温度测量系统设计毕业设计方案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
3.1控制电路
3.1.1单片机电路及原理
At89S51是美国ATMEL公司生产的低电压、高性能CMOS8位单片机;片内含有4k字节的可反复擦写的只读程序存储器(PEROM)和128字节的随机存取数据存储器(RAM);器件采用AMTEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统;片内置通用2位中央处理器(CPU)和Flash存储单元,功能强大的AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。功能特性概述
谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。在本次课程设计中使用的是无源晶振电路图如下示:
图5晶振电路
3.2直流电源
在本次的课程设计中采用的是自主设计的直流电源主要是通过变压器进行降压,用二极管整流桥进行整流操作,用稳压芯片对电源实现稳压。
在正常的工作情况下输入220V交流电经过整流二极管进行整流使用电桥实现全波整流经过4700uf大电容的滤波得到较低的直流电压,经过LM7812把直流电压稳压为12V,然后在经过直流稳压芯片LM7805得到了单片机稳定的工作电压。如下图示:
晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
一般的晶振的负载电容为15p或12.5p,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。
晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。
引脚功能说明
Vcc:电源电压
GND:地
P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口;作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。
在访问外部数据存储器或者程序存储器时,这组口线分时转换地址(低8位)和数据总线复用;在访问期间激活内部上拉电阻。
致谢………………………………………………………….………….12
参考文献………………………………………………….…………….13
附录……………………………………………………………………..14
1
1)采用单片机80C51.要求温度范围0℃~100℃之间。
2)温度传感器选用模拟的数字的都可以。
3)在LED中显示温度。
电子信息工程《电子专业基础课程设计》研究报告
温度测量系统设计
学生姓名:XXX
学生学号:XXXXXXXXXX
指导教师:XXX
所在学院:信息技术学院
专业班级:电子一班
中国·大庆
2011年11月
信息技术学院
课程设计任务书
信息技术院电子信息工程专业08级,学号XXXXXXXXX姓名XXX
一、课程设计课题:
温度测量系统设计
二、课程设计工作日自2011年10月31日至2011年11月18日
三、课程设计进行地点:信息技术学院205
四、课程设计任务要求:(详细内容见课程设计文档)
1.课题来源:老师派发题目
2.目的意义:随着社会的进步和工业技术的发展,人们越来越重视温度因素,许多产品对温度范围要求严格,而目前市场上普遍存在的温度检测仪器大都存在精度不够的缺点,不利于工业控制者根据温度变化及时做出决定。实时性高、精度高,能够综合处理多点温度信息的测量系统就很有必要。
3.基本要求:
1)采用单片机80C51.要求温度范围0℃~100℃之间。
2)温度传感器选用模拟的数字的都可以。
3)在LED中显示温度。
4)精度达到±1%。
5)分辨率≤wk.baidu.com.1℃
6)根据精度自选A/D转换芯片。
7)直流稳压电源自行设计。
8)辅助电路及元器件自选。
课程设计评审表
指导教师评语:
成绩:签字:日期:
在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX @DPTR指令)时,P2口送出高8位地址数据;在访问8位地址的外部数据存储器(如执行MOVX @RI)时,P2口线上的内容(即特殊功能寄存器(SFR)区中的R2寄存器的内容),在整个访问期间不改变;
Flash编程或校验时,P2亦接收高位地址和其它控制信号。
表2-1
端口引脚
第二功能
P3.0
RXD (串行输入口)
P3.1
TXD (串行输出口)
P3.2
(外中断0)
P3.3
(外中断1)
P3.4
T0 (定时/计数器0)
P3.5
T1 (定时/计数器1)
P3.6
(外部数据存储器写选通)
P3.7
(外部数据存储器读选通)
P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。
1设计任务要求………………………………………………….……...1
2方案比较……………………………………………………….……...1
3单元电路设计………………………………………………….……….2
4软件的编程……………………………….…………………………...10
总结与体会……………………………………………………………..11
如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作,该位置位后,只有一条MOVX和MOVC指令ALE才会被激活,此外该引脚会被微弱拉高,单片机执行外部程序时,应该置ALE无效。
EA/VPP:外部访问允许;欲使CPU仅访问外部程学存储器(地址为0000H FFFFH),EA端必须保持低电平(接地)。需要注意的是,如果加密位LB1被编程,复位时内部会锁存EA端的状态[3]。
RST:复位输入;当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位
