23.3 课题学习 图案设计(含答案)-

合集下载

人教版九年级数学上册23.3课题学习图案设计同步练习 附答案解析

人教版九年级数学上册23.3课题学习图案设计同步练习 附答案解析

23.3课题学习图案设计同步练习一、单项选择题(本大题共有12小题,每小题3分,共45分)1、如图,将绕点顺时针旋转得到,则点的坐标是()A.B.C.D.2、将一次函数的图像向上平移个单位,平移后,若,则的取值范围是( ).A.B.C.D.3、若抛物线绕它的顶点旋转,则抛物线的解析式是( ).A.B.C.D.4、若抛物线可以抛物线平移得到,则下列平移过程中正确的是( ).A. 先向右平移个单位,再向上平移个单位B. 先向右平移个单位,再向下平移个单位C. 先向左平移个单位,再向下平移个单位D. 先向左平移个单位,再向上平移个单位5、如图,右边的图案是通过左边的图案按顺时针方向绕着马头中间的一点旋转而成的,则旋转角的度数为( ).A.B.C.D.6、在平面直角坐标系中,将直线绕原点顺时针旋转,再向上平移个单位后得到直线,则直线对应的函数表达式为()A.B.C.D.7、将抛物线向左平移个单位,再向上平移个单位,得到抛物线的函数表达式为()A.B.C.D.8、如图是由三把相同大小的扇子展开后组成的图形,若把每把扇子的展开图看着“基本图案”那么该图形是由“基本图案”()A. 平移一次形成的B. 平移两次形成的C. 以轴心为旋转中心,旋转后形成的D. 以轴心为旋转中心,旋转、后形成的9、如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A. 种B. 种C. 种D. 种10、如图,、在方格纸的格点位置上.在网格图中再找一个格点,使它们所构成的三角形为轴对称图形;这样的格点共有的个数为()A. 个B. 个C. 个D. 个11、如图是正方形网格,其中已有个小正方形涂成了黑色,现在要从其余个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A. 个B. 个C. 个D. 个12、已知直线,则它关于原点对称的直线解析式为__________.A.B.C.D.二、填空题(本大题共有4小题,每小题5分,共25分)13、关于的方程的解是(均为常数,)则方程的解是= ,= .(从小到大依次填写)14、将一次函数的图象向左平移个单位长度,所得图象的函数关系式为.15、在直角坐标系中如图摆放,其中顶点,,的坐标分别为,,,若将绕点顺时针方向旋转,则点的对应点的坐标为( , ).16、如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.三、解答题(本大题共有2小题,每小题10分,共30分)17、在平面直角坐标系中,把抛物线向右平移个单位;再向下平移个单位,所得抛物线的解析式为,求原来抛物线的解析式.18、已知正比例函数图象(记为直线)经过点,现将它沿着轴的正方向向上平移个单位得到直线.(1) 求直线的表达式.(2) 若直线与轴、轴的交点分别为点、点,求的面积.23.3课题学习图案设计同步练习答案部分一、单项选择题(本大题共有12小题,每小题3分,共45分)1、如图,将绕点顺时针旋转得到,则点的坐标是()A.B.C.D.【答案】B【解析】解:∵将绕点顺时针旋转得到,∴点的对应点为点,点的对应点为点,作线段和的垂直平分线,它们的交点为,∴旋转中心的坐标为.故正确答案为:.2、将一次函数的图像向上平移个单位,平移后,若,则的取值范围是( ).A.B.C.D.【答案】C【解析】解:将一次函数的图象向上平移个单位,平移后解析式为:,当时,,当时,,如图:时,则的取值范围是:.故正确答案是:.3、若抛物线绕它的顶点旋转,则抛物线的解析式是( ).A.B.C.D.【答案】A【解析】解:根据抛物线绕它的顶点旋转后,变成了,顶点坐标不变,,将变成得.故正确答案是.4、若抛物线可以抛物线平移得到,则下列平移过程中正确的是( ).A. 先向右平移个单位,再向上平移个单位B. 先向右平移个单位,再向下平移个单位C. 先向左平移个单位,再向下平移个单位D. 先向左平移个单位,再向上平移个单位【答案】C【解析】解:根据平移的规律可得先向左平移个单位,再向上平移个单位得到的抛物线是,此项不符合题意;先向左平移个单位,再向下平移个单位得到的抛物线是,此项符合题意;先向右平移个单位,再向下平移个单位得到的抛物线是,此项不符合题意;先向右平移个单位,再向上平移个单位得到的抛物线是,此项不符合题意.故正确答案是.5、如图,右边的图案是通过左边的图案按顺时针方向绕着马头中间的一点旋转而成的,则旋转角的度数为( ).A.B.C.D.【答案】C【解析】解:首先要确定旋转中心,再找到一对对应点,对应点与旋转中心连线的夹角就是旋转角,旋转中心为两对对应点连线的垂直平分线的交点,选取马头与马耳朵两对对应点,则旋转角为.故正确答案为:.6、在平面直角坐标系中,将直线绕原点顺时针旋转,再向上平移个单位后得到直线,则直线对应的函数表达式为()A.B.C.D.【答案】C【解析】解:直线与轴的夹角是,将直线绕原点顺时针旋转后的直线与轴的夹角为,此时的直线方程为.再向上平移个单位得到直线的解析式为:.7、将抛物线向左平移个单位,再向上平移个单位,得到抛物线的函数表达式为()A.B.C.D.【答案】A【解析】解:,抛物线的顶点坐标为,把点向左平移个单位,再向上平移个单位所得对应点的坐标为,平移后的抛物线的函数表达式为.8、如图是由三把相同大小的扇子展开后组成的图形,若把每把扇子的展开图看着“基本图案”那么该图形是由“基本图案”()A. 平移一次形成的B. 平移两次形成的C. 以轴心为旋转中心,旋转后形成的D. 以轴心为旋转中心,旋转、后形成的【答案】D【解析】解:如图所示:旋转中心的旋转角,每个图形旋转的角度为:,把每把扇子的展开图看成“基本图案”那么该图形是由“基本图案”:以轴心为旋转中心,旋转、后形成的.9、如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A. 种B. 种C. 种D. 种【答案】C【解析】解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有种.10、如图,、在方格纸的格点位置上.在网格图中再找一个格点,使它们所构成的三角形为轴对称图形;这样的格点共有的个数为()A. 个B. 个C. 个D. 个【答案】C【解析】解:如图所示:共个.11、如图是正方形网格,其中已有个小正方形涂成了黑色,现在要从其余个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A. 个B. 个C. 个D. 个【答案】C【解析】解:如图所示,有个位置使之成为轴对称图形.12、已知直线,则它关于原点对称的直线解析式为__________.A.B.C.D.【答案】A【解析】解:关于原点对称,就是和都变成相反数:,即;(关于原点对称,横、纵坐标都变为原来的相反数)所以直线关于原点对称的解析式为.二、填空题(本大题共有4小题,每小题5分,共25分)13、关于的方程的解是(均为常数,)则方程的解是= ,= .(从小到大依次填写)【答案】-1、-4【解析】解:方程到,是图像向左平移了两个单位长度,则故答案为:,.14、将一次函数的图象向左平移个单位长度,所得图象的函数关系式为.【答案】-2x【解析】解:将一次函数的图象向左平移个单位长度,所得图象的解析式为,即.15、在直角坐标系中如图摆放,其中顶点,,的坐标分别为,,,若将绕点顺时针方向旋转,则点的对应点的坐标为( , ).【答案】1、2【解析】解:如图所示,为绕点顺时针方向旋转后的三角形,点的坐标为.16、如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.【答案】3【解析】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.三、解答题(本大题共有2小题,每小题10分,共30分)17、在平面直角坐标系中,把抛物线向右平移个单位;再向下平移个单位,所得抛物线的解析式为,求原来抛物线的解析式.【解析】解:由题意原抛物线可以看做是由抛物线向上平移个单位,再向左平移个单位得到的.原抛物线的解析式为.18、已知正比例函数图象(记为直线)经过点,现将它沿着轴的正方向向上平移个单位得到直线.(1) 求直线的表达式.【解析】解:设的解析式为,将代入可得,的表达式为,的表达式为.(2) 若直线与轴、轴的交点分别为点、点,求的面积.【解析】解:令,得;令,得,.。

