绝对值的化简求值

合集下载

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)

绝对值年夜全(零点分段法、化简、最值)之阿布丰王创作一、去绝对值符号的几种经常使用方法解含绝对值不等式的基本思路是去失落绝对值符号,使不等式酿成不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同.因此掌握去失落绝对值符号的方法和途径是解题关键. 1利用界说法去失落绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或 2利用不等式的性质去失落绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集.对含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典范的转化与化归的数学思想方法.3利用平方法去失落绝对值符号对两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值界说去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去失落绝对值,尤其是解含参数不等式时更必需注意这一点.4利用零点分段法去失落绝对值符号所谓零点分段法,是指:若数x,2x,……,n x分别使含有|x-1x|,|x-2x|,……,|x-n x|的代数式中相应绝对值为零,称1x,2x,……,n x为相应绝对值的零点,零点1x,2x,……,n x将数轴分1为m+1段,利用绝对值的意义化去绝对值符号,获得代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项即是零,获得的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.零点分段法是解含绝对值符号的不等式的经常使用解法,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路直观化.5利用数形结合去失落绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解.数形结合法较为形象、直观,可以使复杂问题简单化,此解法适用于-+->或||||-+-<(m为正常数)类型不等式.对x a x b mx a x b m||||ax b cx d m+++>(或<m),当|a|≠|c|时一般不用.||||二、如何化简绝对值绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常呈现,含有绝对值符号的数学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部份的正负,借以去失落绝对值符号的方法年夜致有三种类型.(一)、根据题设条件例1:设化简的结果是().(A)(B)(C)(D)思路分析:由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去.解:∴应选(B).归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去失落绝对值符号,这是解答这类问题的惯例思路.(二)、借助数轴例2:实数a、b、c在数轴上的位置如图所示,则代数式的值即是().(A)(B)(C)(D)思路分析由数轴上容易看出,这就为去失落绝对值符号扫清了障碍.解:原式∴应选(C).归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清:1.零点的左边都是负数,右边都是正数.2.右边点暗示的数总年夜于左边点暗示的数.3.离原点远的点的绝对值较年夜,牢记这几个要点就能沉着自如地解决问题了.(三)、采纳零点分段讨论法例3:化简思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采纳零点分段讨论法,本例的难点在于的正负不能确定,由于x是不竭变动的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论.解:令得零点:;令得零点:,把数轴上的数分为三个部份(如图)①那时,∴原式②那时,,∴原式③那时,,∴原式∴归纳点评:虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采纳此法的一般步伐是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点(纷歧定是两个).2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部份的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来,获得问题的谜底.误区点拨千万不要想固然地把等都当做正数或无根据地增加一些附加条件,以免得犯毛病的结果.三、带绝对值符号的运算在初中数学教学中,如何去失落绝对值符号?因为这一问题看似简单,所以往往容易被人们忽视.其实它既是初中数学教学的一个重点,也是初中数学教学的一个难点,还是学生容易搞错的问题.那么,如何去失落绝对值符号呢?我认为应从以下几个方面着手:(一)、要理解数a的绝对值的界说.在中学数学教科书中,数a的绝对值是这样界说的,“在数轴上,暗示数a的点到原点的距离叫做数a的绝对值.”学习这个界说应让学生理解,数a的绝对值所暗示的是一段距离,那么,不论数a自己是正数还是负数,它的绝对值都应该是一个非负数.(二)、要弄清楚怎样去求数a的绝对值.从数a的绝对值的界说可知,一个正数的绝对值肯定是它的自己,一个负数的绝对值肯定是它的相反数,零的绝对值就是零.在这里要让学生重点理解的是,当a是一个负数时,怎样去暗示a的相反数(可暗示为“-a”),以及绝对值符号的双重作用(一是非负的作用,二是括号的作用).(三)、掌握初中数学罕见去失落绝对值符号的几种题型.1、对形如︱a︱的一类问题只要根据绝对值的3个性质,判断出a 的3种情况,便能快速去失落绝对值符号.当a>0时,︱a︱=a(性质1:正数的绝对值是它自己);当a=0 时,︱a︱=0 (性质 2:0的绝对值是0) ;当 a<0 时;︱a︱=–a (性质3:负数的绝对值是它的相反数) .2、对形如︱a+b︱的一类问题首先要把a+b看作是一个整体,再判断a+b的3种情况,根据绝对值的3个性质,便能快速去失落绝对值符号进行化简.当a+b>0时,︱a+b︱=(a+b) =a +b (性质1:正数的绝对值是它自己);当a+b=0 时,︱a+b︱=(a+b) =0 (性质 2:0的绝对值是0);当 a+b<0 时,︱a+b︱=–(a+b)=–a-b (性质3:负数的绝对值是它的相反数).3、对形如︱a-b︱的一类问题同样,仍然要把a-b看作一个整体,判断出a-b 的3种情况,根据绝对值的3个性质,去失落绝对值符号进行化简.但在去括号时最容易呈现毛病.如何快速去失落绝对值符号,条件非常简单,只要你能判断出a与b的年夜小即可(不论正负).因为︱年夜-小︱=︱小-年夜︱=年夜-小,所以当a>b时,︱a-b︱=(a-b)= a-b,︱b-a︱=(a-b)= a-b .口诀:无论是年夜减小,还是小减年夜,去失落绝对值,都是年夜减小.4、对数轴型的一类问题,根据3的口诀来化简,更快捷有效.如︱a-b︱的一类问题,只要判断出a在b的右边(不论正负),即可获得︱a-b︱=(a-b)=a-b,︱b-a︱=(a-b)=a-b .5、对绝对值符号前有正、负号的运算非常简单,去失落绝对值符号的同时,不要忘记打括号.前面是正号的无所谓,如果是负号,忘记打括号就惨了,差之毫厘失之千里也!6、对绝对值号里有三个数或者三个以上数的运算万变不离其宗,还是把绝对值号里的式子看成一个整体,把它与0比力,年夜于0直接去绝对值号,小于0的整体前面加负号.四、去绝对值化简专题练习(1)设化简的结果是( B ).(A)(B)(C)(D)(2) 实数a、b、c在数轴上的位置如图所示,则代数式的值即是( C ).(A)(B)(C)(D)(3) 已知,化简的结果是 x-8 .(4) 已知,化简的结果是 -x+8 .(5) 已知,化简的结果是 -3x .(6) 已知a、b、c、d满足且,那么a+b+c+d= 0 (提示:可借助数轴完成)(7) 若,则有( A ).(A)(B)(C)(D)(8) 有理数a、b、c在数轴上的位置如图所示,则式子化简结果为( C ).(A)(B)(C)(D)(9) 有理数a、b在数轴上的对应点如图所示,那么下列四个式子,中负数的个数是(B ).(A)0 (B)1 (C)2 (D)3(10) 化简 =(1)-3x (x<-4) (2)-x+8(-4≤x≤2) (3)3x(x>2)(11) 设x是实数,下列四个结论中正确的是( D ).(A)y没有最小值(B)有有限多个x使y取到最小值(C)只有一个x使y取得最小值(D)有无穷多个x使y取得最小值五、绝对值培优教案绝对值是初中代数中的一个基本概念,是学习相反数、有理数运算及后续二次根式的基础.绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)、函数中距离等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面人手:l .绝对值的代数意义:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值的几何意义从数轴上看,a 暗示数a 的点到原点的距离(长度,非负) ;b a -暗示数a 、数b 的两点间的距离.3.绝对值基赋性质 ①非负性:0≥a ;②b a ab ⋅=;③)0(≠=b ba b a ;④222a a a ==. 培优讲解(一)、绝对值的非负性问题【例1】若3150x y z +++++=,则x y z --=.总结:若干非负数之和为0,.(二)、绝对值中的整体思想【例2】已知4,5==b a ,且a b b a -=-,那么b a +=. 变式1. 若|m -1|=m -1,则m_______1; 若|m -1|>m -1,则m_______1;(三)、绝对值相关化简问题(零点分段法)【例3】阅读下列资料并解决有关问题:我们知道()()()0000<=>⎪⎩⎪⎨⎧-=x x x x x x ,现在我们可以用这一个结论来化简含有绝对值的代数式,如化简代数式21-++x x 时,可令01=+x 和02=-x ,分别求得2,1=-=x x (称2,1-分别为1+x 与2-x 的零点值).在有理数范围内,零点值1-=x 和2=x 可将全体有理数分成不重复且不遗漏的如下3种情况:(1)那时1-<x ,原式=()()1221+-=--+-x x x ;(2)那时21<≤-x ,原式=()321=--+x x ;(3)那时2≥x ,原式=1221-=-++x x x .综上讨论,原式=()()()221112312≥<≤--<⎪⎩⎪⎨⎧-+-x x x x x 通过以上阅读,请你解决以下问题:(1) 分别求出2+x 和4-x 的零点值;(2)化简代数式42-++x x变式1.化简 (1)12-x ; (2)31-+-x x ;23++-x x 的最小值是a ,23+--x x 的最年夜值为b ,求b a +的值. (四)、b a -暗示数轴上暗示数a 、数b 的两点间的距离.【例4】(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___.(2)若数轴上的点A 暗示的数为x ,点B 暗示的数为―1,则A 与B两点间的距离可以暗示为 ______________.(3)结合数轴求得23x x -++的最小值为,取得最小值时x 的取值范围为 ___.(4)满足341>+++x x 的x 的取值范围为 ______ .(5) 若1232008x x x x -+-+-++-的值为常数,试求x 的取值范围. (五)、绝对值的最值问题 【例5】(1)当x 取何值时,3-x 有最小值?这个最小值是几多?(2)当x 取何值时,25+-x 有最年夜值?这个最年夜值是几多?(3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.【例6】.已知1,1≤≤y x ,设421--++++=x y y y x M ,求M 的最年夜值与最小值.课后练习:1、若|1|a b ++与2(1)a b -+互为相反数,求321a b +-的值.2.若1++b a 与2)1(+-b a 互为相反数,则a 与b 的年夜小关系是( ).A .b a >B .b a =C .b a <D .b a ≥3.已知数轴上的三点A 、B 、C 分别暗示有理数a ,1,一l,那么1+a 暗示( ).A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和23x x -++,可以看出,这个式子暗示的是x 到2的距离与x 到3-的距离之和,它暗示两条线段相加:⑴那时x >,发现,这两条线段的和随x 的增年夜而越来越年夜;⑵那时x <,发现,这两条线段的和随x 的减小而越来越年夜;⑶那时x ≤≤,发现,无论x 在这个范围取何值,这两条线段的和是一个定值,且比⑴、⑵情况下的值都小.因此,总结,23x x -++有最小值,即即是到的距离5. 利用数轴分析71x x +--,这个式子暗示的是x 到7-的距离与x 到1的距离之差它暗示两条线段相减:⑴那时x ≤,发现,无论x 取何值,这个差值是一个定值;⑵那时x ≥,发现,无论x 取何值,这个差值是一个定值;⑶那时x <<,随着x 增年夜,这个差值渐渐由负变正,在中点处是零. 因此,总结,式子71x x +--那时x ,有最年夜值;那时x ,有最小值;9.设0=++c b a ,0>abc ,则c b a b a c a c b +++++的值是().A .-3B .1C .3或-1D .-3或110.若2-<x ,则=+-x 11;若a a -=,则=---21a a .12.设c b a 、、分别是一个三位数的百位、十位和个位数字,而且c b a ≤≤,则a c c b b a -+-+-可能取得的最年夜值是.4、当b 为______时,5-12-b 有最年夜值,最年夜值是_______当a 为_____时,1+|a +3 |有最小值是_________.5、当a 为_____时,3+|2a -1 |有最小值是________;当b 为______时,1- | 2+b|有最年夜值是_______.2、已知b 为正整数,且a 、b 满足| 2a -4|+b =1,求a 、b 的值.7.化简:⑴13x x -++;⑵213x x +-+4、如果2x +| 4-5x|+ |1-3x |+4恒为常数,求x 的取值范围.7、若|5||2|7x x ++-=,求x 的取值范围.。

