二次根式的运算拓展与提高
浙教版数学八年级下册1.1《二次根式》教案2
![浙教版数学八年级下册1.1《二次根式》教案2](https://img.taocdn.com/s3/m/880c95d6ed3a87c24028915f804d2b160b4e8604.png)
浙教版数学八年级下册1.1《二次根式》教案2一. 教材分析《二次根式》是初中数学八年级下册的重要内容,主要让学生了解二次根式的概念、性质和运算。
浙教版教材通过引入实际问题,引导学生探究二次根式的运算规律,培养学生的逻辑思维能力和运算能力。
本节课的内容为1.1二次根式,主要包括二次根式的定义、性质和运算。
二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数、无理数等基础知识,具备了一定的逻辑思维能力和运算能力。
但二次根式较为抽象,学生对其概念和性质的理解可能存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,通过举例、讲解等方式,帮助学生理解和掌握二次根式的相关知识。
三. 教学目标1.理解二次根式的定义和性质;2.掌握二次根式的运算方法;3.能够运用二次根式解决实际问题;4.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.二次根式的定义和性质;2.二次根式的运算方法;3.二次根式在实际问题中的应用。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生探究二次根式的运算规律;2.讲授法:讲解二次根式的定义、性质和运算方法,引导学生理解并掌握相关知识;3.实践操作法:让学生在实际操作中,运用二次根式解决相关问题,提高学生的运算能力;4.小组讨论法:学生进行小组讨论,培养学生的合作意识和团队精神。
六. 教学准备1.教学课件:制作二次根式的相关课件,包括图片、动画等素材,以便于引导学生直观地理解二次根式;2.练习题:准备一些有关二次根式的练习题,用于巩固所学知识;3.教学工具:准备黑板、粉笔等教学工具,以便于进行板书。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如计算物体体积、求解方程等,引导学生发现这些问题都与二次根式有关。
然后提问:“这些二次根式有什么共同特点?我们可以如何对其进行简化?”从而引出二次根式的概念。
2.呈现(10分钟)讲解二次根式的定义、性质和运算方法。
二次根式的概念与运算
![二次根式的概念与运算](https://img.taocdn.com/s3/m/48f046ae0875f46527d3240c844769eae009a3f9.png)
二次根式的概念与运算一、二次根式的概念二次根式是指形如√a的表达式,其中a为非负实数。
在数学中,二次根式是非常重要的概念,它与平方根的运算密切相关。
在二次根式中,a被称为被开方数,√a被称为二次根式符号,它表示被开方数的平方根。
二、二次根式的运算二次根式的运算包括加减乘除四则运算,下面我将依次介绍这些运算规则:1. 二次根式的加减法:当二次根式的被开方数相同且二次根式符号相同时,可以进行加减运算。
例如:√2 + √2 = 2√2,√3 - √3 = 02. 二次根式的乘法:将二次根式相乘时,可以将被开方数相乘并保留二次根式符号。
例如:√2 × √3 = √63. 二次根式的除法:将二次根式相除时,可以将被开方数相除并保留二次根式符号。
例如:√8 ÷ √2 = √4 = 2需要注意的是,二次根式的除法要求除数不为0。
4. 二次根式的化简:化简二次根式是指将含有多项二次根式的表达式转化为最简形式。
要化简二次根式,可以通过合并同类项、约分等方法实现。
合并同类项时,需要注意被开方数是否相同以及二次根式符号是否相同。
例如:√2 + √8可以化简为√2 + 2√2 = 3√2另外,有些二次根式可以化简为整数或分数。
例如:√4 = 2,√9 = 3,√16 = 4/√2三、二次根式的运算实例为了更好地理解二次根式的概念与运算,下面我将给出一些运算实例:例1:计算√8 × √2解:根据乘法运算规则,可以将被开方数相乘并保留二次根式符号。
√8 × √2 = √(8 × 2) = √16 = 4例2:化简√12 - √27解:根据减法运算规则,要实现减法,需要先化简被开方数相同的二次根式。
√12 - √27 = √(4 × 3) - √(9 × 3) = 2√3 - 3√3 = -√3例3:将√18 + 4√2化简为最简形式解:根据加法运算规则,可以合并同类项。
二次根式的总结
![二次根式的总结](https://img.taocdn.com/s3/m/78d0dce8b04e852458fb770bf78a6529647d356e.png)
二次根式的总结一. 什么是二次根式二次根式是一个数学概念,它由一个数的平方根组成,通常形式为√a。
在二次根式中,a代表正实数,而√代表平方根运算符。
二次根式是数学中重要的一部分,它在代数、几何和物理等领域都有广泛的应用。
二. 二次根式的性质1. 二次根式的化简在进行二次根式的化简时,可以使用一些技巧来简化表达式。
例如,当根号中的数可以分解为两个因数的乘积时,我们可以将其分解为两个二次根式之和。
同时,我们也可以将根号中的数的因数提取出来,以减少根号下的项。
通过合理的化简,我们可以简化复杂的二次根式,从而更加方便地进行计算和推导。
2. 二次根式的运算在进行二次根式的运算时,我们需要注意一些规则。
首先,当进行二次根式的加减运算时,只有当根号中的数字相同,才可以进行合并。
其次,当进行二次根式的乘法运算时,我们可以使用乘法法则,将根号中的数字相乘,并将根号外的数字相乘。
最后,当进行二次根式的除法运算时,我们需要使用除法法则,将根号中的数字相除,并将根号外的数字相除。
3. 二次根式的化简与乘法公式对于一些特殊的二次根式,我们可以利用一些公式来进行化简和计算。
例如,平方根的乘法公式是√(a*b) = √a * √b,其中a和b 为正实数。
通过这个公式,我们可以将二次根式的乘法化简为简单的乘法运算。
三. 二次根式的应用1. 几何中的应用二次根式在几何学中有广泛的应用。
例如,我们常常用二次根式来求解三角形的边长或角度。
此外,二次根式还可以用来求解圆的半径、直径或周长等问题。
在解决几何问题时,掌握好二次根式的化简和运算技巧,将会极大地提高我们的计算效率和准确性。
2. 代数中的应用在代数学中,二次根式也有着广泛的应用。
例如,在求解一元二次方程时,解的形式往往是一个含有二次根式的表达式。
此外,二次根式还可以用来表示一些特殊的数学函数,如根号函数、幂函数等。
通过运用二次根式的性质和运算规则,我们可以更好地理解和应用代数学中的各种概念和方法。
八年级数学二次根式拓展提高之恒等变形(实数)拔高练习(含答案)
![八年级数学二次根式拓展提高之恒等变形(实数)拔高练习(含答案)](https://img.taocdn.com/s3/m/4cb4c58f4afe04a1b171de59.png)
八年级数学二次根式拓展提高之恒等变形(实数)拔高练习试卷简介:全卷共三个大题,第一题是填空(7道,每道5分);第二题是计算(3道,每道5分);第三题是解答(4道,每道10分),满分120分,测试时间30分钟。
本套试卷有一定的难度系数,包含了根式的意义及其与绝对值、完全平方式的综合运用,同学们可以在做题过程中回顾课本,加深对根式的理解。
学习建议:本讲内容是在课本基础上的拔高训练,深入地剖析了根式,需要同学们更加深入地理解根式的意义,也要熟悉其与绝对值、完全平方式的综合运用。
虽然题目有些难度,但万变不离其宗,大家可以在做这部分题的时候多回顾课本,真正做到理解最基本的知识点。
