第一章 电子技术教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

子核的吸引。于是, 两个相邻的原子共有一对价电子, 组成共价键结构。故晶体中, 每个原子都和周围的4个原子用共价键的形式互相紧密地联系起来,如图1.1.3所示。

从共价键晶格结构来看,每个原子外层都具有8个价电子。但价电子是相邻原子共用,所以稳定性并不能象绝缘体那样好。

受光照或温度上升影响,共价键中价电子的热运动加剧,一些价电子会挣脱原子核的束缚游离到空间成为自由电子。

游离走的价电子原位上留下一个不能移动的空位,叫空穴。 由于热激发而在晶体中出现电子空穴对的现象称为本征激发。

本征激发的结果,造成了半导体内部自由电子载流子运动的产生,由此本征半导体的电中性被破坏,使失掉电子的原子变成带正电荷的离子。

由于共价键是定域的,这些带正电的离子不会移动,即不能参与导电,成为晶体中固定不动的带正电离子。

受光照或温度上升影响,共价键中其它一些价电子直接跳进空穴,使失电子的原子重新恢复电中性。 价电子填补空穴的现象称为复合。

参与复合的价电子又会留下一个新的空位,而这个新的空穴仍会被邻近共价键中跳出来的价电子填补上,这种价电子填补空穴的复合运动使本征半导体中又形成一种不同于本征激发下的电荷迁移,为区别于本征激发下自由电子

+4

共价键

价电子

+4+4+4

+4

+4

+4

+4

+4

图1.1.3 单晶硅和锗的共价键结构示意图

载流子的运动,我们把价电子填补空穴的复合运动称为空穴载流子运动。

自由电子载流子运动可以形容为没有座位人的移动;空穴载流子运动则可形容为有座位的人依次向前挪动座位的运动。半导体内部的这两种运动总是共存的,且在一定温度下达到动态平衡。

半导体的导电机理:

半导体的导电机理与金属导体导电机理有本质上的区别:

金属导体中只有自由电子一种载流子参与导电;而半导体中则是本征激发下的自由电子和复合运动形成的空穴两种载流子同时参与导电。两种载流子电量相等、符号相反,即自由电子载流子和空穴载流子的运动方向相反。

结论:

1. 本征半导体中电子空穴成对出现,且数量少

2. 半导体中有电子和空穴两种载流子参与导电

3. 本征半导体导电能力弱,并与温度有关。

4. 杂质半导体

在本征半导体中,有选择地掺入少量其它元素,会使其导电性能发生显著变化。这些少量元素统称为杂质。掺入杂质的半导体称为杂质半导体。根据掺入的杂质不同,有N型半导体和P型半导体两种。

(1)N型半导体

在本征半导体中, 掺入微量5价元素, 如磷、锑、砷等, 则原来晶格中的某些硅(锗)原子被杂质原子代替。由于杂质原子的最外层有5个价电子, 因此它与周围4个硅(锗)原子组成共价键时, 还多余 1 个价电子。它不受共价键的束缚, 而只受自身原子核的束缚, 因此, 它只要得到较少的能量就能成为自由电子, 并留下带正电的杂质离子, 它不能参与导电, 如图1.1.4所示。显然, 这种杂质半导体中电子浓度远远大于空穴的浓度, 即n n>>p n(下标n表示是N型半导体), 主要靠电子导电, 所以称为N型半导体。

+4

+4

+4

+4+4

+4

+4

+4

+4

空位

受主原子

由于5价杂质原子可提供自由电子, 故称为施主杂质。N型半导体中, 自由电子称为多数载流子;空穴称为少数载流子。

(2)P 型半导体

在本征硅(或锗)中掺入少量的三价元素,如硼、铝、铟等,就得到P 型半导体。这时杂质原子替代了晶格中的某些硅原子,它的三个价电子和相邻的四个硅原子组成共价键时,只有三个共价键是完整的,第四个共价键因缺少一个价电子而出现一个空位,如图1.1.5所示。

+5 +4

+4

+4

+4

+4 图1.1.4 N 型半导体原子结构示意图

图1.1.5 P 型半导体原子结构示意图

(3)P 型、N 型半导体的简化图示 图1.1.6所示为P 型、N 型半导体的简化图

结论:

N 型半导体:自由电子称为多数载流子;空穴称为少数载流子,载流子数 ≈

电子数

P 型半导体:空穴称为多数载流子;自由电子称为少数载流子,载流子数 ≈

空穴数

5. PN 结 (1)PN 结的形成

1) 载流子的浓度差引起多子的扩散

在一块完整的晶片上,通过一定的掺杂工艺,一边形成P 型半导体,另一边形成N 型半导体。P 型半导体和N 型半导体有机地结合在一起时,因为P 区一侧空穴多,N 区一侧电子多,所以在它们的界面处存在空穴和电子的浓度差。于是P 区中的空穴会向N 区扩散,并在N 区被电子复合。而N 区中的电子也会向P 区扩散,并在P 区被空穴复合。这样在P 区和N 区分别留下了不能移动的受主负离子和施主正离子。上述过程如图1.17(a)所示。结果在界面的两侧形成了由等量正、负离子组成的空间电荷区,如图1.1.7(b)所示。

少数载流子

多数载流子 少数载流子

多数载流子 图1.1.6 P 型、N 型半导体的简化图

2) 复合使交界面形成空间电荷区(耗尽层)

空间电荷区的特点:无载流子,阻止扩散进行,利于少子的漂移。 3)扩散和漂移达到动态平衡

扩散电流等于漂移电流,总电流 I = 0。 (2) PN 结的单向导电特性

在PN 结两端外加电压,称为给PN 结以偏置电压。

1) PN 结正向偏置

给PN 结加正向偏置电压,即P 区接电源正极,N 区接电源负极,此时称PN 结为正向偏置(简称正偏),如图1..1.8所示。由于外加电源产生的外电场的方向与PN 结产生的内电场方向相反,削弱了内电场,使PN 结变薄,有利于两区多数载流子向对方扩散,形成正向电流,此时PN 结处于正向导通状态。

P

(a )

N

P

(b )

N

空间电荷区

内电场

U B

图1.1.7 PN 结的形成

P 区 N 区

+

U

R

外电场

内电场

图1.1.8 PN 结加正向电压

相关文档
最新文档