绝对值的化简问题(汇编)

绝对值的化简问题(汇编)

绝对值的化简问题【知识梳理】绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ ②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a a b b=(0)b ≠; (4)222||||a a a ==;(5)a b a b a b -≤+≤+,对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立; 对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立. 绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值.零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例1】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.x 的几何意义是数轴上表示 的点与 之间的距离;x 0-(>,=,<);【例2】 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ;【例3】 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .【例4】 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则x = .【例5】如果有理数a、b、c在数轴上的位置如图所示,求a b a c b c++--+的值. 【例6】如果有理数a、b、c在数轴上的位置如图所示,求11a b b a c c+------的值.【例7】已知00x z xy y z x,,,那么x z y z x y+++--=<<>>>++-+--【例8】数a b,在数轴上对应的点如右图所示,试化简a b b a b a a【例9】 实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-【例10】 若a b <-且0ab >,化简a b a b ab -+++.【例11】【例12】 若a b <,求15b a a b -+---的值.【例13】 a 、b 、c 的大小关系如图所示,求a b b c c a ab ac a b b c c a ab ac-----++----的值.。

实用文档之绝对值大全(零点分段法、化简、最值)

实用文档之绝对值大全(零点分段法、化简、最值)

实用文档之"绝对值大全(零点分段法、化简、最值)"一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

绝对值的化简求值问题的几种类型及解法解析

绝对值的化简求值问题的几种类型及解法解析

数学篇解题指南绝对值在化简求值问题、解方程或不等式问题中都会涉及.解答含绝对值问题的关键就在于去掉绝对值符号.一般遵循的原则是:先判断绝对值符号中式子的正负,再根据法则去掉绝对值符号.单个绝对值的问题一般比较简单,但是有的题目会同时出现多个绝对值或多重绝对值,这样就使题目变得复杂了.下面介绍几类有关绝对值的化简求值问题,供大家参考.一、含单个绝对值问题一个题目中只含有一个绝对值是最基础的题目,此时只需考虑去绝对值符号的条件,即对于任意数|a |:(1)当a >0时,|a |=a ;(2)当a =0时|a |=0;(3)当a <0时;|a |=-a .同学们在解题时应根据题设条件或挖掘隐含条件,确定绝对值符号里代数式的正负.若题目对含绝对值代数式的字母没有限制条件,须运用分类讨论的方法来解答.例1若|x |=3,|y |=2,且|x -y |=y -x ,求x +y 的值.分析:此题中|x |=3,可知x =±3;|y |=2可知y =±2.由题中|x -y |=y -x 可知y ≥x .由此可以推断,当y =2时,x 可以为±3,此时x +y =-1或5;当y =-2时,x 只能为-3,此时x +y =-5.最后综合所有情况即可得解.解:∵|x |=3,∴x =±3;同理可得y =±2,∵|x -y |=y -x ,∴y ≥x ,①当y =2时,x =-3,x +y =-1.②当y =-2时,x =-3,则x +y =-5.综合①②得x +y 的值可能是-1、-5.评注:求解此题是利用|x -y |≥0挖掘了隐含条件y ≥x ,然后确定x 和y 的可能值,简化了分类讨论的种类.同学们在求解过程中一定要仔细观察,充分挖掘题目中的隐含条件.二、含多个绝对值问题有些含有绝对值的题目中往往不止一个含绝对值的代数式,可能是两个、三个甚至是更多个含绝对值的代数式,通过“+”“-”“×”“÷”等运算符号连接.此时,去绝对值符号就需要先找出每个绝对值的零点值,再把全体实数分段,然后在每一实数段中化去绝对值符号,最后分类讨论去绝对值的结果.例2化简:|3x +1|+|2x -1|.分析:此题含有两个绝对值,要想去绝对绝对值的化简求值问题的几种类型及解法解析盐城市新洋初级中学聂玉成19数学篇值符号就要将绝对值符号内的数或式与“0”比较,然后逐个去掉绝对值符号.令3x +1=0得x =-13,同理,令2x -1=0得x =12.所以,当x 取不同的值时,两个绝对值的正负是不同的,需要分类讨论来解答.x 的取值分布如图所示:---解:令3x +1=0,得x =-13,令2x -1=0,得x =12,所以,实数轴被-13和12分为如图所示的三个部分.当x <-13时,3x +1<0,且2x -1<0,则原式=-(3x +1)+[-(2x -1)]=-5x ;当-13≤x ≤12时,3x +1≥0,且2x -1≤0,则原式=(3x +1)+[-(2x -1)]=x +2;当x >12时,3x +1>0,且2x -1>0,则原式=(3x +1)+(2x -1)=5x ;综上所述,当x <-13,原式=-5x ;当-13≤x ≤12,原式=x +2;当x >12,原式=5x .评注:此题含有两个绝对值,即含有两个零点(x =-13和x =12),在去绝对值符号时需要借助“分类讨论思想”分情况解答.特别是第二种情况,去绝对值符号时两个代数式是一正一负,务必要注意符号问题.三、含多重绝对值问题有些较为复杂的问题中含有多重绝对值符号,即绝对值符号中还有绝对值符号,我们称这种形式为多重绝对值.在求解多重绝对来解答问题.例3已知x <-3,化简:|3+|2-|1+x |||.分析:这是一个含有多重绝对值符号的问题,在求解时需要根据“由内而外”的原则逐层去绝对值.首先根据x 的范围判断出1+x <0,所以最里层绝对值|1+x |=-(1+x ).第二层|2-|1+x ||可以转化为|2-[-(1+x )]|=|3+x |.因为x <-3,所以3+x <0,即|2-|1+x ||=-(3+x ).最外层|3+|2-|1+x |||可转化为|3+[-(3+x )]|=|-x |.这样根据x 的取值范围一步步利用绝对值的代数意义即可化简.解:①最内层:∵x <-3,∴1+x <-2<0,∴|1+x |=-(1+x ),②第二层:|2-|1+x ||=|2-[-(1+x )]|=|2+(1+x )|=|3+x |,∵x <-3,∴3+x <0,∴|3+x |=-(3+x ),∴|2-|1+x ||=-(3+x ),③最外层:|3+|2-|1+x |||=|3+[-(3+x )]|=|-x |,∵x <-3,∴-x >3>0,∴|-x |=-x ,∴|3+|2-|1+x |||=-x ,综合①②③可得|3+|2-|1+x |||化简后为-x .评注:此题数值比较简单,但含有多重绝对值符号.在去绝对值符号时要由内而外逐层将3个层次的绝对值符号内部的数或式同“0”作比较,大于等于“0”的直接去绝对值;小于“0”的一定要添加“-”.绝对值是中学数学中的一个重要概念,常与其他知识结合起来考查.同学们只要牢牢掌握去绝对值的基本方法,结合“由内而解题指南。

绝对值大全(零点分段法-化简-最值)

绝对值大全(零点分段法-化简-最值)

绝对值大全〔零点分段法、化简、最值〕一、去绝对值符号的几种常用方法解含绝对值不等式的根本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法一样。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a 〞来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项〞绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,假如没有明确不等式两边均为非负数,需要进展分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:假设数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

初一数学期中压轴题系列:绝对值化简求值

初一数学期中压轴题系列:绝对值化简求值

初一数学期中压轴题系列:绝对值化简求值【难度】★★★★★【考点】有理数运算、绝对值化简【人大附期中】在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#()=_____________(3)在-这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的最大值__________,②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的最大值是___________【分析】将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。

【解析答案】(1)原式=3(2)原式(3)当a<b+c时,原式=b+c,当a≥b+c时,原式=a①令,时a#b#c的最大值为②4(提示,将分别赋予b、c同时赋予a四个负数;最后一组,a=0,b、c赋予两个负数即可)【难度】★★★☆☆【考点】绝对值与平方的非负性、二元一次方程组【北京四中期中】已知:(a+b)2+|b+5|=b+5,|2a-b-1|=0,求ab的值.【分析】考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。

【解析】由题意知b+50,(a+b)2+b+5=b+5,即(a+b)2=0……①2a-b-1=0……②解得,所以【答案】【难度】★★★☆☆【考点】绝对值化简,零点分段法【北大附中期中】化简|3x+1|+|2x-1|【分析】零点分段法,两个零点:,【答案】原式=5x;x+2(-); -5x(x<)【难度】★★★★☆【考点】有理数乘法法则、分类讨论、整体法求值【清华附中期中】已知:abc<0,a+b+c=2,且求多项式ax4+bx2+c-5的值。