一、填空题(共7道,每道5分)1.化简:=______.答案:6解题思路:被开方数必须大于等于零,∴,即.又,∴a-1=0 ∴a=1 代入所求式子,答案为6.易错点:忽略了被开方数是大于等于零这一隐含条件试题难度:三颗星知识点:二次根式有意义的条件2.若有意义,则a-b=______.答案:0解题思路:若使有意义,需满足2ab-b-a2-b2≥0,即-(a-b)2≥0∴(a-b)2≤0 又(a-b)2≥0 ∴(a-b)2=0 ∴a-b=0易错点:没有掌握被开方数必须大于等于零这一条件试题难度:二颗星知识点:二次根式有意义的条件3.已知,若axy-3x=y,则a=______.答案:解题思路:算术平方根和完全平方式都是大于等于零的,而二者之和等于零,所以二者分别等于零,故可得出x=,y=3.然后代入axy-3x=y,可得a=.易错点:求不出x、y的值试题难度:三颗星知识点:二次根式有意义的条件4.若,则3x+4y=______.答案:-7解题思路:若使式子式子有意义,须满足,可得x=-2,y=∴3x+4y=-7. 易错点:求不出x、y的值试题难度:三颗星知识点:分式有意义的条件5.若x<0,则=______,=______.答案:-x;x解题思路:一个数先平方再开方,等于它的绝对值;一个数先立方再开立方,等于它本身. 易错点:一个数先平方再开平方等于它的绝对值,而非它本身.试题难度:二颗星知识点:二次根式的性质与化简6.设m>n>0,m²+n²=4mn,则的值等于___.答案:解题思路:将m²+n²=4mn左边同时加减2mn,即可求得m+n、m-n的值,然后代入求解. 易错点:没有看出所求式子和已知式子的联系;符号正负判断错误.试题难度:四颗星知识点:二次根式的混合运算7.若,则x2+4x-5=______;若,则x2+2x-1=______.答案:2001;2010解题思路:先将所求式子变形为完全平方式的形式,然后代入求解.易错点:直接代入导致计算错误试题难度:三颗星知识点:二次根式的混合运算二、计算题(共3道,每道5分)1.已知b<0<a,化简:|a-b|答案:-b解题思路:一个数先平方再开方等于它的绝对值;正数的绝对值等于它本身,负数的绝对值等于它的相反数.易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:绝对值2.化简:答案:2解题思路:一个数先平方再开方等于它的绝对值;一个数先开方再平方等于它本身.易错点:混淆了先平方再开方和先开方再平方的结果.试题难度:三颗星知识点:二次根式的性质与化简3.当1<x<4时,化简:答案:3解题思路:观察得知,被开方数是完全平方式,利用一个数先平方再开方等于它的绝对值进行解题.易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:二次根式的性质与化简三、解答题(共7道,每道10分)1.如果式子化简的结果为2x-3,求x的取值范围.答案:=|x-1|+|x-2|=2x-3,∴x-1≥0且x-2≥0. 解得x≥2解题思路:由x的系数判断绝对值符号内数的正负易错点:由化简结果不知道怎么判断x的范围试题难度:四颗星知识点:绝对值2.已知|a|=5,且ab>0,求a+b的值.答案:∵,∴|b|=3 ∴b=±3 而|a|=5 ∴a=±5 又ab>0,∴ab同号,即当a=5时,b=3;当a=-5时,b=-3 ∴答案为8或-8解题思路:两数想乘,同号得正、异号得负易错点:漏掉了a、b同时为负的情况试题难度:三颗星知识点:绝对值3.已知a2+12ab+9b2的算术平方根.答案:=∵a<0,b<0 ∴原式=-2a-3b解题思路:4a2+12ab+9b2是一个完全平方式,利用一个数先平方再开方等于它的绝对值进行解题易错点:一个数先平方再开方等于它的绝对值,而非它本身.试题难度:三颗星知识点:绝对值4.已知,求的值.答案:∵,∴a>0 ∴-2=1 ∴=3∴解题思路:先判断出a>0,再利用完全平方和与完全平方差的转换进行解题易错点:没有判断出a与0的大小关系试题难度:四颗星知识点:完全平方公式5.一个数的平方根是a2+b2和4a-6b+13,求这个数.答案:由已知,可得a2+b2+4a-6b+13=0,即(a+2)2+(b-3)2=0 ∴a=-2、b=3 ∴a2+b2=13 ∴这个数为169.解题思路:一个数的两个平方根互为相反数易错点:答案错误:所求的是这个数而不是它的平方根试题难度:四颗星知识点:二次根式的应用6.设a是一个无理数,且a、b满足ab+a-b=1,求b.答案:∵ab+a-b=1 ∴b(a-1)=1-a 又∵a为无理数∴a-1也是无理数,即a-1≠0 ∴b=1 解题思路:将a看作已知数、b看作未知数,然后移项求解易错点:找不到突破口试题难度:三颗星知识点:解一元一次方程7.数轴上,表示1、的对应点分别为A、B,点B关于点A的对称点为点C,求点C所表示的数.答案:如图,∵AC=AB=,∴OC=OA-AC=1-()=.解题思路:点B、点C关于点A对称,那么AC=AB.易错点:找不到点C所代表的数试题难度:四颗星知识点:数轴。
数学二次根式教案【优秀8篇】
![数学二次根式教案【优秀8篇】](https://img.taocdn.com/s3/m/d4324f42178884868762caaedd3383c4bb4cb436.png)
数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。
《二次根式的乘除混合运算》 说课稿
![《二次根式的乘除混合运算》 说课稿](https://img.taocdn.com/s3/m/8c2268c8d0f34693daef5ef7ba0d4a7303766c7e.png)
《二次根式的乘除混合运算》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《二次根式的乘除混合运算》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析本节课是人教版八年级下册第十六章《二次根式》中的重要内容。
二次根式的乘除混合运算既是对二次根式乘法和除法法则的综合运用,也是后续学习二次根式的加减运算以及解二次根式方程的基础。
通过本节课的学习,学生将进一步提高对二次根式运算的理解和掌握,为解决更复杂的数学问题打下坚实的基础。
在教材的编排上,先介绍了二次根式的乘法和除法法则,然后通过实例引入二次根式的乘除混合运算,让学生在实际运算中体会法则的应用,逐步掌握运算方法和技巧。
二、学情分析八年级的学生已经掌握了实数的基本运算和整式的乘除运算,具备了一定的运算能力和逻辑思维能力。
但对于二次根式的运算,尤其是乘除混合运算,可能会在运算顺序、化简过程中出现错误。
部分学生可能对法则的理解不够深入,在应用时容易出现混淆。
因此,在教学过程中,要注重引导学生理解法则的本质,加强练习,及时纠正错误。
三、教学目标1、知识与技能目标(1)学生能够熟练掌握二次根式的乘除混合运算的法则和方法。
(2)能够正确进行二次根式的乘除混合运算,并化简结果。
2、过程与方法目标(1)通过观察、类比、归纳等活动,培养学生的运算能力和逻辑思维能力。
(2)在运算过程中,提高学生的分析问题和解决问题的能力。
3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的自信心。
(2)培养学生严谨的学习态度和良好的运算习惯。
四、教学重难点1、教学重点(1)二次根式的乘除混合运算的法则和顺序。
(2)正确化简二次根式的乘除混合运算结果。
2、教学难点(1)运算过程中符号的确定和根式的化简。
(2)灵活运用二次根式的乘除法则进行混合运算。
五、教法与学法1、教法(1)讲授法:讲解二次根式的乘除混合运算的法则和方法,使学生形成系统的知识体系。
二次根式教案
![二次根式教案](https://img.taocdn.com/s3/m/72fbad85250c844769eae009581b6bd97f19bca4.png)
练习1 完成教科书第3页的练习.
