电力电子器件

电力电子器件
电力电子器件

新型电力电子器件

电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。又称功率电子器件。20世纪50年代,电力电子器件主要是汞弧闸流管和大功率电子管。60年代发展起来的晶闸管,因其工作可靠、寿命长、体积小、开关速度快,而在电力电子电路中得到广泛应用。70年代初期,已逐步取代了汞弧闸流管。80年代,普通晶闸管的开关电流已达数千安,能承受的正、反向工作电压达数千伏。在此基础上,为适应电力电子技术发展的需要,又开发出门极可关断晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管等一系列派生器件,以及单极型MOS功率场效应晶体管、双极型功率晶体管、静电感应晶闸管、功能组合模块和功率集成电路等新型电力电子器件。

各种电力电子器件均具有导通和阻断两种工作特性。功率二极管是二端(阴极和阳极)器件,其器件电流由伏安特性决定,除了改变加在二端间的电压外,无法控制其阳极电流,故称不可控器件。普通晶闸管是三端器件,其门极信号能控制元件的导通,但不能控制其关断,称半控型器件。可关断晶闸管、功率晶体管等器件,其门极信号既能控制器件的导通,又能控制其关断,称全控型器件。后两类器件控制灵活,电路简单,开关速度快,广泛应用于整流、逆变、斩波电路中,是电动机调速、发电机励磁、感应加热、电镀、电解电源、直接输电等电力电子装置中的核心部件。这些器件构成装置不仅体积小、工作可靠,而且节能效果十分明显(一般可节电10%~40%)。

单个电力电子器件能承受的正、反向电压是一定的,能通过的电流大小也是一定的。因此,由单个电力电子器件组成的电力电子装置容量受到限制。所以,在实用中多用几个电力电子器件串联或并联形成组件,其耐压和通流的能力可以成倍地提高,从而可极大地增加电力电子装置的容量。器件串联时,希望各元件能承受同样的正、反向电压;并联时则希望各元件能分担同样的电流。但由于器件的个异性,串、并联时,各器件并不能完全均匀地分担电压和电流。所以,在电力电子器件串联时,要采取均压措施;在并联时,要采取均流措施。

电力电子器件工作时,会因功率损耗引起器件发热、升温。器件温度过高将缩短寿命,甚至烧毁,这是限制电力电子器件电流、电压容量的主要原因。为此,必须考虑器件的冷却问题。常用冷却方式有自冷式、风冷式、液冷式(包括油冷式、水冷式)和蒸发冷却式等。

1. 超大功率晶闸管

晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,(由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。

现在,许多生产商可提供额定开关功率36MVA (6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的"挤流效应"使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR>3.3kV)、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功率电压源的需

要,近期很有可能开发出10kA/12kV的GTO,并有可能解决30多个高压GTO串联的技术,可望使电力电子技术在电力系统中的应用方面再上一个台阶。

2. 脉冲功率闭合开关晶闸管

该器件特别适用于传送极强的峰值功率(数MW)、极短的持续时间(数ns)的放电闭合开关应用场合,如:激光器、高强度照明、放电点火、电磁发射器和雷达调制器等。该器件能在数kV的高压下快速开通,不需要放电电极,具有很长的使用寿命,体积小、价格比较低,可望取代目前尚在应用的高压离子闸流管、引燃管、火花间隙开关或真空开关等。该器件独特的结构和工艺特点是:门-阴极周界很长并形成高度交织的结构,门极面积占芯片总面积的90%,而阴极面积仅占10%;基区空穴-电子寿命很长,门-阴极之间的水平距离小于一个扩散长度。上述两个结构特点确保了该器件在开通瞬间,阴极面积能得到100%的应用。此外,该器件的阴极电极采用较厚的金属层,可承受瞬时峰值电流。

3. 新型GTO器件-集成门极换流晶闸管

当前已有两种常规GTO的替代品:高功率的IGBT模块、新型GTO派生器件-集成门极换流IGCT晶闸管。IGCT晶闸管是一种新型的大功率器件,与常规GTO晶闸管相比,它具有许多优良的特性,例如,不用缓冲电路能实现可靠关断、存贮时间短、开通能力强、关断门极电荷少和应用系统(包括所有器件和外围部件如阳极电抗器和缓冲电容器等)总的功率损耗低等。

在上述这些特性中,优良的开通和关断能力是特别重要的方面,因为在实际应用中,GTO 的应用条件主要是受到这些开关特性的局限。众所周知,GTO的关断能力与其门极驱动电路的性能关系极大,当门极关断电流的上升率(diGQ/dt)较高时,GTO晶闸管则具有较高的关断能力。一个4.5kV/4kA的IGCT与一个4.5kV/4kA的GTO的硅片尺寸类似,可是它能在高于6kA的情况下不用缓冲电路加以关断,它的diGQ/dt高达6kA/μs。对于开通特性,门极开通电流上升率(diG/dt)也非常重要,可以借助于低的门极驱动电路的电感比较容易实现。IGCT之所以具有上述这些优良特性,是因为在器件结构上对GTO采取了一系列改进措施。它除了采用了阳极短路型的逆导GTO结构以外,主要是采用了特殊的环状门极,其引出端安排在器件的周边,特别是它的门、阴极之间的距离要比常规GTO的小得多,所以在门极加以负偏压实现关断时,门、阴极间可立即形成耗尽层,这时,从阳极注入基区的主电流,则在关断瞬间全部流入门极,关断增益为1,从而使器件迅速关断。不言而喻,关断IGCT 时需要提供与主电流相等的瞬时关断电流,这就要求包括IGCT门阴极在内的门极驱动回路必须具有十分小的引线电感。实际上,它的门极和阴极之间的电感仅为常规GTO的1/10。

IGCT的另一个特点是有一个极低的引线电感与管饼集成在一起的门极驱动器。IGCT用多层薄板状的衬板与主门极驱动电路相接。门极驱电路则由衬板及许多并联的功率MOS管和放电电容器组成。包括IGCT及其门极驱动电路在内的总引线电感量可以减小到GTO的

