinB = b * sinA / a 或 sinB = b * sinC / c,然后通过求反函数 sin^-1 求解出 B 的值。
由于正弦定理可以用来求解任意一个角度或边长,因此它非常灵活和实用。
二、余弦定理余弦定理是解三角形中另一个重要的定理。
它可以用来求解三角形的边长或角度。
余弦定理的表达形式如下:a^2 = b^2 + c^2 - 2bc * cosAb^2 = c^2 + a^2 - 2ac * cosBc^2 = a^2 + b^2 - 2ab * cosC其中,a,b,c表示三角形的三条边,A,B,C表示三个对应的角度。
初中数学知识归纳三角形的正弦定理与余弦定理
初中数学知识归纳三角形的正弦定理与余弦定理三角形的正弦定理与余弦定理是初中数学中重要且常用的知识点。
它们是解决三角形相关问题的基本工具,能够帮助我们计算三角形的各个边长和角度。
本文将对三角形的正弦定理与余弦定理进行归纳和解释,以帮助同学们更好地理解和应用这两个定理。
1. 三角形的正弦定理三角形的正弦定理是指在任意三角形ABC中,三边的长度a、b、c 与它们对应的角A、B、C之间有一个重要的关系:a/sinA = b/sinB = c/sinC。
其中,a、b、c分别表示三边的长度,A、B、C表示对应的角的度数或弧度。
简单来说,正弦定理表明三角形的每条边的长度与其对应的角的正弦值成比例。
这个关系可以通过以下示例来理解:【示例1】已知一个三角形的两边长度分别为5cm和8cm,夹角为60°,求第三边的长度。
解:根据正弦定理,设第三边长度为c,则有5/sin60° = c/sin(180°-60°-60°),化简得c = 5*sin120° / sin60° ≈ 8.66cm。
【示例2】已知一个三角形的两边长度分别为7cm和9cm,夹角为45°,求第三边的长度。
解:根据正弦定理,设第三边长度为c,则有9/sin45° = c/sin(180°-45°-45°),化简得c = 9*sin135° / sin45° ≈ 14.14cm。
从这两个示例可以看出,正弦定理可以帮助我们在已知两边和夹角的情况下求解三角形中的第三边长度。
2. 三角形的余弦定理三角形的余弦定理是指在任意三角形ABC中,三边的长度a、b、c 与它们对应的角A、B、C之间有一个重要的关系:c^2 = a^2 + b^2 -2ab*cosC。
其中,a、b、c分别表示三边的长度,A、B、C表示对应的角的度数或弧度。
三角形的正弦定理和余弦定理
三角形的正弦定理和余弦定理三角形是几何学中最基本的图形之一,研究三角形的性质和定理对于解决各种实际问题非常重要。
本文将重点介绍三角形的正弦定理和余弦定理,它们是解决三角形相关问题的重要工具。
一、正弦定理正弦定理是指在任意三角形ABC中,三条边的长度与其对应的角度之间存在一定的关系。
具体表达式如下:a/sinA = b/sinB = c/sinC其中a、b、c分别表示三角形的三条边的长度,A、B、C分别表示三角形的三个内角。
该定理说明了三角形的边长与角度之间的关系。
正弦定理的应用非常广泛。
例如,在实际测量中,我们可以利用正弦定理求解无法直接测量的距离或高度。
在几何推导中,正弦定理也是解决三角形相关问题的重要工具。
二、余弦定理余弦定理是指在任意三角形ABC中,三条边的长度与其对应的角度之间存在一定的关系。
具体表达式如下:a² = b² + c² - 2bc*cosAb² = a² + c² - 2ac*cosBc² = a² + b² - 2ab*cosC其中a、b、c分别表示三角形的三条边的长度,A、B、C分别表示三角形的三个内角,cosA、cosB、cosC分别表示三角形的三个内角的余弦值。
该定理说明了三角形的边长与角度之间的关系。
余弦定理的应用也非常广泛。
例如,在实际测量中,我们可以利用余弦定理求解无法直接测量的边长或角度。
在物理学、工程学等领域,余弦定理也被广泛应用于计算力学、力的合成等问题。
在实际应用中,正弦定理和余弦定理常常结合使用。
通过这两个定理,我们可以解决涉及三角形边长、角度等多个未知量的问题,并得到准确的解答。
总结:三角形的正弦定理和余弦定理是解决三角形相关问题的重要工具。
正弦定理描述了三角形的边长与角度之间的关系,而余弦定理则描述了三角形的边长与角度之间的关系。
通过运用这两个定理,我们可以解决实际问题中的多种三角形计算和推导。
正弦定理余弦定理解三角形技巧
正弦定理余弦定理解三角形技巧正弦定理和余弦定理是解三角形问题中常用的两个重要定理。
它们通过三角形的边长和角度之间的关系,帮助我们求解未知的角度和边长。
下面将介绍正弦定理和余弦定理的定义、推导过程和应用技巧。
一、正弦定理的定义和推导:1.定义:对于任意三角形ABC,它的三边长度分别为a、b、c,而对应的角度分别为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC2.推导:设三角形ABC的高为h,其与底边a的夹角为α,边a与边c的夹角为β,则由三角形的定义可知:sinα = h/c, sinβ = h/a根据正弦定理,我们可以得到以下的关系:a/sinA = c/sinC,即a/sinA = c/sinαb/sinB = c/sinC, 即b/sinB = c/sinβ由此推导出正弦定理的表达式。
二、正弦定理的应用技巧:正弦定理可以用来求解三角形的未知边长和角度,常用的技巧有以下几种:1.已知两边和夹角,求第三边:根据正弦定理的表达式,我们可以将已知信息代入其中,解方程求得未知边长。
2.已知两边和一个对角的正弦值,求第三边:将已知信息代入正弦定理的表达式,解方程求得未知边长。
3.已知两角和一边,求第三边:将已知信息代入正弦定理的表达式,解方程求得未知边长。
4. 已知三边,求三角形内部的角度:根据正弦定理,我们可以得到以下关系:sinA = a/c,sinB = b/c,sinC = c/a。
通过反正弦函数,我们可以求得每个角度的值。
三、余弦定理的定义和推导:1.定义:对于任意三角形ABC,它的三边长度分别为a、b、c,而对应的角度分别为A、B、C,则余弦定理的表达式为:a² = b² + c² - 2bc*cosAb² = a² + c² - 2ac*cosBc² = a² + b² - 2ab*cosC2.推导:设三角形ABC的高为h,其与底边a的夹角为α,边a与边c的夹角为β,则由三角形的定义可知:cosα = h/c, cosβ = h/a根据余弦定理,我们可以得到以下关系:a² = b² + c² - 2bc*cosA,即a² = b² + c² - 2bc*cosαb² = a² + c² - 2ac*cosB,即b² = a² + c² - 2ac*cosβ由此推导出余弦定理的表达式。
正弦定理和余弦定理详细讲解
正弦定理和余弦定理详细讲解正弦定理.余弦定理农其应用【高考风向】1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.【学习要领】1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.基础知识梳理sin A sin B 启=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a : b : c = sin_A : sin_B : sin_C ; (2)a = 2Rsin_A , b = 2Rsin_B , c = 2Rsin_C ;[难点正本疑点清源]1. 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ ABC 中,A>B? a>b? sin A>sin B ;tanA+tanB+tanC=tanA tanB t a nC ;在锐角三角形中,cosA<sinb,cosa<sinc< p="">-2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.例1.已知在 ABC 中,c 10, A 45o , C 30o ,解三角形 1. 正弦定理:3.4. (3)sin A = 2:,sin B = ?;, sin C =等形式,解决不同的三角形问题.余弦定理:a 2= b 2 + c 2 — 2bccos_A , b 2= a 2 + c 2 —2accos_B , c 2=旦2 + b 2 — 2abcos_C ?余亠宀、 b 2 + c 2— a 2 a 2+ c 2— b 2弦疋理可以变形: cos A = ---------- , cos B = ----- u --- , cos C = a 2 + b 2- c 2 2ab 2bc G ABC = gabsin C = ^bcsin A = *acsin B =繁=*(a + b + c) r(r 是三角形内切圆的半径 ),并可由此计算R 、r.在厶ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角A 为钝角或直角图形关系式a = bsin A bsin A<a<< p="">b a>b 解的个数一解两解一解一解思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边然后用三角形内角和求出角B ,最后用正弦定理求出边 b .解析:sin Acsin Ccsin A 10 sin 45° sinCsin 30o10 2 ,B 180° (A C) 105°,总结升华:1.正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2.数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在 ABC 中,已知A 32.00,B 81.8°,a 42.9cm ,解三角形。
