生化名词解释 (4)
生化名词解释
生化名词解释生化学是一门研究生物体内化学物质的组成、结构、性质、合成机制及其在维持生命活动中的作用的科学。
下面将解释一些常见的生化学术语。
1. 蛋白质:蛋白质是生命体内最重要的大分子有机化合物之一,由氨基酸残基通过肽键连接而成。
蛋白质在细胞中担任结构、酶、传递信号等多个功能。
2. 核酸:核酸是生物体内存储遗传信息的分子。
主要包括DNA(脱氧核糖核酸)和RNA(核糖核酸),分子内由核苷酸组成。
DNA负责储存基因信息,而RNA参与基因的表达和蛋白质合成。
3. 碳水化合物:碳水化合物是由碳、氢和氧元素组成的有机化合物,是生物体内的主要能量来源。
分为单糖(如葡萄糖)、双糖(如蔗糖)和多糖(如淀粉)等多个类别。
4. 脂质:脂质是生物体内的一类有机化合物,具有疏水性。
主要包括脂肪、磷脂和类固醇等。
脂质参与细胞膜的组成、能量储存和信号传递等生物过程。
5. 酶:酶是一类能够加速生物体内化学反应速率的蛋白质。
酶可以催化分解物质或促进合成物质,并在许多生物过程中发挥关键的催化作用。
6. 细胞膜:细胞膜是细胞外界和细胞内的分界线,由脂质分子和蛋白质分子组成的薄膜结构。
细胞膜对物质的进出和细胞内外信息的传递起着重要作用。
7. 代谢:代谢是生物体内发生的所有化学反应的总称。
包括能量代谢、物质代谢和调节代谢等过程。
代谢维持生命活动的进行,确保细胞和有机体正常运转。
8. 免疫系统:免疫系统是生物体内一套用于抵抗外来病原体(如细菌、病毒等)侵袭的防御系统。
免疫系统由免疫细胞和分子组成,通过识别和消灭病原体保护身体免受疾病的侵害。
9. 基因:基因是携带遗传信息的DNA的片段,是编码蛋白质的功能性单位。
基因决定了生物体的遗传特征和生命活动的表型。
10. 遗传:遗传是生物体基因信息在后代间传递的过程。
遗传通过基因的遗传变异和遗传性状的表达传递生命的多样性。
以上只是一些生化学中常见的术语解释,生化学是一门非常广泛和复杂的科学领域,涉及到的概念和理论非常丰富,需要深入学习和研究。
生化名词解释
生化名词解释一.名词解释1. Tm(解链温度):当核酸分子加热变性时,其在260nm处的紫外吸收会急剧增加,当紫外吸收达到最大变化的半数值时,此时对应的温度称为溶解温度,用Tm表示。
热变性的DNA解链到50%时的温度。
2. 增色效应:DNA变性时,其溶液A260增高的现象。
3. 退火:热变性的DNA经缓慢冷却后即可复性,这一过程称为~。
4. 核酸分子杂交:这种杂化双链可以在不同的DNA单链之间形成,也可以在不同的RNA单链形成,甚至还可以在DNA单链和RNA单链之间形成,这一现象叫做核酸分杂交。
5. DNA复性:当变性条件缓慢去除后,两条解链的互补链可以重新配对,恢复到原来的双螺旋结构。
这一现象称为DNA复性。
6. Chargaff规则:包括 [A] = [T],[G] = [C];不同生物种属的DNA的碱基组成不同;同一个体的不同器官或组织的DNA碱基组成相同。
7. DNA的变性: 在某些理化因素作用下,DNA双链解开成两条单链的过程。
8. 核酸酶:所有可以水解核酸的酶。
9. 糖酵解:在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(glycol sis),亦称糖的无氧氧化 10. 糖异生:是指从非糖化合物转变为葡萄糖或糖原的过程。
11. 丙酮酸羧化支路:糖异生过程中为绕过糖酵解途径中丙酮酸激酶所催化的不可逆反应,丙酮酸需经丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶作用而生成丙酮酸的过程称为~。
12. 乳酸循环(Cori循环):肌收缩(尤其是供氧不足时)通过糖酵解生成乳酸。
肌内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。
葡萄糖释入血液后又可被肌摄取,这就构成了一个循环,此循环称为~,也称Cori 循环。
13. 糖原合成:指由葡萄糖合成糖原的过程。