练习2 当x 是什么实数时,下列各式有意义.
(1) ;(2) ;(3) ;(4) .
辨析二次根式的概念,确定二次根式有意义的条件.
设计有一定综合性的题目,考查学生的敏捷运用的实力,开阔学生的视野,训练学生的思维.
5.总结反思
老师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
二次根式的概念.
2.内容解析
本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学学问的综合应用,也为后面学习二次根式的性质和四则运算打基础.
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1探讨了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.
二次根式教案 篇3
一、复习引入
学生活动:请同学们完成下列各题:
1.计算
(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探究新知
假如把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢? 仍成立.
整式运算中的x、y、z是一种字母,它的意义非常广泛,可以代表全部一切, 当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.
本节课的教学难点为:理解二次根式的双重非负性.
四、教学过程设计
1.创设情境,提出问题
问题1你能用带有根号的的式子填空吗?
(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.
专题02 二次根式的运算(专题强化-提高)解析版
![专题02 二次根式的运算(专题强化-提高)解析版](https://img.taocdn.com/s3/m/84a627f6866fb84ae55c8db0.png)
专题02 二次根式的运算(专题强化-提高)一、单选题(共40分)1.(本题4分)(2020·南通市八一中学八年级月考)下列计算正确的是( )A 2=-B .257a a a +=C .()5210a a =D .=【答案】C 【分析】直接利用二次根式的性质化简以及结合合并同类项法则和幂的乘方运算法则化简求出答案; 【详解】A 2= ,故此选项错误;B 、2525a a a a +=+,故此选项错误;C 、()5210aa =,故此选项正确;D 、5=60⨯,故此选项错误; 故选:C . 【点睛】本题主要考查了二次根式的性质以及结合合并同类项法则和幂的乘方运算法则,正确化简各式是解题的关键;2.(本题4分)(2020·四川成都市·北大附中成都为明学校八年级期中)估计 ) A .在2~3之间 B .在3~4之间 C .在4~5之间 D .在5~6之间【答案】C 【分析】先根据二次根式的乘法法则可知再由16<24<25,利用算术平方根的性质可得45,可得结果. 【详解】解:∵16<24<25,∴4<5,即4<5,故选:C . 【点睛】本题主要考查了估算无理数的大小,熟练掌握算术平方根的性质及二次根式的乘法法则是解答此题的关键. 3.(本题4分)(2020·黑龙江齐齐哈尔市·八年级期末)下列计算正确的是( )A =B =C 6=-D 1=【答案】B 【分析】根据二次根式加减运算和二次根式的性质逐项排除即可. 【详解】A 选项错误;===B 选项正确;321=-=,所以C 选项错误;D 选项错误;故选答案为B . 【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.4.(本题4分)(2020·江苏镇江市·八年级期末)下列运算正确的是( )A =B .(28-= C 12= D 1=【答案】B 【分析】根据二次根式的性质及运算法则依次计算各项后即可解答. 【详解】选项A +A 错误;选项B ,(2428-=⨯=,选项B 正确;选项C124==,选项C错误;选项D1=,选项D错误.综上,符合题意的只有选项B.故选B.【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.5.(本题4分)(2020·上海浦东新区·八年级月考)下列各式中,计算正确的是()A=B=C=D xy=【答案】C【分析】根据二次根式的运算法则逐一计算即可完成求解.【详解】不是同类二次根式,不能计算,故该选项计算错误,不符合题意,不是同类二次根式,不能计算,故该选项计算错误,不符合题意,===故选:C.【点睛】本题考查二次根式的运算,熟练掌握运算法则是解题关键.6.(本题4分)(2020·全国八年级课时练习)已知,的值为()A.B.C.4 D.±【答案】B【解析】把x= +1,y= 1==.7.(本题4分)(2020·浙江杭州市·八年级其他模拟)下列根式是最简二次根式的是( )A B C D 【答案】B 【分析】利用最简二次根式定义判断即可. 【详解】A =BC 2=,不是最简二次根式,该选项不符合题意;D =,不是最简二次根式,该选项不符合题意; 故选:B . 【点睛】本题考查了最简二次根式.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.(本题4分)(2020·贵州毕节市·a 的值是( ) A .52-B .-1C .1D .2【答案】D 【分析】根据最简二次根式与同类二次根式的定义列方程组求解. 【详解】解:= 根据题意,得:723a -=, 解得:2a =;【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.9.(本题4分)(2020·的结果估计在()A.6至7之间B.7至8之间C.8至9之间D.9至10之间【答案】B【分析】首先把二次根式的化简计算,然后估算无理数的大小即可解决问题.【详解】=∵2 2.5<<,∴45<<,∴738<+<,的结果在7至8之间,故选:B.【点睛】本题考查了无理数的估算,二次根式的混合运算,解题的关键是掌握运算法则进行计算.10.(本题4分)(2020·山东济南市·八年级月考)已知a=,b=,c=,则下列大小关系正确的是( )A.a>b>c B.c>b>a C.b>a>c D.a>c>b【答案】A【分析】将a,b,c变形后,根据分母大的反而小比较大小即可.解:∵a ==,b ==,c ==,>>,∴a b c >>. 故选:A. 【点睛】此题考查了二次根式的大小比较,将根式进行适当的变形是解本题的关键.二、填空题(共20分)11.(本题5分)(2020·四川雅安市·雅安中学八年级期中),><或=填空) 【答案】< 【分析】先把两个式子分母有理化,再比较化简后的结果的大小,从而得到原式的大小关系. 【详解】65===-76===->>>.故答案是:<. 【点睛】本题考查二次根式的化简和大小比较,解题的关键是掌握二次根式的化简方法和比较大小的方法.12.(本题5分)(2020·运城市景胜中学八年级期中)已知==a b ,则二次根式________.【答案】11 【分析】先把a ,b 的值通过分母有理化化简,在根号下的立方和展开代入计算; 【详解】∵842-===a 4==b∴()()3322367367+-=+-+-a b a b a ab b,(((((22444444367⎡⎤=-++--+-++-⎢⎥⎣⎦,()8161516151615367⎡=⨯+---+++-⎣,()8621367488367121=⨯--=-=,11=. 故答案是11. 【点睛】本题主要考查了分母有理化和二次根式的性质与化简,准确计算是解题的关键.13.(本题5分)(2020·南通市八一中学八年级月考)已知a 、b 为有理数,m 、n 分别表示5-分和小数部分,且21amn bn +=,则3a b +=_________. 【答案】4 【分析】只需先对5-a ,其小数部分用5a -表示,再分别代入21amn bn +=进行计算;【详解】∵2<3,∴2<5-3,∴ m=2,n=52-=3-,把m=2,n=37-代入21amn bn += ∴ ()()2237371a b -+-=,化简得:()()6167261a b a b +-+= , ∴ 6161a b +=且260a b +=, 解得: 1.5a =,0.5b =- ∴33 1.50.54a b +=⨯-=,故答案为:4. 