有理数绝对值化简求值题20道

有理数绝对值化简求值题20道

有理数绝对值化简求值题20道一、基础题型1. 已知a = - 3,求| a|的值。

- 解析:根据绝对值的定义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

因为a=-3是负数,所以| a|=-a = -(-3)=3。

2. 若b = 5,求| b|的值。

- 解析:由于b = 5是正数,正数的绝对值是它本身,所以| b|=b = 5。

3. 已知c=0,求| c|的值。

- 解析:0的绝对值是0,所以| c| = 0。

二、含有简单运算的题型4. 已知x=-2,求| x + 1|的值。

- 解析:先计算x + 1=-2+1=-1,因为-1是负数,所以| x + 1|=-(x + 1)=-(-1)=1。

5. 若y = 3,求| y-2|的值。

- 解析:先计算y-2 = 3-2 = 1,1是正数,所以| y-2|=y - 2=1。

6. 已知m=-4,求| 2m|的值。

- 解析:先计算2m=2×(-4)=-8,因为-8是负数,所以| 2m|=-2m=-2×(-4)=8。

三、含有多层绝对值的题型7. 已知a=-2,求|| a| - 1|的值。

- 解析:首先| a|=| - 2|=2,然后|| a| - 1|=|2 - 1|=|1| = 1。

8. 若b = 1,求|| b|+2|的值。

- 解析:因为| b|=|1| = 1,所以|| b|+2|=|1 + 2|=|3| = 3。

四、含有字母表达式的题型9. 已知a、b满足a=-b,且b≠0,求| a|+| b|的值。

- 解析:因为a=-b,所以| a|=| - b|=| b|。

则| a|+| b|=| b|+| b| = 2| b|。

10. 若x、y满足x<0,y>0且| x|=| y|,求| x + y|的值。

- 解析:因为x<0,y>0且| x|=| y|,设x=-m,则y = m(m>0)。

那么x + y=-m+m = 0,所以| x + y| = 0。

绝对值例题

绝对值例题

绝对值例题
题型一:化简绝对值
正数的绝对值的是其本身,负数的绝对值是其相反数,0的绝对值是0,如果是具体的数字求其绝对值一般不会出错,关键是含有字母的题目,很多同学容易出错。

例题1:已知1<x<2,求|x-3|+|1-x|的值
分析:利用绝对值的性质进行化简,先根据未知数的取值范围判断出绝对值中代数式的正负性,然后根据“正数绝对值等于本身,负数绝对值等于相反数”去绝对值,利用整式加减法的性质化简求值。

题型二:已知一个数的绝对值求这个数
与题型一类似,也是利用绝对值的基本性质进行求值。

例题2:已知:x>y,且|x|=3,|y|=4,求2x+y的值
分析:根据绝对值的定义,由|x|=3,|y|=4,得x=±3,y=±4.根据分类讨论的思想,求得x与y,代入求值即可。

例题3:(1)写出绝对值不大于4的所有整数;(2)求满足(1)中条件的所有整数的和.
分析:(1)根据绝对值概念:数轴上某个数与原点的距离叫作这个数的绝对值可得绝对值不大于4的所有整数有0,±1,±2,±3,±4;(2)利用有理数的加法法则运算即可.
类型三:求取值范围
与类型一和类型二类似,仍然根据绝对值的性质进行求值,去绝对值得到本身那么绝对值中的代数式为非负数;去绝对值得到相反数那么绝对值中的代数式为非正数。

例题4:已知|x-2|=2-x,求x的取值范围
分析:本题考查绝对值,理解正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0是解决问题的关键。

(完整版)绝对值的性质及化简

(完整版)绝对值的性质及化简

绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a a b b=(0)b ≠; (4)222||||a a a ==;(5)a b a b a b -≤+≤+,对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立;对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立.绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值.零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.例题精讲绝对值的性质及化简a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.一、绝对值的概念【例1】 ⑴m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.x 的几何意义是数轴上表示 的点与 之间的距离;x 0-(>,=,<); ⑵21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ; ⑶3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = . ⑷2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则 x = .二、绝对值的性质【例2】 填空:若a b a b +=+,则a ,b 满足的关系 .【巩固】 填空:若a b a b -=-,则a ,b 满足的关系 .【例3】 填空:已知a 、b 是有理数,1a ≤,2b ≤,且3a b -=,则a b += .【巩固】 若ab ab <,则下列结论正确的是 ( )A. 00a b <<,B. 00a b ><,C. 00a b <>,D. 0ab <【例4】 下列各组判断中,正确的是 ( ) A .若a b =,则一定有a b = B .若a b >,则一定有a b >C. 若a b >,则一定有a b > D .若a b =,则一定有()22a b =-【例5】如果2a>2b,则( )A.a b< D a<b>B.a>b C.a b【例6】(4级)若a b<,则下列说法正确的是()>且a bA.a一定是正数B.a一定是负数C.b一定是正数D.b一定是负数【巩固】下列式子中正确的是( )A.a a≥-≤-D.a a>-B.a a<-C.a a【例7】对于1m-,下列结论正确的是( )A.1||≥D.1||1m m≤-----≥B.1||m mm mm m-≤C.1||1【例8】已知2332-=-,求x的取值范围x x【例9】下列说法中正确的个数是( )①当一个数由小变大时,它的绝对值也由小变大;②没有最大的非负数,也没有最小的非负数;③不相等的两个数,它们的绝对值一定也不相等;④只有负数的绝对值等于它的相反数.A.0 B.1 C.2 D.3【例10】绝对值等于5的整数有个,绝对值小于5的整数有个【例11】绝对值小于3.1的整数有哪些?它们的和为多少?【巩固】 非零整数m n ,满足50m n +-=,所有这样的整数组()m n ,共有【例13】 已知123a b c ===,,,且a b c >>,那么a b c +-=【例14】 如右图所示,若a 的绝对值是b 的绝对值的3倍,则数轴的原点在 点.(填“A ”“B ”“C ”或“D ”)【例15】 如果1a b -=,1b c +=,2a c +=,求2a b c ++的值.【例16】 已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d += .【例17】 已知a 、b 、c 、d 是有理数,9a b -≤,16c d -≤, 且25a b c d --+=,则b a d c ---= .【巩固】 有理数a 、b 、c 、d 各自对应着数轴上X 、Y 、Z 、R 四个点,且 (1)b d -比a b -,a c -、a d -、b c -、c d -都大;(2)d a a c d c -+-=-;(3)c 是a 、b 、c 、d 中第二大的数.则点X 、Y 、Z 、R 从左到右依次是【例18】 I f 3x ≤,1y ≤,4z ≤,and 29x y z -+=,then 246x y z = .【例19】 如果1,11,a a a x a =+-=-那么____x a x a +--=。