1/100。

目前,4.5kV (1.9kV/2.7kV 直流链)及5.5kV(3.3kV直流链)、275A

二、IGBT模块的最新发展

1. 高功率沟槽栅结构IGBT(Trench IGBT)模块

当今高功率IGBT模块中的IGBT元胞通常多采用沟槽栅结构IGBT。与平面栅结构相比,沟槽栅结构通常采用1μm加工精度,从而大大提高了元胞密度。由于门极沟的存在,消除了平面栅结构器件中存在的相邻元胞之间形成的结型场效应晶体管效应,同时引入了一定的电子注入效应,使得导通电阻下降。为增加长基区厚度、提高器件耐压创造了条件。所以近几年来出现的高耐压大电流IGBT器件均采用这种结构。

1996年日本三菱和日立公司分别研制成功3.3kV/1.2kA 巨大容量的IGBT模块。它们与常规的GTO相比,开关时间缩短了20%,栅极驱动功率仅为GTO的1/1000。1997年富士电机研制成功1kA/2.5kV平板型IGBT,由于集电、发射结采用了与GTO类似的平板压接结构,采用更高效的芯片两端散热方式。特别有意义的是,避免了大电流IGBT模块内部大量的电极引出线,提高了可靠性和减小了引线电感,缺点是芯片面积利用率下降。所以这种平板压接结构的高压大电流IGBT模块也可望成为高功率高电压变流器的优选功率器件。

2. 新型大功率IGBT模块- 电子注入增强栅晶体管IEGT(Injection Enhanced Gate Trangistor)

近年来,日本东芝公司开发了IEGT,与IGBT一样,它也分平面栅和沟槽栅两种结构,前者的产品即将问世,后者尚在研制中。IEGT兼有IGBT和GTO两者的某些优点:低的饱和压降,宽的安全工作区(吸收回路容量仅为GTO的1/10左右),低的栅极驱动功率(比GTO 低2个数量级)和较高的工作频率。加之该器件采用了平板压接式电极引出结构,可望有较高的可靠性。

IEGT之所以有前述这些优良的特性,是由于它利用了“电子注入增强效应”。与IGBT 相比,IEGT结构的主要特点是栅极长度Lg较长,N长基区近栅极侧的横向电阻值较高,因此从集电极注入N长基区的空穴,不像在IGBT中那样,顺利地横向通过P区流入发射极,而是在该区域形成一层空穴积累层。为了保持该区域的电中性,发射极必须通过N沟道向N 长基区注入大量的电子。这样就使N长基区发射极侧也形成了高浓度载流子积累,在N长基区中形成与GTO中类似的载流子分布,从而较好地解决了大电流、高耐压的矛盾。目前该器件已达到4.5kV /1kA的水平。

三、MOS门控晶闸管

MOS门极控制晶闸管充分地利用晶闸管良好的通态特性、优良的开通和关断特性,可望具有优良的自关断动态特性、非常低的通态电压降和耐高压,成为将来在电力装置和电力系统中有发展前途的高压大功率器件。目前世界上有十几家公司在积极开展对MCT的研究。MOS门控晶闸管主要有三种结构:MOS场控晶闸管(MCT)、基极电阻控制晶闸管(BRT)及射极开关晶闸管(EST)。其中EST可能是MOS门控晶闸管中最有希望的一种结构。但是,这种器件要真正成为商业化的实用器件,达到取代GTO的水平,还需要相当长的一段时间。

四、采用新型半导体材料制造的新型功率器件

至今,硅材料功率器件已发展得相当成熟。为了进一步实现人们对理想功率器件特性的追求,越来越多的功率器件研究工作转向了对用新型半导体材料制作新型半导体功率器件的探求。研究表明,砷化镓FET和肖特基整流器可以获得十分优越的技术性能。Collins et al 公司用GaAs VFETs 制成了10MHz PWM 变换器,其功率密度高达500W/in3。高压(600V)砷化镓高频整流二极管近年来也有所突破,SiC材料和功率器件的研究工作十分活跃。

1. 高压砷化镓高频整流二极管

随着变换器开关频率的不断提高,对快恢复二极管的要求也随之提高。众所周知,砷化

镓二极管具有比硅二极管优越的高频开关特性,但是由于工艺技术等方面的原因,砷化镓二极管的耐压较低,实际应用受到局限。为适应高压、高速、高效率和低EMI应用需要,高压砷化镓高频整流二极管已在Motorola 公司研制成功。与硅快恢复二极管相比,这种新型二极管的显著特点是:反向漏电流随温度变化小、开关损耗低、反向恢复特性好。

2. 碳化硅与碳化硅(SiC)功率器件

在用新型半导体材料制成的功率器件中,最有希望的是碳化硅(SiC)功率器件。它的性能指标比砷化镓器件还要高一个数量级,碳化硅与其他半导体材料相比,具有下列优异的物理特点: 高的禁带宽度,高的饱和电子漂移速度,高的击穿强度,低的介电常数和高的热导率。上述这些优异的物理特性,决定了碳化硅在高温、高频率、高功率的应用场合是极为理想的半导体材料。在同样的耐压和电流条件下,SiC器件的漂移区电阻要比硅低200倍,即使高耐压的SiC场效应管的导通压降,也比单极型、双极型硅器件的低得多。而且,SiC 器件的开关时间可达10nS量级,并具有十分优越的FBSOA。

SiC可以用来制造射频和微波功率器件,各种高频整流器,MESFETS、MOSFETS和JFETS 等。SiC高频功率器件已在Motorola公司研发成功,并应用于微波和射频装置。GE公司正在开发SiC功率器件和高温器件(包括用于喷气式引擎的传感器)。西屋公司已经制造出了在26GHz频率下工作的甚高频的MESFET。ABB公司正在研制高功率、高电压的SiC整流器和其他SiC低频功率器件,用于工业和电力系统。