高中数学正余弦定理和解三角形
正余弦定理和解三角形的实际应用要求层次重难点正余弦定理 C 使学生掌握正、余弦定理及其变形;能够灵活运用正、余弦定理解题解三角形C(一) 知识内容1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a . (1)三边之间的关系:a 2+b 2=c 2.(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =a c,cos A =sin B =b c,tan A =a b. 2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边. (1)三角形内角和:A +B +C =π.(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.2sin sin sin a b cR A B C===.(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨⎪⎪=+-⎩+-⎪=⎪⎩3.三角形的面积公式:(1)S △=12ah a =12bh b =12ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); 例题精讲高考要求板块一:正弦定理和余弦定理正余弦定理和解三角形(2) S △=12ab sin C =12bc sin A =12ac sin B ;(3) S △=2sin sin 2sin()a B C B C +=2sin sin 2sin()b C A C A +=2sin sin 2sin()c A BA B +;(4) S △=2R 2sin A sin B sin C .(R 为外接圆半径) (5) S △=4abcR; (6) S △=()()()s s a s b s c ---;1()2s a b c ⎛⎫=++ ⎪⎝⎭;(海伦公式)(7) S △=r ·s . 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C . (1)角与角关系:A +B +C = π;(2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b ; (3)边与角关系:正余弦定理. 5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点. 6.推论:正余弦定理的边角互换功能①2sin a R A =,2sin b R B =,2sin c R C = ②sin 2a A R =,sin 2b B R =,sin 2cC R= ③sin sin sin a b c A B C ===sin sin sin a b cA B C++++=2R ④::sin :sin :sin a b c A B C =⑤222sin sin sin 2sin sin cos A B C B C A =+- 222sin sin sin 2sin sin cos B C A C A B =+-222sin sin sin 2sin sin cos C A B A B C =+-7.三角形中的基本关系式:sin()sin ,cos()cos B C A B C A +=+=-, sincos ,cos sin 2222B C A B C A++== (二)主要方法:1.通过对题目的分析找到相应的边角互换功能的式子进行转换.2.利用正余弦定理可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系 .(三)典例分析:【例1】 已知△ABC 中,AB a =,AC b =,0a b ⋅<,154ABC S ∆=, 3,5a b ==,则BAC ∠=( )A .30B .150-C .150°D . 30或150°【变式】 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos2A =,3AB AC ⋅=. (1)求ABC ∆的面积;(2)若6b c +=,求a 的值.【变式】 ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos2B CA ++取得最大值,并求出 这个最大值.【变式】 在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc , 求∠A 的大小及sin b Bc的值.【变式】 已知在ABC ∆中,a =45o B =,c =.【变式】 已知:,3,5,7ABC a b c ∆===中求:ABC ∆中的最大角.【变式】 已知△ABC 中,AB =1,BC =2,则求角C 的取值范围.【例2】 在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形【变式】 在△ABC 中,若cos cos a A b B =,试判断此三角形的形状.【变式】 在△ABC 中,若)sin()()sin()(2222B A b a B A b a +-=-+,则判断△ABC 的形状.【例3】 若△ABC 的三条长分别是3,4,6,求它的较大的锐角的平分线分三角形所成的两个三角形的面积比.【例4】 已知三角形的三边长为三个连续自然数, 且最大角是钝角.求这个三角形三边的长.【例5】 在△ABC 中,BC =a ,AC =b ,a,b 是方程02322=+-x x 的两个根,且2cos(A +B )=1求:(1)角C 的度数;(2)AB 的长度; (3)△ABC 的面积.【变式】 在C A a c B b ABC ,,1,60,30和求中,===∆【变式】C B b a A c ABC ,,2,45,60和求中,===∆【教师选做】证明海伦公式<教师备案>1.海伦公式的变形形式:①②③④⑤2.海伦公式的其他证明方法证一 勾股定理分析:先从三角形最基本的计算公式S △ABC =12aha 入手,运用勾股定理推导出海伦公式.证明:如图ha ⊥BC ,根据勾股定理,得: 222222a a x a y hb y hc x =-⎧⎪=-⎨⎪=-⎩x =2222a c b a +-, y =2222a c b a-+∴ S △ABC =12aha=12a此时S △ABC 为变形④,故得证.证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha. 斯氏定理:△ABC 边BC 上任取一点D , 若BD=u ,DC=v,AD=t.则t 2 = 22b u cv uv a+-证明:由证一可知, u =2222a b c a -+,v =2222a b c a+-∴2ah = t 2 =224222222422b a b b c c a c b c a -+++--42222()4a b c a --∴ S △ABC =12aha =12a= 此时为S △ABC 的变形⑤,故得证.证三:余弦定理 即本题所采用证法. 证四:恒等式分析:考虑运用S △ABC =r p ,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式.恒等式:若∠A+∠B+∠C =180○那么tan 2A · tan 2B + tan 2A · tan 2C + tan 2B · tan 2C = 1证明:如图,tan 2A = r y ① tan 2B = rz ②tan 2C = rx ③根据恒等式,得:1111tan tan tan tan tan .tan222222A B C A B C ++=⋅ ①②③代入,得: 3x y z xyzr r++=∴r2(x+y+z) = xyz ④如图可知:a +b-c = (x+z)+(x+y)-(z+y) = 2x∴x =2a b c +-,同理:y =2b c a +- z =2a cb +-zy BC代入④,得: r 2 ·2a b c ++=()()()8a b c b c a a c b +-+-+-两边同乘以2a b c++,得:r 2·2()4a b c ++=()()()()16a b c a b c b c a a c b +++-+-+-两边开方,得: r ·2a b c ++左边r ·2a b c++= r ·p= S △ABC 右边为海伦公式变形①,故得证.