spss 均值的比较与检验

合集下载

第6章 SPSS参数检验——均值比较

第6章 SPSS参数检验——均值比较

总体2
抽取简单随机样均值之差的检验 (s12、 s22 已知)
• 1.假定条件
两个样本是独立的随机样本 两个总体都是正态分布 若不是正态分布, 可以用正态分布来近似(n130和
n230) 2.检验统计量为
Z ( X1 - X 2 ) - (m1 - m2 ) ~ N (0,1)
6.2 MEANS 过程
• 功能:分组计算、比较指定变量的描述统计量。包括均值、 标准差、总和、观测数、方差等等,还可以给出方差分析表 和线性检验结果。
• Analyze-> Compare Means->Means
n Dependent List:用于选入需要分析的变量,如果选入两 个以上变量,系统会在同一张输出表中依次给出分析结果 。
)
1. 检验具有不等方差的两个总体 的均值
2. 假定条件
两个样本是独立的随机样本
两个总体都是正态分布
两个总体方差未知且不相等 s12 s22
3. 检验统计量
( S12 S22 )2
t

(
X1
-
X2) S12 n1
- (m1 S22
n2
-
m2
)
~
t(
(
S12 n1
)2
/(
n1
n1 -1)
s
2 1

s
2 2
n1 n2
两个总体均值之差的检验 (s12、 s22 未知,大样本)
• 检验统计量为
Z (X1 - X 2 ) - (m1 - m2 ) ~ N (0,1)
s12 s22 n1 n2
两个总体均值之差的检验 (s12、 s22 未知但相等,小样本)

一 均值比较和T检验及F检验

一 均值比较和T检验及F检验

t
X1 X 2
2 X 2 X X 2 X1
2 1 2
n 1
=
79.5 71 9.1242 9.9402 2 0.704 9.124 9.940 10 1
பைடு நூலகம்
=3.459。 第三步 判断 根据自由度 df n 1 9 ,查 t 值表 t (9)0.05 2.262 , t (9)0.01 3.250 。由于实际计 算出来的 t =3.495>3.250= t (9)0.01 ,则 P 0.01 ,故拒绝原假设。 结论为:两次测验成绩有及其显著地差异。 由以上可以看出,对平均数差异显著性检验比较复杂,究竟使用 Z 检验还是使用 t 检 验必须根据具体情况而定,为了便于掌握各种情况下的 Z 检验或 t 检验,我们用以下一览表 图示加以说明。
已知时,用 Z
X

n
单总体
未知时,用 t
X (df n 1) S n
在这里, S 表示总体标准差的估计量,它与样本标准差 X 的关系是:
S
n X n 1
1 , 2 已知且是独立样本时,用
T 检验原理及公式
t 检验是用 t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。 t 检验分为单总体 t 检验和双总体 t 检验。当总体呈正态分布,如果总体标准差未知,而且样 本容量 n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈 t 分布。
对于要使用 T 检验进行均值比较的变量应该是正态分布的。 如果分析变量明显是非正态 分布的,应该选择非参数检验过程。
II 双总体 t 检验
双总体 t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体 t 检验又分为两种情况 一. 独立样本 t 检验 (检验假设:两个独立样本的 t 检验用于检验两个不相关的样本来自具有相同均值的 总体) 独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检 验用于检验两组非相关样本被试所获得的数据的差异性。 独立样本 T 检验要求被检验的两个样本方差要求具有齐性, 如果不齐, 使用校正公式计 算 T 值和自由度。因此,在输出结果中,应该先检查方差齐性(F 检验) ,根据齐性的结果, 在输出表格中选择 T 检验的结果。 二. 相关(配对)样本 t 检验。 (检验假设:配对样本 t 检验(Paired Sample T test)用于检验两个相关的样本是 否来自具有相同均值的总体) 相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组 被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本或配对样 本。 现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似, 只不过 r 0 。 相关样本的 t 检验公式为:

spss 均值的比较与检验

spss 均值的比较与检验

输出结果:
结果分析:
1、两种样本的均数分别为3318.75, 2506.25, 样本个数均为8。
2、相关系数r=0.584, p=0.129>0.05 , 认为两配对变量无相关关 系。
3、t=4.207,自由度df=7, p=0.004<0.05, 故可认为两组样本的均 值差异显著。
4、配对数差的均数为812.50, 标准差为546.25 ,标准误为193.13, 95%的可信区间为355.82~1269.18。 结论:两配对变量无相关关系,且两组样本的均值差异显著。
结论:
处理前后两组样本方差相等,均值有明显差异。
例5-5-3 以银行男女职工的现工资为例,数据e5-5-4.sav, 检验男女职 工现工资是否有显著性差异。执行结果如下:
结果分析:
1、各组观测数目,男258人,女216人。
2、男性平均工资:41441.8, 女性工资为: 26031.9. 3、方差齐次性检验结果(levene检验),F值为119.669, 显著性 概率为P=0.000<0.05.因此,两组方差差异显著。在下面的t 检验结 果中应该选择Equal variances not assumed (假设方差不相等)一行的 数据作为本例t检验的结果数据。
z ~ t (n 1) sz / n
在显著水平α下, 双侧检验的H0拒绝区域为: | t | t (n 1)
2
二、配对样本T检验功能与应用
配对样本T检验是进行配对样本均数的比较。执行该过程, SPSS显示:
每个变量的均数、标准差、标准误和样本含量;
每对变量的相关系数;
每对变量的均数的差值、差值的标准误和可信区间; 检验每对变量均数的差值是否来自总体均数为0 的t检验结果。 三、应用举例 例5-5-4 :(e5-5-5.sav)

SPSS统计分析实用教程(第2版)

SPSS统计分析实用教程(第2版)

探索性分析
03
均值比较与t检验
总结词
单样本t检验用于检验单个样本的均值是否与已知的某个值或参考值存在显著差异。
详细描述
在单样本t检验中,我们将已知的某个值或参考值作为检验标准,然后比较单个样本的均值与此标准之间的差异。通过计算t统计量和对应的p值,我们可以判断样本均值与标准值是否存在显著差异。
单样本t检验
通过图形方式展示两个变量之间的关系,可以直观地观察到它们之间的模式和趋势。
相关分析
散点图
相关系数
预测模型
通过一个或多个自变量预测因变量的值,建立预测模型,并评估模型的拟合优度和预测能力。
回归系数
描述自变量对因变量的影响程度,通过回归系数可以了解各个自变量对因变量的贡献。
线性回归分析
非线性关系
协方差分析是在考虑一个或多个协变量的影响后,比较两个或多个分类变量对数值型变量的影响。通过控制协变量的影响,可以更准确地评估各组之间的差异,并确定分类变量对数值型变量的真实效应。
总结词
详细描述
协方差分析
05
非参数检验
适用范围
01
卡方检验主要用于比较实际观测频数与期望频数之间的差异。
计算方法
02
通过卡方统计量,即实际观测频数与期望频数的差的平方与期望频数的比值,来评估两者之间的差异程度。
聚类分析
聚类分析基于观测数据之间的相似性或距离将它们分组,使得同一聚类中的数据尽可能相似,不同聚类中的数据尽可能不同。
聚类分析在市场细分、生物信息学和社交网络等领域有广泛应用。
THANKS FOR
WATCHING
感谢您的观看
详细描述
探索性分析
总结词
探索性分析还可以用于预测和分类,例如决策树、逻辑回归等。

spss均值检验(均数分析单样本t检验独立样本t检验)

spss均值检验(均数分析单样本t检验独立样本t检验)

在统计学中,我们往往从样本的特性推知随机变量总体的特性。

但由于总体中个体之间存在差异,样本的统计量和总体的参数之间往往会有误差。

因此,均值不相等的样本未必来自不同分布的总体,而均值相等的样本未必来自有相同分布的总体。

也就是说,如何从样本均值的差异推知总体的差异,这就是均值比较的内容。

SPSS提供了均值比较过程,在主菜单栏单击“Analyze”菜单下的“Compare Means”项,该项下有5个过程,如图4-1。

平均数比较Means过程用于统计分组变量的的基本统计量。

这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。

Means过程还可以列出方差表和线性检验结果。

[例子]调查了棉铃虫百株卵量在暴雨前后的数量变化,统计暴雨前和暴雨后的统计量,其数据如下:暴雨前 110 115 133 133 128 108 110 110 140 104 160 120 120暴雨后 90 116 101 131 110 88 92 104 126 86 114 88 112该数据保存在“DATA4-1.SAV”文件中。