初中数学人教版九年级上学期 第二十三章 23.3 课题学习 图案设计

初中数学人教版九年级上学期 第二十三章 23.3 课题学习 图案设计

初中数学人教版九年级上学期第二十三章23.3 课题学习图案设计一、单选题(共6题;共12分)1. ( 2分) 下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图的是()A. B. C. D.2. ( 2分) 下列图案中,可以由一个”基本图案”连续旋转45°得到的是()A. B. C. D.3. ( 2分) 如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 44. ( 2分) 如图是日本三菱汽车公司的标志,它可以看做是由一个菱形经过几次旋转,每次旋转多少度得到的()A. 3,60゜B. 2,120゜C. 6,60゜D. 6,120゜5. ( 2分) 如图中的四个图案,四位同学分别说出了它们的形成过程,其中说得不正确的是()A. 图①是一个长方形绕着图形的中心按逆时针旋转90°,180°和270°所得B. 图②可由一个钝角三角形绕着图形的中心按同一方向旋转90°,180°和270°形成C. 图③可以看作以正方形的一条对角线所在直线为对称轴翻折所得D. 图④可以看作由长方形的一边的垂直平分线为对称轴翻折而成6. ( 2分) 一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A. B. C. D.二、填空题(共6题;共9分)7. ( 1分) 如图,甲图怎样变成乙图:________ .8. ( 1分) 将图(1)中的大正方形绕着其中心顺时针至少旋转________ 度时,可变成图(2).9. ( 1分) 如图的组合图案可以看作是由一个正方形和正方形内通过一个“基本图案”半圆进行图形的“运动”变换而组成的,这个半圆的变换方式是________10. ( 1分) 在如图方格纸中,选择标有序号1、2、3、4中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是________ .11. ( 2分) 如图所示,其中的图(2)可以看作是由图(1)经过________ 次旋转,每次旋转________ 得到的.12. ( 3分) 如图,可以通过平移变换但不能通过旋转变换得到的图案有________;可以通过旋转变换但不能通过平移变换得到的图案有________;既可通过平移变换,又可通过旋转变换得到的图案有________.三、解答题(共4题;共20分)13. ( 5分) 欣赏图所示的团,并用两种方法分析图案的形成过程.14. ( 5分) 如图是4×4的正方形网格,请选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.15. ( 5分) 如图所示的图案是由一个梯形经过旋转和对称形成的,则该梯形应该满足什么条件?16. ( 5分) 以给出的图形“○,○,△,△, ”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.答案解析部分一、单选题1.【答案】C【考点】作图﹣轴对称,利用平移设计图案,利用旋转设计图案【解析】【解答】A.经过平移可得到上图,错误;B.经过旋转可得到上图,错误;C.经过平移、旋转或轴对称变换后,都不能得到上图,正确;D.经过旋转可得到上图,错误.故答案为:C.【分析】根据平移、旋转或轴对称的定义作出判断即可.2.【答案】B【考点】利用旋转设计图案【解析】【解答】解:A、由基本图形连续旋转90°得到,因此此选项不符合题意;B、由基本图形连续旋转45°得到,因此此选项符合题意;C、由基本图形连续旋转60°得到,因此此选项不符合题意;D、由基本图形连续旋转90°得到,因此此选项不符合题意;故答案为:B【分析】要由一个”基本图案”连续旋转45°得到的,可知整个图案应有8个基本图案组成的,观察四个选项中的图案,即可得出答案。

人教版九年级数学上册 23.3 课题学习 图案设计 导学案(含答案)

人教版九年级数学上册 23.3 课题学习 图案设计 导学案(含答案)

人教版九年级数学上册第23章23.3课题学习图案设计导学案1、教学目标1.认识和欣赏平移、轴对称、旋转在现实生活中的应用.2.利用图形的平移、轴对称、旋转变换设计组合图案.2、预习反馈自学教材P72内容,思考下列问题:(1)我们学过哪些图形变换?它们分别有何特征?(2)下列图形之间的变换分别属于什么变换?知识探究(1)观察下面的图形,分析它是由哪种基本图形经过了哪些变换后得到的?(2)观察三种图形变换的过程,回答问题:①平移、旋转和轴对称变换的基本特征;②归纳三种图形变换的共性.3、例题讲解例用平移、旋转或轴对称变换分析下图中各个图案,分析它是由哪种基本图形经过了哪些变换后得到的?【解答】略.【点拨】将基本图形从组合图案中分离出来,并再现此基本图形的变换过程.【跟踪训练1】某单位搞绿化,要在一块圆形空地上种植四种颜色的花,为了便于管理和美观,相同颜色的花集中种植,且每种颜色的花所占的面积相同,现征集设计方案,你能帮忙设计吗?【点拨】将基本图形创造性地应用平移、轴对称、旋转等变换,设计出和谐、丰富、美观的组合图案.【跟踪训练2】下面花边中的图案,由圆弧、圆构成.仿照例图,请你为班级的板报设计一条花边,要求:(1)只要画出组成花边的一个图案;(2)以所给的图形为基础,用圆弧、圆或线段画出;(3)图案应有美感.4、巩固训练1.下列图案中,可以由一个“基本图案”连续旋转45°得到的是(B)2.如果要甲位置中的图案变成乙位置中的图案,经过的变换正确的是(D)A.轴对称、平移B.平移、轴对称C.旋转、轴对称D.平移、旋转3.如图是“三菱”汽车的标志,它可以看作是由“基本图案”通过3次旋转得到的,每次旋转了120°.4.下列图形均可由“基本图案”通过变换得到(只填序号):(1)可以平移但不能旋转的是①⑤;(2)可以旋转但不能平移的是②③;(3)既可以平移也可以旋转的是④.05课堂小结本节课你学到了什么知识?图案设计的关键是什么?。