绝对值的性质及化简

绝对值的性质及化简

内容 基本要求略高要求较高要求绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ ②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b=(0)b ≠; (4)222||||a a a ==;(5)a b a b a b -≤+≤+,对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立;对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立.绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值.零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.一、绝对值的概念例题精讲中考要求绝对值的性质及化简【例1】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.x 的几何意义是数轴上表示 的点与 之间的距离;x0x -(>,=,<);【例2】 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ;【例3】 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .【例4】 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则 x = .二、绝对值的性质【例5】 填空:若a b a b +=+,则a ,b 满足的关系 .【例6】 填空:若a b a b -=-,则a ,b 满足的关系 .【例7】 填空:已知a 、b 是有理数,1a ≤,2b ≤,且3a b -=,则a b += .【例8】 若ab ab <,则下列结论正确的是 ( )A. 00a b <<,B. 00a b ><,C. 00a b <>,D. 0ab <【例9】 下列各组判断中,正确的是 ( )A .若a b =,则一定有a b =B .若a b >,则一定有a b > C. 若a b >,则一定有a b > D .若a b =,则一定有()22a b =- 【例10】 如果2a >2b ,则 ( ) A .a b > B .a >b C .a b < D a <b 【例11】 (4级)若a b >且a b <,则下列说法正确的是( ) A .a 一定是正数 B .a 一定是负数 C .b 一定是正数 D .b一定是负数【例12】 下列式子中正确的是 ( )A .a a >-B .a a <-C .a a ≤-D .a a ≥-【例13】 对于1m -,下列结论正确的是 ( ) A .1||m m -≥ B .1||m m -≤ C .1||1m m --≥ D .1||1m m --≤【例14】 若220x x -+-=,求x 的取值范围.【例15】 已知2332x x -=-,求x 的取值范围【例16】 下列说法中正确的个数是( )①当一个数由小变大时,它的绝对值也由小变大; ②没有最大的非负数,也没有最小的非负数; ③不相等的两个数,它们的绝对值一定也不相等; ④只有负数的绝对值等于它的相反数. A .0 B .1 C .2D .3【例17】 绝对值等于5的整数有 个,绝对值小于5的整数有个【例18】 绝对值小于3.1的整数有哪些?它们的和为多少?【例19】 有理数a 与b 满足a b >,则下面哪个答案正确( )A .a b >B .a b =C .a b <D .无法确定【例20】 已知:52a b ==,,且a b <;则____________a b ==,. 【例21】 非零整数m n ,满足50m n +-=,所有这样的整数组()m n ,共有【例22】 已知123a b c ===,,,且a b c >>,那么a b c +-=【例23】 如右图所示,若a 的绝对值是b 的绝对值的3倍,则数轴的原点在点.(填“A ”“B ”“C ”或“D ”)【例24】 如果1a b -=,1b c +=,2a c +=,求2a b c ++的值.【例25】 已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d += .【例26】 已知a 、b 、c 、d 是有理数,9a b -≤,16c d -≤, 且25a b c d --+=,则b a d c ---= .【例27】 有理数a 、b 、c 、d 各自对应着数轴上X 、Y 、Z 、R 四个点,且(1)b d -比a b -,a c -、a d -、b c -、c d -都大; (2)d a a c d c -+-=-;(3)c 是a 、b 、c 、d 中第二大的数.则点X 、Y 、Z 、R 从左到右依次是【例28】 若a b c d ,,,为互不相等的有理数,且c 最小,a 最大,且a c b c b d a d ---+-=-.请按a b c d ,,,从小到大的顺序排列.【例29】 I f 3x ≤,1y ≤,4z ≤,and 29x y z -+=,then 246x y z = .【例30】 如果1,11,a a a x a =+-=-那么____x a x a +--=。

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值)