【点睛】本题考查了无理数大小的估算和二次根式的混合运算,能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键;14.(本题5分)(2020·浙江金华市·八年级期末)对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:431232753)2=※________. 【答案】132-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可. 【详解】 解:43)@127543)232※ =243()12753)32 =243(1212)(53)323- 21)1863 =4332- =132-故答案为:132-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.三、解答题(共90分)15.(本题8分)(2020·【答案】2 【分析】先利用分母有理化、二次根式乘法以及二次根式的性质化简,然后利用二次根式的加减运算法则计算即可. 【详解】++13--+=2. 【点睛】本题考查了二次根式的混合运算,灵活运用分母有理化、二次根式乘法以及二次根式的性质成为解答本题的关键.16.(本题8分)(2020·陕西咸阳市·八年级期末)计算:21-.【答案】1. 【分析】按照二次根式性质,立方根的定义,绝对值的意义,化简即可. 【详解】解:原式12412=-⨯=1. 【点睛】本题考查了二次根式的性质,立方根的定义,绝对值的化简,熟记性质是解题的关键.17.(本题8分)(2020·陕西咸阳市·八年级期末)已知;a =,b = (1)ab ;(2)223a ab b -+; 【答案】(1)2;(2)10. 【分析】(1)根据二次根式的乘法法则求出ab 即可;(2)根据二次根式的减法法则求出-a b ,根据二次根式的乘法法则求出ab ,把原式化简,把a b ab -、代入计算即可. 【详解】解:5a =+b =532ab ∴==-=,a b -==∴ (1)ab =2(2)()(22223210a ab b a b ab -+=--=-=.【点睛】本题是一道求代数式值的问题,考查了的是二次根式的减法和乘法和整式的完全平方公式,掌握二次根式的减法法则、乘法法则是解题的关键.18.(本题8分)(2020·福建省泉州实验中学八年级月考)已知1x =,x 的整数部分为a ,小数部分为b ,求ab的值.【分析】由2<31+的整数部分与小数部分,即,a b 的值,再代入ab进行分母有理化,从而可得答案. 【详解】解:2<3,3∴<4,x 的整数部分为a ,小数部分为b ,3a ∴=,132b =-=,)32322.74ab∴====-【点睛】本题考查的是无理数的估算,整数部分与小数部分的含义,二次根式的除法运算,平方差公式的应用,掌握分母有理化是解题的关键.19.(本题10分)(2020·山东济南市·八年级期中)[阅读材料]把分母中的根号化去,使分母转化为有理数的过过程,叫做分母有理化.通常把分子、分母同时乘以同一个不等于0的数,以达到化去分母中根号的目的..=.[理解应用](1(2)若a3a;(3.【答案】(1(2)+3;(3【分析】(1(2)表示出a的值,再代入计算即可;(3)将每一个式子都进行分母有理化,再根据规律得出答案.【详解】(1=22⨯;(2)∵a的小数部分,∴a ﹣1,∴3a =+3; (3=122+=120192-+-【点睛】本题考查二次根式的化简,无理数的估算,以及数字的变化规律等知识,掌握分母有理化的方法是解决问题的关键.20.(本题10分)(2020·江苏南通市·南通第一初中八年级月考)(1)先化简,再求值:22121124m m m m ++⎛⎫-÷ ⎪+-⎝⎭.其中22m -≤≤且m 为整数,请你从中选取一个喜欢的数代入求值.(2)已知1x =,1y =,求下列各式的值:①22x xy y -+ ②2y x x y ++ 【答案】(1)21m m -+,将1m =代入,原式12=-;(2)①6;②6. 【分析】 (1)根据分式混合运算法则先化简,然后选择m 的值时要注意使分式或运算有意义;(2)利用二次根式乘法和二次根式加减法计算xy 、x+y 、x-y 的值,再利用完全平方公式变形求解即可.【详解】(1)原式=()()()222121m m m m m +-+⨯++=21m m -+, ∵其中22m -≤≤且m 为整数,∴不能选择21,±-,则在0,1中选择即可,将1m =代入原式得:121112-=-+, ∴当1m =时,原式12=-;(2)由题意可得:)11312xy ==-=,x y +=2x y -=-,①()()222222426x y x x y y y x =-+=-+=++=-;②()(22222262x y y x x y xy x y xy xy +++++====.【点睛】本题考查分式的化简求值,二次根式的运算以及完全平方公式的变形求解,注意在分式代入求值时要使得分式有意义,灵活对完全平方公式变形是解题关键.21.(本题12分)(2020·成都西川中学八年级月考)计算:(1(2)求3y =的最大值.【答案】(1<-(23【分析】(1的大小即可.(21,当1x =,故y 的3.【详解】(1)15141514-=+, 14131413-=+, 而1513>,15141413∴+>+,15141413∴-<-.(2)10x +≥,10x -≥,1x ∴≥,113y x x =+--+311x x =+++-, 当1x =时,分母11x x ++-有最小值2,311y x x ∴=+++-有最大值是23+. 【点睛】本题主要考查二次根式有意义的条件以及分子有理化在二次根式中的应用,此类问题掌握分子、分母有理化的方法是解题关键.22.(本题12分)(2020·长沙市中雅培粹学校八年级月考)人教版初中数学教科书八年级下册第16页阅读与思考给我们介绍了“海伦—秦九韶公式”,它是利用三角形的三条边的边长直接求三角形面积的公式:即如果一个三角形的三边长分别为a 、b 、c ,记2a b c p ++=,那么这个三角形的面积为()()()S p p a p b p c =--- ,如图,在ABC ∆中,8a =,4b =,6c =.(1)求ABC ∆的面积;(2)设AB 边上的高为1h ,AC 边上的高为2h ,BC 边上的高为3h ,求123h h h ++的值.【答案】(1) ;(2). 【分析】 (1)直接将三角形的三边代入计算,再根据根式的性质进行化简计算;(2)通过三角形面积公式以及第一问求出来的结果进行计算,可分别得出三角形三边的高,最后求和即可得出最终结果.【详解】解:(1) S =2a b c p ++=,在ABC ∆中,8a =,4b =,6c =, 代入可得84692p ++==,S ∴===;(2) 设AB 边上的高为1h ,AC 边上的高为2h ,BC 边上的高为3h ,则123111222ABC S ch bh ah ====,可得到11162h h ⨯==221422h h ⨯==,331824h h ⨯==,1234h h h ∴++=. 【点睛】本题主要考查二次根式的运算,需要有较强的运算求解能力,熟练掌握二次根式的运算法则是解决本题的关键.23.(本题14分)(2020·三明市第四中学八年级月考)细心观察图形,认真分析各式,然后回答问题:(1)推算出OA 10的长和S 10的值.(2)直接用含n (为正整数)的式子表示OA n 的长和S n 的值. (3)求222212310S S S S +++⋯+的值.【答案】(1)OA 1010;S 1010;(2)OA n n ;S n n ;(3)554【分析】(1)根据表格中式子规律即可求出结论;(2)根据表格中式子规律即可求出结论;(3)根据(2)的公式代入求值即可.【详解】解:由题意可得:OA 102=21011-+=10,S 10=102∴OA 1010;(2)由题意可得:OA n 2=(211n -+=n ,S n n∴OA n n ;(3)222212310S S S S +++⋯+ =222212310⎛++++ ⎝⎭⎝⎭⎝⎭⎝⎭=123104444++++=()1123104++++=554【点睛】此题考查的是探索规律题,根据已知等式,找出运算规律是解题关键.。