精品人教版九年级数学上册23.3 课题学习 图案设计 同步练习 含答案

精品人教版九年级数学上册23.3 课题学习 图案设计  同步练习 含答案

23.3《课题学习 图案设计》同步练习1带答案基础训练1. 已知:图A 、图B 分别是6×6正方形网格上的两个轴对称图形(阴影部分),其面积分别为A S 、B S (网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题.(1)填空:A B S S ∶的值是__________; (2)请在图C 的网格上画出一个面积为8个平方单位的中心对称图形.2.如图中的图案是由一个怎样的基本图形经过旋转、轴对称和平移得到的呢?请你用基本图形经过旋转、平移和轴对称设计一个美丽的图案。

能力提升1. 在右图的方框中做出以O 为旋转中心旋转后的图形.2.利用你所学过的图形变换的知识设计一个图案,单元回头看一、 填空题:(每空2分 共24分)1.钟表的分针匀速旋转一周需要60分,它的旋转中心是___________,经过20分,分针旋转___________度2. 如图,按逆时针方向的ABC cm 。

AC ,AB BAC ABC ∆==︒=∠∆590转动一个角度后成为ACD ∆,则图中点_____是旋转中心,旋转角等于____度,点B 与点____是对应点,点C 与点____是对应点,∠ACD=_____________, AD=_________.3. 线段、两相交直线、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形、圆等图形中是中心对称图形的有________________ __;既是轴对称图形,又是中心对称的图形有_ .4. 如果将△ABC 绕点O 逆时针旋转80°得到△DEF ,那么△D EF 可以得到△ABC.5. 若点O 是平行四边形ABCD 对角线AC 的中点,EF ⊥AC 于O,交AD 、BC 分别于E 、F,那么线段DE 关于O 的对称线段为________________,二、 选择题(每小题3分 共18分)6. 下列现象属于旋转的是 ( )A .摩托车在急刹车时向前滑动B .空中飞舞的雪花C .拧开自来水龙头的过程D .飞机起飞后冲向空中的过程7. △ABC 绕点O 旋转50°后得到△DEF 。