理论分析表明,SiC功率器件非常接近于理想的功率器件。可以预见,各种SiC器件的研究与开发,必将成为功率器件研究领域的主要潮流之一。但是,SiC材料和功率器件的机理、理论、制造工艺均有大量问题需要解决,它们要真正给电力电子技术领域带来又一次革命,估计至少还需要十几年的时间。

五、结论

经过人们的不懈努力,虽然硅双极型及场控型功率器件的研究已趋成熟,但是它们的性能仍在不断得到提高和改善,近年来出现的IGCT和IEGT可望比MCT更早地取代GTO。采用GaAs,碳化硅等新型半导体材料制成功率器件,实现人们对"理想器件"的追求,将是下个世纪电力电子器件发展的主要趋势。

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

电力电子技术总结

1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。 2、电力电子技术的诞生是以 1957年美国通用电气公司研制出第一个晶闸管为标志的。 3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对 晶闸管电路的控制方式主要是相位控制方式,简称相控方式。4、70年代后期,以门极可关断晶闸管( GTO )、电力双极型晶体管( BJT )和电力场效应晶 体管(Power-MOSFET )为代表的全控型器件迅速发展。 5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。 6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路( PIC )。 第二章 1、电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。◆由信息电子电路来控制 ,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器2、电力电子器件的功率损耗 3、电力电子器件的分类 (1)按照能够被控制电路信号所控制的程度 ◆半控型器件:?主要是指晶闸管(Thyristor )及其大部分派生器件。 ?器件的关断完全是由其在主电路中承受的电压和电流决定的。◆全控型器件:?目前最常用的是 IGBT 和Power MOSFET 。 通态损耗断态损耗开关损耗 开通损耗关断损耗

?通过控制信号既可以控制其导通,又可以控制其关断。 ◆不可控器件:?电力二极管(Power Diode)?不能用控制信号来控制其通断。(2)按照驱动信号的性质 ◆电流驱动型:?通过从控制端注入或者抽出电流来实现导通或者关断的控制。 ◆电压驱动型 ?仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控 制。 (3)按照驱动信号的波形(电力二极管除外) ◆脉冲触发型 ?通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控 制。 ◆电平控制型 ?必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件 开通并维持在导通状态或者关断并维持在阻断状态。 4、几种常用的电力二极管:普通二极管、快恢复二极管、肖特基二极管 肖特基二极管优点在于:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此, 其开关损耗和正向导通损耗都比快速二极管还要小,效率高。 弱点在于:当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此 多用于200V以下的低压场合;反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。 5、晶闸管除门极触发外其他几种可能导通的情况 ◆阳极电压升高至相当高的数值造成雪崩效应◆阳极电压上升率du/dt过高 ◆结温较高◆光触发

电力电子总结完美版

一、填空题 1、对SCR 、TRIAC 、GTO 、GTR 、Power MOSFET 、这六种电力电子器件,其中要用交流 电压相位控制的有SCR TRIAC 。可以用PWM 控制的有GTO GTR Power MOSFET IGBT;要用电流驱动的有SCR TRIAC GTO GTR (准确地讲SCR 、TRIAC 为电流触发型 器件),要用电压驱动的有Power MOSFET IGBT ;其中工作频率最高的一个是Power MOSFET ,功率容量最大的两个器件是SCR GTR;属于单极性的是Power MOSFET;可能发生 二次击穿的器件是GTR,可能会发生擎住效应的器件是IGBT ;属于多元集成结构的是Power MOSFET IGBT GTO GTR 。 2、SCR 导通原理可以用双晶体管模型来解释,其触发导通条件是阳极加正电压并且门极有触发电流,其关断条件是阳极电流小于维持电流。 3、GTO 要用门极负脉冲电流关断,其关断增益定义为最大可关断阳极电流与门极负脉冲电流最大值的比即off β=ATO GM I I ,其值约为5左右,其关断时会出现特殊的拖尾 电流。 4、Power MOSFET 通态电阻为正温度系数;其定义式为= |DS DS U GS I ≥0,比较特殊的是器件体内有寄生的反向二极管,此外,应防止其栅源极间发生擎住效应。 5、电力二极管额定电流是指最大工频正弦半波波形条件下测得值,对于应用于高频电力电子电路的电力二极管要用快恢复型二极管,但要求其反向恢复特性要软。 6、在电力电子电路中,半导体器件总是工作在开关状态,分析这类电路可以用理想开关等效电路;电力电子技术的基础是电力电子器件制造技术,追求的目标是高效地处理电力。 7、硬开关电路的电力电子器件在换流过程中会产生较大的开关损耗,主要原因是其电压波形与电流波形发生重叠,为了解决该缺陷,最好使电力电子器件工作在零电压开通,零电流关断状态;也可采用由无源元件构成的缓冲技术,但它们一般是有损耗 的。 8、电力电子电路对功率因数的定义与线性电路理论的定义在本质上的差别是有基波因数。 9、交流调压电路采用由两个SCR 反并联接法组成交流开关作为控制,若交流电路的大感性 负载阻抗角为80度,则SCR 开通角的移相范围80度到180度。 10、SCR 三相全控变流电路带直流电动机负载时,其处于整流状态时触发角应满足小于90度 条件;其处于有源逆变状态时触发角应满足大于90度 条件;SCR 的换流方式都为电网 换流。 11、有源逆变与无源逆变的差异是交流侧接在电网上还是接在负载上;加有续流二极管的任何整流电路都不能实现有源逆变的原因是负载被二极管短路不能产生负电压。逆变角的定义是α>90度时的控制角βπα=- 12、电压源逆变器的输出电压是交流方 波;其逆变桥各臂都要反并联 二极管。 13、SPWM 的全部中文意思是正弦脉冲宽度调制,这种技术可以控制输出交流的大小;产 生SPWM 波的模拟法用自然采样法。而计算机则采用规则采样法。 14、单端正激式DC/DC 变换电路要求在变压器上附加一个复位 绕组,构成磁复位 电路; 反激式DC/DC 变换电路与Buck-Boost 直流斩波器类似。 15、肖特基二极管具有工作频率高 ,耐压低 的应用特点。肖特基二极管具有反向恢复时间短,正向压降小,耐压低,效率高等特点。 16、GTR 关断是工作点应在 截止 区,导通时工作点应在 饱和 区;它有可能因存在 二 次击穿而永久失效的缺陷。