证五:半角定理半角定理:tan2Atan 2Btan 2C证明:根据tan 2A=r y ,∴y ①同理z ②× x ③①×②×③,得:xyz∵由证一,x =2b a c +-=2b a c++-c = p-c y =2b a c -+=2b a c ++-a = p-az =2a b c -+=2b ac ++-b = p-b∴∴∴S △ABC = r ·故得证. 3.海伦公式的推广由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广.由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD 中,设p=2a b c d+++,则S 四边形=现根据猜想进行证明.证明:如图,延长DA ,CB 交于点E. 设EA = e EB = f∵∠1+∠2 =180○ ∠2+∠3 =180○ ∴∠1 =∠3,∴△EAB ~△ECDCzy B∴f a e +=e f c +=bdEAB ABCD S S ∆四边形=222b d b -解得: e =22()b ab cd d b +- ①f =22()b ad bcd b+- ②由于S 四边形ABCD =222d b b -S △EAB将①,②跟b =2222()b d b d b +-代入公式变形④,得:∴S 四边形ABCD =2224d b b -2222224()e b e b f -+-=2224d b b -42222222222222224222222222()()()()()4[()]()()()()b ab cd d b b ab cd b d b b ad bc d b d b d b d b +-+-+-+-----=2224d b b -{}422222222222244()()[()()()]()b ab cd d b ab cd d b ad bcd b +--++--+- =2214()d b -22222222224()()[{}{}{}]ab cd d b ab cd d b ad bc +--++--+=2214()d b -22222222442222224()()(2)ab cd d b a b c d d b d b a d b c +--+++--- =2214()d b -222222222222224()()[()()ab cd d b b a b d c d d b a c +--+--+--+ =2214()d b -222222222()[4()()]d b ab cd c d b a -+-+--=1422222222(22)(22)ab cd c d b a ab cd d b a c +++--+-++- =22221[()()][()()]4a c b d b d a c +--+-- =1()()()()4a b c d a b d c a d c b b d c a ++-++-++-++- =()()()()p a p b p c p d ----所以,海伦公式的推广得证.4.海伦公式的推广的应用海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事半功倍.【例6】 如图,四边形ABCD 内接于圆O 中,S ABCD =433,AD = 1,AB = 1, CD = 2. 求:四边形可能为等腰梯形.(一) 知识内容解斜三角形和证明三角形全等或相似类似,已知条件必须能确定这个三角形,才能求出唯一的其他未知条件的解.如果板块二:正余弦定理的实际应用dcbaOCA已知条件不能确定一个三角形,则可能无解或有两解,如两边和一个非两边夹角.大致可以把解斜三角形用下面的表格来概括:(二)典例分析【例7】 如图所示,已知在梯形ABCD 中(//AB CD ),CD =2,AC 60o BAD ∠=,求梯形的高DE .【变式】 在△ABC 中,已知4=AB ,7=AC ,BC 边上的中线27=AD ,那么求BC 为多少.【变式】 在△ABC 中,已知AC B AB ,66cos ,364==边上的中线BD =5,求sin A 的值.【变式】 已知△ABC 中,a 、b 、c 为角A 、B 、C 的对边,且a +c =2b ,A –B =60o ,求sin B 的值.【例8】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC =0.1km.试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km≈1.414≈2.449)【变式】 已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.D【变式】 某观测站C 在A 城的南偏西20°方向,由A 城出发有一条公路定向是南偏东40°,由C 处测得距C 为31km 的公路上B 处有1人沿公路向A 城以v =5km/h 的速度走了4h 后到达D 处,此时测得C 、D 间距离为21km.问这人以v 的速度至少还要走多少h 才能到达A 城.【教师选做】利用正余弦定理证明三角恒等式【例9】 在△ABC 中, 求证:22cos cos a b A B -+ +22cos cos b c B C -+ +22cos cos c a C A-+=0.【例10】 在△ABC 中,角A ,B ,C 的对边分别为a , b , c , 证明:222sin()sin a b A B C c --=.【例11】 在△ABC 中,记BC =a , CA =b , AB =c , 若22299190a b c +-=,则cot cot cot C A B +为多少.<教师备案>规律方法总结:1.要正确区分两个定理的不同作用,围绕三角形面积公式及三角形外接圆直径展开三角形问题的求解.2.两个定理可以实现将“边、角混合”的等式转化成“边或角的单一”等式.3.记住一些结论:π,,,A B C A B C ++=均为正角,1sin 2S ab C =等.4.余弦定理的数量积表示式:cos ||||BA CA A BA CA ⋅=.5.余弦定理中,涉及到四个量,利用方程思想,知道其中的任意三个量可求出第四个量.。
(完整版)解三角形之正弦定理与余弦定理
正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形知识点清单一.正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R(其中R是三角形外接圆的半径)sin A sin B si2.变形:1) a b c a b csin sin si nC sin sin si nC2)化边为角:a :b: c sin A: sin B :s in C -a si nA.b sin B a sin AJb sin Bc sin C c sin C '3)化边为角:a 2Rsin A, b 2Rsi nB, c 2Rs inC4)化角为边:sin A a ;J sin B b ; si nA aJ7sin B b sin C c sin C c5)化角为边:sin A a sin B b si nC c2R‘2R'2R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a,解法:由A+B+C=18°0,求角A,由正弦定理-Sn) - Sn^; b sin B c sin C a sin A;求出b与cc sin C②已知两边和其中一边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理旦血求出角B,由A+B+C=180求出角C,再使用正b sin B弦定理旦泄求出c边c sin C4. △ ABC中,已知锐角A,边b,贝U①a bsin A时,B无解;②a bsinA或a b时,B有一个解;③ bsin A a b 时,B 有两个解。
如:①已知A 60 ,a 2,b2, 3 ,求B (有一个解) ②已知A 60 ,b 2,a23,求B (有两个解)注意:由正弦定理求角时,注意解的个数。
正弦定理和余弦定理直角三角形
正弦定理和余弦定理直角三角形正弦定理和余弦定理是解决直角三角形中边长和角度关系的两个基本公式。
一、正弦定理:在任何三角形中,对于一个角度和它对应的边,正弦定理表示边长与正弦值成正比例关系。
对于一个直角三角形中的角 A,其对边长设为 a,邻边长设为 b,斜边长为 c,则正弦定理可表示为:sin A = a / c其中,sin A 表示角 A 的正弦值,a 表示角 A 对应的直角三角形的对边长,c 表示直角三角形的斜边长。
可以通过正弦定理推导出其他两个角的正弦值,从而求解三角形中的边和角度:sin B = b / csin C = c / c = 1二、余弦定理:余弦定理是另一种在直角三角形中解决边长和角度关系的基本公式。