14. 糖原分解:习惯上指肝糖原分解成为葡萄糖的过程。
15. 血糖:血液中的葡萄糖。
生化名词解释
第一章1、等电点(isoelectric point):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
2、肽(peptide):是由氨基酸通过肽键缩合而形成的化合物。
3、肽键(peptide bond):是由一个氨基酸的 -羧基与另一个氨基酸的 -氨基脱水缩合而形成的化学键。
4、氨基酸的理化性质:氨基酸具有两性解离的性质;含共轭双键的氨基酸具有紫外线吸收的性质。
5、蛋白质(protein):是由许多氨基酸(amino acids)通过肽键(peptide bond)相连形成的高分子含氮化合物,是生命的物质基础。
6、蛋白质的理化性质:两性解离性质;胶体的性质;蛋白质空间结构破坏而引起变形;蛋白质的紫外线吸收的性质;蛋白质的呈色反应(茚三酮反应,双缩脲反应)7、肽单元:参与肽键的6个原子Cα1,C、O、N、H、Cα2位于同一平面,此同一平面上的6个原子构成肽单元。
8、模体:是蛋白子分子中具有特定空间构象和特定功能的结构成分。
一个模体有其特征性的氨基酸序列,并发挥特殊的功能。
9、结构域:分子量较大的蛋白质常可折叠成多个结构较为紧密且稳定的区域,并各行其功能。
结构域是在三级结构层次上的独立功能区。
10、蛋白质的一级结构:蛋白质分子从N-端至C-端所有氨基酸的排列顺序,并且包括二硫键的位置。
11、蛋白质的二级结构:蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,不涉及氨基酸残基侧链的构象。
12、蛋白质的三级结构:是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
三级结构是在二级结构的基础上形成的进一步卷曲或折叠的状态。
13、蛋白质的四级结构:是指蛋白质分子中各个亚基之间的空间排布及亚基亚基接触部位的布局和相互作用。
14、蛋白质变性:在一些理化因素的作用下,蛋白质的特定的空间构象被破坏,从而导致其理化性质改变和生物学活性丧失。
生化名词解释
1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。
2.氨基酸的等电点:在某一PH条件下,使氨基酸的正离子浓度与负离子浓度相等时,此时溶液的PH称为该氨基酸的等电点,用pI表示。
3.蛋白质的一级结构:指蛋白质中共价连接的氨基酸残基的排列顺序。
4.蛋白质二级结构: 在蛋白质分子中的局部区域内氨基酸残基的有规则的排列,常见的二级结构有α-螺旋和β-折叠。
二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。
5.蛋白质三级结构: 蛋白质分子处于它的天然折叠状态的三维构象。
三级结构是在二级结构的基础上进一步盘绕、折叠形成的。
三级结构主要是靠氨基酸侧链之间的疏水相互作用、氢键范德华力和盐键(静电作用力)维持的。
6.蛋白质四级结构: 多亚基蛋白质的三维结构。
实际上是具有三级结构的多肽链(亚基)以适当方式聚合所呈现出的三维结构。
7.超二级结构:也称之基元(motif)。
在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成的有规则、在空间上能辨认的二级结构组合体。
8.蛋白质变性:生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。
蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。
9.复性:在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象10.蛋白质的沉淀:在外界因素的影响下,蛋白质分子失去水化膜或被中和其所带电荷导致溶解度降低从而使蛋白质不稳定而沉淀的现象。
11米氏常数(Km值):用Km值表示,是酶的一个重要参数。
Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。
米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。
12辅基:酶的辅因子或结合蛋白质的非蛋白部分与酶或蛋白质结合的非常紧密,用透析法不能除去。
生化名词解释
一、名词解释1.等电点: 对于某种氨基酸而言,当溶液在某一特定pH时,氨基酸以两性离子的形式存在,正电荷与负电荷数相等,净电荷,在直流电=电场中,既不向正极移动,也不向负极移动。
这时溶液的pH就是该氨基酸的等电点。
2.肽单位:蛋白质中肽键的C、N及其相连的4个原子共同组成肽单位。
3.结构域:球蛋白分子的一条多肽链中常常存在一些紧密的、相对独立的区域,称为结构域,它是在超二级结构的基础上形成的具有一定功能的结构单位。
4.酶活力:又称酶活性,是指酶催化化学反应的能力。
(用某一化学反应的速度表示)5.比活力:也称比活性,是指每毫克酶蛋白做具有的活力单位数。
比活力越高,纯度越高。
6.酶的活性中心:是酶分子上由催化基团和结合基团构成的一个微区。
7.酶原:酶的无活性前体。
8.同工酶:是指催化相同的化学反应,但酶蛋白的分子结构、理化性质和免疫性质不同的一组酶。
9.核酶:又称核酸类酶,是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。
10.核酸的变性:指碱基对之间的氢键断裂,双螺旋结构松开,称为两股单链的DNA分子。
11.核酸的复性:在适当的条件下,变性的DNA分开的两股单链又重新恢复成双螺旋结构,这个过程称为复性。
12.Tm:将50%的DNA分子发生变性时的温度称为中点解链温度或熔点温度(Tm)。
13.生物氧化:糖、脂肪和蛋白质等营养物质在细胞内氧化分解生成二氧化碳和水并释放能量的过程。
14.呼吸链:是氧化呼吸链的简称,又称电子传递链或电子传递系统,是指排列在线粒体内膜上的由多种脱氢酶以及氢和电子传递体组成的氧化还原体系。
15.底物水平磷酸化:营养物质在代谢过程中经过脱氢、脱氧、分子重排和烯醇化等反应,分子内的能力重新排布,形成了高能磷酸基团或高能键随后直接将高能磷酰基转移给ADP生成ATP;或将水解高能磷酸键释放的自由能用于ADP与无机磷酸反应(ATP+Pi)生成ATP,以这样的方式生成ATP的过程称为底物水平磷酸化。
生化名词解释
生物化学名词解释1.同功酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。
2.翻译:是在以rRNA和蛋白质组成的核糖核蛋白体上,以mRNA为模板,根据每三个相邻核苷酸决定一种氨基酸的三联体密码规则,由tRNA运送氨基酸,合成出具有特定氨基酸顺序的蛋白质肽链的过程。
3.DNA变性:指DNA双螺旋区的氢键断裂,变成单链并不涉及共价键的断裂。
4.半保留复制:双链DNA的复制方式,其中亲代链分离,每一子代DNA分子由一条亲代链和一条新合成的链组成。
5.β氧化:脂肪酸的β氧化作用是脂肪酸在一系列酶的作用下,在a-碳原子和β碳原子之间断裂,β碳原子氧化成羟基,生成含2个碳原子的乙酰CoA和比原来少2个的碳原子脂肪酸。
6.氧化磷酸化:电子沿呼吸链传递时,将释放出的自由能转移并使ADP磷酸化形成ATP,此过程称氧化磷酸化。
7.必需脂肪酸:为人体生长所必需的但又不能自身合成,必须从食物中摄取的脂肪酸。
Eg亚油酸、亚麻酸、花p生四烯酸。
8.密码子:存在于信使RNA中的三个相邻的核苷酸顺序,是蛋白质合成中某一特定氨基酸的密码单位。
密码子确定哪一种氨基酸参入蛋白质多肽链的特定位置上,共有64个密码子,其中61个是氨基酸密码子,3个终止密码子。
9.蛋白质一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。
10.戊糖磷酸途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路。
11.蛋白质二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。