二次根式教案(优秀5篇)
![二次根式教案(优秀5篇)](https://img.taocdn.com/s3/m/49bbea6f86c24028915f804d2b160b4e767f81c2.png)
二次根式教案(优秀5篇)次根式教案篇一目标1.熟练地运用二次根式的性质化简二次根式;2.会运用二次根式解决简单的实际问题;3.进一步体验二次根式及其运算的实际意义和应用价值。
教学设想本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。
教学程序与策略一、预习检测:1、解决节前问题:如图,架在消防车上的云梯AB长为15m,AD:BD=1 :0.6,云梯底部离地面的距离BC为2m。
你能求出云梯的顶端离地面的距离AE吗?归纳:在日常生活和生产实际中,我们在解决一些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。
二、合作交流:1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:0.8,滑梯CD的坡比为1:1.6,AE= 米,BC= CD。
一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到0.01米)让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?注意解题格式教学程序与策略三、巩固练习:完成课本P17、1,组长检查反馈;四、拓展提高:1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。
(1)分别求出3张长方形纸条的长度。
(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。
师生共同分析解题思路,请学生写出解题过程。
五、课堂小结:1、谈一谈:本节课你有什么收获?2、运用二次根式解决简单的实际问题时应注意的的问题六、堂堂清1: 作业本(2)2:课本P17页:第4、5题选做。
次根式教案篇二一、教学目标1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。
二次根式的混合运算数学教案
![二次根式的混合运算数学教案](https://img.taocdn.com/s3/m/a43ad99fd4bbfd0a79563c1ec5da50e2534dd109.png)
二次根式的混合运算数学教案一、教学目标:1. 让学生掌握二次根式的混合运算方法。
2. 培养学生的数学思维能力和解决问题的能力。
3. 提高学生对二次根式的理解和运用。
二、教学内容:1. 二次根式的加减法运算。
2. 二次根式的乘除法运算。
3. 二次根式的混合运算。
三、教学重点与难点:1. 教学重点:二次根式的混合运算方法。
2. 教学难点:解决复杂的二次根式混合运算问题。
四、教学方法:1. 采用讲解法、引导法、实践法等多种教学方法,让学生在实践中掌握二次根式的混合运算。
2. 通过例题和练习题,让学生巩固所学知识。
五、教学过程:1. 导入新课:回顾一次根式的运算,引导学生思考二次根式的运算。
2. 讲解与示范:讲解二次根式的加减法、乘除法运算规则,并通过示范例题让学生理解。
3. 实践练习:让学生独立完成一些二次根式的混合运算题目,教师巡回指导。
4. 总结与反思:让学生总结二次根式混合运算的规律,反思自己在解题过程中的不足。
5. 课后作业:布置一些二次根式混合运算的练习题,巩固所学知识。
教案编辑专员:我为您提供了五个章节的二次根式的混合运算数学教案。
教案中包含了教学目标、内容、重点与难点、教学方法以及教学过程。
您可以根据这个教案进行教学,并根据实际情况进行调整。
如有需要,我可以为您提供更多的帮助。
六、教学评估:1. 通过课堂练习和课后作业,评估学生对二次根式混合运算的理解和掌握程度。
2. 观察学生在解决问题时的思维过程,了解他们的学习困难和学习需求。
3. 及时给予反馈,指导学生改进学习方法,提高解题能力。
七、教学策略:1. 针对不同学生的学习水平,设计不同难度的题目,使所有学生都能在课堂上得到锻炼和提高。
2. 采用分组讨论、合作学习等方式,激发学生的学习兴趣,培养他们的团队协作能力。
3. 注重启发式教学,引导学生主动探索,发现规律,提高解决问题的能力。
八、教学评价:1. 评价学生对二次根式混合运算的掌握程度,包括知识的理解、方法的运用和解题技能。
二次根式的除法
![二次根式的除法](https://img.taocdn.com/s3/m/878d63a470fe910ef12d2af90242a8956aecaa5d.png)
二次根式的除法二次根式的除法二次根式的除法1二次根式的除法(下载:)二次根式的除法2这节课因为有了前面学习的基础,所以学生学习起来并不难,本节课的重点是二次根式的乘除法法则,难点是灵活运用法则进行计算和化简。
开始可以从二次根式的性质引入,将二次根式的性质反过来就是二次根式的乘除法法则:,利用这个法则,可以进行二次根式的乘法和除法运算。
本节课中的易错点是运算的最后结果不是最简结果,因为学生只顾着运用法则进行计算了,忽略了二次根式的化简,举例说明:,这个运算过程只是运用了法则,但没有进行化简,应该是。
本节课中的难点是对于分母中含有根号的式子不会化简,这应该牵涉到分母有理化,分母有理化这个概念本章课本中没有提及,但是课后练习和习题中也有涉及,如何处理呢?举例说明:随堂练习中一个题目对于这个题目,很多学生表示都不知道从何下手,只有一些程度好的学生有自己的看法,我让学生进行了讲解:,学生能将分母中不含有根号,想到用来代替,然后再利用法则进行解答,真是聪明。
学生的这种做法,我给予了充分的肯定,并表扬了这位同学。
并且我也用分母有理化的思想进行了另一种方法的讲解,因为后面我想补一节分母有理化,所以在这里只是展示了一下过程,这样同样能达到化简的目的,然后让学生对比了一下刚才那位同学的做法,没有展开讲。
剩下的时间我主要针对法则让学生进行了练习,做正确的小组加分,不正确的进行点评,到下课时,学生基本掌握了二次根式的乘除法的计算。
学生比较容易理解这两个法则,下面可以学习例2,主要是让学生通过看课本来理解法则的应用,在学生理解例题的基础上,让学生思考还有没有其他方法来解决这些题目,以此来增加学生解题的思路与方法。
在这里可以拿出1-2个题目来示范。
如,可以有两种解法:法一:这一种也是课本上的方法,是直接利用了二次根式的乘法法则。
法二:这是利用了二次根式的性质。
通过这个题目的讲解,可让学生灵活掌握二次根式的计算方法。
再一个就是二次根式的乘除法混合运算,课本上有一个例子,,通过这个例子引出一个公式:,算是对法则的一个延伸。
数学二次根式教案优秀10篇
![数学二次根式教案优秀10篇](https://img.taocdn.com/s3/m/8705d83d26284b73f242336c1eb91a37f111323c.png)
数学二次根式教案优秀10篇次根式教案篇一课题:二次根式教学目标1、知识与技能理解a(a≥0)是一个非负数,(a≥0)2、过程与方法(1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想方法(2)问题解决:能够利用性质进行二次根式的化简计算,能够互助交流合作,分析问题,总结反思3、情感、态度与价值观体验成功的乐趣,锻炼克服困难的意志,培养严谨求实的科学态度教学重难点教学重点:二次根式的概念教学难点:二次根式中根号下必须为非负数教学过程一、课前回顾(2分钟)学生与老师共同回顾上节课所学内容,温故而知新。
什么是二次根式?二次根式中字母的取值范围:①被开方数大于等于零;②分母中有字母时,要保证分母不为零。
③多个条件组合时,应用不等式组求解一、情境引入(3分钟)由生活中的'实例引入投影的概念,引起学生的学习兴趣已知下列各正方形的面积,求其边长。