对于一个直角三角形中的角 A,其对边长设为 a,邻边长设为 b,斜边长为 c,则余弦定理可表示为:cos A = b / c其中,cos A 表示角 A 的余弦值,b 表示角 A 对应的直角三角形的邻边长,c 表示直角三角形的斜边长。
通过余弦定理,可以求出其他两个角的余弦值:cos B = a / ccos C = 0三、比较正弦定理和余弦定理:正弦定理和余弦定理是解决直角三角形中边长和角度关系的两个基本公式。
它们都可以用于求解三角形的边和角度,但是有一些不同点:1. 适用条件不同。
正弦定理适用于任何三角形,而余弦定理无法适用于等边三角形。
2. 求解的变量不同。
正弦定理可以求解角的正弦值,而余弦定理可以求解角的余弦值。
3. 计算方式不同。
正弦定理使用正弦函数,余弦定理使用余弦函数,两者在计算推导过程中存在差异。
总之,正弦定理和余弦定理是直角三角形中解决边长和角度关系的基本公式,掌握并灵活应用这两个公式可以帮助我们更好地理解和求解三角形中的各种问题。
正弦定理余弦定理解三角形技巧
正弦定理余弦定理解三角形技巧以正弦定理和余弦定理为基础的三角形解题技巧在解决三角形相关问题时,正弦定理和余弦定理是非常有用的工具。
它们可以帮助我们计算三角形的各个角度和边长,从而解决一系列问题,比如求解未知边长、未知角度、判断三角形类型等。
下面我将介绍一些使用正弦定理和余弦定理解决三角形问题的技巧。
一、正弦定理正弦定理是指在一个三角形中,三条边的长度与对应的角的正弦值之间的关系。
具体表达式如下:a/sinA = b/sinB = c/sinC其中a、b、c分别代表三角形的三条边的长度,A、B、C分别代表三角形的三个角度。
通过正弦定理,我们可以解决以下几类问题:1. 已知两个角和一个边的长度,求解其他未知边和角。
2. 已知两个边和一个角的大小,求解其他未知边和角。
3. 已知一个边和两个角的大小,求解其他未知边和角。
以一个具体的例子来说明,假设有一个三角形ABC,已知边长a=5,边长b=7,角C的大小为30度,我们可以利用正弦定理求解其他未知边和角。
根据正弦定理,我们可以得到以下等式:5/sinA = 7/sinB = c/sin30通过计算可得sinA ≈ 0.866,sinB ≈ 0.5。
将这些结果代入等式中,可以求解出c ≈ 8.66,A ≈ 60度,B ≈ 30度。
二、余弦定理余弦定理是指在一个三角形中,三条边的长度与对应的角的余弦值之间的关系。
具体表达式如下:c² = a² + b² - 2abcosC其中a、b、c分别代表三角形的三条边的长度,C代表三角形的一个角的大小。
通过余弦定理,我们可以解决以下几类问题:1. 已知三个边的长度,求解三个角的大小。
2. 已知两个边和对应的夹角,求解第三边的长度。
3. 已知两个边和一个角的大小,求解其他未知边和角。
以一个具体的例子来说明,假设有一个三角形ABC,已知边长a=5,边长b=7,角C的大小为30度,我们可以利用余弦定理求解其他未知边和角。
三角函数的正弦定理与余弦定理
三角函数的正弦定理与余弦定理三角函数是数学中一个重要的概念,在解决三角形相关问题时得以广泛应用。
其中,正弦定理与余弦定理是求解三角形边长和角度的重要工具。
本文将详细介绍三角函数的正弦定理和余弦定理,并举例说明它们在实际问题中的应用。
一、正弦定理正弦定理是指在任意三角形中,三条边的长度与其对应的正弦值之间存在着一定的关系。
设三角形的边长分别为a、b、c,对应的内角为A、B、C,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,等式两边分别为三个边长与对应内角的正弦值的比值,且比值相等。
正弦定理常用于解决无法直接通过角度计算的三角形问题。
例如,在一个三角形中已知两个边长和它们之间的夹角,可以利用正弦定理求解第三边的长度。
二、余弦定理余弦定理是指在任意三角形中,三条边的长度与其对应的余弦值之间存在着一定的关系。
设三角形的边长分别为a、b、c,对应的内角为A、B、C,则余弦定理可以表达为:c^2 = a^2 + b^2 - 2abcosC其中,等式右侧的式子表示两条边长的平方和与它们对应夹角的余弦值的乘积,等于第三边长的平方。
余弦定理常用于求解三角形的边长和角度。
例如,已知一个三角形的三个边长,可以利用余弦定理计算出其中一个内角的大小。
应用实例:例1:已知三角形ABC中,边长a=5cm,边长b=7cm,夹角C=30°,求第三边c的长度。
解:根据正弦定理可得:c/sinC = a/sinAc/sin30° = 5cm/sinAsinA = (5cm/sin30°) * sinAsinA = 2.5cm此时可以利用反正弦函数求解A的大小:A = arcsin(2.5cm) = 39.24°同理可得,B = 180° - A - C = 110.76°因此,三角形ABC中,边长c的长度约为4.33cm,角A约为39.24°,角B约为110.76°。
正余弦定理在解三角形中的高级应用与最值问题1
正余弦定理在解三角形中的高级应用与最值问题1方法技巧与总结1、正弦定理和余弦定理的主要作用,是将三角形中已知条件的边、角关系转化为角的关系或边的关系,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.2、与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin 222S ab C ac B bc A ===,一般是已知哪一个角就使用哪个公式.3、对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.4、利用正、余弦定理解三角形,要注意灵活运用面积公式,三角形内角和、基本不等式、二次函数等知识.5、正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.6、三角形中的一些最值问题,可以通过构建目标函数,将问题转化为求函数的最值,再利用单调性求解.7、“坐标法”是求解与解三角形相关最值问题的一条重要途径.充分利用题设条件中所提供的特殊边角关系,建立恰当的直角坐标系,选取合理的参数,正确求出关键点的坐标,准确表示出所求的目标,再结合三角形、不等式、函数等知识求其最值.【核心考点】核心考点一:倍长定比分线模型【规律方法】如图,若P 在边BC 上,且满足PC BP λ= ,AP m =,则延长AP 至D ,使PD AP λ=,连接CD ,易知AB ∥DC ,且DC c λ=,(1)AD AP λ=+.180BAC ACD ∠+∠=︒.【典型例题】例1.(2022·福建·厦门双十中学高三期中)如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+,若2AC = ,3AB = ,则||AP 的值为()A 13B .132C .133D .134【答案】B【解析】设CP CD λ=,则221()(1)332AP AC CP AC CD AC AB AC AB AC AB mAC λλλλ=+=+=+-=+-=+,∴21=32=1m λ-λ⎧⎪⎨⎪⎩,解得3=41=4m λ⎧⎪⎪⎨⎪⎪⎩.因为3AB = ,所以223AD AB ==,又2AC = ,π3BAC ∠=,所以ADC △为等边三角形,所以π3ACD ∠=,3342CP CD ==,由余弦定理22222331132cos 2222224AP A A C C CD C C D D A ⎛⎫=+-⋅+-⨯⨯⨯= ⎪⎝⎭∠=,所以132AP =;故选:B例2.(2021·全国·高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.【解析】(1)设ABC 的外接圆半径为R ,由正弦定理,得sin sin ,22b cR ABC C R==∠,因为sin sin BD ABC a C ∠=,所以22b cBD a R R⋅=⋅,即BD b ac ⋅=.又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+-=,①在BCD △中,222(3cos 23ba b b a C +-=⋅.②由①②得2222223()3b a b c a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3c a =或32ca =,当22,33c c a b ac ===时,3c a b c +=<(舍去).当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠.所以7cos 12ABC ∠=.[方法二]:等面积法和三角形相似如图,已知2AD DC =,则23ABD ABC S S =△△,即21221sin sin 2332b ac AD A B BC ⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠,故有ADB ABC ∠=∠,从而ABD C ∠=∠.