人教版初中数学九年级上册《23.3 课题学习 图案设计》同步练习卷(含答案解析

人教版初中数学九年级上册《23.3 课题学习  图案设计》同步练习卷(含答案解析

人教新版九年级上学期《23.3 课题学习图案设计》同步练习卷一.选择题(共30小题)1.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的有几个()A.2B.3C.4D.52.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种3.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个4.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.蝴蝶效应C.颜色鲜艳D.数形结合5.下列古代的吉祥图案中,不是轴对称图形的是()A.B.C.D.6.下列卡通动物简笔画图案中,属于轴对称图形的是()A.B.C.D.7.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6B.5C.4D.38.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④9.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)10.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.411.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.12.下列图形中可由其中的部分图形经过平移得到的是()A.B.C.D.13.如图所示的各组图形中,表示平移关系的是()A.B.C.D.14.在下列四个图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.15.皮影戏是中国民间古老的传统艺术,如图就是皮影戏中孙悟空的一个形象,在下面的四个图形中,能由图经过平移得到的图形是()A.B.C.D.16.如图所示的图案分别是大众、三菱、奔驰、奥迪汽车的车标,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.17.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.18.如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.19.如图所示,四幅汽车标志设计中,能通过平移得到的是()A.奥迪B.本田C.大众D.铃木20.观察下面图案,在ABCD四幅图案中,能通过图案平移得到的是()A.B.C.D.21.如图,在8×8的正方形网格中,△ABC的三个顶点和点O、E、F、M、N均在格点上,EF与MN交于点O,将△ABC分别进行下列三种变换:①先以点A为旋转中心逆时针旋转90°,再向右平移4格,最后向上平移4格;②先以点O为对称中心画中心对称图形,再以点A的对应点为旋转中心逆时针旋转90°;③先以直线EF为对称轴画轴对称图形,再以点A的对应点为旋转中心逆时针旋转90°,最后向右平移4格.其中,能将△ABC变换成△PQR的是()A.①②B.①③C.②③D.①②③22.第一次:将点A绕原点O逆时针旋转90°得到A1;第二次:作点A1关于x轴的对称点A2;第三次:将点A2绕点O逆时针旋转90°得到A3;第四次:作点A3关于x轴的对称点A4…,按照这样的规律,点A35的坐标是()A.(﹣3,2)B.(﹣2,3)C.(﹣2.﹣3)D.(3.﹣2)23.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.24.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A.B.C.D.25.下列图案中,可以看作是中心对称图形的是()A.B.C.D.26.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念27.在下面的四个设计图案中,可以看作是中心对称图形的是()A.B.C.D.28.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A.B.C.D.29.用放大镜将图形放大,应该属于()A.平移变换B.相似变换C.对称变换D.旋转变换30.已知正方形的一条对角线长为2,把正方形经过某种图形变换后的面积为4,则图形变换是()A.相似变换B.旋转变换C.轴对称变换D.平移变换二.填空题(共20小题)31.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.32.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.33.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使涂黑部分构成一个轴对称图形的方法有种.34.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有种.35.如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD 对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有种.36.在4×4的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有种.37.如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有个.38.在下列图案中可以用平移得到的是(填代号).39.如下四幅图案中,第幅图案可以由左边的图案通过平移而得.40.在下列四幅图中,哪几幅图是可以经过平移变换得来的.41.现要把方格纸上的小船沿图中箭头方向平移8个单位,请你在方格纸上画出小船的平移后图形.42.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么正确的平移方法是.43.如图,把边长为3的正方形,按下图①~④的方式进行变换后拼成图⑤,则图⑤的面积等于.44.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形变换为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首尾依次相接的三角形,至少需要移动格.45.定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x 轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是,点△A n﹣1A2018的坐标是.46.在如图所示的网格中,每个小正方形的边长都为1,点A,B,C均为格点,P,E分别为BC,AB的中点.(Ⅰ)E到P的距离等于;(Ⅱ)将△ABC绕点C旋转,点A,B,E的对应点分别为A′,B′,E′,当PE′取得最大值时,请借助无刻度尺,在如图所示的网格中画出旋转后的△A′B′C,并简要说明你是怎么画出来的:47.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转所组成,这四次旋转中,旋转角度最小是度.48.以图(1)(以O为圆心,半径为1的半圆作为“基本图形”,分别经历如下变换不能得到图(2)的有①只要向右平移1个单位;②先以直线AB为对称轴进行翻折,再向右平移1个单位;③先绕着点O旋转180°,再向右平移1个单位;④绕着OB的中点旋转180°即可.49.一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化.其中说法正确的是有.50.如图,在平面直角坐标系xOy中,△O'A'B'可以看作是△OAB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OAB得到△O'A'B'的过程:.三.解答题(共10小题)51.方格纸中每个小方格都的边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.(1)在图1中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图2中画一个格点正方形,使其面积等于10;(3)直接写出图3中△FGH的面积是.52.有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)53.如图,是由四个全等且两直角边长分别为2和1的直角三角形组成的图案,请你仅用无刻度的直尺完成以下作图(保留作图痕迹,不写做法):(1)在图①中画一个面积为8的正方形;(2)在图②中画出(1)中所画正方形除对角线外的一条对称轴.54.如图,是一块正方形的瓷砖,请用四块这样的瓷砖拼出一个轴对称图形.在图1、图2、图3中画出,要求三种画法各不相同.55.如图,经过平移,小船上的A点到了点B.(1)请画出平移后的小船.(2)该小船向平移了格,向平移了格.56.按要求画图:(1)如图(1)所示,网格内每个小正方形的边长都为1个单位长度,试画出小船向右平移4 个单位长度,向上平移4个单位长度后的图形.(2)如图(2)过点P分别画直线m、n的垂线.57.为迎接全运会,体育迷小强利用网格设计了一个“火炬”图案,请你帮帮他:(1)将“火炬”图案先向右平移7格,再向上平移6格,画出平移后的图案;(2)如果图中每个小正方形的边长是1,求其中一个火炬图案的面积.58.如图是由边长为1的小正方形构成的格点图形,A、B、C在格点上,将三角形ABC向右平移3个单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形ABC;(2)求线段AB在变换到A1B1过程中扫过的区域面积(重叠部分不重复计算).59.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2;(2)写出点A的对应点A1的坐标,A2的坐标.(3)P(a,b)是△ABC的AC边上一点,△ABC经旋转、平移后点P的对应点分别为P1、P2,请写出点P2的坐标.60.阅读材料:课堂上,老师设计了一个活动:将一个4×4的正方形网格沿着网格线划分成两部分(分别用阴影和空白表示),使得这两部分图形是全等的,请同学们尝试给出划分的方法.约定:如果两位同学的划分结果经过旋转、翻折后能够重合,那么就认为他们的划分方法相同.小方、小易和小红分别对网格进行了划分,结果如图①、图②、图③所示.小方说:“我们三个人的划分方法都是正确的.但是将小红的整个图形(图③)逆时针旋转90°后得到的划分方法与我的划分方法(图①)是一样的,应该认为是同一种方法,而小易的划分方法与我的不同.”老师说:“小方说得对.”完成下列问题:(1)图④的划分方法是否正确?(2)判断图⑤的划分方法与图②小易的划分方法是否相同,并说明你的理由.(3)请你再想出一种与已有方法不同的划分方法,使之满足上述条件,并在图⑥中画出来.人教新版九年级上学期《23.3 课题学习图案设计》同步练习卷参考答案与试题解析一.选择题(共30小题)1.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的有几个()A.2B.3C.4D.5【分析】根据轴对称图形的特点进行判断即可.【解答】解:∵在方格纸中,使与图中阴影部分构成轴对称图形的有②④⑤,故选:B.【点评】本题考查的是利用轴对称设计图案,轴对称图形是要寻找对称轴,沿对称轴对折后与两部分完全重合.2.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.【解答】解:在1,2,3处分别涂黑都可得一个轴对称图形.故选:C.【点评】考查了利用轴对称设计图案,此题要首先找到大正方形的对称轴,然后根据对称轴,进一步确定可以涂黑的正方形.3.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个【分析】对称轴的位置不同,结果不同,根据轴对称的性质进行作图即可.【解答】解:如图所示,满足题意的涂色方式有3种,故选:C.【点评】本题主要考查了利用轴对称设计图案以及等边三角形的性质,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.4.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.蝴蝶效应C.颜色鲜艳D.数形结合【分析】直接利用图形的形状以及对称性分析得出答案.【解答】解:用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的轴对称性.故选:A.【点评】此题主要考查了利用轴对称设计图案,正确利用图形的对称性分析是解题关键.5.下列古代的吉祥图案中,不是轴对称图形的是()A.B.C.D.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.【点评】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.6.下列卡通动物简笔画图案中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6B.5C.4D.3【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,6处,选择的位置共有6处.故选:A.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④【分析】根据轴对称的定义,结合所给图形进行判断即可.【解答】解:①不是轴对称图形;②是轴对称图形;③是轴对称图形;④是轴对称图形;故是轴对称图形的是②③④.故选:D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)【分析】根据轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:要使8枚棋子组成的图案是轴对称图形,则黑子可以摆放在横坐标为3的格点上,故摆放错误的是A,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形定义.10.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.4【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故选:D.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.11.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.【分析】把一个图形整体沿某一直线方向移动,得到的新图形与原图形的形状和大小完全相同.【解答】解:因为平移不改变图形的形状和大小,只改变图形的位置,所以在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是C选项的图案,故选:C.【点评】本题主要考查了平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.12.下列图形中可由其中的部分图形经过平移得到的是()A.B.C.D.【分析】根据平移的性质,平移不改变图形的形状和大小对各选项分析判断即可得解.【解答】解:A、可由其中的部分图形经过平移得到,故本选项正确;B、不可由其中的部分图形经过平移得到,故本选项错误;C、不可由其中的部分图形经过平移得到,故本选项错误;D、不可由其中的部分图形经过平移得到,故本选项错误.故选:A.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.13.如图所示的各组图形中,表示平移关系的是()A.B.C.D.【分析】根据平移、旋转、对称的定义即可判断【解答】解:A、表示对称关系.B、表示旋转关系.C、表示旋转关系.D、表示平移关系.故选:D.【点评】本题考查平移、旋转、对称的定义,解题的关键是掌握基本概念,属于中考基础题.14.在下列四个图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知图案B通过平移后可以得到.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.15.皮影戏是中国民间古老的传统艺术,如图就是皮影戏中孙悟空的一个形象,在下面的四个图形中,能由图经过平移得到的图形是()A.B.C.D.【分析】根据平移的意义“平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫作图形的平移运动,简称平移”.【解答】解:根据“平移”的定义可知,由题图经过平移得到的图形是.故选:D.【点评】本题考查了生活中平移的现象,解决本题的关键是熟记平移的定义.16.如图所示的图案分别是大众、三菱、奔驰、奥迪汽车的车标,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据图形,利用平移的性质判断即可.【解答】解:如图所示的图案分别是大众、三菱、奔驰、奥迪汽车的车标,其中可以看作由“基本图案”经过平移得到的是,故选:D.【点评】此题考查了利用平移设计图案,熟练掌握平移的性质是解本题的关键.17.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.18.如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选A、C、D.19.如图所示,四幅汽车标志设计中,能通过平移得到的是()A.奥迪B.本田C.大众D.铃木【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【解答】解:根据平移的概念,观察图形可知图案A通过平移后可以得到.故选:A.【点评】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.20.观察下面图案,在ABCD四幅图案中,能通过图案平移得到的是()A.B.C.D.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、图案属于旋转所得到,故此选项错误;B、图案属于旋转所得到,故此选项错误;C、图案形状与大小没有改变,符合平移性质,故此选项正确;D、图案属于旋转所得到,故此选项错误.故选:C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.21.如图,在8×8的正方形网格中,△ABC的三个顶点和点O、E、F、M、N均在格点上,EF与MN交于点O,将△ABC分别进行下列三种变换:①先以点A为旋转中心逆时针旋转90°,再向右平移4格,最后向上平移4格;②先以点O为对称中心画中心对称图形,再以点A的对应点为旋转中心逆时针旋转90°;③先以直线EF为对称轴画轴对称图形,再以点A的对应点为旋转中心逆时针旋转90°,最后向右平移4格.其中,能将△ABC变换成△PQR的是()A.①②B.①③C.②③D.①②③【分析】利用旋转的性质、平移的性质和轴对称变换通过作图对①②③进行判断.【解答】解:先以点A为旋转中心逆时针旋转90°,再向右平移4格,最后向上平移4格不能得到△PQR;先以点O为对称中心画中心对称图形,再以点A的对应点为旋转中心逆时针旋转90°可得到△PQR;先以直线EF为对称轴画轴对称图形,再以点A的对应点为旋转中心逆时针旋转90°,最后向右平移4格可得到△PQR.故选:C.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.第一次:将点A绕原点O逆时针旋转90°得到A1;第二次:作点A1关于x轴的对称点A2;第三次:将点A2绕点O逆时针旋转90°得到A3;第四次:作点A3关于x轴的对称点A4…,按照这样的规律,点A35的坐标是()A.(﹣3,2)B.(﹣2,3)C.(﹣2.﹣3)D.(3.﹣2)。