绝对值年夜全(零点分段法、化简、最值)之欧侯瑞魂创作一、去绝对值符号的几种经常使用方法解含绝对值不等式的基本思路是去失落绝对值符号, 使不等式酿成不含绝对值符号的一般不等式, 而后, 其解法与一般不等式的解法相同.因此掌握去失落绝对值符号的方法和途径是解题关键.1利用界说法去失落绝对值符号根据实数含绝对值的意义, 即|x |=(0)(0)x x x x ≥⎧⎨-<⎩, 有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或 2利用不等式的性质去失落绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解, 如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c , 再由此求出原不等式的解集.对含绝对值的双向不等式应化为不等式组求解, 也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解, 这是种典范的转化与化归的数学思想方法.3利用平方法去失落绝对值符号对两边都含有“单项”绝对值的不等式, 利用|x |2=2x 可在两边脱去绝对值符号来解, 这样解题要比按绝对值界说去讨论脱去绝对值符号解题更为简捷, 解题时还要注意不等式两边变量与参变量的取值范围, 如果没有明确不等式两边均为非负数, 需要进行分类讨论, 只有不等式两边均为非负数(式)时, 才可以直接用两边平方去失落绝对值, 尤其是解含参数不等式时更必需注意这一点.4利用零点分段法去失落绝对值符号所谓零点分段法, 是指:若数x, 2x, ……, n x分别使含有1|x-x|, |x-2x|, ……, |x-n x|的代数式中相应绝对值为零, 1称x, 2x, ……, n x为相应绝对值的零点, 零点1x, 2x, ……, n x 1将数轴分为m+1段, 利用绝对值的意义化去绝对值符号, 获得代数式在各段上的简化式, 从而化为不含绝对值符号的一般不等式来解, 即令每项即是零, 获得的值作为讨论的分区点, 然后再分区间讨论绝对值不等式, 最后应求出解集的并集.零点分段法是解含绝对值符号的不等式的经常使用解法, 这种方法主要体现了化归、分类讨论等数学思想方法, 它可以把求解条理化、思路直观化.5利用数形结合去失落绝对值符号解绝对值不等式有时要利用数形结合, 利用绝对值的几何意义画出数轴, 将绝对值转化为数轴上两点间的距离求解.数形结合法较为形象、直观, 可以使复杂问题简单化, 此解法适用于-+-<(m为正常数)类型不等式.对x a x b m||||-+->或||||x a x b m+++>(或<m), 当|a|≠|c|时一般不用.||||ax b cx d m二、如何化简绝对值绝对值的知识是初中代数的重要内容, 在中考和各类竞赛中经常呈现, 含有绝对值符号的数学问题又是学生遇到的难点之一, 解决这类问题的方法通常是利用绝对值的意义, 将绝对值符号化去, 将问题转化为不含绝对值符号的问题, 确定绝对值符号内部份的正负, 借以去失落绝对值符号的方法年夜致有三种类型.(一)、根据题设条件例1:设化简的结果是().(A)(B)(C)(D)思路分析:由可知可化去第一层绝对值符号, 第二次绝对值符号待合并整理后再用同样方法化去.解:∴应选(B).归纳点评只要知道绝对值将合内的代数式是正是负或是零, 就能根据绝对值意义顺利去失落绝对值符号, 这是解答这类问题的惯例思路.(二)、借助数轴例2:实数a、b、c在数轴上的位置如图所示, 则代数式的值即是().(A)(B)(C)(D)思路分析由数轴上容易看出, 这就为去失落绝对值符号扫清了障碍.解:原式∴应选(C).归纳点评这类题型是把已知条件标在数轴上, 借助数轴提供的信息让人去观察, 一定弄清:1.零点的左边都是负数, 右边都是正数.2.右边点暗示的数总年夜于左边点暗示的数.3.离原点远的点的绝对值较年夜, 牢记这几个要点就能沉着自如地解决问题了.(三)、采纳零点分段讨论法例3:化简思路分析本类型的题既没有条件限制, 又没有数轴信息, 要对各种情况分类讨论, 可采纳零点分段讨论法, 本例的难点在于的正负不能确定, 由于x是不竭变动的, 所以它们为正、为负、为零都有可能, 应当对各种情况—一讨论.解:令得零点:;令得零点:, 把数轴上的数分为三个部份(如图)①那时,∴原式②那时, ,∴原式③那时, ,∴原式∴归纳点评:虽然的正负不能确定, 但在某个具体的区段内都是确定的, 这正是零点分段讨论法的优点, 采纳此法的一般步伐是:1.求零点:分别令各绝对值符号内的代数式为零, 求出零点(纷歧定是两个).2.分段:根据第一步求出的零点, 将数轴上的点划分为若干个区段, 使在各区段内每个绝对值符号内的部份的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来, 获得问题的谜底.误区点拨千万不要想固然地把等都当做正数或无根据地增加一些附加条件, 以免得犯毛病的结果.三、带绝对值符号的运算在初中数学教学中, 如何去失落绝对值符号?因为这一问题看似简单, 所以往往容易被人们忽视.其实它既是初中数学教学的一个重点, 也是初中数学教学的一个难点, 还是学生容易搞错的问题.那么, 如何去失落绝对值符号呢?我认为应从以下几个方面着手:(一)、要理解数a的绝对值的界说.在中学数学教科书中, 数a的绝对值是这样界说的, “在数轴上, 暗示数a的点到原点的距离叫做数a的绝对值.”学习这个界说应让学生理解, 数a的绝对值所暗示的是一段距离, 那么, 不论数a自己是正数还是负数, 它的绝对值都应该是一个非负数.(二)、要弄清楚怎样去求数a的绝对值.从数a的绝对值的界说可知, 一个正数的绝对值肯定是它的自己, 一个负数的绝对值肯定是它的相反数, 零的绝对值就是零.在这里要让学生重点理解的是, 当a是一个负数时, 怎样去暗示a的相反数(可暗示为“-a”), 以及绝对值符号的双重作用(一是非负的作用, 二是括号的作用).(三)、掌握初中数学罕见去失落绝对值符号的几种题型.1、对形如︱a︱的一类问题只要根据绝对值的3个性质, 判断出a的3种情况, 便能快速去失落绝对值符号.当a>0时, ︱a︱=a (性质1:正数的绝对值是它自己);当a=0 时, ︱a︱=0(性质 2:0的绝对值是0) ;当 a<0 时;︱a︱=–a (性质3:负数的绝对值是它的相反数) .2、对形如︱a+b︱的一类问题首先要把a+b看作是一个整体, 再判断a+b的3种情况, 根据绝对值的3个性质, 便能快速去失落绝对值符号进行化简.当a+b>0时, ︱a+b︱=(a+b) =a +b (性质1:正数的绝对值是它自己);当a+b=0 时, ︱a+b︱=(a+b) =0 (性质 2:0的绝对值是0);当 a+b<0 时, ︱a+b︱=–(a+b)=–a-b (性质3:负数的绝对值是它的相反数).3、对形如︱a-b︱的一类问题同样, 仍然要把a-b看作一个整体, 判断出a-b 的3种情况, 根据绝对值的3个性质, 去失落绝对值符号进行化简.但在去括号时最容易呈现毛病.如何快速去失落绝对值符号, 条件非常简单, 只要你能判断出a与b的年夜小即可(不论正负).因为︱年夜-小︱=︱小-年夜︱=年夜-小, 所以当a>b时, ︱a-b︱=(a-b)= a-b, ︱b-a︱=(a-b)= a-b .口诀:无论是年夜减小, 还是小减年夜, 去失落绝对值, 都是年夜减小.4、对数轴型的一类问题,根据3的口诀来化简, 更快捷有效.如︱a-b︱的一类问题, 只要判断出a在b的右边(不论正负), 即可获得︱a-b︱=(a-b)=a-b, ︱b-a︱=(a-b)=a-b .5、对绝对值符号前有正、负号的运算非常简单, 去失落绝对值符号的同时, 不要忘记打括号.