由2b ac =,即b ca b =,即CA BA CB BD=,即ACB ABD ∽,故AD ABAB AC=,即23bc c b=,又2b ac =,所以23c a =,则2227cos 212c a b ABC ac +-==∠.[方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==.在ADB 中,由正弦定理得sin sin AD BDABD A=∠.又ABD C ∠=∠,所以s 3sin n 2i C b Ab=,化简得2sin sin 3C A =.在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =.在ABC 中,由余弦定理,得222222242793cos 221223a a a a cb ABC ac a +--⨯∠+==.故7cos 12ABC ∠=.[方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a aDE EC BE ===.在BED 中,2222(()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c+-=∠.因为cos cos ABC BED ∠=-∠,所以2222222()()3322233a c ba cb ac ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=,即3c a =或32a c =.下同解法1.[方法五]:平面向量基本定理因为2AD DC =,所以2AD DC =uuu r uuu r .以向量,BA BC为基底,有2133BD BC BA =+ .所以222441999BD BC BA BC BA =+⋅+ ,即222441cos 999b ac c ABC a ∠=++,又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③由余弦定理得2222cos b a c ac ABC =+-∠,所以222cos ac a c ac ABC =+-∠④联立③④,得2261130a ac c -+=.所以32a c =或13a c =.下同解法1.[方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动.设()(),33B x y x -<<,则229x y +=.⑤由2b ac =知,2BA BC AC ⋅=,9=.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =,代入⑥式得36||,||32a BC c BAb ====,由余弦定理得2227cos 212a cb ABC ac +-∠==.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.例3.(2022·湖南·宁乡一中高三期中)设a ,b ,c 分别为ABC 的内角A ,B ,C 的对边,AD 为BC 边上的中线,c =1,23BAC π∠=,12sin cos sin sin sin 2c A B a A b B b C =-+.(1)求AD 的长度;(2)若E 为AB 上靠近B 的四等分点,G 为ABC 的重心,连接EG 并延长与AC 交于点F ,求AF 的长度.【解析】(1)依据题意,由12sin cos sin sin sin 2c A B a A b B b C =-+可得2212cos 2ac B a b bc =-+,则2222212cos 22a b bca cb B ac ac-++-==,212c bc ∴=,22b c ==,2222411cos 242b c a a BAC bc +-+-===-∠,解得a =72BD=2714cos AD B +-=AD为2(2)G 为ABC的重心,233AG AD ∴==,37144cos 0,2BAD BAD π+-==∴=∠∠,EG =cos cos AGF AGE =-=∠∠,sin AGF =∠231cos cos(),sin 3222DAC DAC ππ=-==∠∠,cos cos()AFE AGF DAC ∴=-+=∠∠∠,sin sin sin AG AF AFE AFE AGF==,∠∠∠,35AF ∴=例4.(2022·广西柳州·高三阶段练习(文))已知2()sin cos f x x x x =+-()f x 的图象向右平移π0<<2ϕϕ⎛⎫ ⎪⎝⎭单位后,得到()g x 的图象,且()g x 的图象关于,06π⎛⎫⎪⎝⎭对称.(1)求ϕ;(2)若ABC 的角,,A B C 所对的边依次为,,a b c ,且182A g ⎛⎫=- ⎪⎝⎭,=1,=2b c ,若点D 为BC边靠近C 的三等分点,试求AD 的长度.【解析】(1)21π()=sin cos =sin2+cos2=sin 2+2223f x x x x x x x -⎛⎫ ⎪⎝⎭,π()=()=sin 2()+3g x f x x -ϕ-ϕ⎡⎤⎢⎥⎣⎦,由()g x 的图象关于,06π⎛⎫⎪⎝⎭对称,得π=06g ⎛⎫⎪⎝⎭即2πsin 2=03-ϕ⎛⎫ ⎪⎝⎭,由π02ϕ<<得π2π2π<2<333--ϕ,所以2π2=03-ϕ,解得π3ϕ=;(2)由182A g ⎛⎫=- ⎪⎝⎭得π1sin =432A --⎛⎫ ⎪⎝⎭,由0πA <<得πππ<<34312A ---,所以ππ=436A --,解得2π3A =,在ABC 中由余弦定理得,222222π=+2cos =1+22×1×2×cos=73BC b c bc A --,所以BC =则BD =3CD =,设ADC θ∠=,在ADC △中由余弦定理得,222=+2cos b AD DC AD DC -⋅⋅⋅θ,所以221=+2cos 33AD AD -⋅⋅θ⎛ ⎝⎭①在ADB △中由余弦定理得,()222=+2cos πc AD BD AD BD -⋅⋅⋅-θ,所以2222=++2cos 33AD AD ⋅⋅θ⎛ ⎝⎭②联立①②消去cos θ得24=9AD ,所以23AD =.例5.(2022·全国·高三专题练习)在ABC 中,D 为BC 上靠近点C 的三等分点,且1AD CD ==.记ABC 的面积为S .(1)若sin 2sin C B =,求S ;(2)求S 的取值范围.【解析】(1)因为sin 2sin C B =,由正弦定理可得2c b =,因为D 为BC 上靠近点C 的三等分点,1AD CD ==,所以2BD =,在ABD △中由余弦定理2222cos AB AD BD AD BD ADB=+-⋅∠即22212212cos AB ADB =+-⨯⨯∠①,在ACD 中由余弦定理2222cos AC AD CD AD CD ADC =+-⋅∠即22211211cos AC ADC =+-⨯⨯∠②,又180ADB ADC ∠+∠=︒,所以()cos cos 180cos ADB ADC ADC ∠=︒-∠=-∠所以2b =,c 1cos 4ADB ∠=-,1cos 4ADC ∠=所以sin ADB ∠==sin ADC ∠所以1111sin sin 12112222S AD BD ADB CD ADC =⋅∠+⋅∠=⨯⨯⨯⨯⨯⨯(2)设ADC θ∠=,()0,θπ∈,则ADB πθ∠=-,所以11sin sin 22S AD BD ADB AD CD ADC =⋅∠+⋅∠()1112sin 11sin 22πθθ=⨯⨯⨯-+⨯⨯⨯3sin 2θ=显然0sin 1θ<≤,所以302S <≤,即30,2S ⎛⎤∈ ⎥⎝⎦例6.(2022·全国·高三专题练习)已知a ,b ,c 分别是ABC 内角A ,B ,C 所对的边,且满足1cos 2c A b a =-,若P 为边AB 上靠近A 的三等分点,1CP =,求:(1)求C 的值;(2)求2+a b 的最大值.【解析】(1)因为1cos 2c A b a =-,由正弦定理得11sin cos sin sin sin()sin 22C A B A A C A =-=+-,可得1sin cos sin cos cos sin sin 2C A A C A C A =+-,即1sin cos sin 2A C A =,由sin 0A ≠,可得1cos 2C =,由(0,)C π∈,可得3C π=.(2)由题意得2133CP CA CB =+ ,两边平方得22411211299332b a ab =++⨯⨯⨯⨯,整理得22429a b ab ++=,即222(2)929()2a b a b ab ++=++ ,解得2(2)12a b + ,2a b + 2a b ==所以2+a b的最大值是例7.(2022·全国·高三专题练习)在①ANBN=②AMN S =△,③AC AM =这三个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,3B π=,c =8,点M ,N 是BC 边上的两个三等分点,3BC BM =,___________,求AM 的长和ABC 外接圆半径.