ALE/PROG:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节;即使不访问外部存储器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的;要注意的是,每当访问外部数据存储器时将跳过一个ALE脉冲。
在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时要求外接上拉电阻
P1口:P1是一个带内部上拉电阻的8位双向I/O口;P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路,对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口;作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低会输出一个电流。
4)精度达到±1%。
5)分辨率≤0.1℃
6)根据精度自选A/D转换芯片。
7)直流稳压电源自行设计。
8)辅助电路及元器件自选。
2
方案一、采用模拟分立元件,如电容、电感或晶体管等非线形元件,实现多点温度的测量及显示,该方案设计电路简单易懂,操作简单,且价格便宜,但采用分立元件分散性大,不便于集成数字化,而且测量误差大。采用模拟的温度传感器实现温度的测量
如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。
Flash存储编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp。
XTML1:振荡器反相放大器的及内部时钟发生器的输入端。
XTML2:振荡器反相放大器的输出端。
图3单片机的工作电路图
3.1.2复位电路
AT89S51提供以下标准功能:4k字节Flash闪速存储器、128字节内部RAM、32个I/O口线、两个16位定时/计数器、1个5向量两级中断结构、一个全双工串行通信口、片内振荡器及时钟电路,同时,AT89S51可降至0Hz的静态逻辑操作并支持两种软件可选的节电工作模式;空闲方式停止CPU的工作,但允许RAM、定时/计数器、串行通信口及中断系统继续工作;掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作一直到下个硬件复位[2]。
图6自制直流电源
3.3测温电路
在本次的课程设计中使用的是的DS18B20数字式温度传感器。DS18B20型单线智能温度传感器,属于新一代适配微处理器的智能温度传感器。全部传感元件及转换电路集成在形如一只三极管的集成电路内。与传统的热敏电阻相比,它能够直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。其可以分别93.75ms和750ms内完成9位和12位的数字量,最大分辨率为0.0625℃,而且从DS18B20读出或写入DS18B20的信息仅需要一根口线(单线接口)读写。
Flash编程和程序校验期间,P1接收低8位地址
P2口:P2口是一个带有内部上拉电阻的8位双向I/O口;P2的输出缓冲级可驱动个(吸收或输出电流)4个TTL逻辑门电路,对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口;作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低会输出一个电流。
图4复位电路
3.1.3晶振电路
晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
P3口:P3口是一个带有内部上拉电阻的8位双向I/O口;P2的输出缓冲级可驱动个(吸收或输出电流)4个TTL逻辑门电路,对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口;作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低会输出一个电流。
P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能;如下表2-1所示:
3.3.1 DS18B20的性能特点
单线数字化智能集成温度的传感器,其特点是:
1DSI8B20可将被测温度直接转换成计算机能识别的数字信号输出,温度值不需要经电桥电路先获取电压模拟量,再经信号放大和A/D转换成数字信号,解决了传统温度传感器存在的因参数不一致性,在更换传感器时会因放大器零漂而必须对电路进行重新调试的问题,使用方便.
复位电路的用途:单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。
复位电路的工作原理:51单片机要复位只需要在第9引脚接个高电平持续2us就可以实现在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。电路图如下:
方案二、本方案采用AT89S51单片机为核心,通过温度传感器AD590采集温度信号,经信号放大器放大后,送到A/D转换芯片,最终经单片机检测处理温度信号。
图1方案二的框图
方案三、本方案由AT89S51单片机为核心,温度传感器采用的是DS18B20数字温度传感器实现温度的测量并且由LED显示温度值。
图2方案三框图
方案的比较:DS18B20将温度信号直接转换为数字信号,实现了与单片机的直接接口,从而省去了信号调理电路。该元件的最大分辨率为0.0625℃能达到设计要求。该仪器电路简单、功能可靠、测量效率高,很好地弥补了传统温度测量方法的不足。相对与方案1,在功能、性能、可操作性等方面都有较大的提升。相对与方案2,硬件电路简单,易于操作,具有更高的性价比,更大的市场。所以我采用方案3完成本设计。
2DS18B20能提供9到12位温度读数,精度高,且其信息传输只需1根信号线,与计算机接口十分简便,读写及温度变换的功率来自于数据线而不需额外的电源.
3每一个DS18B20都有一个惟一的序列号,这就允许多个DS18B20连接到同一总线上.尤其适合于多点温度检测系统.