1)准备分析数据在数据编辑窗口输入分析的数据,如图4-2所示。

或者打开需要分析的数据文件“DATA4-1.SAV”。

图4-2 数据窗口2)启动分析过程在SPSS主菜单中依次选择“Analyze→Compare Means→Means”。

出现对话框如图4-3。

图4-3 Means设置窗口3)设置分析变量从左边的变量列表中选中“百株卵量”变量后,点击变量选择右拉按钮,该变量就进入到因子变量列表“Dependent List:”框里,用户可以从左边变量列表里选择一个或多个变量进行统计。

从左边的变量列表中选中“调查时候”变量,点击“Independent List”框左边的右拉按钮,该变量就进入分组变量“IndependentList”框里,用户可以从左边变量列表里选择一个或多个分组变量。

SPSS均值比较与T检验

SPSS均值比较与T检验

.
7
H 西0 南财经大学出版社
5.1 统计推断与假设检验
2、假设检验的几个概念 (4) 概率p值
SPSS16.0与统计数据分析
p值是当零假设正确时,观测到的样本信息出现的概率。 如果这个概率很小,以至于几乎不可能在零假设正确时出现 目前的观测数据时,我们就拒绝零假设。p值越小,拒绝零假 设的理由就越充分。但怎样的p值才算“小”呢?通常是与预 先设定的显著性水平 值比较,若 值为0.05,p值小于0.05则 认为该概率值足够小,应拒绝零假设。
.
8
H 西0 南财经大学出版社
5.1 统计推断与假设检验
SPSS16.0与统计数据分析
3、假设检验的基本步骤
➢第1步 给出检验问题的原假设;
根据检验问题的要求,将需要检验的最终结果作为零假 设。例如,需要检验某学校的高考数学平均成绩是否同往年 的平均成绩一样,都为75,由此可做出零假设,H0 :75
④配对样本T检验(Paired-Sample T Test),用于检 验两个相关的样本是否来自具有相同均值的总体。
.
4
H 西0 南财经大学出版社
5.1 统计推断与假设检验
SPSS16.0与统计数据分析
2、假设检验的几个概念
(1)统计假设
➢ 原假设:在很多情况下,我们给出一个统计假设仅仅是
为了拒绝它。例如,如果我们要判断给定的一枚硬币是
.
3
西南财经大学出版社
5.1 统计推断与假设检验
SPSS16.0与统计数据分析
1、参数检验
①均值比较(Means),用于计算指定变量的 综合描述统计量;
Compare Means子菜单
②单样本T检验(One-Sample T Test),检验单个 变量的均值与假设检验值之间是否存在差异;

SPSS软件的操作与应用第3讲均值比较

SPSS软件的操作与应用第3讲均值比较

均值比较结果解读方法
解读均值差异检验结果
根据T值和自由度等指标,判断均值差异是否显著,并给出相应的 结论。
解读置信区间
根据置信区间的范围和上下限,判断样本均值的稳定性,并据此作 出决策。
综合分析
结合样本描述性统计和检验结果,对数据进行分析和解释,得出科 学合理的结论。
均值比较结果的应用
差异显著性判断
记录处理过程
在分析过程中记录异常值的处理方式,以便于后 续的审查和验证。
比较标准的设定
确定比较对象
明确需要比较的变量、组别或时间点。
选择比较方法
根据数据类型和比较目的选择适当的比较方法,如独立样本T检验、 配对样本T检验、单因素方差分析等。
设定比较标准
根据研究目的和实际情况设定合理的比较标准,如差异的显著性水 平、效应量等。
04 均值比较结果解读
均值比较结果的构成
样本描述性统计
包括样本数量、均值、标准差、最小值、最大值等统计指标,用 于描述样本数据的集中趋势和离散程度。
均值差异检验
通过独立样本T检验或配对样本T检验等方法,比较两组或多组 数据的均值是否存在显著差异。
置信区间
表示样本均值的可靠程度,通常以95%或99%的置信水平表示。
THANKS FOR WATCHING
感谢您的观看
差异。
均值比较的原理
T检验是通过比较两组数据的平 均值和标准差来判断它们是否显
著不同。
方差分析是通过比较不同组之间 的变异和误差变异来确定组间差
异是否显著。
在进行均值比较时,需要满足一 定的假设条件,如正态分布、方 差齐性等,以确保统计结果的准
确性。
03 SPSS软件操作流程

spss比较四组数据的均衡性

spss比较四组数据的均衡性

spss比较四组数据的均衡性
1、打开数据,找到要对比的四组数据量。

2、然后点击分析-比较均值-配对样本T检验,然后将四组数据放进Variable1和Variable2之中,然后按确定,之后就会出现数据列表,但是对比反映得还不够直观明显。