【解析】若选择条件①因为ANBN =AN BM=设BM t =,则AN =.又60,8B c ︒==,所以在ABN 中,2222cos AN AB BN AB BN B =+-⋅,即222)84282cos 60t t =+-⨯⨯︒,即2280t t +-=,解得2t =或4-(舍去).在ABM 中,22222cos 84282cos 6052AM AB BM AB BM B =+-⋅=+⨯︒-⨯=,所以AM =,同理222222cos 86286cos 6052AC AB BC AB BC B =+-⋅=+⨯︒-⨯=,所以AC =由正弦定理可得2sin sin 6032b AC R B ==︒所以ABC外接圆的半径R =,若选择条件②因为点M ,N 是BC边上的三等分点,且AMN S =△ABC S = 因为60B =︒,所以113sin 608222ABC S AB BC BC ==⋅︒=⨯⨯⨯△,所以6BC =,所以2BM =.在ABM 中,22222cos 84282sin 6052AM AB BM AB BM B =+-⋅=+⨯︒-⨯=,所以AM =.同理222222cos 86286cos 6052AC AB BC AB BC B =+-⋅=+⨯︒-⨯=,所以AC =由正弦定理可得4392sin sin 603b AC R B ===︒,所以ABC外接圆的半径3R =.若选择条件③设BM t =,则3BC t =.在ABM 中,22222222cos 828cos6088AM AB BM AB BM B t t t t =+-⋅=︒=+-⨯+-,同理在ABC 中,222222cos 89283cos60AC AB BC AB BC B t t =+-⋅⋅=+-⨯⨯︒264924t t =+-,因为AC AM =,所以2228864924t t t t +-=+-,所以2t =在ABM 中,22222cos 84282cos 6052AM AB BM AB BM B =+-⋅=+⨯︒-⨯=,所以AM =.同理222222cos 86286cos 6052AC AB BC AB BC B =+-⋅=+⨯︒-⨯=,所以AC =由正弦定理可得2sin sin 60b AC R B ==︒所以ABC外接圆的半径R =.例8.(2022·湖北·高三期中)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知()sin sin()a c A a B C -=-,b =(1)求角B ;(2)若AC 边上的点D 满足2CD DA = ,2213BD =,求ABC 的面积.【解析】(1)在ABC 中,由正弦定理可得:(sin sin )sin sin sin()A C A A B C -⋅=⋅-∵(0,π)A ∈,∴sin 0A ≠∴sin sin sin()A CBC -=-∵πA B C ++=,∴sin sin()A B C =+∴sin()sin sin()B C C B C +-=-,化简可得:∴sin 2cos sin C B C =,∵(0,π)C ∈,∴sin 0C ≠∴1cos 2B =,又∵(0,π)B ∈,∴π3B =.(2)∵2CD DA = ,∴()22123333BD BC CD BC CA BC BA BC BC BA =+=+=+-=+ 两边平方得:()2221449BD BC BA BC BA =++⋅ ,即2221π44cos 93BD BC BA BC BA ⎛⎫=++ ⎪⎝⎭ 则()2221284293BD a c ac =++=,∴224284a c ac ++=①在ABC 中,由余弦定理得:22232cos πb a c ac =+-⋅,化简得:2212a c ac =+-②由①②可得:22320c ac a -+=,即()()20c a c a --=,∴c a =或2c a=当c a =时,a c ==1πsi n 23ABC S =⨯=△;当2c a =时,2a =,4c =,∴1π24sin 23ABC S =⨯⨯⨯=△核心考点二:倍角定理【规律方法】例9.(2022·广西·灵山县新洲中学高三阶段练习(文))在锐角ABC 中,角A B C ,,所对的边为a b c ,,,且()cos 1cos a B b A ⋅=+.(1)证明:2A B=(2)若2b =,求a 的取值范围.【解析】(1)∵cos (1cos )a B b A ⋅=+,由正弦定理,得sin cos sin (1cos )A B B A ⋅=+,即sin cos cos sin sin A B A B B ⋅-⋅=,∴sinsin A B B -=(),∴A B B -=或A B B π-+=()(舍),即2A B =,(2)由锐角△ABC ,可得02B π<<,022A B π<=<,032C B ππ<=-<.即64B ππ<<,∴cos 22B <<.由正弦定理可得:sin sin 24sin cos 4cos sin sin sin sin sin a b b A b B B B a B A B B B B =⇒====,所以4cos B <<所以a 的取值范围为:(.例10.(2022·黑龙江·哈师大附中高三阶段练习)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 是ABC 的面积,()222sin S B C a c +=-.(1)证明:A =2C ;(2)若a =2,且ABC 为锐角三角形,求b +2c 的取值范围.【解析】(1)证明:由()222sin S B C a c +=-,即222sin S A a c =-,∴22sin sin bc A A a c=-,sin 0A ≠,∴22a c bc -=,∵2222cos a b c bc A =+-,∴2222cos a c b bc A -=-,∴22cos b bc A bc -=,∴2cos b c A c -=,∴sin 2sin cos sin B C A C -=,∴()sin 2sin cos sin A C C A C +-=,∴sin cos cos sin sin A C A C C -=,∴()sin sin A C C -=,∴A ,B ,C ∈(0,π),∴A C C -=即A =2C .(2)∵sin sin a c A C =,且a =2,∴1cos c C=∵A =2C ,∴B =π-3C ,∵ABC 为锐角三角形,所以02203202C C C ππππ⎧<<⎪⎪⎪<-<⎨⎪⎪<<⎪⎩,∴,64C ππ⎛⎫∈ ⎪⎝⎭,∴23cos ,22C ⎫∈⎪⎪⎝⎭,由a =2,22a c bc -=,所以4b c c =-,则42b c c c +=+,且123cos 3c C ⎛=∈ ⎝,设4y c c =+,c∈⎝,12c c <<<12120,40c c c c -<-<,∴121212121212()(4)440c c c c y y c c c c c c ---=+--=>,12y y >,所以4y c c =+,c∈⎝为减函数,∴2b c ⎛⎫+∈ ⎪⎝⎭.例11.(2022·福建龙岩·高三期中)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知22sin sin sin sin B C A C -=.(1)证明:2B C =;(2)若A 是钝角,2a =,求ABC 面积的取值范围.【解析】(1)因为22sin sin sin sin B C A C -=,由正弦定理得22b c ac -=,由222cos 22a c b a c B ac c+--==,得2sin cos sin sin C B A C =-.所以()2sin cos sin sin C B B C C ⋅=+-,sin sin cos cos sin sin()C B C B C B C ∴=-=-,C B C ∴=-或()C B C π=--(舍去),2B C ∴=.(2)由条件得0202232C B C A C ππππ⎧<<⎪⎪⎪<=<⎨⎪⎪=->⎪⎩,解得06C π<<,sin sin a b A B= ,2B C =,2a =,2sin 2sin 22sin 2sin sin(3)sin 3B C C b A C Cπ∴===-.ABC ∴ 的面积in 12s S ab C =sin 2sin 2sin 3C CC ⋅=⋅=sin 2sin 2sin 2cos cos 2sin C CC C C C⋅⋅+=tan 2tan 2tan 2tan C C C C ⋅⋅+24tan 3tan C C=-43tan tan C C =-,06C π<<,0tan C ∴<又因为函数3y x x =-在⎛ ⎝⎭上单调递减,所以3tan tan C C ->所以103tan tan C C<<-403tan tan C C <<-0S ∴<<ABC面积的取值范围为⎛ ⎝⎭.例12.