电力电子技术第二章总结

2016 电力电子技术 作业:第二章总结 班级:XXXXXX学号:XXXXXXX姓名:XXXXXX

第二章电力电子器件总结 1.概述 不可控器件——电力二极管(Power Diode) GPD FRD SBD 半控型器件——晶闸管(Thyristor) FST TRIAC LTT 典型全控型器件GTO GTR MOSFET IGBT 其他新型电力电子器件MCT SIT SITH IGCT 功率集成电路与集成电力电子模块HVIC SPIC IPM 1.1相关概念 主电路(Main Power Circuit):在电气设备或电力系统中,直接承担电能的变换或控制任务的电路? 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件? 1.2特点 电功率大,一般都远大于处理信息的电子器件? 一般都工作在开关状态? 由信息电子电路来控制,而且需要驱动电路(主要对控制信号进行放大)? 功率损耗大,工作时一般都需要安装散热器? 通态损耗,断态损耗,开关损耗(开通损耗关断损耗) 开关频率较高时,可能成为器件功率损耗的主要因素? 电力电子器件在实际应用中的系统组成 一般是由控制电路?驱动电路和以电力电子器件为核心的主电路组成一个系统? 关键词电力电子系统电气隔离检测电路保护电路三个端子 1.3电力电子器件的分类 按能够被控制电路信号控制的程度不同可分为半控型器件(开通可控,关断不可控) 全控型器件(开通,关断都可控) 不可控器件(开通,关断都不可控) 按照驱动信号的性质不同可分为电流驱动型电压驱动型 按照驱动信号的波形(电力二极管除外)不同可分为脉冲触发型电平控制型 按照载流子参与导电的情况不同可分为单极型器件(由一种载流子参与导电) 双极型器件(由电子和空穴两种载流子参与导电)复合型器件(由单极型器件和双极型器件集成混合而成,也称混合型器件) 关键词控制的程度驱动信号的性质?波形载流子参与导电的情况工作原理基本特性主要参数2不可控器件——电力二极管(Power Diode) 2.1结构与工作原理 电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的? PN节(PN junction):采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结? N型半导体(N为Negative的字头,由于电子带负电荷而得此名):即自由电子浓度远大于空穴浓度的杂质半导体? P型半导体(P为Positive的字头,由于空穴带正电而得此名):即空穴浓度远大于自由电子浓度的杂质半导体? 正向电流IF :当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流? 反向截止状态:当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过的状态? 反向击穿:PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN 结反向偏置为截止的工作状态?雪崩击穿齐纳击穿(可以恢复) 热击穿(不可恢复) P-i-N结构

电力电子器件项目年终总结报告

电力电子器件项目年终总结报告 一、电力电子器件宏观环境分析 二、2018年度经营情况总结 三、存在的问题及改进措施 四、2019主要经营目标 五、重点工作安排 六、总结及展望

尊敬的xxx公司领导: 近年来,公司牢固树立“创新、协调、绿色、开放、共享”的发 展理念,以提高发展质量和效益为中心,加快形成引领经济发展新常 态的体制机制和发展方式,统筹推进企业可持续发展,全面推进开放 内涵式发展,加快现代化、国际化进程,建设行业领先标杆。 初步统计,2018年xxx公司实现营业收入31492.12万元,同比增长19.37%。其中,主营业业务电力电子器件生产及销售收入为 29703.25万元,占营业总收入的94.32%。 一、电力电子器件宏观环境分析 (一)中国制造2025 “高质量发展”是十九大报告、中央经济工作会议的高频词,今 年两会首次写进政府工作报告。高质量发展是我国发展阶段的里程碑,也是今后相当长时期要遵循的中国发展道路和建设现代化国家目标。 工业是立市治本,强市之基,当前我市工业发展处于工业化起步阶段,推进工业高质量发展是我市实现跨越发展必然趋势,也是关键路径, 是全市经济高质量发展的重大举措。 (二)工业绿色发展规划

工业生产是物质财富的主要来源,工业化是现代国家不可逾越的 发展阶段。必须认识到,人类的工业化进程对生态环境造成了损害, 但历史和辩证地看,工业生产的创造性与污染排放破坏性之间的矛盾,正是工业活动持续改善人类生存境况的内在动力机制。鼓励企业推行 绿色设计,按照全生命周期的理念,在产品设计开发阶段系统考虑原 材料选用、生产、销售、使用、回收、处理等各个环节对资源环境造 成的影响,实现产品对能源资源消耗最低化、生态环境影响最小化、 可再生率最大化。重点在建材、陶瓷、新材料、节能环保、轻工、纺织、食品等产业领域,选择量大面广、与消费者紧密相关、条件成熟 的产品开展绿色设计产品创建工作。应用产品轻量化、模块化、集成化、智能化等绿色设计共性技术,采用高性能、轻量化、绿色环保的 新材料,开发具有无害化、节能、环保、高可靠性、长寿命和易回收 等特性的绿色产品。 (三)xxx十三五发展规划 未来5年,是全球新一轮科技革命和产业变革从蓄势待发到群体 迸发的关键时期。信息革命进程持续快速演进,物联网、云计算、大 数据、人工智能等技术广泛渗透于经济社会各个领域,信息经济繁荣 程度成为国家实力的重要标志。增材制造(3D打印)、机器人与智能