④负压特性:当电源极性接反时,DS18B20虽然不能正常工作,但不会因发热而烧毁正是由于具有以上特点,DS18B20在解决各种误差、可靠性和实现系统优化等方面与传统各种温度传感器相比,有无可比拟的优越性,因而广泛应用于过程控制、环境控制、建筑物、机器设备中的温度检测。
3.1控制电路
3.1.1单片机电路及原理
At89S51是美国ATMEL公司生产的低电压、高性能CMOS8位单片机;片内含有4k字节的可反复擦写的只读程序存储器(PEROM)和128字节的随机存取数据存储器(RAM);器件采用AMTEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统;片内置通用2位中央处理器(CPU)和Flash存储单元,功能强大的AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。功能特性概述
谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。在本次课程设计中使用的是无源晶振电路图如下示:
图5晶振电路
3.2直流电源
在本次的课程设计中采用的是自主设计的直流电源主要是通过变压器进行降压,用二极管整流桥进行整流操作,用稳压芯片对电源实现稳压。
在正常的工作情况下输入220V交流电经过整流二极管进行整流使用电桥实现全波整流经过4700uf大电容的滤波得到较低的直流电压,经过LM7812把直流电压稳压为12V,然后在经过直流稳压芯片LM7805得到了单片机稳定的工作电压。如下图示:
晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
一般的晶振的负载电容为15p或12.5p,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。
晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。
引脚功能说明
Vcc:电源电压
GND:地
P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口;作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。
在访问外部数据存储器或者程序存储器时,这组口线分时转换地址(低8位)和数据总线复用;在访问期间激活内部上拉电阻。
致谢………………………………………………………….………….12
参考文献………………………………………………….…………….13
附录……………………………………………………………………..14
1
1)采用单片机80C51.要求温度范围0℃~100℃之间。
2)温度传感器选用模拟的数字的都可以。
3)在LED中显示温度。
电子信息工程《电子专业基础课程设计》研究报告
温度测量系统设计
学生姓名:XXX
学生学号:XXXXXXXXXX
指导教师:XXX
所在学院:信息技术学院
专业班级:电子一班
中国·大庆
2011年11月
信息技术学院
课程设计任务书
信息技术院电子信息工程专业08级,学号XXXXXXXXX姓名XXX
一、课程设计课题:
温度测量系统设计
二、课程设计工作日自2011年10月31日至2011年11月18日
三、课程设计进行地点:信息技术学院205
四、课程设计任务要求:(详细内容见课程设计文档)
1.课题来源:老师派发题目
2.目的意义:随着社会的进步和工业技术的发展,人们越来越重视温度因素,许多产品对温度范围要求严格,而目前市场上普遍存在的温度检测仪器大都存在精度不够的缺点,不利于工业控制者根据温度变化及时做出决定。实时性高、精度高,能够综合处理多点温度信息的测量系统就很有必要。
3.基本要求:
1)采用单片机80C51.要求温度范围0℃~100℃之间。
2)温度传感器选用模拟的数字的都可以。
3)在LED中显示温度。
4)精度达到±1%。
5)分辨率≤wk.baidu.com.1℃
6)根据精度自选A/D转换芯片。
7)直流稳压电源自行设计。
8)辅助电路及元器件自选。
课程设计评审表
指导教师评语:
成绩:签字:日期:
在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX @DPTR指令)时,P2口送出高8位地址数据;在访问8位地址的外部数据存储器(如执行MOVX @RI)时,P2口线上的内容(即特殊功能寄存器(SFR)区中的R2寄存器的内容),在整个访问期间不改变;
Flash编程或校验时,P2亦接收高位地址和其它控制信号。
表2-1
端口引脚
第二功能
P3.0
RXD (串行输入口)
P3.1
TXD (串行输出口)
P3.2
(外中断0)
P3.3
(外中断1)
P3.4
T0 (定时/计数器0)
P3.5
T1 (定时/计数器1)
P3.6
(外部数据存储器写选通)
P3.7
(外部数据存储器读选通)
P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。
1设计任务要求………………………………………………….……...1
2方案比较……………………………………………………….……...1
3单元电路设计………………………………………………….……….2
4软件的编程……………………………….…………………………...10
总结与体会……………………………………………………………..11
如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作,该位置位后,只有一条MOVX和MOVC指令ALE才会被激活,此外该引脚会被微弱拉高,单片机执行外部程序时,应该置ALE无效。
EA/VPP:外部访问允许;欲使CPU仅访问外部程学存储器(地址为0000H FFFFH),EA端必须保持低电平(接地)。需要注意的是,如果加密位LB1被编程,复位时内部会锁存EA端的状态[3]。
RST:复位输入;当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位
ALE/PROG:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节;即使不访问外部存储器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的;要注意的是,每当访问外部数据存储器时将跳过一个ALE脉冲。