(2022·江苏·宝应中学高三阶段练习)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =;(2)求4cos a b b B+的最小值.【解析】(1)证明:在ABC 中,由已知及余弦定理,得()2222cos a b b c a b ab C +==+-,即2cos b a b C =-,由正弦定理,得sin sin 2sin cos B A B C =-,又()πA B C =-+,故()sin sin 2sin cos sin cos cos sin 2sin cos B B C B C B C B C B C=+-=+-cos sin sin cos B C B C =-()sin C B =-.∵()0sin sin B C B <=-,∴0πC B C <-<<,∵()πB C B C +-=<,∴B C B =-,故2C B =.(2)由(1)2C B =得()30,πB C B +=∈,∴π0,3B ⎛⎫∈ ⎪⎝⎭,1cos ,12B ⎛⎫∈ ⎪⎝⎭,由(1)()12cos a b C =+,2C B =得()2522cos 1452cos 52cos 2cos cos cos cos B a b C B b B B B B +-+++===34cos 4cos B B =+≥当且仅当ππ0,63B ⎛⎫=∈ ⎪⎝⎭时等号成立,所以当π6B =时,4cos a b b B+的最小值为例13.(2022·江苏连云港·高三期中)在ABC 中,AB =4,AC =3.(1)若1cos 4C =-,求ABC 的面积;(2)若A =2B ,求BC 的长.【解析】(1)在ABC 中,设角A 、B 、C 所对的边分别为a ,b ,c .由余弦定理得2222cos AB AC BC AB BC C =+-⋅⋅,即21169234a a ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,得2a =或72a =-(舍),由1cos 4C =-,()0,C π∈,得sin C =所以ABC 的面积11sin 322244S ab C ==⨯⨯⨯=.(2)在ABC 中,由正弦定理得33sin sin sin 2sin 2sin cos sin a b a a A B B B B B B =⇒=⇒=⋅,所以6cos a B =.在ABC 中,再由余弦定理得2222169cos 224AB BC AC a B AB BC a+-+-==⋅⨯⨯,所以2169624a a a+-=⨯⨯,解得a =例14.(2022·浙江·绍兴鲁迅中学高三阶段练习)在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且满足()22sin sin sin sin A B B A B -=+.(1)证明:2A B =.(2)求bc 的取值范围.【解析】(1)由()22sin sin sin sin A B B A B -=⋅+得22sin sin sin sin A B B C -=,由正弦定理得22a b bc-=故2222sin sin cos 2222sin b c a c bc c b C B A bc bc b B+----====,可得()2sin cos sin sin B A A B B =+-即()sin sin cos sin cos sin B A B B A A B =-=-,因为0,022A B ππ<<<<,所以B A B =-,即2A B =;(2)()sin sin sin sin sin sin 3sin3sin2cos cos2sin b B B B B c C B B B B B B π====-+()222sin 14cos 12sin cos 2cos 1sin B B B B B B ==-+-,在锐角ABC中,0202,cos 264032B A B B B C B ππππππ⎧<<⎪⎪⎪<=<⇒<<<⎨⎪⎪<=-<⎪⎩所以211,14cos 12b c B ⎛⎫=∈ ⎪-⎝⎭.。
例谈正余弦定理在解三角形中的运用
例谈正余弦定理在解三角形中的运用刘晓妮(无锡市第一中学,江苏无锡214031)摘要:正弦定理、余弦定理都是揭示三角形边角数量关系的重要定理.在高中数学学习阶段,要求学生能够运用正余弦定理解决一些简单的三角形度量问题.学习了正、余弦定理之后,不少学生会对于判断三角形解的个数问题烦恼,当三角形已知两边(邻边与对边)与一角时解三角形,可能出现一解、两解、无解等情况,虽然在教材中有相应的解决方法,但是有些同学对此依旧迷茫。
关键词:正余弦定理;数学;解题在解决此类问题中往往有两种思路,即采用正弦定理或者是余弦定理。
对比之下可以发现,运用正弦定理解决此类问题,有时往往计算比较繁杂,学生通常会选用余弦定理,对对角A应用余弦定理,并将其整理为关于c的一元二次方程c2-2bc cos A+b2-a2=0,学生往往会如此理解:若该方程无解或只有负数解,则该三角形无解;若方程有一个正数解,则该三角形有一解;若方程有两个不等的正数解,则该三角形有两解。
但事实并非如此。
例如笔者在教学生解三角形中,遇到三角形中已知两边和其中一边的对角求解第三边问题时,发现采用余弦定理转化为一元二次方程求解问题时,简单地根据正负来取舍仍会产生增根。
即使方程有两个正根,也不代表两解都可取,需要将结果带入进行检验,而检验的依据就是题干给出的条件。
多数同学在解题时,没有从本质上理解增根的产生原因,因此往往会忘记对结果的检验。
下面笔者结合教材就自己的理解谈一谈在运用余弦定理解三角形时增根产生的原因,以及遇到两解问题应如何处理。
一、回归教材苏教版教材(1)必修五P12探究拓展第11题(阅读)采用数形结合的形式给出了“已知三角形两边(邻边与对边)与一角时判断三角形解的个数”的方法。
原题:在已知两边a,b和一边的对角A,求角B时,如果A为锐角,那么可能出现以下情况:若采用余弦定理进行求边c时,整理得到关于c的一元二次方程c2-2bc cos A+b2-a2=0,其中图1,对应的是△<0即方程无解的情况;图2对应的是△=0即方程有两个等根的情况;图3,对应的则是△>0即方程有两个不等根,且两根均大于0的情况;图4对应的则是△>0即方程有两个不等根且一个根大于0而另一个根小于0的情况。
如何正确理解正余弦定理解三角形
1.1 正弦定理和余弦定理教案(共两课时)教学目标根据教学大纲的要求,结合学生基础和知识结构,来确定如下教学目标:(一)知识目标(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;(2) 会运用正弦定理与三角形内角和定理解三角形的两类基本问题。
(3) 掌握余弦定理的两种表示形式;(4) 掌握证明余弦定理的向量方法;(5) 会运用余弦定理解决两类基本的解三角形问题。
(二)能力目标让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题。
(三)情感目标(1) 培养学生在方程思想指导下处理解三角形问题的运算能力;(2) 培养学生合情推理探索数学规律的数学思想能力,通过三角形函数、正弦定理、余弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点正弦定理、余弦定理的探索和证明及其基本应用。
教学难点(1) 正弦定理和余弦定理的证明过程。
(1) 已知两边和其中一边的对角解三角形时判断解的个数。
(2) 勾股定理在余弦定理的发现和证明过程中的作用。
教学方法启发示探索法,课堂讨论法。
教学用具粉笔,直尺,三角板,半圆,计算器。
、教学步骤第一课时正弦定理(一) 课题引入如图1.1-1,固定∆ABC的边CB及∠B,使边AC绕着顶点C转动。
A思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? (图1.1-1) (二) 探索新知在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (让学生进行讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cb=, b a 从而sin sin abAB=sin cC=A D B(图1.1-3)让学生思考:是否可以用其它方法证明这一等式? 证明二:(等积法)在任意斜△ABC 当中 S △ABC =A bc B ac C ab sin 21sin 21sin 21== 两边同除以abc 21即得:A a sin =B b sin =Ccsin 证明三:(外接圆法)如图所示,∠A=∠D∴R CD D aA a 2sin sin === (R 为外接圆的半径)同理B b sin =2R ,Ccsin =2R 由于涉及边长问题,从而可以考虑用向量来研究这个问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 正弦定理和余弦定理教案(共两课时)教学目标根据教学大纲的要求,结合学生基础和知识结构,来确定如下教学目标:(一)知识目标(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;(2) 会运用正弦定理与三角形内角和定理解三角形的两类基本问题。