12.米氏常数:用Km值表示,是酶的一个重要参数。
Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。
米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。
生化生物化学名词解释(4)重点知识总结
生化名解···吐血推荐1.肽键:是由一个氨基酸的a-羧基与另一个氨基酸的a-氨基脱水缩合而形成的化学键,本质为酰胺键。
2.等电点:在某一PH的溶液中,氨基酸解离成阳离子和阴离子的程度和趋势相等,成为兼性离子,呈电中性,此时溶液的PH称为等电点。
3.谷胱甘肽:是由谷氨酸、半胱氨酸、甘氨酸组成的三肽,谷胱甘肽的巯基具有还原性,可作为体内重要的还原剂,保护体内蛋白质或酶分子中巯基免遭氧化,使蛋白质或酶处于活性状态;谷胱甘肽的巯基还有嗜核特性,能与外源性致癌剂或药物结合,从而阻断这些化合物与DNA、RNA或蛋白质结合,保护机体免遭毒性作用。
4.模体:在蛋白质分子中,可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,并具有相应的功能,称为模体。
5.结构域:分子量较大的蛋白质常可折叠成多个结构较为紧密的区域,并各行其功能,称为结构域。
6.亚基:有些蛋白质分子含有两条或多条多肽链,每一条多肽链都有其完整的三级结构,称为蛋白质亚基。
7.蛋白质的变性:天然蛋白质在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,称为蛋白质的变性作用。
变性过程中二硫键及非共价键被破坏,而肽键不断裂,一级结构不变。
蛋白质变性后,溶解度降低、溶液的粘滞度增高、不容易结晶、易被酶消化。
8.盐析:是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和且水化膜被破坏,导致蛋白质在水溶液中的稳定性因素去除而沉淀。
9.DNA的变性和复性、Tm10.增色效应11.核小体11.核酸分子杂交12.酶的必需基团、活性中心13.酶原14.单纯酶:仅由氨基酸残基构成的酶。
脲酶、一些消化蛋白酶、淀粉酶、脂酶、核糖核酸酶等均属此列。
结合酶:由蛋白质部分和非蛋白质部分组成,前者称为酶蛋白,后者称为辅助因子。
辅助因子是金属离子和小分子有机化合物。
酶蛋白和辅助因子结合形成的复合物称为全酶,只有全酶才有催化作用。
生化名词解释
1.两性离子:氨基酸、蛋白质等分子既含有酸性基团,又含有碱性基团,在中性pH的水溶液中,羧基等酸性基团脱去质子带负电荷,氨基等碱性基团结合质子带正电荷,这种既有带负电荷基团,又有带正电荷基团的离子称兼性离子或两性离子。
2.等电点:调节(氨基酸、蛋白质等)溶液的pH,使该两性离子所带的净电荷为零,在电场中既不向正极,也不向负极移动,此时,溶液的pH称该两性离子的等电点(pI)。
3.构象:由于单键旋转所形成的不同空间结构称为构象,构象的改变不涉及到共价键的破裂和重新生成。
4.别构效应:多亚基蛋白质一般具有多个配体结合部位,结合在蛋白质分子的特定部位上的配体对该分子的其它部位所产生的影响(如改变亲和力或催化能力)称为别构效应。
5.超二级结构:在蛋白质中,特别是球状蛋白质中,经常可以看到由若干相邻的二级结构单远组合在一起,彼此相互作用,形成有规则、在空间上能辩认的二级结构组合体,充当三级结构的构件,称为超二级结构。
称为超二级结构在结构的组织层次上高于二级结构,但没有构成完整的结构域。
常见的超二级结构有αα,βαβ,Rossman折叠,β-发夹,β-曲折,希腊花式拓扑结构(Greek key topology)等。
6.结构域:蛋白质的三级结构常可区分成1个和数个球状区域,折叠得较为紧密,各行其功能,称为结构域。
7.分子伴侣:是一个协助新合成的多肽链正确折叠和转运的蛋白质家族。
它们能够阻止部分肽段的错误折叠,抑制新生肽链的不恰当聚集,排除与其他蛋白质的不合理结合,协助多肽链的正确折叠和跨膜转运,协助寡聚蛋白的组装。