3、然后双击成对样本统计量。

会出现设置栏工具模式。

然后按最右边的统计图的图标。

可以选择不同的形状来显示。

4、然后会出现条形图,双击条形图,会弹出一个单独的窗口,我们按编辑-选择X轴,可以看到不同的参考值。

这一题只需要对比到均值,所以我们把其他的删除掉就好,然后按确定。

5、然后按编辑-选择Y轴,填变量的范围,然后再按元素,显示数据,就可以看到它所对应的数值。

这样的对比图就很清晰地反映两组变量的关系。

SPSS的均值比较过程

SPSS的均值比较过程

一、相关分析1、参数相关分析Pearson相关系数,又称积矩相关系数,适用于连续分布或正态分布变量,是最常用的参数相关分析。

2、非参数相关分析当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman 或kendall相关。

Spearman,等级相关,适合定序变量或不满足正态分布假设的等间隔数据,适用于连续等级资料;Kendall,等级相关,适合定序变量或不满足正态分布假设的等间隔数据,适用于合并等级资料;(1)Spearman相关分析Spearman相关系数又称秩相关系数,是根据等级资料研究两个变量间相关关系的方法。

它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法”。

它对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究。

它是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。

对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。

Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。

(2)Kendall相关分析肯德尔(Kendall)系数又称和谐系数,是表示多列等级变量相关程度的一种方法。

适用这种方法的数据资料一般是采用等级评定的方法收集的,即让K个评委(被试)评定N件事物,或1个评委(被试)先后K次评定N件事物。

等级评定法每个评价者对N件事物排出一个等级顺序,最小的等级序数为1 ,最大的为N,若并列等级时,则平分共同应该占据的等级,如,平时所说的两个并列第一名,他们应该占据1,2名,所以它们的等级应是1.5,又如一个第一名,两个并列第二名,三个并列第三名,则它们对应的等级应该是1,2.5,2.5,5,5,5,这里2.5是2,3的平均,5是4,5,6的平均。

SPSS第5章 平均数比较

SPSS第5章 平均数比较
• 打开“Employee.sav”文件,顺序单击“Analyze”→“Compare Means” →“Means”命令菜单,打开对话框(图5.1),并单击 “Next”键后,选择“jobcat”作为对层迭分组的第二自变量; “Option”的选择见图5.2,应选择“Anova table and eta”。可 得到男女两组各工种的平均受教育程度和男女性平均受教育 年数的方差分析。计算表明F=68.495,Sig=0.000,这说明男女 性平均受教育年数存在着显著性差异。
5.3.2 单一样本T检验过程选择
• 顺序单击“Analyze”→“Compare Means”→“One Sample T test”命令,可打开图5.3的对话框。“Test Variable”框中的变量是需要作检验的变量,要从源变 量框中选取某个变量进入该框,然后单击向右的箭头, 再在“Test Value”参数框中输入一个定值作为假设检 验值(总体参数)。 • “Options”对话框将给出置信水平“Confidence Interval”和缺失值“Missing Value”处置方式。置信水 平必须在1-99之间,如90、95,99等(一般取95)。 缺失值的处置方式一般有两种(图5.4):一种是只 要变量中含有缺失值,该组样本都被剔除(Exclude cases Listwise);另一种是尽可能保留样本,仅剔除 被分析变量的那个变量中含有缺失值的Cases。
•1、统计检验中的假设条件
•假设是进行检验的前提,是有待确认的一种事实。例 如,某样本是否满足正态分布,两样本平均数是否源 于同一总体等等。
•假设检验中,首先要建立一个关于总体参数的假设(原 假设),然后抽取样本,检验所做假设正确与否。在进行 研究时,往往需要根据已有的理论和经验,事先对研究结 果作出一种预想希望能证实的一种假设。这种假使叫科学 假设或被择假设,记为H1;而要对总体的某种假设(论断) 作出判断时,常要对相反的假设进行统计检验,称这个假 设为零假设(或虚无假设、无偏假设),记作H0。进行假 设检验的目的是为了推翻假设,主要是推翻假设时的犯错 误概率容易把握,而承认假设正确的概率不容易把握。 •假设建立得合适与否是决定检验成败的关键,统计中的 假设检验有两个基本要求。第一,建立假设的目的是为了 推翻原假设,因为推翻假设远远比承认原假设容易,因此, 真正需要证明的往往作为备择假设,即使不能推翻原假设, 也只能说,没有足够的证据推翻原假设。第二,原假设必 须是虚无(无显著性差异)假设,即必须包括等号,因为 所有的统计分析、统计计算都建立在这个基础之上;而备 择假设一定不能包含等号。