前面是正号的无所谓, 如果是负号, 忘记打括号就惨了, 差之毫厘失之千里也!6、对绝对值号里有三个数或者三个以上数的运算万变不离其宗, 还是把绝对值号里的式子看成一个整体, 把它与0比力, 年夜于0直接去绝对值号, 小于0的整体前面加负号.四、去绝对值化简专题练习(1)设化简的结果是( B ).(A)(B)(C)(D)(2) 实数a、b、c在数轴上的位置如图所示, 则代数式的值即是( C ).(A)(B)(C)(D)(3) 已知, 化简的结果是 x-8 .(4) 已知, 化简的结果是 -x+8 .(5) 已知, 化简的结果是 -3x .(6) 已知a、b、c、d满足且, 那么a+b+c+d= 0 (提示:可借助数轴完成)(7) 若, 则有( A ).(A)(B)(C)(D)(8) 有理数a、b、c在数轴上的位置如图所示, 则式子化简结果为( C ).(A)(B)(C)(D)(9) 有理数a、b在数轴上的对应点如图所示, 那么下列四个式子, 中负数的个数是(B ).(A)0 (B)1 (C)2 (D)3(10) 化简 =(1)-3x (x<-4) (2)-x+8(-4≤x≤2) (3)3x(x>2)(11) 设x是实数, 下列四个结论中正确的是( D ).(A)y没有最小值(B)有有限多个x使y取到最小值(C)只有一个x使y取得最小值(D )有无穷多个x 使y 取得最小值五、绝对值培优教案绝对值是初中代数中的一个基本概念, 是学习相反数、有理数运算及后续二次根式的基础.绝对值又是初中代数中的一个重要概念, 在解代数式化简求值、解方程(组)、解不等(组)、函数中距离等问题有着广泛的应用, 全面理解、掌握绝对值这一概念, 应从以下方面人手:l .绝对值的代数意义:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值的几何意义从数轴上看, a 暗示数a 的点到原点的距离(长度, 非负) ;b a -暗示数a 、数b 的两点间的距离.3.绝对值基赋性质 ①非负性:0≥a ;②b a ab ⋅=;③)0(≠=b ba b a ;④222a a a ==. 培优讲解(一)、绝对值的非负性问题【例1】若3150x y z +++++=, 则x y z --=.总结:若干非负数之和为0, .(二)、绝对值中的整体思想【例2】已知4,5==b a , 且a b b a -=-, 那么b a +=. 变式1. 若|m -1|=m -1, 则m_______1; 若|m -1|>m -1, 则m_______1;(三)、绝对值相关化简问题(零点分段法)【例3】阅读下列资料并解决有关问题: 我们知道()()()0000<=>⎪⎩⎪⎨⎧-=x x x x x x , 现在我们可以用这一个结论来化简含有绝对值的代数式, 如化简代数式21-++x x 时, 可令01=+x 和02=-x , 分别求得2,1=-=x x (称2,1-分别为1+x 与2-x 的零点值).在有理数范围内, 零点值1-=x 和2=x 可将全体有理数分成不重复且不遗漏的如下3种情况:(1)那时1-<x , 原式=()()1221+-=--+-x x x ;(2)那时21<≤-x , 原式=()321=--+x x ;(3)那时2≥x , 原式=1221-=-++x x x .综上讨论, 原式=()()()221112312≥<≤--<⎪⎩⎪⎨⎧-+-x x x x x 通过以上阅读, 请你解决以下问题:(1) 分别求出2+x 和4-x 的零点值;(2)化简代数式42-++x x变式1.化简 (1)12-x ; (2)31-+-x x ;23++-x x 的最小值是a , 23+--x x 的最年夜值为b , 求b a +的值. (四)、b a -暗示数轴上暗示数a 、数b 的两点间的距离.【例4】(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-, 3与5, 2-与6-, 4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___.(2)若数轴上的点A 暗示的数为x , 点B 暗示的数为―1, 则A与B 两点间的距离可以暗示为 ______________.(3)结合数轴求得23x x -++的最小值为, 取得最小值时x 的取值范围为 ___.(4)满足341>+++x x 的x 的取值范围为 ______ .(5) 若1232008x x x x -+-+-++-的值为常数, 试求x 的取值范围. (五)、绝对值的最值问题 【例5】(1)当x 取何值时, 3-x 有最小值?这个最小值是几多?(2)当x 取何值时, 25+-x 有最年夜值?这个最年夜值是几多?(3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.【例6】.已知1,1≤≤y x , 设421--++++=x y y y x M , 求M 的最年夜值与最小值.课后练习:1、若|1|a b ++与2(1)a b -+互为相反数, 求321a b +-的值.2.若1++b a 与2)1(+-b a 互为相反数, 则a 与b 的年夜小关系是( ).A .b a >B .b a =C .b a <D .b a ≥3.已知数轴上的三点A 、B 、C 分别暗示有理数a , 1, 一l, 那么1+a 暗示( ).A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和23x x -++, 可以看出, 这个式子暗示的是x 到2的距离与x 到3-的距离之和, 它暗示两条线段相加:⑴那时x >, 发现, 这两条线段的和随x 的增年夜而越来越年夜;⑵那时x <, 发现, 这两条线段的和随x 的减小而越来越年夜;⑶那时x ≤≤, 发现, 无论x 在这个范围取何值, 这两条线段的和是一个定值, 且比⑴、⑵情况下的值都小.因此, 总结, 23x x -++有最小值, 即即是到的距离5. 利用数轴分析71x x +--, 这个式子暗示的是x 到7-的距离与x 到1的距离之差它暗示两条线段相减:⑴那时x ≤, 发现, 无论x 取何值, 这个差值是一个定值;⑵那时x ≥, 发现, 无论x 取何值, 这个差值是一个定值;⑶那时x <<, 随着x 增年夜, 这个差值渐渐由负变正, 在中点处是零.因此, 总结, 式子71x x +--那时x , 有最年夜值;那时x , 有最小值;9.设0=++c b a , 0>abc , 则c b a b a c a c b +++++的值是().A .-3B .1C .3或-1D .-3或110.若2-<x , 则=+-x 11;若a a -=, 则=---21a a .12.设c b a 、、分别是一个三位数的百位、十位和个位数字, 而且c b a ≤≤, 则a c c b b a -+-+-可能取得的最年夜值是.4、当b 为______时, 5-12-b 有最年夜值, 最年夜值是_______当a 为_____时, 1+|a +3 |有最小值是_________.5、当a 为_____时, 3+|2a -1 |有最小值是________;当b 为______时, 1- | 2+b|有最年夜值是_______.2、已知b 为正整数, 且a 、b 满足| 2a -4|+b =1, 求a 、b 的值.7.化简:⑴13x x -++;⑵213x x +-+4、如果2x +| 4-5x|+ |1-3x |+4恒为常数, 求x 的取值范围.7、若|5||2|7x x ++-=, 求x 的取值范围.。