8. Bohr效应:H+和CO2浓度增加,会降低氧和血红蛋白的亲和力,使得血红蛋白的氧合曲线向右移动,提高了O2从血红蛋白的释放量,这种作用称作Bohr效应。
9.Edman降解:为肽链氨基酸测序的方法。
异硫氰酸苯脂与肽段氨基末端的游离α-氨基作用,再用冷稀酸处理,氨基末端残基从肽链上脱落下来,成为异硫氰酸苯酯的衍生物,用层析的方法可鉴定为何种氨基酸的衍生物。
生化名词解释
1.肽平面:肽链主链的肽键C—N具有双键的性质,因而不能自由旋转,使连接在肽键上的六个原子共处于一个平面上,此平面称为肽平面。
2.蛋白质二级结构:指多肽链主链在一级结构的基础上进一步的盘旋或折叠,从而形成有规律的构象,如σ—螺旋、β—折叠、β—转角、无规卷曲等,这些结构又称为主链构象的结构单元。
维系二级结构的力是氢键。
二级结构不涉及氨基酸残基的侧链构象。
3.蛋白质一级结构:由氨基酸在多肽链中的数目、类型和顺序所描述的多肽链的基本结构。
它排除了除氨基酸σ—碳原子的构型以外的原子空间排列,同样的也排除了二硫键,所以不等于分子的共价结构。
4.蛋白质的变性作用:天然蛋白质分子受到某些物理、化学因素,如热、声、光、压、有机溶剂、酸、碱、脲、胍等的影响,生物活性丧失,溶解度下降,物理化学常数发生变化、这种过程称为蛋白质的变性作用,蛋白质变性作用的实质,就是蛋白质分子中次级键的破坏,而引起的天然构象被破坏,使有序的结构变成无序的分子形式。
蛋白质的变性作用只是三维构象的改变,而不涉及一级结构的改变。
5.DNA的二级结构:两条DNA单链通过碱基互补配对的原则,所形成的双螺旋结构称为DNA 的二级结构。
6.碱基配对规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G…C(或C…G)和A…T(或T…A)之间进行,这种碱基配对的规律就称为碱基配对规律(互补规律)。
7.Tm值:当核酸分子加热变性时,其在260nm处的紫外吸收会急剧增加,当紫外吸收变化达到最大变化的半数值时,此时所对应的温度称为熔解温度、变性温度或用Tm值表示。
8.分子杂交:当两条不同来源的DNA(或RNA)链或DNA链与RNA链之间存在互补顺序时,在一定条件下可以发生互补配对形成双螺旋分子,这种分子称为杂交分子。
形成杂交分子的过程称为分子杂交。
9.酶活力:也称酶活性,指酶催化一定化学反应的能力,可用在一定条件下,它所催化的某一化学反应的速度表示。
生化名词解释
名词解释1. 糖(carbohydrate ):糖是一类多元醇的醛衍生物或酮衍生物,包括多羟基醛、多羟基酮以及他们的缩聚物和衍生物。
单糖(monosaccharide):指不能再被水解为更简单的糖类的物质。
寡糖(oligosaccharide):由2-20个单糖脱水缩合生成的糖。
同聚多糖(Homopolysaccharide):由20个以上同种单糖或衍生物聚合而成的糖类。
多糖(polysaccharide)杂聚多糖(Heterpolysaccharide):由20个以上不同种单糖或衍生物聚合而成的糖类。
复合糖(glycoconjugate):是指糖和非糖物质共价结合形成的复合物。
2. 偏振面(plane of polarization):与平面偏振光震动的平面相垂直的面成为偏振面。
旋光性(optical activity):指某些物质能使平面偏振光的偏振面发生旋转的性质。
旋光物质(optically active forms):能使平面偏振光的偏振面发生旋转的物质。
又称旋光体。
比旋光度(specific rotation):旋光物质在一定条件下可以使平面偏振光旋转到一定的角度,称为比旋光度,又称旋光性、光学活性。
比旋光度可用[]tD α表示:[]100tD C L αα=⨯⨯其中,L 为光程,即旋光管的长度(dm );C 为质量浓度(g/dL );[]tD α是在以钠光灯为光源(成为D 线)、温度为t 的条件下实测的旋光度。