电力电子实训心得体会

电力电子技术实验总结 随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。电力电子技术横跨电力、电子和控制三个领域,是现代电子技术的基础之一,是弱电子对强电力实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、交通、能源和人民生活的各个领域,有着极其广阔的应用前景,成为电气工程中的基础电子技术。 本学期实验课程共进行了四个实验。包括单结晶体管触发电路实验,单相半波整流电路实验,三相半波有源逆变电路实验,单相交流调压电路实验. 单结晶体管触发电路实验 实验目的 (1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。 (2)掌握单结晶体管触发电路的基本调试步骤。 实验线路及原理单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和rc充放电特性,可组成频率可调的自激振荡电路。v6为单结晶体管,其常用型号有 bt33和bt35两种,由等效电阻v5和c1组成rc充电回路,由c1-v6-脉冲变压器原边组成电容放电回路,调节rp1电位器即可改变c1充电回路中的等效电阻,即改变电路的充电时间。由同步变压器副边输出60v的交流同步电压,经vd1半波整流,再由稳压管v1、v2 进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过r7及等效可变电阻v5向电容c1充电,当充电电压达到单结晶体管的峰值电压up时,v6导通,电容通过脉冲变压器原边迅速放电,同时脉冲变压器副边输出触发脉冲;同时由于放电时间常数很小,c1两端的电压很快下降到单结晶体管的谷点电压uv,使得v6重新关断,c1再次被充电,周而复始,就会在电容c1两端呈现锯齿波形,在每次v6导通的时刻,均在脉冲变压器副边输出触发脉冲;在一个梯形波周期内,v6可能导通、关断多次,但对晶闸管而言只有第一个输出脉冲起作用。电容c1的充电时间常数由等效电阻等决定,调节rp1电位器改变c1的充电时间,控制第一个有效触发脉冲的出现时刻,从而实现移相控制。 实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察。 单相半波整流电路实验 实验目的 1、熟悉强电实验的操作规程; 2、进一步了解晶闸管的工作原理; 3、掌握单相半波可控整流电路的工作原理。 4、了解不同负载下单相半波可控整流电路的工作情况。 实验原理 1、晶闸管的工作原理晶闸管的双晶体管模型和内部结构如下:晶闸管在正常工作时,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降 到接近于零的某一数值一下。 2.单相半波可控整流电路(电阻性负载) 2.1电路结构若用晶闸管t替代单相半波整流电路中的二极管d,就可以得到单相半波可控整流电路的主电路。变压器副边电压u2为50hz正弦波,负载 rl为电阻性负载。 三相半波有源逆变电路实验 实验目的 1、掌握三相半波有源逆变电路的工作原理,验证可控整流电路在有源逆变时的工作条件,并比较与整流工作时的区别。

电力电子技术总结完整版

电力电子技术总结 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。 2、电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。 3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制方式,简称相控方式。 4、70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。 5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。 6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路(PIC)。 第二章 1、电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制 ,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器

2、电力电子器件的功率损耗 3、电力电子器件的分类 (1)按照能够被控制电路信号所控制的程度 ◆半控型器件:主要是指晶闸管(Thyristor )及其大部分派生器件。 器件的关断完全是由其在主电路中承受的电压和电流决定的。 ◆全控型器件:目前最常用的是 IGBT 和Power MOSFET 。 通过控制信号既可以控制其导通,又可以控制其关断。 ◆不可控器件: 电力二极管(Power Diode ) 不能用控制信号来控制其通断。 (2)按照驱动信号的性质 ◆电流驱动型 :通过从控制端注入或者抽出电流来实现导通或者关断的控制。 ◆电压驱动型 通态损耗 断态损耗 开关损耗 开通损耗 关断损耗

电力电子技术复习总结(王兆安)

电力电子技术复习题1 第1章电力电子器件 1.电力电子器件一般工作在__开关__状态。 2.在通常情况下,电力电子器件功率损耗主要为__通态损耗__,而当器件开关频率较高时,功率损耗主要为__开关损耗__。 3.电力电子器件组成的系统,一般由__控制电路__、_驱动电路_、 _主电路_三部分组成,由于电路中存在电压和电流的过冲,往往需添加_保护电路__。 4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型器件_ 、 _双极型器件_ 、_复合型器件_三类。 5.电力二极管的工作特性可概括为_承受正向电压导通,承受反相电压截止_。 6.电力二极管的主要类型有_普通二极管_、_快恢复二极管_、 _肖特基二极管_。 7.肖特基二极管的开关损耗_小于_快恢复二极管的开关损耗。 8.晶闸管的基本工作特性可概括为 __正向电压门极有触发则导通、反向电压则截止__ 。 9.对同一晶闸管,维持电流IH与擎住电流I L在数值大小上有I L__大于__IH。 10.晶闸管断态不重复电压UDSM与转折电压Ubo数值大小上应为,UDSM_大于__Ubo。 11.逆导晶闸管是将_二极管_与晶闸管_反并联_(如何连接)在同一管芯上的功率集成器件。 12.GTO的__多元集成__结构是为了便于实现门极控制关断而设计的。 13.MOSFET的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的_截止区_、前者的饱和区对应后者的__放大区__、前者的非饱和区对应后者的_饱和区__。 14.电力MOSFET的通态电阻具有__正__温度系数。 15.IGBT 的开启电压UGE(th)随温度升高而_略有下降__,开关速度__小于__电力MOSFET 。 16.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为_电压驱动型_和_电流驱动型_两类。 17.IGBT的通态压降在1/2或1/3额定电流以下区段具有__负___温度系数,在1/2或1/3额定电流以上区段具有__正___温度系数。