绝对值大全(零点分段法、化简、最值)精编版

绝对值大全(零点分段法、化简、最值)精编版

绝对值大全(零点分段法、化简、最值)一、去绝对值符号的几种常用方法解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。

因此掌握去掉绝对值符号的方法和途径是解题关键。

1利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或2利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。

对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解,这是种典型的转化与化归的数学思想方法。

3利用平方法去掉绝对值符号对于两边都含有“单项”绝对值的不等式,利用|x |2=2x 可在两边脱去绝对值符号来解,这样解题要比按绝对值定义去讨论脱去绝对值符号解题更为简捷,解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要进行分类讨论,只有不等式两边均为非负数(式)时,才可以直接用两边平方去掉绝对值,尤其是解含参数不等式时更必须注意这一点。

4利用零点分段法去掉绝对值符号所谓零点分段法,是指:若数1x ,2x ,……,n x 分别使含有|x -1x |,|x -2x |,……,|x -n x |的代数式中相应绝对值为零,称1x ,2x ,……,n x 为相应绝对值的零点,零点1x ,2x ,……,n x 将数轴分为m +1段,利用绝对值的意义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含绝对值符号的一般不等式来解,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集。

绝对值的性质及化简

绝对值的性质及化简

绝对值的性质及化简page 1 of 18内容 基本要求 略高要求较高要求绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5 符号是负号,例题精讲 中考要求绝对值的性质及化简page 1 of 18page 1 of 18找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.a的几何意义:在数轴上,表示这个数的点离开原点的距离.a b-的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.一、绝对值的概念【例1】 m n-的几何意义是数轴上表示m 的点与表示n 的点之间的距离.x 的几何意义是数轴上表示的点与之间的距离;x 0-(>,=,<);【例2】 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ;【例3】 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .【例4】 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则page 2 of 18x =.二、绝对值的性质【例5】填空:若a b a b +=+,则a ,b 满足的关系 .【例6】填空:若a b a b -=-,则a ,b 满足的关系 .【例7】填空:已知a 、b 是有理数,1a ≤,2b ≤,且3a b -=,则a b += .【例8】若ab ab <,则下列结论正确的是 ( )A. 00a b <<,B. 00a b ><,C. 00a b <>,D. 0ab <【例9】下列各组判断中,正确的是 ( ) A .若a b =,则一定有a b = B .若a b >,则一定有a b >C. 若a b >,则一定有a b > D .若a b =,则一定有()22a b =-【例10】如果2a >2b ,则 ( )A .a b >B .a >bC .a b <D a <b【例11】(4级)若a b >且a b <,则下列说法正确的是( )A .a 一定是正数B .a 一定是负数C .b 一定是正数D .b 一定是负数【例12】下列式子中正确的是 ( )page 3 of 18A .a a >-B .a a <-C .a a ≤-D .a a ≥-【例13】 对于1m -,下列结论正确的是 ( ) A .1||m m -≥ B .1||m m -≤ C .1||1m m --≥ D .1||1m m --≤【例14】 若220x x -+-=,求x 的取值范围.【例15】已知2332x x -=-,求x 的取值范围【例16】下列说法中正确的个数是( )①当一个数由小变大时,它的绝对值也由小变大;②没有最大的非负数,也没有最小的非负数;③不相等的两个数,它们的绝对值一定也不相等; ④只有负数的绝对值等于它的相反数.A .0B .1C .2D .3【例17】 绝对值等于5的整数有 个,绝对值小于5的整数有 个【例18】绝对值小于3.1的整数有哪些?它们的和为多少?【例19】有理数a 与b 满足a b >,则下面哪个答案正确( )A.a b>B.a b=C.a b<D.无法确定【例20】已知:52a b==,,且a b<;则____________a b==,. 【例21】非零整数m n,满足50m n+-=,所有这样的整数组()m n,共有【例22】已知123a b c===,,,且a b c>>,那么a b c+-=【例23】如右图所示,若a的绝对值是b的绝对值的3倍,则数轴的原点在点.(填“A”“B”“C”或“D”)【例24】如果1a b-=,1b c+=,2a c+=,求2a b c++的值.【例25】已知a、b、c、d都是整数,且2a b b c c d d a+++++++=,则a d+=.【例26】已知a、b、c、d是有理数,9a b-≤,16c d-≤,且25a b c d--+=,则b a d c---=.【例27】有理数a、b、c、d各自对应着数轴上X、Y、Z、R四个点,且(1)b d-比a b-,a c-、a d-、b c-、page 4 of 18page 5 of 18c d-都大;(2)d a a c d c -+-=-;(3)c 是a 、b 、c 、d 中第二大的数.则点X 、Y 、Z 、R 从左到右依次是【例28】 若a b c d ,,,为互不相等的有理数,且c 最小,a 最大,且a c b c b d a d ---+-=-.请按a b c d ,,,从小到大的顺序排列.【例29】 I f 3x ≤,1y ≤,4z ≤,and 29x y z -+=,then246x y z = .【例30】 如果1,11,a a a x a =+-=-那么____x a x a +--=。