二、探究1(10分钟)练习1:计算下列各式:三、探究2(10分钟)可以发现它们有如下规律:一般的,二次根式有下列性质:练习2:典型例题例1:计算:例2:计算:达标测试(5分钟)课堂测试,检验学习结果1、判断题2、若,则x的取值范围为(A )(A)x≤1 (B)x≥1(C)0≤x≤1 (D)一切有理数3、计算4、化简5、已知a,b,c为△ABC的三边长,化简:这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。
应用提高(5分钟)能力提升,学有余力的同学可以仔细研究如图,P是直角坐标系中一点。
(1)用二次根式表示点P到原点O的距离;(2)如果求点P到原点O的距离体验收获今天我们学习了哪些知识二次根式的两条性质。
布置作业教材8页习题第3、4题。
数学二次根式教案篇二一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的`基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.次根式教案篇三一、素质教育目标(一)知识教学点1.使学生了解最简二次根式的概念和同类二次根式的概念.2.能判断二次根式中的同类二次根式.3.会用同类二次根式进行二次根式的加减.(二)能力训练点通过本节的学习,培养学生的思维能力并提高学生的运算能力.(三)德育渗透点从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.(四)美育渗透点通过二次根式的加减,渗透二次根式化简合并后的形式简单美.二、学法引导1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的'计算方法.2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.三、重点·难点·疑点及解决办法1.教学重点二次根式的加减法运算.2.教学难点二次根式的化简.3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.四、课时安排2课时五、教具学具准备投影片六、师生互动活动设计1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.七、教学步骤(一)明确目标学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.(二)整体感知同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.次根式教案篇四教案教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的`阅读习惯和规范的解题格式。
二次根式教案
![二次根式教案](https://img.taocdn.com/s3/m/f6a138d6e43a580216fc700abb68a98270feac45.png)
二次根式教案通用一、教学内容本节课我们将学习人教版数学八年级下册第14章“二次根式”的内容。
具体包括:二次根式的定义与性质;二次根式的乘除法运算;最简二次根式的概念与化简方法。
重点章节为14.1节和14.2节。
二、教学目标1. 理解并掌握二次根式的定义,能够识别常见的二次根式。
2. 学会二次根式的乘除法运算,并能解决实际问题。
3. 能够化简最简二次根式,提高数学思维能力。
三、教学难点与重点教学难点:二次根式的乘除法运算、最简二次根式的化简。
教学重点:二次根式的定义与性质、二次根式的乘除法运算。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:学生用计算器、草稿纸、笔。
五、教学过程1. 导入新课:通过实际情景引入,如土地面积的测算,让学生感受到二次根式的实际意义。
2. 新知讲解:(1)讲解二次根式的定义,让学生理解根号下为何种类型的式子。
(2)通过例题讲解,让学生掌握二次根式的乘除法运算。
(3)介绍最简二次根式的概念,并进行化简方法的讲解。
3. 随堂练习:布置一些具有代表性的练习题,让学生巩固所学知识。
4. 答疑解惑:针对学生在练习中遇到的问题,进行解答和指导。
六、板书设计1. 二次根式的定义与性质2. 二次根式的乘除法运算3. 最简二次根式的概念与化简方法七、作业设计1. 作业题目:(1)计算:√18 ÷ √2,√27 × √8(2)化简:√(4/9),√(1/24)2. 答案:(1)3,3√6(2)2/3,√6/4八、课后反思及拓展延伸本节课通过实际情景引入、例题讲解、随堂练习等方式,让学生掌握了二次根式的定义与性质、乘除法运算以及最简二次根式的化简方法。
课后,教师应关注学生对知识的掌握情况,并进行针对性的辅导。
拓展延伸部分,可以让学生探索二次根式的加减法运算,为下一节课的学习打下基础。
重点和难点解析1. 教学内容的设置与衔接2. 教学目标的明确与实现3. 教学难点与重点的把握4. 教学过程的实践情景引入5. 例题讲解的深度与广度6. 随堂练习的设计与反馈7. 板书设计的逻辑性与条理性8. 作业设计的针对性与拓展性9. 课后反思及拓展延伸的实际应用一、教学内容的设置与衔接教学内容应紧密联系学生的已有知识,确保学生能够顺利过渡到新的知识点。
二次根式运算学生存在的问题及整改措施
![二次根式运算学生存在的问题及整改措施](https://img.taocdn.com/s3/m/5d8185576fdb6f1aff00bed5b9f3f90f76c64da9.png)
题目:二次根式运算学生存在的问题及整改措施一、问题分析1. 学生对二次根式的概念理解不清学生在学习二次根式时,往往不能准确地理解二次根式的含义,无法正确区分二次根式和一次根式,容易混淆概念。
2. 二次根式运算符号使用不规范学生在进行二次根式运算时,经常存在运算符号使用不规范的情况,如混淆开平方和开立方的符号,导致计算结果错误。
3. 求二次根式的意义认识不深学生在求解二次根式时,缺乏对二次根式的意义的深刻认识,只是简单地套用公式进行计算,缺乏对数学内涵的理解。
二、整改措施1. 建立严谨的二次根式概念教师需要通过具体的例子和实际问题引导学生理解二次根式的含义,帮助学生建立严谨的概念框架,确保学生对二次根式的理解准确。
2. 规范运算符号的使用在教学中,教师应该重点强调二次根式运算符号的规范使用,让学生明确开平方、开立方的符号,在实际计算中不发生错误。
3. 引导学生深入理解二次根式教师可以设计一些富有趣味性的问题,引导学生深入理解二次根式的意义,培养学生的数学思维和推理能力,使学生在计算二次根式时能够灵活应用所学知识。
4. 在课外拓展相关知识教师可以引导学生利用课外时间,通过阅读相关资料、参与数学竞赛等方式,拓展和深化对二次根式的理解,提高学生的数学综合素质。
5. 优化考核方式在学生的考核方式上,可以适当增加二次根式的应用题目,以及开放性题目,鼓励学生通过解决实际问题来加深对二次根式的理解和运用能力。
三、结语通过以上整改措施的实施,相信学生在学习二次根式时能够更加系统地掌握相关内容,提高数学学习成绩,更好地理解和运用二次根式知识。
也提高了学生的数学思维能力和创新能力,为学生未来的学业打下坚实的数学基础。
4. 建立动手实践的学习机会除了教室上的理论教学之外,为了帮助学生更好地理解和掌握二次根式,我们还可以提供一些动手实践的学习机会。
可以设计一些与实际生活相关的问题,要求学生通过测量、计算等方法,应用二次根式进行解答。
二次根式教案4篇
![二次根式教案4篇](https://img.taocdn.com/s3/m/37dec8cdd5d8d15abe23482fb4daa58da1111c78.png)
二次根式教案4篇二次根式教案篇1教学目的:1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;2、会求二次根式的代数的值;3、进一步提高学生的综合运算能力。
教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值教学过程:一、二次根式的混合运算例1计算:分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。