电力电子器件总结

电力电子器件总结: 名称优缺点应用 场合 电力二极管整流二极管优:结构简单、工作可靠 ` 缺:不可控 整流,续 流,电压 隔离、钳 位或保护SBD(肖特基) FRD(快恢复 SCR 晶闸管可控硅FST(快速)优:承受电压和电流容量在所有器件中最高 缺:半控 | TRIAC(双向) RCT(逆向) LTT(光控) 电力MOSFET(单极型) (Metal-Oxide-Semiconductor Field-Effect Transistor) 金属-氧化物-半导体-场效应晶体管% 优:开关速度快(利用电场感应控制反型层导电 沟道,不存在正偏PN结所固有的载流子存储效 应),输入阻抗高,热稳定性好,所需驱动功率 小且驱动电路简单,工作频率高,不存在二次击 穿问题。 缺:电流容量小,耐压低。 一般只适 用于功率 不超过 10kW的 电力电子 装置 GTO(双极型)优点:电压、电流容量大,适用于大功率场合, 具有电导调制效应,其通流能力很强; 缺:电流关断增益很小,关断时门极负脉冲电流 大,开关速度低,驱动功率大,驱动电路复杂, 开关频率低兆瓦以上的大功率 … GTR(双极型)电力二极管优:耐压高,电流大,开关特性好,通流能力 强,饱和压降低; 缺:开关速度低,为电流驱动,所需驱动功率 大,驱动电路复杂,存在二次击穿问题 基本淘汰 IGBT(混合型) 《 绝缘栅门极晶体管(Insulated- Gate Bipolar Translator) 结合了GTR和MOSFET的优点优:开关速度高,开关损耗小,具有耐脉冲电流 冲击的能力,通态压降较低,输入阻抗高,为电 压驱动,驱动功率小 缺:开关速度低于电力MOSFET,电压,电流容量 不及GTO 广泛应 用,指望 一统天下 (主要兆 瓦以下) 几种不可替代的场合: FRD(Fast Recovery Diode)在中、高频整流和逆变; SBD(Schottky Barrier Diode)在低压高频整流;(开关速度非常快,开关损耗也特别小,耐压比较低) LTT(Light Triggered Thyristor)高电压大功率;(光触发保证住电路与控制电路之间的绝缘和电气隔离,可以避免电磁干扰的影响) GTO(Gate-Turn-Off Thyristor)兆瓦以上的大功率。

变频器常用电力电子器件

无锡市技工院校 教案首页 课题:变频器常用电力电子器件 教学目的要求:1. 了解变频器中常用电力电子器件的外形和符号2.了解相关电力电子器件的特性 教学重点、难点: 重点:1. 认识变频器中常用电力电子器件 2. 常用电力电气器件的符号及特性 难点:常用电力电气器件的特性 授课方法:讲授、分析、图示 教学参考及教具(含多媒体教学设备): 《变频器原理及应用》机械工业出版社王延才主编 授课执行情况及分析: 在授课中,主要从外形结构、符号、特性等几方面对变频器中常用的电力电子器件进行介绍。通过本次课的学习,大部分学生已对常用电力电子器件有了一定的认识,达到了预定的教学目标。

板书设计或授课提纲

电力二极管的内部也是一个PN 结,其面积较大,电力二极管引出了两个极,分别称为阳和阴极K 。电力二极管的功耗较大,它的外形有螺旋式和平板式两种。2.伏安特性:电力二极管的阳极和阴极间的电压和流过管子的电流之间的关系称为伏安特性。 如果对反向电压不加限制的话,二极管将被击穿而损坏。(1)正向特性:电压时,开始阳极电流很小,这一段特性 曲线很靠近横坐标。当正向电压大于时,正向阳极电流急剧上升,管子正向导 通。如果电路中不接限流元件,二极管将 被烧毁。

晶闸管的种类很多,从外形上看主要由螺栓形和平板形两种,螺栓式晶闸管容量一般为10~200A;平板式晶闸管用于200A3个引出端分别叫做阳极A、阴极 控制极。 结构 晶闸管是四层((P1N1P2N2)三端(A、K、G)器件。 晶闸管的导通和阻断控制 导通控制:在晶闸管的阳极A和阴极K间加正向电压,同时在它的门极 正向触发电压,且有足够的门极电流。 晶闸管一旦导通,门极即失去控制作用,因此门极所加的触发电压一般为脉冲电压。 管从阻断变为导通的过程称为触发导通。门极触发电流一般只有几十毫安到几百毫安, 管导通后,从阳极到阴极可以通过几百、几千安的电流。要使导通的晶闸管阻断,必须将阳极电流降低到一个称为维持电流的临界极限值以下。 三、门极可关断晶闸管(GTO) 门极可关断晶闸管,具有普通晶闸管的全部优点,如耐压高、电流大、控制功率大、使用方便和价格低;但它具有自关断能力,属于全控器件。在质量、效率及可靠性方面有着明显的优势,成为被广泛应用的自关断器件之一。 结构:与普通晶闸管相似,也为PNPN四层半导体结构、三端(阳极 )器件。 门极控制 GTO的触发导通过程与普通晶闸管相似,关断则完全不同,GTO 动电路从门极抽出P2基区的存储电荷,门极负电压越大,关断的越快。 四、电力晶体管(GTR) 电力晶体管通常又称双极型晶体管(BJT),是一种大功率高反压晶体管,具有自关断能力,并有开关时间短、饱和压降低和安全工作区宽等优点。它被广泛用于交直流电机调速、中频电源等电力变流装置中,属于全控型器件。 工作原理与普通中、小功率晶体管相似,但主要工作在开关状态, 承受的电压和电流数值较大。 五、电力MOS场效应晶体管(P-MOSFET) 电力MOS场效应晶体管是对功率小的电力MOSFET的工艺结构进行改进,在功率上有

电力电子技术总结报告

《电力电子应用设计》课程学习总结报告 14001203nn 马云1.理论方面: 本课程主要以人造金刚石液压机合成加热调功控制系统为案例,主要学习了单相交流调压电路、触发脉冲发生电路、电压检测电路、电流检测转换电路、相位失衡检测电路、相位失衡保护电路、过压-过流保护电路、电源电路、比较与比例-积分电路等。 我们先将总图分解成三个部分,我所负责的是触发脉冲发生电路和电压检测电路(总图的左上方部分),我先通过DXP软件画出这两个电路的原理图,再通过SIM软件对触发脉冲发生电路和电压检测电路进行仿真,确认无误后用DXP开始PCB图的绘制,因为实际原因(铜板的大小)尽量将元器件安排的紧凑一些,最后将各个成员的PCB图汇总。打印出PCB图后去实验室进行板子的印刷、腐蚀、打孔、焊接,最后用实验室的仪器进行调试。 1.1 主电路及其工作原理 在电路中,要使晶闸管正常导通,必须同时满足下面两个条件: (1)阳极对阴极加正向电压; (2)控制极对阴极加正向电压(或正向脉冲)。 而且,晶闸管还有一个重要特点,就是它一旦导通后控制极即失去控制作用,器件始终处于导通状态,除非阳极对阴极电压降低到很小,致使阳极电流降到某一数值之下。 1.2 闭环控制系统主回路及其工作原理 1.3 电源电路及其工作原理 本系统电路工作需要的电源有5V、15V两个