spss教程第二章--均值比较检验与方差分析

spss教程第二章--均值比较检验与方差分析

第二章均值比较检验与方差分析在经济社会问题的研究过程中,常常需要比较现象之间的某些指标有无显著差异,特别当考察的样本容量n比较大时,由随机变量的中心极限定理知,样本均值近似地服从正态分布。

所以,均值的比较检验主要研究关于正态总体的均值有关的假设是否成立的问题。

◆本章主要内容:1、单个总体均值的 t 检验(One-Sample T Test);2、两个独立总体样本均值的 t 检验(Independent-Sample T Test);3、两个有联系总体均值均值的 t 检验(Paired-Sample T Test);4、单因素方差分析(One-Way ANOVA);5、双因素方差分析(General Linear Model Univariate)。

◆假设条件:研究的数据服从正态分布或近似地服从正态分布。

在Analyze菜单中,均值比较检验可以从菜单Compare Means,和General Linear Model得出。

如图2.1所示。

图2.1 均值的比较菜单选择项§2.1 单个总体的t 检验(One-Sample T Test)分析单个总体的 t 检验分析也称为单一样本的 t 检验分析,也就是检验单个变量的均值是否与假定的均数之间存在差异。

如将单个变量的样本均值与假定的常数相比较,通过检验得出预先的假设是否正确的结论。

例1:根据2002年我国不同行业的工资水平(数据库SY-2),检验国有企业的职工平均年工资收入是否等于10000元,假设数据近似地服从正态分布。

首先建立假设:H0:国有企业工资为10000元;H1:国有企业职工工资不等于10000元打开数据库SY-2,检验过程的操作按照下列步骤:1、单击Analyze →Compare Means →One-Sample T Test,打开One-Sample T Test 主对话框,如图2.2所示。

图2.2 一个样本的t检验的主对话框2、从左边框中选中需要检验的变量(国有单位)进入检验框中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