(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。
注意的计算。
练习1:P206/8--①P207/1①②例2计算问:计算思路是什么?答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。
二、求代数式的值。
注意两点:(1)如果已知条件为含二次根式的式子,先把它化简;(2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。
例3已知,求的值。
分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。
求得与的值。
在计算中,先把及的式了有理化分母。
可使计算简便。
例4已知,求的值。
观察代数式的特点,请说出求这个代数式的值的思路。
答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。
三、小结1、对于二次根式的混合混合运算。
应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。
如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。
2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。
3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。
二次根式的乘除运算--知识讲解(提高
![二次根式的乘除运算--知识讲解(提高](https://img.taocdn.com/s3/m/6a7755fc250c844769eae009581b6bd97f19bc13.png)
二次根式的乘除运算—知识讲解(提高)责编:杜少波【学习目标】1.掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算.2.能运用二次根式的有关性质进行分母有理化.【要点梳理】要点一、二次根式的乘法1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2)该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3)若二次根式相乘的结果能写成的形式,则应化简,如.要点二、二次根式的除法1.除法法则:==(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.要点三、分母有理化1.分母有理化把分母中的二次根式化去叫做分母有理化.2.有理化因式两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式.有理化因式确定方法如下:a-a-与ba=b等分别互为有理化因式.a+与a-+②两项二次根式:利用平方差公式来确定.如+-.要点诠释:分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式.【典型例题】类型一、二次根式的乘除运算1.(1) 21521)74181(2133÷-⨯ (2)243)2()()(a a a -÷-⋅-【答案与解析】(1)原式=1(3()8=⨯-⨯ =34-(2)原式=22122a a -÷=-【总结升华】根据二次根式的乘除法则灵活运算,注意最终结果要化简.举一反三【变式】b b a b a x x b a -÷+⋅-5433622222【答案】原式=21⨯== 2.(2014秋•闵行区校级期中)计算:×(﹣2)÷.【思路点拨】本题中a 作为被开方数,说明a≥0,下面直接利用二次根式的乘除运算法则化简即可.【答案与解析】解:×(﹣2)÷=×(﹣2)×=﹣=﹣=﹣.【总结升华】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.举一反三:【变式】已知,且x 为偶数,求(1+x)的值.【答案】由题意得,即∴6<x≤9,∵x 为偶数,∴x=8∴原式=(1+x)=(1+x)=(1+x)=∴当x=8时,原式的值==6.类型二、分母有理化3. 把下列各式分母有理化:【思路点拨】找分母有理化因式.【答案与解析】(1)552555252=∙∙=(2)b a b a ba b a b a b a b a ba b a b a b a -+=--∙-=-∙--∙-=--)()()(222222(3)ba b a b a b a b a b a ba -=-∙+-∙-=+-)()()()(【总结升华】有理化因式不止一个,但以它们的乘积较简为宜.显然,a ±b 与a b ,a ±b 与a b ,a ±b 与a b 都是互为有理化因式.举一反三:【变式】(2014春•隆化县校级期末)阅读材料,并解决问题.定义:将分母中的根号化去的过程叫做分母有理化.如:将分母有理化.解:原式==+运用以上方法解决问题:(1)将分母有理化;(2)比较大小:(在横线上填“>”、“<”或“=”) (n≥2,且n为整数)(3)化简:+++…+.【答案】解:(1)===2﹣;(2)∵=+,=+,又<,∴<,∵=+,=+,∴<,故答案为:<,<;(3)原式=++…+=﹣1+﹣+﹣+…+﹣=﹣1.4.已知x=,y=,求下列各式的值:(1)x yx y+-;(2)223x xy y-+.【思路点拨】先把x、y的值分母有理化,再分别代入所求的两个式子即可.【答案与解析】77x y==-==+(1)x yx y+==-2222 (2)3(73(7(7194x xy y-+=---+++=【总结升华】此题考查分母有理化与二次根式乘除的应用.。
二次根式教案优秀6篇
![二次根式教案优秀6篇](https://img.taocdn.com/s3/m/b09f3dcc760bf78a6529647d27284b73f24236a3.png)
二次根式教案优秀6篇次根式教案篇一【教学目标】1.运用法则进行二次根式的乘除运算;2.会用公式化简二次根式。
【教学重点】运用进行化简或计算【教学难点】经历二次根式的乘除法则的探究过程【教学过程】一、情境创设:1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?2.计算:二、探索活动:1.学生计算;2.观察上式及其运算结果,看看其中有什么规律?3.概括:得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:积的算术平方根,等于积中各因式的算术平方根的积。
三、例题讲解:1.计算:2.化简:小结:如何化简二次根式?1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;2.P62结果中,被开方数应不含能开得尽方的因数或因式。
四、课堂练习:(一).P62练习1、2其中2中(5)注意:不是积的形式,要因数分解为36×16=242.(二).P673计算(2)(4)补充练习:1.(x0,y0)2.拓展与提高:化简:1).(a0,b0)2).(y2.若,求m的取值范围。
☆3.已知:,求的值。
五、本课小结与作业:小结:二次根式的乘法法则作业:1).课课练P9-102).补充习题次根式教案篇二教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。
本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。
通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。
另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。
学生分析:本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)
![初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)](https://img.taocdn.com/s3/m/7289cbdc9e31433238689326.png)