在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时要求外接上拉电阻
P1口:P1是一个带内部上拉电阻的8位双向I/O口;P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路,对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口;作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低会输出一个电流。
4)精度达到±1%。
5)分辨率≤0.1℃
6)根据精度自选A/D转换芯片。
7)直流稳压电源自行设计。
8)辅助电路及元器件自选。
2
方案一、采用模拟分立元件,如电容、电感或晶体管等非线形元件,实现多点温度的测量及显示,该方案设计电路简单易懂,操作简单,且价格便宜,但采用分立元件分散性大,不便于集成数字化,而且测量误差大。采用模拟的温度传感器实现温度的测量
如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。
Flash存储编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp。
XTML1:振荡器反相放大器的及内部时钟发生器的输入端。
XTML2:振荡器反相放大器的输出端。
图3单片机的工作电路图
3.1.2复位电路
AT89S51提供以下标准功能:4k字节Flash闪速存储器、128字节内部RAM、32个I/O口线、两个16位定时/计数器、1个5向量两级中断结构、一个全双工串行通信口、片内振荡器及时钟电路,同时,AT89S51可降至0Hz的静态逻辑操作并支持两种软件可选的节电工作模式;空闲方式停止CPU的工作,但允许RAM、定时/计数器、串行通信口及中断系统继续工作;掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作一直到下个硬件复位[2]。
图6自制直流电源
3.3测温电路
在本次的课程设计中使用的是的DS18B20数字式温度传感器。DS18B20型单线智能温度传感器,属于新一代适配微处理器的智能温度传感器。全部传感元件及转换电路集成在形如一只三极管的集成电路内。与传统的热敏电阻相比,它能够直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。其可以分别93.75ms和750ms内完成9位和12位的数字量,最大分辨率为0.0625℃,而且从DS18B20读出或写入DS18B20的信息仅需要一根口线(单线接口)读写。
Flash编程和程序校验期间,P1接收低8位地址
P2口:P2口是一个带有内部上拉电阻的8位双向I/O口;P2的输出缓冲级可驱动个(吸收或输出电流)4个TTL逻辑门电路,对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口;作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低会输出一个电流。
图4复位电路
3.1.3晶振电路
晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
P3口:P3口是一个带有内部上拉电阻的8位双向I/O口;P2的输出缓冲级可驱动个(吸收或输出电流)4个TTL逻辑门电路,对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口;作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低会输出一个电流。
P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能;如下表2-1所示:
3.3.1 DS18B20的性能特点
单线数字化智能集成温度的传感器,其特点是:
1DSI8B20可将被测温度直接转换成计算机能识别的数字信号输出,温度值不需要经电桥电路先获取电压模拟量,再经信号放大和A/D转换成数字信号,解决了传统温度传感器存在的因参数不一致性,在更换传感器时会因放大器零漂而必须对电路进行重新调试的问题,使用方便.
复位电路的用途:单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。
复位电路的工作原理:51单片机要复位只需要在第9引脚接个高电平持续2us就可以实现在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。电路图如下:
方案二、本方案采用AT89S51单片机为核心,通过温度传感器AD590采集温度信号,经信号放大器放大后,送到A/D转换芯片,最终经单片机检测处理温度信号。
图1方案二的框图
方案三、本方案由AT89S51单片机为核心,温度传感器采用的是DS18B20数字温度传感器实现温度的测量并且由LED显示温度值。
图2方案三框图
方案的比较:DS18B20将温度信号直接转换为数字信号,实现了与单片机的直接接口,从而省去了信号调理电路。该元件的最大分辨率为0.0625℃能达到设计要求。该仪器电路简单、功能可靠、测量效率高,很好地弥补了传统温度测量方法的不足。相对与方案1,在功能、性能、可操作性等方面都有较大的提升。相对与方案2,硬件电路简单,易于操作,具有更高的性价比,更大的市场。所以我采用方案3完成本设计。
2DS18B20能提供9到12位温度读数,精度高,且其信息传输只需1根信号线,与计算机接口十分简便,读写及温度变换的功率来自于数据线而不需额外的电源.
3每一个DS18B20都有一个惟一的序列号,这就允许多个DS18B20连接到同一总线上.尤其适合于多点温度检测系统.
④负压特性:当电源极性接反时,DS18B20虽然不能正常工作,但不会因发热而烧毁正是由于具有以上特点,DS18B20在解决各种误差、可靠性和实现系统优化等方面与传统各种温度传感器相比,有无可比拟的优越性,因而广泛应用于过程控制、环境控制、建筑物、机器设备中的温度检测。