(3) 掌握余弦定理的两种表示形式;(4) 掌握证明余弦定理的向量方法;(5) 会运用余弦定理解决两类基本的解三角形问题。
(二)能力目标让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题。
(三)情感目标(1) 培养学生在方程思想指导下处理解三角形问题的运算能力;(2) 培养学生合情推理探索数学规律的数学思想能力,通过三角形函数、正弦定理、余弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点正弦定理、余弦定理的探索和证明及其基本应用。
教学难点(1) 正弦定理和余弦定理的证明过程。
(1) 已知两边和其中一边的对角解三角形时判断解的个数。
(2) 勾股定理在余弦定理的发现和证明过程中的作用。
教学方法启发示探索法,课堂讨论法。
教学用具粉笔,直尺,三角板,半圆,计算器。
、教学步骤第一课时正弦定理(一) 课题引入如图1.1-1,固定∆ABC的边CB及∠B,使边AC绕着顶点C转动。
A思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? (图1.1-1) (二) 探索新知在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (让学生进行讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cb=, b a 从而sin sin abAB=sin cC=A D B(图1.1-3)让学生思考:是否可以用其它方法证明这一等式? 证明二:(等积法)在任意斜△ABC 当中 S △ABC =A bc B ac C ab sin 21sin 21sin 21== 两边同除以abc 21即得:A a sin =B b sin =Ccsin 证明三:(外接圆法)如图所示,∠A=∠D∴R CD D aA a 2sin sin === (R 为外接圆的半径)同理B b sin =2R ,Ccsin =2R 由于涉及边长问题,从而可以考虑用向量来研究这个问题。
证明四:(向量法) 过A 作单位向量垂直于AC →由 AC →+ CB →= AB →两边同乘以单位向量 得 •(AC →+CB →)=•AB →则j •AC →+j •CB →=j •AB →∴|j |•|AC →|cos90︒+|j |•|CB →|cos(90︒-C)=|j |•| AB →|cos(90︒-A) ∴A c C a sin sin = ∴A a sin =Ccsin 同理,若过C 作j 垂直于CB →得: C c sin =B b sin ∴A a sin =B b sin =Ccsin 从而sin sin abAB=sin cC=类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。
(让学生课后自己推导)从上面的研究过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC=(三) 理解定理(1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =;(2)sin sin abAB=sin cC=等价于sin sin abAB=,sin sin cbCB=,sin aA=sin cC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
(四) 例题剖析例1.在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。
(课本p3,例1)解:根据三角形内角和定理,0180()=-+C A B000180(32.081.8)=-+066.2=;根据正弦定理,00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A例2.在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
(课本p4,例4)解:根据正弦定理,0sin 28sin40sin 0.8999.20==≈b A B a因为00<B <0180,所以064≈B ,或0116.≈B (1) 当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A (2) 当0116≈B 时,00000180()180(40116)24=-+≈-+=C A B ,sin 20sin2413().sin sin40==≈a C c cm A 评述:例1,例2都使用正弦定理来解三角形,在解三角形过程中都使用三角形内角和定理,可见,三角形内角和定理在解三角形中的重要应用。
应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。
(五) 课堂练习第5页练习第1(1)、2(1)题。
(六) 课时小结(让学生归纳总结)(1) 定理的表示形式:sin sin ab=sin c==()0sin sin sin a b ck k ++=>++;或sin a k A =,sin b k B =,sin c k C =(0)k >(2) 正弦定理的应用范围:①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。
(七) 课后作业习题1.1 A 组第1(1)、2(1)题。
(八) 板书设计第二课时 余弦定理(一) 课题引入如图1.1-4,在∆ABC 中,设BC=a,AC=b,AB=c, C已知a,b 和∠C ,求边c 。
b a(图1.1-4)(二) 探索新知联系已经学过的知识和方法,可用什么途径来解决这个问题? 用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。
由于涉及边长问题,从而可以考虑用向量来研究这个问题。
如图1.1-5,设CB a →=,CA b →=,AB c →=,那么c=a-b ,2||c =c ∙c=(a-b)∙(a-b) A=a∙a + b ∙b -2a ∙b b c从而 2222cos c a b ab C =+- C a B 同理可证 2222cos a b c bc A =+- (图1.1-5)2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
即2222cos a b c bc A =+-2222cos b a c ac B =+- 2222cos c a b ab C =+-让学生思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:222cos +-=b c a A222cos 2+-=a cb B ac 222cos 2+-=b ac C ba(三) 理解定理从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。
让学生思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若∆ABC 中,C=090,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
(四) 例题剖析例1 在△ABC 中,已知B =60 c m ,C =34 c m ,A =41°,解三角形(角度精确到1°,边长精确到1 c m )。
(课本P7 例3)解:根据余弦定理,a 2=b 2+c 2-2bccosA =602+342-2·60·34cos41° ≈3 600+1 156-4 080×0.754 7 ≈1 676.82,所以,a ≈41 c m.由正弦定理得sin C =4141sin 34sin ︒⨯=a A c ≈41656.034⨯≈0.544 0. 因为C 不是三角形中最大的边,所以C 是锐角.利用算器可得C≈33°,B=180°-(A+C)=180°-(41°+33°)=106°.例2 在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形。
(课本P7 例4)解:由余弦定理的推论得:cos 2222+-=b c a A bc22287.8161.7134.6287.8161.7+-=⨯⨯ 0.5543,≈ 05620'≈A ;cos 2222+-=c a b B ca222134.6161.787.82134.6161.7+-=⨯⨯0.8398,≈ 03253'≈B ;0000180()180(56203253)''=-+≈-+C A B =09047'.评述:例1和例2是对余弦定理及其推论的运用,加深对定理及其推论的理解和运用。