旋光异构(optical isomerism)&旋光异构体(optical isomers):由于不对称分子中原子或原子团在空间的不同排布对平面偏振光的偏振面发生不同的影响所引起的异构现象称为旋光异构,所产生的异构体称为旋光异构体。
变旋光现象(mutarotation):旋光度自行改变的现象称为变旋光现象。
3. 异头物(anomer)&异头碳(anomeric carbon):只是在羰基碳原子上构型不同的同分异构体称为异头物。
生化名词解释
5.转录因子:反式作用因子中,直接或间接结合RNA聚合酶的,则称为转录因子
6.拼板理论:少数几个反式作用因子(主要是可诱导因子和上游因子)之间互相作用,再与基本转录因子、RNA聚合酶搭配而有针对性地结合、转录相应的基因。可诱导因子和上游因子常常通过辅激活因子或中介子与基本转录因子、RNA聚合酶结合,但有时也可直接与基本转录因子、RNA聚合酶结合。
18.共价修饰:在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。
19.酶原:有些酶在细胞内合成或初分泌时只是酶的无活性前体,此前体物质称为酶原。
20.酶原的激活:在一定条件下,酶原向有活性酶转化的过程。
2.辅基:辅酶中与酶蛋白共价结合的辅酶又称为辅基.(辅基和酶蛋白结合紧密,不能通过透析或超滤等方法将其除去,在反应中不能离开酶蛋白,如FAD、FMN、生物素等。)
3.必需基团:酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。
4.酶的活性中心:指必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。
3.氧化磷酸化:是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。
1.营养必需氨基酸:指体内需要而又不能自身合成,必须由食物供给的氨基酸,共有8种:Val、Ile、Leu、Thr、Met、Lys、Phe、Trp。(其余12种氨基酸体内可以合成,称为营养非必需 氨基酸。)
2.脂肪动员:是指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。
生化名词解释
生化名词解释1结构域多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体,这些三维实体称为结构域。
2蛋白质的一级结构指蛋白质多肽链中氨基酸的排列顺序,其中包括二硫键3超二级结构:相邻的二级结构单元可组合在一起,相互作用,形成有规则,在空间上能辨认的二级结构组合体,充当三级结构的构件,称为超二级结构。
4别构效应(变构效应) 当底物或底物以外的物质和别构酶分子上的相应部位非共价地结合后,通过酶分子构象的变化影响酶的催化活性,这种效应成为别构效应5米氏常数:酶催化反应速度为最大反应速度一半时的底物浓度。
6熔解温度(Tm):通常把加热变性使DNA的双螺旋结构失去一半时的温度,称为该DNA的熔点或熔解温度,用Tm表示7盐析:是指溶液中加入无机盐类而使某种物质溶解度降低而析出的过程。
如:加浓(NH4)2SO4使蛋白质凝聚的过程。
8同工酶:同工酶是指催化相同的化学反应,而酶蛋白的分子结构理化性质乃至免疫学性质不同的一组酶。
《生化》名词解释高频考点1) 生物化学与分子生物学biochemistry and molecular biology:利用化学、物理学、数学及生物学等学科的基本原理与方法去研究生物体,从分子水平上探讨生命现象的一门科学。
2) 等电点isoelectric point of amino acid(pI):氨基酸分子带有相等正、负电荷时,溶液的pH值称为该氨基酸的等电点(pI)。
3) 生物活性肽biological active peptide:生物体内具有一定生物学活性的肽类物质称生物活性肽。
4) 蛋白质的一级结构primary structure of protein:指蛋白质多肽链中通过肽键连接起来的氨基酸的排列顺序,即多肽链的线状结构。