检验结果;
均数的差值、差值的标准误和可信区间。
三、应用举例: 例5-5-2:设某产品处理前后分别抽样检验,其数据分别为: 处理前:0.19, 0.18, 0.21, 0.30, 0.41, 0.12, 0.27 处理后:0.15, 0.13, 0.07, 0.24, 0.19, 0.06, 0.08, 0.12 (e5-5-3.sav)
5.5.1 单样本T检验
一、单样本T检验的基本概念
单样本T检验是检验单个变量的均值是否与给定的常数之间存在差 异。例如研究人员想知道一组学生的IQ平均分数与100分的差异。
如果已知总体均数,进行样本均数与总体均数之间的差异检验 也属于单样本T检验。例如一个谷类工厂要求产品重量为1.3磅。从 某生产线上取出几盒样品,检验样品的平均重量在95%水平上是否 存在显著差异。其中1.3磅是生产要求的重量,可以看着是总体均数, 检验这条生产线的产品是否合格的问题就是进行样本均数与总体均 数之间的差异显著性检验,即进行单样本T检验的问题。
t Sw xy ~ t ( n x n y 2) 1 1 nx n y
2 (n x - 1) * S2 x (n y - 1) * S y
其中 Sw
nx ny - 2
(2)当当σx≠ σy时
t
xy S S nx n y
2 x 2 y
~ t (nx n y 2)
轮胎质量单样本T检验结果
结果分析:
(1)轮胎样本寿命的均值为27000,略大于25000。
(2)t值为1.671,自由度为14,双尾t检验的P值为11.7%>>5% 即不能拒绝H0假设。 (3)95%可信度下差值的可信区间为-567.7794~4567.779,该 范围包括0。 由此可以得出样本均值与总体均值无显著性差异。
结论:
样本均值虽高于总体均值,但无统计意义。误差来源可能是抽 样误差,也可能来自测量误差。结论是该种轮胎平均寿命与25000 无显著性差异。即该种轮胎平均寿命不大于25000公里。
5.5.2 独立样本T检验 一、有关概念 进行独立样本T检验要求被比较的两个样本彼此独立,即没有 配对关系。要求两个样本均来自正态总体,而且均值是对于检验有 意义的描述统计量。 设总体X~ N(μx,σx2), Y ~ N(μy,σy2), X、Y独立。x1,x2,…xn和 y1,y2,…yn分别是取自X和Y的样本, X、 Y和Sx2、Sy2分别是样本均值和 样本方差。 检验的统计量其分布分两种情况: (1)当σx= σy,即方差齐次性时
假定处理前后的抽样数据都服从正态分布,且方差相同。问 处理前后样本数据的平均值是否有显著变化?(α=0.05)
操作步骤: 1、
2、从左边的源变量框中选择检验变量送入检验变量框中。 3、从左边的源变量框中选择分组变量送入分组变量框中。
4、单击定义组按钮
使用指定值:选择该项,按分组变量的值进行分组。 组1:分类变量第一组的值。 组2:分类变量第二组的值。 分割点: 选择该项,则应该在后面的矩形框中输入一个分组变量 的值,将观测值按其值分为大于该值和小于该值的两个小组。
设总体X服从正态分布N(μ,σ2),其中σ2未知。从中抽出子样 (x1,x2,…,xn),现要检验假设H0: μ= μ0,H1: μ≠ μ0,其中μ0为已知 常数。 x μ0 其中S为子样标准差。 通常σ是未知: T
s / n 1
若H0成立,则统计量T服从自由度为n-1的t分布。对于给定的α, 由t分布表可查得临界值t α/2(n-1), 使 P{|T|>t α/2(n-1)}= α 如果算得T的值t落入其拒绝域|t|>t α/2(n-1)内,则拒绝H0;否则 不能拒绝H0。 二、单样本T检验的功能与应用
21000.00,19000.00,33000.00,31500.00,18500.00,34000.00,29000.00
26000.00,25000.00,28000.00,30000.00,28500.00,27500.00,28000.00
26000.00 操作步骤: 1、
2、将要进行检验的变量放入右边的Test Variable(s)中
95%置信区间来反映均值比较的结果。
二、独立样本T检验的功能与应用
执行独立样本T检验过程,SPSS将显示:
每个检验变量的统计量的均值、标准差、标准误和样本含量;
检验两样本是否来自相等方差的列文(Levene)检验结果;
假定方差齐次性时,检验两样本均数是否来自同一总体均数的 t检验结果; 假定方差不齐时,检验两样本均数是否来自同一总体均数的t
3、输入 检验值: 25000
4、选项
置信区间百分比: 可信水平,系统默认为95%。
缺失值: 按分析顺序排除个案:带有缺失值的观测量,当它与分析 有关时被剔除。 按列表排除个案:剔除在主对话框中的变量框中列出的变 量带有缺失值的所有观测量。
5、按确定Leabharlann 钮。结果:轮胎质量单样本T检验计算所得统计量值
5、在主对话框中单击选项 按钮
6、在主对话框中单击确定按钮。
对于双侧检验,要检验的原假设H0和备择假设H1为:
H0:ux-uy=0; H1: ux-uy ≠0 在显著水平α下, H0拒绝区域为
| t | t (nx ny 2)
2
事前为判断σx= σy是否成立,要用F检验作方差齐次性检验。
在SPSS中常用对零假设检验: ux-uy=0的置信度和均值差ux-uy的
执行单样本T检验过程,SPSS将显示:每个检验变量的统计量的均值、标准 差和均值的标准误差,检验样本是否来自总体均数为一指定总体的结果;显示 样本值与常数之差以及其95%的置信区间。
三、应用举例
例5-5-1,某轮胎厂的质量分析报告中说明,该厂某轮胎的平均寿命在 一定的载重负荷与正常行驶条件下会大于25000公里。平均轮胎寿命的公里数 近似服从正态分布。现对该厂该种轮胎抽出一容量为15的样本,试验结果得样 本均值为27000公里。能否做出结论:该厂产品与申报的质量标准相符?数据 如下(e5-5-2.sav)
相关文档
最新文档