九年级数学: 23.3 课题学习 图案设计

九年级数学: 23.3 课题学习 图案设计

23.3课题学习图案设计01基础题知识点1分析图案1.如图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是(B)A.B.C.D.2.如图所示,这个图案可以看作是以“基本图案”——原图案的四分之一经过变换形成的,但一定不能通过________变换得到(C)A.旋转B.轴对称C.平移D.对称和旋转3.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为(C)A.30°B.60°C.90°D.120°知识点2设计图案4.如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中设计符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)既是轴对称图形又是中心对称图形;(2)是轴对称图形但不是中心对称图形;(3)是中心对称图形但不是轴对称图形.(1)(2)(3)解:答案不唯一,图略.02中档题5.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°,180°,270°,并画出它在各象限内的图形.解:如图所示.6.如图1是由2个白色和2个黑色全等正方形组成的“L”型图案.请你分别在图2,图3上按下列要求画图:(1)在图2中,添1个白色或黑色正方形,使它成中心对称图案;(2)在图3中,先改变1个正方形的位置,再添1个白色或黑色正方形,使它既成中心对称图案,又成轴对称图案.解:(1)如图所示.(2)如图所示.。

课题学习 图案设计

课题学习 图案设计
15
请各组同学选择自己喜欢 的图形,用所学的图形变换组 合设计一些漂亮的图案.


某单位搞绿化,要在一块圆形空地 上种植四种颜色的花,为了便于管理和 美观,相同颜色的花集中种植,且每种 颜色的花所占的面积相同,现征集设计 方案,你能帮忙设计吗?

1.谈谈你的收获.

2.图案设计的关键是什么?
选取简单的基本图形,通过不同的
23.3 课题学习 图案设计
学习目标
1、利用旋转、平移和轴对称来进行简单 的图案设计。
2、经历对生活中典型图案进行观察、分 析、欣赏等过程;认识它们在现实生活中 的应用。
2


你知道下面的图案是怎样得到的吗?
经过旋转、轴对 称、平移变换.
1.你知道平移、旋转、轴对称变换的基本特征吗?
2.想一想这三种图形变换有什么共性.
变换组合出丰富的图案.
作 业 下面花边中的图案以正方形为基础, 由圆弧、圆构成.仿照例图,请你为班级 的板报设计一条花边,要求: (1)只要画出组成花边的一个图案; (2)以所给的正方形为基础,用圆弧、圆 或线段画出; (3)图案应有美感.
一、选择题 1.在图所示的4个图案中既包含图形的旋转, 还有图形轴对称是( )
你能用平移、旋转或轴对称变换 分析下图中各个图案的形成过程吗?
分析图案的形成过程
基本图案 图案的形成过程
分析图案的形成过程
基本 图案
图案 的形 成过 程
图片赏析
生活中我们会看到很多由一些几何图形 组成的优美图案,让我们来欣赏一下吧!
图片赏析Biblioteka 片赏析学习检测 进行图案设计的步 骤是什么?
2.将三角形绕直线L旋转一周,可以得到如 图所示的立体图形的是( )