1.3.1 正、负15V电路及其工作原理 桥式整流:用4个二极管组成的桥式整流电路可以使用只有单个次级线圈的变压器。负载上的电流波形和输出电压值与全波整流电路相同。 7815、7915芯片:7815、7915是一种三端正稳压器电路,TO-220F封装,能提供多种固定的输出电压,应用范围广,内含过流、过热和过载保护电路。 芯片前面两个电容成缓冲,后面两个芯片起滤波作用,使电压更稳定,二级管指示作用。 1.3.2正5V电路及其工作原理 桥式整流:用4个二极管组成的桥式整流电路可以使用只有单个次级线圈的变压器。负载上的电流波形和输出电压值与全波整流电路相同。 集成稳压器7805;固定式的三端继承稳压器,它可以在满足一定条件下输出5V电压。 C1、C2分别为输入端和输出端滤波电容。 1.4 保护电路工作原理 1.4.1 相位失衡保护电路及其工作原理 通过LM324运算放大器将电路中的运算信号放大进入到“或”非门和“与”非门中进行比较来判断主电路相位是否失衡。 1.4.2 电压检测与过电压保护电路及其工作原理 电压检测电路:LM324和周围几个电阻组成一个放大运算器用于检测电压。 过电压保护电路:电压通过LM324放大再通过与非门和或非门进行比较,当电压过大时断开电路。 1.4.3 电流检测与过电流保护电路及其工作原理 过电流保护电路:电压通过LM324放大再产生电流再通过与非门和或非门进行比较,当电过大时断开电路。 2.电路仿真 运用SIM软件进行仿真。 1、建立仿真文件。 2、绘制原理图。 3、原理图仿真。(一、放置探针。二、仿真设置。三、RUN。)

电力电子元件简介

電力電子元件簡介
Introduction to Power Electronic Devices
C. M. Liaw Department of Electrical Engineering National Tsing Hua University Hsinchu, Taiwan, ROC.
兩段式電熱控制
(應用 Power diode)
AC source Power diode AC source
Load
無段式電熱控制 (應用 SCR)
SCR
P
Load
Firing circuit
Diode: Uncontrolled turn-on and turn-off
SCR: Controlled turn-on and uncontrolled turn-off
不可控制交流輸出電壓 故控制性能較差
可控制交流輸出電壓 故控制性能較佳
Page 1

常用功率半導體元件之額定(表二) Voltage/current ratings Switching frequency (speed) Switching time On-state resistance (or on-state voltage/current)
功率半導體元件 功率半導體元件
(A) 閘流體 (Thyristor) 或矽控整流器 (Silicon Controlled Rectifier, SCR) : Controlled turn-on, uncontrolled turn-off (B) 雙向閘流體 (Bidirectional Thyristor 或 TRIAC) (C) GTO (Gate Turn-off Thysistor) (D) 基體閘換向閘流體 (Integrated Gate-Commutated Thyristor, IGCT): It is introduced by ABB in 1997. It is a high-voltage, hard-driven, asymmetrical-blocking GTO with unity gain. The gate drive circuit is built-in on the device module. (E) 功率電晶體 (Power BJT) : Current control device (F) IGBT (Insulated Gate Bipolar Transistor): - Combines the conduction characteristic of BJT and the control characteristic of the MOSFET (G) MOS控制閘流體 (MOS -controlled Thyristor, MCT): - Combines the load characteristic of the thyristor and the control characteristic of the MOSFET - Low on-state voltage (H) 功率金氧半電晶體 (Power MOSFET) : Voltage control device (I) 其它
耐壓 耐流
操作 速度
Page 2

电力电子技术总结

第二章电力电子器件 1 .通态损耗是电力电子器件功率损耗的主要成因。 2.电力电子器件在实际应用中,一般是由控制电路,驱动电路,和以电力电子器件为核心的主电路组成一个系统。 3.按照电力电子器件能够被控制电路信号所控制程度,可以将电力电子器件分为以下三类: ①通过控制信号可以控制其导通而不能控制其关断的电力电子器件被称为半控型器件。这类器件主要指晶闸管及其大部分派生器件,器件的关断完全是由其在主电路中承受的电压和电流决定的。 ②通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件被称为全控型器件。目前最常用的是:绝缘栅双极晶体管( IGBT)和电力场效应晶体管(电力MOSFET)。 ③也有不能用控制信号来控制其通断的电力电子器件,因此也就不需要驱动电路,这就是电力二极管,又被称为不可控器件。 4. 按照驱动电路加在电力电子器件控制端和公共端之间的信号的性质,可以将电力电子器件(二极管除外)分为电流驱动型和电压驱动型两类。 5. 根据驱动电路加在电力电子器件控制端和公共端之间有效信号波形,又可将电力电子器件(电力二极管除外)分为脉冲触发型和电平触发型两类。 6. 此外,电力电子器件还可以按照器件内部电子和空穴两种载流子参与导电的情况分为单极型器件,双极型器件和复合型器件。 7.电力二极管的主要参数:正向平均电流 I F( AV ),正向压降 U F,反向重复峰值电压 U RRM,最高工作结温 T JM,反向恢复时间 t rr,浪涌电流 I FSM 8.晶闸管正常工作时特性如下: ①当晶闸管承受反向电压时,无论门极是否有触发电流,晶闸管都不会导通。 ②当晶闸管承受正向电压时,仅在门极有触发电流的情况下,晶闸管才能导通。 ③晶闸管一旦导通,门极就失去控制作用,无论门极触发电流是否还存在,晶闸管都保持导通。 ④若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。