初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( )A .B .C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B.C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+= .16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|= .18.如果最简二次根式与是同类二次根式,则a= .19.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣= .22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a= .24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简= .26.计算:= .27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C.D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B.C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+= 1 .【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|= ﹣6 .【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8= 6 .【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣= ﹣2 .【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a= 1 .【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2 .(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1 .【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:= 2 .【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1+ 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。
二次根式的运算技巧或规律解题报告
![二次根式的运算技巧或规律解题报告](https://img.taocdn.com/s3/m/5cc5ee5f53d380eb6294dd88d0d233d4b14e3fac.png)
二次根式的运算技巧或规律解题报告When it comes to the operation of square roots, there are several key techniques and rules that can help simplify the process. One important technique is to simplify the square root by factoring out any perfect squares from the radicand. For example, in the expression √72, we can factor 72 into 36 and 2, where 36 is a perfect square. This allows us to rewrite √72 as 6√2, which is much simpler to work with.在二次根式的运算中,一个关键的技巧是通过因式分解将被开方数中的完全平方数分解出来,从而简化计算过程。
举个例子,对于表达式√72,我们可以将72分解为36和2,其中36是一个完全平方数。
这样我们就可以将√72重写为6√2,这样计算起来就简单多了。
Another useful rule when dealing with the multiplication of square roots is the product rule, which states that the square root of a product is equal to the product of the square roots of the individual factors. For instance, √a √b = √(a b). This rule can be especially helpful when simplifying expressions involving multiplication of square roots.在处理二次根式乘法时,另一个有用的规律是乘法法则,即一个乘积的平方根等于各个因子的平方根的乘积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的运算拓展与提高
【例1】 已知2
542
4
52
2
2
+---
--=
x
x
x x
y
,则22y x += . (重庆市竞赛题)
【例2】 化简
2
2
)
1(111++
+
n n
,所得的结果为( )(武汉市选拔赛试题)
A .1
111++
+
n n
B .1
111++
-
n n
C .1
111+-
+
n n
D .1
111+-
-
n n
【例3】计算:
(1)
)
23)(36(23346+
+
++; (2;
【例4】 (1)化简324324-++; (北京市竞赛题)
(2)计算223810++ (“希望杯”邀请赛试题)
巩固练习
1.如果2
2332+-+
-=
x x y
,那么4x y -= .
2.已知3=xy ,那么y
x y
x
y x
+的值为 . (成都市中考题)
3.计算2001
)
13(2)
13(2)
13(
1999
2000
2001
++-+-+= .(天津市选拔赛试题)
4.若 ab ≠0,则等式ab
b
b
a -=
-
-3
5
1成立的条件是 .(淄博市中考题)
5.如果式子2)1(2-+-x x 化简的结果为32-x ,则x 的取值范围是( ) A .x ≤1 B .x ≥2 C .1≤x ≤2 D .x >0 (徐州市中考题) 6.如果式子a
a --
-11)
1( 根号外的因式移入根号内,化简的结果为( )
A .a -1
B .1-a
C .1--a
D .a --1 7.已知)0,0(02
>>=+-y x y xy x ,则
y
xy x y
xy x 4353-++-的值为( )
A .3
1 B .
2
1 C .
3
2 D .
4
3
8.已知3
21
+=
a
,那么
a
a a a a a
-+--
+-2
2
2
1
21
1
的值等于( )
A .)321(+-
B .1-
C .32-
D .3
9.(1)已知139+与139-的小数部分分别是a 和b ,求ab -3a+4b+8的值;
(2)设n
n n n x +
+-+=
11,n
n n n y -
+++=
11,n 为自然数,如果199********=++y xy x 成立,
求n .
10.如图,某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B 处,经12小时的航行到达,到达后必须立即卸货.此时,接到气象部门通知,一台风中心正以40海里/时的速度由A 向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.
(1)问:B 处是否会受到台风的影响?请说明理由;
(2)为避免受到台风的影响,该船应在多少小时内卸完货物? (供选用数据:4.12≈,
7
.13≈) (贵阳市中考题)
11.已知2323+
-=x ,2
323-
+=
y ,那么
2
2
y
x x
y +
= .(杯全国初中数学联赛题)。