23.3课题学习图案设计同步测控优化训练(含答案)整理版.doc

23.3课题学习图案设计同步测控优化训练(含答案)整理版.doc

23.3 课题学习图案设计一、课前预习(5分钟训练)1.如图23-3-1,△ABC平移到了△A′B′C′位置,下列结论不成立的是( )图23-3-1A.BC=B′C′B.∠C=∠C′C.∠A=∠A′D.AB=A′C′2.从8:55到9:15,钟表的分针转动的角度是___________,时针转动的角度是___________.3.如图23-3-2中,是四家银行行标,既是中心对称图形又是轴对称图形的是( )图23-3-2A.①③B.②④C.②③D.①④二、课中强化(10分钟训练)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A.角B.等边三角形C.线段D.平行四边形2.如图23-3-3,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是( )A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图23-3-33.如图23-3-4,方格纸中的三角形要由位置A平移到位置B,应该先向平移格,再向平移格.图23-3-4 图23-3-54.如图23-3-5,王虎使一长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动地翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ) A.10 cm B.4π cm C.27π cm D.25cm 三、课后巩固(30分钟训练)1.图23-3-6是由同型号黑白两种颜色的正三角形瓷砖按一定规律铺设的图形.图23-3-6仔细观察图形可知:图①有1块黑色的瓷砖,可表示为1=21)11(⨯+; 图②有3块黑色的瓷砖,可表示为1+2=22)11(⨯+;图③有6块黑色的瓷砖,可表示为1+2+3=23)31(⨯+.实践与探索:(1)请在图④的虚线框内画出第4个图形;(只需画出草图) (2)第10个图形有_____________块黑色的瓷砖;(直接填写结果) 第n 个图形有_____________块黑色的瓷砖.(用含n 的代数式表示)2.小丽制作了一个对面图案均相同的正方体礼品盒(如图23-3-7所示),则这个正方体礼品盒的平面展开图可能是( )图23-3-7图23-3-83.试一试,如何通过割补将转化为.4.如图23-3-9,它是由哪个基本图形经过怎样的变化得到的?图23-3-95.图23-3-10的上衣的图案是由下面哪一块布料做成的( )图23-3-10 图23-3-116.图23-3-12,是2008年奥运会会徽图片,其中会徽图片中的五环是怎样设计的?图23-3-127.图23-3-13的4个图案中,是由基本图形经过平移得到的是____________(只写出图案序号即可).图23-3-138.图23-3-14中的4个图案有什么共同特征?图23-3-14参考答案一、课前预习 (5分钟训练)1.如图23-3-1,△ABC 平移到了△A ′B ′C ′位置,下列结论不成立的是( )图23-3-1A.BC=B ′C ′B.∠C=∠C ′C.∠A=∠A ′D.AB=A ′C ′思路解析:根据平移的定义:把一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移后的对应点所连的线段平行且相等;对应线段平行且相等,对应角相等. 答案:D2.从8:55到9:15,钟表的分针转动的角度是___________,时针转动的角度是___________.思路解析:分针60分钟转一周,时针十二小时转一周.从8:55到9:15经过了20分钟,所以,分针转动的角度是6020×360°=120°;从8:55到9:15经过了31小时,所以,时针转动的角度是31×121×360°=10°. 答案:120° 10°3.如图23-3-2中,是四家银行行标,既是中心对称图形又是轴对称图形的是( )图23-3-2A.①③B.②④C.②③D.①④思路解析:根据中心对称图形以及轴对称图形的定义判断.①是中心对称图形又是轴对称图形;②是轴对称图形,但不是中心对称图形;③是中心对称图形又是轴对称图形;④既不是中心对称图形又不是轴对称图形. 答案:A二、课中强化(10分钟训练)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A.角B.等边三角形C.线段D.平行四边形思路解析:角是轴对称图形不是中心对称图形;等边三角形是轴对称图形不是中心对称图形;线段是轴对称图形又是中心对称图形;平行四边形是中心对称图形不是轴对称图形. 答案:C2.如图23-3-3,△ABC 与△A ′B ′C ′关于点O 成中心对称,下列结论中不成立的是( )A.OC=OC ′B.OA=OA ′C.BC=B ′C ′D.∠ABC=∠A ′C ′B ′图23-3-3思路解析:找准对应点、线、角是解题关键. 答案:D3.如图23-3-4,方格纸中的三角形要由位置A 平移到位置B ,应该先向平移格,再向平移格.图23-3-4 图23-3-5答案:上(或右) 3(或5) 右(或上) 5(或3)4.如图23-3-5,王虎使一长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动地翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ) A.10 cm B.4π cm C.27π cm D.25cm 思路解析:第一次翻滚可以看成是以B 为圆心,以AB 为半径的弧,且可求得∠ABA 1=90°,∴第一次翻滚走过的路径为41×2×5π=25π,第二次翻滚可看成是以C 为圆心,以A 1C 为半径的弧,且∠A 1CA 2=60°,∴第二次翻滚走过的路径为61×2×3π=π.总共路径=25π+π=27π cm. 答案:C三、课后巩固(30分钟训练)1.图23-3-6是由同型号黑白两种颜色的正三角形瓷砖按一定规律铺设的图形.图23-3-6仔细观察图形可知:图①有1块黑色的瓷砖,可表示为1=21)11(⨯+; 图②有3块黑色的瓷砖,可表示为1+2=22)11(⨯+;图③有6块黑色的瓷砖,可表示为1+2+3=23)31(⨯+.实践与探索:(1)请在图④的虚线框内画出第4个图形;(只需画出草图) (2)第10个图形有_____________块黑色的瓷砖;(直接填写结果) 第n 个图形有_____________块黑色的瓷砖.(用含n 的代数式表示)思路解析:(1)由图①、图②、图③可以发现规律:第几个图就有几行阴影三角形并且最下面一行就有几个阴影三角形;(2)第十个图形黑色的瓷砖有 1+2+3+4+5+6+7+8+9+10=210)101(⨯+=55;第n 个图形黑色的瓷砖有1+2+3+…+n=2)1(nn ⨯+.答案:(1)如图:(2)552)1(nn ⨯+(n 为正整数) 2.小丽制作了一个对面图案均相同的正方体礼品盒(如图23-3-7所示),则这个正方体礼品盒的平面展开图可能是( )图23-3-7 图23-3-8思路解析:此题需有一定空间想象能力,可以实际动手操作一下,以自己能辩认的简单图案代表各图案.答案:A3.试一试,如何通过割补将转化为.答案:过程如下图:4.如图23-3-9,它是由哪个基本图形经过怎样的变化得到的?图23-3-9思路分析:根据图案的特点,关键是找基本图形.基本图形是和.解:是由基本图形向右平移,再向下平移,再向左平移,然后再由基本图形向右平移,再向下平移,再向左平移得到.5.图23-3-10的上衣的图案是由下面哪一块布料做成的( )图23-3-10 图23-3-11思路解析:基本图形是,是由基本图形经过上下平移和左右平移得到的布料.答案:D6.图23-3-12,是2008年奥运会会徽图片,其中会徽图片中的五环是怎样设计的?图23-3-12答案:是由一个环,经过左右平移、上下平移得到的五环.7.图23-3-13的4个图案中,是由基本图形经过平移得到的是____________(只写出图案序号即可).图23-3-13思路解析:图案①、图案②是由基本图形经过平移得到的;图案③、图案④是由基本图形经过旋转得到的.答案:①②8.图23-3-14中的4个图案有什么共同特征?图23-3-14答案:共同点:都是由一个基本图形经过平移(或旋转)得到的.。

新人教版初中数学九年级上册23.3课题学习—图案设计过关习题和解析答案

新人教版初中数学九年级上册23.3课题学习—图案设计过关习题和解析答案

23.3课题学习—图案设计
一、仔仔细细,记录自信
1.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得的,旋转的角度正确的为()
A.30B.60C.120D.180
2.将一张正方形纸片沿如图1所示的虚线剪开后,能拼成下列四个图形,其中是中心对称图形的是()
3.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是()
二、拓广探索,游刃有余
4.用4块如所示的瓷砖拼成一个正方形,使所得正方形(包括色彩因素)分别是具有如下对称性的美术图案:(1)只是轴对称图形而不是中心对称图形;(2)既是轴对称图形又是中心对称图形.画出符合要求的图形各两个.
5.请你为班级设计一个具有中心对称特征的漂亮的班徽,并对你的设计方案加以解释.
6.观察下列图案,你能利用图2分析图3和图4是如何形成的吗?
参考答案
一、1. D 2.D 3.B
二、4.答案不惟一,例如:
5.略.
6.解:图3是将图2进行连续的平移得到的;图4是将图2进行连续的平移、旋转再平移得到的.。