5) 蛋白质的二级结构secondary structure of protein:指蛋白质多肽链主链原子局部的空间结构,但不包括与其他肽段的相互关系及侧链构象的内容。
生化名词解释
生化名词解释生化学是研究生物体内化学过程的科学,它涵盖了许多复杂的生物化学反应和分子机制。
在生化学的广阔领域中,存在着许多专业术语和名词,这些名词描述了生物体内重要的化学组分、反应和生物过程。
本文将对一些常见的生化名词进行解释,帮助读者更好地理解这些概念。
1.氨基酸(Amino Acid)氨基酸是构成蛋白质的基本单元。
它们由一个氨基(NH2)基团、一个羧基(COOH)基团和一个侧链组成。
生物体内有20种常见的氨基酸,它们可以通过蛋白质合成的过程连接成多肽链或蛋白质链。
2.酶(Enzyme)酶是生物体内的催化剂,能够加速化学反应的速率。
酶通常由蛋白质组成,具有特定的三维结构和活性位点,可以与底物结合并转化为产物。
酶在许多生化过程中起着关键的作用,例如消化食物、合成物质或分解废物。
3.基因(Gene)基因是遗传信息的单位,位于生物体的染色体上。
基因含有编码蛋白质的DNA序列,通过转录和翻译过程,使蛋白质的合成成为可能。
基因是决定个体遗传特征和生物功能的基本单位。
4.ATP(Adenosine Triphosphate)ATP是一种重要的生物能量分子,存在于所有生物体内。
它由一个腺嘌呤核苷酸(腺苷核苷酸)分子和三个磷酸基团组成。
ATP通过释放或转移磷酸基团来释放能量,为生物体的代谢活动提供动力。
5.代谢(Metabolism)代谢是指生物体内的化学反应网络,用于维持生命。
代谢包括合成(合成物质)、降解(分解物质)、能量转换等过程。
代谢过程涉及许多生化反应,例如蛋白质合成、醣原合成和脂肪酸氧化等。
6.细胞呼吸(Cellular Respiration)细胞呼吸是一种生物化学过程,通过氧化有机物质来释放能量。
在细胞呼吸过程中,有机物质被分解为二氧化碳和水,并且伴随着ATP 的合成。
这个过程在所有的生物体细胞中都发生,并为细胞提供所需的能量。
7.免疫系统(Immune System)免疫系统是生物体在抵御外来病原体和维持身体内稳态方面起着重要作用的一系列防御机制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
.
名词解释
1、呼吸链:呼吸链又叫电子传递链,是由位于线粒体内膜(真核)中的一系列电子传递体按标准
氧化还原电位,由低到高顺序排列组成的一种能量转换体系。
2、生物氧化:能源物质在活细胞中氧化分解,释放化学能并转化为生物能的生化过程,称 为生物氧化,又叫细胞氧化或细胞呼吸。
3、联合脱氨基作用:将转氨基作用与谷氨酸氧化脱氨基作用联合进行,促进各种氨基酸脱去氨基
生成α-酮酸和氨的过程称氨基酸的联合脱氨基作用。
例如:丙氨酸的联合脱氨基作用。
4、DNA 内切酶:具有识别双链DNA 分子中特定核苷酸序列,并由此切割DNA 双链的核酸内切
酶统称为限制性核酸内切酶。
5、酵解与发酵:.酵解 葡萄糖经1,6-二磷酸果糖和3-磷酸甘油酸降解,生成丙酮酸并产生A TP
的代谢过程。
6、分子杂交:不同来源的变性DNA ,若彼此之间有部分互补的核苷酸顺序,当它们在同一溶液中
进行热变性和退火处理时,可以得到分子间部分配对的缔合双链,此过程叫分子杂交。
7、增色效应:伴随着变性,核酸的紫外吸收值增加,此现象为增色现象。
减色效应:复制过程中,紫外吸收值降低,次现象为减色现象。
8、逆转录:以RNA 为模板,依靠逆转录酶的作用,以四种脱氧核苷三磷酸(dNTP)为底物,产生
DNA 链。
9、等电点:分子所带正负电荷相等,净电荷为零的环境PH 成为等电点。
10、活性中心:酶分子上直接参与底物的结合并对其进行催化的区域。
11、酶的活性中心:酶分子上由与催化功能有关的原子或基团构成的特殊的空间结构,称为酶的活
性中心
C CH COOH CH 2COOH C O CH 2CH 2COOH CH COOH NH 2CH 2谷氨NH 2CH 3CH 3O 丙氨酸丙酮酸谷丙转或或NADPH H
+++H +NH 3酸脱氢酶α-酮戊二酸。