初一年级奥数重点题型:绝对值化简求值

初一年级奥数重点题型:绝对值化简求值

初一年级奥数重点题型:绝对值化简求值★★★★★有理数运算、绝对值化简在有理数的范围内,我们定义三个数之间的新运算“#”法则:a#b#c=(|a-b-c|+a+b+c)/2如:(-1)#2#3=[|(-1-2-3)|+(-1)+2+3]/2=5(1)计算:3#(-2)#(-3)___________(2)计算:1#(-2)#(10/3)=_____________(3)在-6/7,-5/7。

-1/7,0,1/9,2/9。

8/9这15个数中,①任取三个数作为a、b、c的值,进行“a#b#c”运算,求所有计算结果的值__________,②若将这十五个数任意分成五组,每组三个数,进行“a#b#c”运算,得到五个不同的结果,由于分组不同,所以五个运算的结果也不同,那么五个结果之和的值是___________将a#b#c=(|a-b-c|+a+b+c)/2进行取绝对值化简。

【解析答案】(1)原式=3(2)原式=4/3(3)当a<b+c时,原式=b+c,当a≥b+c时,原式=a①令b=7/9,c=8/9时a#b#c的值为b+c=5/3②4(提示,将1/9,2/9。

8/9分别赋予b、c同时赋予a四个负数;最后一组,a=0,b、c赋予两个负数即可)★★★☆☆绝对值与平方的非负性、二元一次方程组已知:(a+b)2+|b+5|=b+5,|2a-b-1|=0,求ab的值.考察平方和绝对值的非负性,若干个非负数的和为零,则每个数都为零。

由题意知b+50,(a+b)2+b+5=b+5,即(a+b)2=0。

①2a-b-1=0。

②解得a=1/3,b=-1/3所以ab=-1/9-1/9★★★☆☆绝对值化简,零点分段法化简|3x+1|+|2__1|零点分段法,两个零点:x=-1/3,x=1/2原式=5x(x≥1/2);x+2(-1/3≤x<1/2); -5x(x<-1/3)★★★★☆有理数乘法法则、分类讨论、整体法求值已知:abc<0,a+b+c=2,且求多项式ax4+bx2+c-5的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一上学期期中考试重难点分析 ----绝对值的化简求值
进入初一上学期,同学们会发现大部门知识学起来还是比较简单,唯独绝对值的化简和 求值成为了众多学生的拦路虎。

无论是从绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说任何一个有理数的绝对值都是非负数,即:无论a 取任意有理数都有||a ≥0。

经过仔细分析,绝对值的考查无非就三种题型,用到的思想基本上就是分类讨论和数形结合,方法大部分题型考查的就是零点分段讨论,下面我们简单的分析下:
零点分段讨论法:我们把使绝对值符号内的代数式为0的未知数的值叫做零点,一个代数式里有几个绝对值符号,通常就有几个零点。

比如|42||3|-++x x ,有两个绝对值,就有两个零点,分别是-3和2。

确定了零点后,再根据两个零点在数轴上把整个数轴分成几段,就进行几类分类讨论。

题型一:含一个绝对值符号的化简
1、已知未知数的取值或取值范围进行化简
典型题型:当x >2时化简||23x x -+(根据绝对值的意义直接化简)
解:原式=-+=-2333x x x 。

2、没有告知未知数的取值或取值范围进行化简
典型题型:化简||x x -+52(此题中零点是5,5把数轴分成了两部分,因此分两类讨论)
解:(1)当5≥x 时,则05≥-x 是一个非负数,则它的绝对值应是它本身,所以原式=-+=-x x x 5235。

(2)当x <5时,则x -<50,是一个负数,而负数的绝对值应是它的相反数,所以原式=--+=-++=+()x x x x x 52525。

人大附中2009年期中测试真题:化简||2612
x y x y +-+- 此题虽含有一个绝对值符号,但绝对值符号内出现了两个未知数,在这种情况下,我们把含有两个未知数的式子看作一个整体,即把2x +y 看作一个整体未知数,找出零点,使260x y +-=的整体未知数的值是26x y +=,我们把6叫做此题的零点,这样又可分两种情况进行讨论。

(1)当62≥+y x 时,
||2612x y x y +-+-
=+-+
-=
-261252
6x y x y x
(2)当26x y +<时
||261
2x y x y
+-+-
=-+-+-=--++-=--+()261
2261
23
226
x y x y
x y x y
x y
题型二:含两个绝对值符号的化简
1、 已知未知数的取值或取值范围
典型题型:当x <-5时,化简||||256x x -+
解:原式=--+-()()256x x
=-+-=-+25685x x
x
2、 没有告知未知数的取值或取值范围
典型题型:化简||||x x ++-321 (此题有两个零点,把数轴分成三段,故应分三类讨论)
解:(1)当21
≥x 时
原式=++-()()x x 321
=++-=+x x x 321
32
(2)当21
3<≤-x 时
原式=++--x x 321[()]
=+-+=-+x x x 321
4
(3)当x <-3时
原式=-++--()[()]x x 321
=---+=--x x x 321
32
北京四中2010年期中测试真题:化简
解: ①当
时, 原式
②当
时, ,
原式
③当
时, , 原式
题型三:数形结合绝对值化简题 典型题型:有理数a 、b 、c 在数轴上的位置如图,试化简:
||||||23a b b c c a -+---。

解:由a 、b 、c 在数轴上的位置可知a b c <><000、、且c a <、c a >3、2a b < 所以原式=--+---()()()23a b b c c a
=-++--+=+-2322a b b c c a a b c
综上所述,含有绝对值符号的化简题,如已确定某些未知数的取值,就按这个未知数的取值根据绝对值的意义,去掉绝对值符号,进而化简。

如没有告诉某些未知数的取值或取值范围,那么就找出这个绝对值(或两个绝对值)符号内的零点,然后进行分类讨论。

相关文档
最新文档