人教版九年级数学上册23.3课题学习图案设计同步测试及答案解析【优选】

人教版九年级数学上册23.3课题学习图案设计同步测试及答案解析【优选】

图案设计1.由图23-3-1中三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是(B)图23-3-1A B C D2.下列各图中,图形甲变成图形乙,既能用平移,又能用旋转的是(C)【解析】A用轴对称,B用平移,D用旋转再平移,故选C.3.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是(C) 4.如图23-3-2,在方格纸中,△ABC经过变换得到△DEF,正确的变换是(B)A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°【解析】△ABC绕点C顺时针方向旋转90°,再向下平移5格即可与△DEF重合.5.如图23-3-3是小亮设计地板砖的图案过程:图23-3-3方法一:由图(1)到图(2)采用的是__轴对称__方法,由图(2)到图(3)也是采用__轴对称__方法设计的.方法二:由图(1)到图(2)采用的是__旋转__方法,旋转中心是正方形的__中心__,由图(2)到图(3)也采用的是__旋转__方法,顺时针旋转__90__度.6.认真观察图23-3-4所示的4个图中阴影部分构成的图案,回答下列问题:图23-3-4图23-3-5(1)请写出这四个图案都具有的两个共同特征:特征1:__都是轴对称图形__;特征2:__都是中心对称图形__;(2)请在图23-3-5中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.解:(2)答案不唯一,如图所示.7.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有(C)图23-3-6A.4种B.5种C.6种D.7种【解析】得到的不同图案有共6种.8.用四块如图23-3-7(1)所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图23-3-7(2)、图23-3-7(3)、图23-3-7(4)中各画出一种拼法(要求三种画法各不).图3-7解:答案不唯一,如图所示:图23-3-89.如图23-3-8,是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、轴对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4. 解:答案不唯一,以下各图供参考:10.如图23-3-9(1),有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.(1)如图23-3-9(2),将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD是__平行四边__形;(2)如图23-3-9(3),将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D,A,B在同一直线上,则旋转角为__90__度;连接CC′,四边形CDBC′是__直角梯__形;(3)如图23-3-9(4),将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB,CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由.【解析】(1)利用平行四边形的判定:对角线互相平分的四边形是平行四边形得出即可;(2)利用旋转变换的性质以及直角梯形的判定得出即可;(3)利用等腰梯形的判定方法得出BD∥AC,AD=CB即可得出答案.解:(3)四边形ADBC是等腰梯形.理由:过点B作BM⊥AC,过点D作DN⊥AC,垂足分别为M,N,则BM∥ND.∵有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′,∴△ACD≌△C′A′B,∴BM=ND,∴四边形NDBM是矩形.∴BD∥AC.∵AD=BC,∴四边形ADBC是等腰梯形.。

人教版初中数学九年级上册23.3课题学习—图案设计

人教版初中数学九年级上册23.3课题学习—图案设计

人教版初中数学
重点知识精选
掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!
23.3课题学习—图案设计
一、仔仔细细,记录自信
1.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度正确的为()
30 60 120 180
A.B.C.D.
2.将一张正方形纸片沿如图1所示的虚线剪开后,能拼成下列四个图形,其中是中心对称图形的是()
3.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是()
二、拓广探索,游刃有余
4.用4块如所示的瓷砖拼成一个正方形,使所得正方形(包括色彩因素)分别是具有如下对称性的美术图案:(1)只是轴对称图形而不是中心对称图形;(2)既是轴对称图形又是中心对称图形.画出符合要求的图形各两个.
5.请你为班级设计一个具有中心对称特征的漂亮的班徽,并对你的设计方案加以解释.
6.观察下列图案,你能利用图2来分析图3和图4是如何形成的吗?
参考答案
一、1. D 2.D 3.B
二、4.答案不惟一,例如:
5.略.
6.解:图3是将图2进行连续的平移得到的;图4是将图2进行连续的平移、旋转再平移得到的.
相信自己,就能走向成功的第一步
教师不光要传授知识,还要告诉学生学会生活。

数学思维可以让他们更理性地看待人生。

23.3 课题学习 图案设计

23.3 课题学习 图案设计

与上述不同的图案.
解:(1)略. (2)可设计为如图所示的图案,答案不唯一,合理即可.
解目 归纳总结
析标
突 图案设计的一般步骤:

(1)整体构思:①图案的设计要突出“主题”,即设计图案的 意图,要求简洁、自然、别致,具有一定的意义;②确定 整幅图案的形状(如圆形或正方形)和“基本图形”(不宜太复 杂);③构思图案的形成过程:首先构思该图案应由哪几部 分组成,然后构思如何运用平移、旋转、轴对称等方法实 现由“基本图形”到各部分图案的组合,并作出草图.
突 破
个图案是由基本图形 平移两次后得到的;第三个图案是
由基本图形 旋转五次后得到的;第四个图案是由基本图
形 旋转五次后得到的.因为图形的变换不唯一,还可以
有其他的变换方式,如(1)(4)还可以分别由图形 通过轴
对称变换得到.
解目 目标二 会利用平移、轴对称、旋转变换设计简单的图案
析标
突 例2 [教材补充例题]某公司为了节约开支,购买了同种质量、
力求设计出的图案形式清晰、寓意明确.
谢 谢 观 看!
解析总结反
知识点二 图案设计
设计方法:运用__平__移____、__旋__转____和_轴__对__称___等图形变换中

的一种进行图案设计,也可以利用这些图形变换的__组__合____进
行图案设计.
设计步骤:(1)确定设计图案所表达的意图;

(2)分析图案所给定的基本图形;
(3)确定基本图形,综合运用平移、旋转、轴对称等图形变换,
解目 析标
(2)具体作图:根据草图,运用刻度尺、圆规等准确地作出
突 破
图案.
解析总结反
小结
知识点一

2022年人教版《课题学习》图案设计 同步练习附答案

2022年人教版《课题学习》图案设计 同步练习附答案

2021人教版九年级数学上册23.3《课题学习 图案设计》同步练习1带答案 根底训练1. :图A 、图B 分别是6×6正方形网格上的两个轴对称图形(阴影局部),其面积分别为A S 、B S (网格中最小的正方形面积为一个平方单位),请观察图形并解答以下问题.(1)填空:AB S S ∶的值是__________; (2)请在图C 的网格上画出一个面积为8个平方单位的中心对称图形.旋转、轴对称和平移得到的呢? 请你用根本图形经过旋转、平移和轴对称设计一个美丽的图案。

能力提升1. 在右图的方框中做出以O 为旋转中心旋转后的图形.2.利用你所学过的图形变换的知识设计一个图案,单元回头看一、 填空题:〔每空2分 共24分〕1.钟表的分针匀速旋转一周需要60分,它的旋转中心是___________,经过20分,分针旋转___________度2. 如图,按逆时针方向的ABC cm 。

AC ,AB BAC ABC ∆==︒=∠∆590转动一个角度后成为ACD ∆,那么图中点_____是旋转中心,旋转角等于____度,点B 与点____是对应点,点C 与点____是对应点,∠ACD=_____________, AD=_________.3. 线段、两相交直线、角、等腰三角形、等边三角形、平行四边形、 矩形、菱形、正方形、圆等图形中是中心对称图形的有________________ __;既是轴对称图形,又是中心对称的图形有_.4. 如果将△ABC 绕点O 逆时针旋转80°得到△DEF ,那么△D EF 可以得到△ABC.5. 假设点O 是平行四边形ABCD 对角线AC 的中点,EF ⊥AC 于O,交AD 、BC 分别于E 、F,那么线段DE 关于O 的对称线段为________________,二、 选择题〔每题3分 共18分〕6. 以下现象属于旋转的是 〔 〕A .摩托车在急刹车时向前滑动B .空中飞舞的雪花C .拧开自来水龙头的过程D .飞机起飞后冲向空中的过程7. △ABC 绕点O 旋转50°后得到△DEF 。