典型全控型电力电子器件.docx

湖南省技工学校 理论教学教案 教师姓名: 注:教案首页,教案用纸由学校另行准备湖南省劳动厅编制

[复习导入] 门极可关断晶闸管——在晶闸管问世后不久出现。 全控型电力电子器件的典型代表——门极可关断晶闸管、电力 晶体管、电力场效应晶体 管、绝缘栅双极晶体管。 [讲授新课] 一、门极可关断晶闸管 晶闸管的一种派生器件。可以通过在门极施加负的脉冲电流使其关断。 GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上 的大功率场合仍 有较多的应用。 1)GTO的结构和工作原理 与普通晶闸管的相同点: PNPN四层半导体结构,外部引出阳极、阴极 和门极。和普通晶闸管的不同点:GTO是一种多元的功率集成器件。 工作原理:与普通晶闸管一样,可以用图所示的双晶体管模型来分析。 由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流 增益α1和α2 。 α1+α2=1是器件临界导通的条件。 GTO的关断过程与普通晶闸管不同。关断时,给门极加负脉冲,产生门 极电流-I G,此电流使得V1管的集电极电流I Cl被分流,V2管的基极电流 I B2减小,从而使I C2和I K减小,I C2的减小进一步引起I A和I C1减小, 又进一步使V2的基极电流减小,形成内部强烈的正反馈,最终导致GTO阳 极电流减小到维持电流以下,GTO由通态转入断态。 结论: ?GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。 ?GTO关断过程中有强烈正反馈使器件退出饱和而关断。 ?多元集成结构还使GTO比普通晶闸管开通过程快,承受d i/d t能力 强。 2)GTO的动态特性 益阳高级技工学校

电力电子知识点总结

电力电子知识点总结 导语电力电子是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,已成为现代电气工程与自动化专业不可缺少的一门专业基础课,在培养本专业人才中占有重要地位。以下是小编整理电力电子知识点总结的资料,欢迎阅读参考。 1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类 交流变直流AC-DC:整流 直流变交流DC-AC:逆变 直流变直流DC-DC:一般通过直流斩波电路实现,也叫斩波电路 交流变交流AC-AC:可以是电压或电力的变换,一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术。 4、相控方式;对晶闸管的电路的控制方式主要是相控方式 5、斩空方式:与晶闸管电路的相位控制方式对应,采用全空性器件的电路的主要控制方式为脉冲宽度调制方式。

相对于相控方式可称之为斩空方式。 1 电力电子器件与主电路的关系 主电路:电力电子系统中指能够直接承担电能变换或控制任务的电路。 电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。广义可分为电真空器件和半导体器件。 2 电力电子器件一般特征:1、处理的电功率小至毫瓦级大至兆瓦级。2、都工作于开关状态,以减小本身损耗。3、由电力电子电路来控制。4、安有散热器 3 电力电子系统基本组成与工作原理 一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。 检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。 控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。 同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。 4 电力电子器件的分类 根据控制信号所控制的程度分类 半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。 全控型器件:通过控制信号既可以控制其导通,又可以

常用电力电子器件

第5章 常用电力电子器件 在开关电源中,电力电子器件是完成电能转换以及主电路拓扑中最为关键的元件。为降低器件的功率损耗,提高效率,电力电子器件通常工作于开关状态,因此又常称为开关器件。电力电子器件种类很多,按照器件能够被控制电路信号所控制的程度,可以将电力电子器件分为①不可控器件,即二极管;②半控型器件,主要包括晶闸管(SCR)及其派生器件;③全控型器件,主要包括绝缘栅双极型晶体管(IGBT)、电力晶体管(GTR)、电力场效应晶体管(电力MOSFET)等。半控型及全控型器件按照驱动方式又可以分为电压驱动型、电流驱动型两类,上述分类见图5-1。 电力电子器件 不可控器件 二极管半控型器件 SCR 全控型器件 IGBT 电力MOSFET GTR GTO 晶闸管 电力电子器件 电压驱动型 电流驱动型 电力MOSFET IGBT SCR GTO 晶闸管GTR 图5-1电力电子器件的分类 随着半导体材料及技术的发展,新型电力电子器件不断推出,传统电力电子器件的性能也不断提高,这成为包括开关电源在内的各种电力电子装置的体积、效率等性能指标不断提高的重要因素。了解和掌握各种电力电子器件的特性和使用方法是正确设计开关电源的基础。 在开关电源中应用的电力电子器件主要为二极管、IGBT 和MOSFET 。SCR 在开关电源的输入整流电路及其软起动中有少量应用,GTR 由于驱动较为困难、开关频率较低,也逐渐被IGBT 和MOSFET 所取代。因此这里将主要介绍二极管、IGBT 和MOSFET 的工作原理,主要参数及驱动方法。 5. 1二极管 二极管是最为简单但又是十分重要的一种电力电子器件,在开关电源的输入整流电路、逆变电路、输出高频整流电路以及缓冲电路中均有使用。 1、二极管的基本结构及工作原理 开关电源中应用的二极管除电压、电流等参数与电子电路中的二极管有较大差别外,其基本结构和工作原理是相同的,都是由半导体PN 结构成,即P 型半导体与N 型半导体结合构成,其结构见图5-2。 P 型半导体是在半导体中添加三价元素,因此硅原子外层缺少一个电子形成稳定结构,即形成空穴。N 型半导体是在半导体中添加五价元素,因此它在形成稳定结构后,半导体晶体中能给出一个多余的电子。在纯净的半导体中,空穴和电子成对出现,数量极少,所以导电能力很差。而P 型或N 型半导体中的空穴或自由电子数量大大增加,导电能力大大增强。在P 型半导体中空穴数远远大于自由电子数,因此空穴称为多子,自由电子称为少子。在N 型半导体中则相反,空穴为少子,自由电子为多子。

相关文档
最新文档