23.3课题学习图案设计九年级数学人教版(上册)(解析版)

23.3课题学习图案设计九年级数学人教版(上册)(解析版)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第二十三章旋转23.3课题学习图案设计一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有A.1种B.2种C.3种D.4种【答案】C2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是A.B.C.D.【答案】C【解析】A选项不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选C.3.一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是A.B.C.D.【答案】B4.下列基本图形中,经过平移、旋转或翻折后,不能得到下图的是A.B.C.D.【答案】C【解析】A、把平移得到,然后把旋转可得到;B、把旋转可得到;C、把经过平移、旋转或翻折后,都不能得到;D、把翻折后可得到右图.故选C.5.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有A.1个B.2个C.3个D.4个【答案】C二、填空题:请将答案填在题中横线上.6.如图,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程:__________.【答案】平移,轴对称【解析】△ABC向上平移4个单位,再沿y轴对折,得出△DEF,故答案为:平移,轴对称.7.如图,在平面直角坐标系xOy中,△ABC可以看作是△DEF经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由△DEF得到△ABC的过程__________.【答案】先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折8.一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化.其中说法正确的是有__________.【答案】②③④【解析】平移后:对应线段平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化.旋转后:对应线段不平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化.故答案为:②③④.9.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有__________种.【答案】3【解析】如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.(2)如图所示,△ACD为所求作;(3)如图所示:△ECD为所求作.11.如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;)观察图象可知图象是轴对称图形,故答案为轴对称.1.请在方格纸中分别画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正方形的顶点上):.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.3 课题学习图案设计
题号一1 二2 三3 四4 五5 六6 七7 八8 得分
角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

【回顾归纳】
我们学过全等变换方式有______,_______,________,生活中常运用这三种图形变换进行图案设计.
【课堂测控】
测试点运用旋转进行图案设计
1.剪纸是中国的民间艺术,剪纸方法很多,如图所示是一种剪纸方法的图示(先将纸折叠,然后再剪,展开即得到图案):
下面四个图案中,不能用上述方法剪出的是().
2.分析下列图中的旋转现象.
3.(教材变式题)利用一个圆、一个正三角形,通过2次旋转或平移设计一个图案,说明你的设计意图.
【课后测控】
1.如图,图(1)(2)(3)(4)(5)中的图②是由①经过轴对称、平移、旋转这三种运动变换而得到,请分别指出它们是如何运动变换的.
2.(易错题)观察图所示的图形并回答下列问题:
(1)图案是否是轴对称图形,如果是,图案有几条对称轴?
(2)图案是否是中心对称图形?为什么?若是,找出对称中心.
(3)图案绕中心旋转多少度能和原来的图案重合?
3.下图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°、180°、270°,并画出它在各象限内的图形,你会得到一个美丽的立体图形,你来试一试吧!
4.利用下图的图形,通过平移、旋转、对称等变换方法设计图案,并赋予图案贴切的名称.
5.如图所示是两幅中心对称图形,仿照(1)、(2)把(3)、(4)、(5)、(6)•也画成中心对称图形.
6.以给出的图形“○、○、△、△、=”(两个相同的圆、两个相同的三角形、两条平行线)为构件,各设计一个构思独特且有意义的轴对称图形和中心对称图形.举例:如图所示,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.
【拓广创新】
7.请在下图的3个网格(两相邻格点的距离均为1个长度单位)内,•分别设计一个图案,要求:在(1)中所设计的图案是面积等于3的轴对称图形,在(2)中设计的图案是面积等于23的中心对称图形,在(3)中所设计的图案既是轴对称图形又是中心对称图形,并且面积等于33,请你将设计的图案用铅笔涂黑.
8.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图
形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图23-3-10),所以正方形是旋转对称图形,它有一个旋转角为90°.
(1)判断下列命题的真假(在相应括号内填上“真”或“假”)
①等腰梯形是旋转对称图形,它有一个旋转角为180°.()
②矩形是旋转对称图形,它有一个旋转角为180°.()
(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是_____.(写出所有正确结论的序号).
①正三角形;②正方形;③正六边形;④正八边形.
(3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:
①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.
9.如图,在方格纸中有形状、大小都一样的两个图形.
(1)将左下角的图形绕其右边的顶点A顺时针旋转90°,画出新图形;
(2)运用你所学过的知识,用什么方法将得到的新图形重合到另一个图形上?
10.学校团委向大家征集黑板报报头图案,图案设计要求如下:
①是轴对称图形或中心对称图形;
②在你所学过的几何图形中任选几种(不少于3种,每种图形个数不限)组成一个美观的图案.
请根据以上要求画出图案,并用简练的语言表达你所设计图案的含义.
【轻松一刻】
人类认识无限和有限
时间:秒可以说是基本计时单位,难怪人们把“争分夺秒”作为最勤奋的象征,须知一个Ω介子一生的寿命,少到只有10-22秒,而从Ω介子到红矮星的寿命,可测时间是跨越40个数量级.
答案:
回顾归纳
平移轴对称旋转
课堂测控
1.C 2.图略 3.答案不惟一
课后测控
1.图(1)中①向上平移3个单位,再向右平移3个单位得到②;图(2)中①以C•为中心,旋转180°得到②;图(3)中①以A为中心,旋转180°得到②;图(4)•中①通过轴对称得到②,AB为对称轴;图(5)中①以B为中心,旋转180°得到②.
2.(1)该图案是轴对称图形,对称轴有6条.
(2)是中心对称图形,其对称中心是中间小圆的圆心.
(3)该图案绕中心旋转60°或120°,180°,240°,300°可以与原来的图案重合.
3.图略 4.答案不惟一 5.图略
6.此题答案不惟一,下面各举一例.
只是轴对称图形只是中心对称图形既是轴对称图形
又是中心对称图形
7.图略
8.(1)①假②真(2)①③(3)①正五边形④正十边形、正八边形
9.略
10.设计图案如图(1)、(2)、(3)所示
图(1)含义:人类只有一个地球,大家要呵护爱护地球就像爱护自己的眼睛.
图(2)含义:得到别人关爱的人,别人才会去关爱你,三角形象征人的心脏.
图(3)含义:想攀登科学高峰,必须要遇到大风大浪,只有冲破层层阻碍去探索才
能登上金字塔的塔顶(俯视图是金字塔).
This document is collected from the Internet, which is convenient for readers to use. If there is any infringement, please contact the author and delete it immediately.
可以编辑的试卷(可以删除)。

相关文档
最新文档