正比例函数图象及性质
正比例函数的性质
正比例函数的性质正比例函数是数学中一种重要的函数类型。
它具有明确的性质和特征,被广泛地应用于各种实际问题的建模和解决。
本文将详细介绍正比例函数的定义、图像、性质以及应用等方面,以帮助读者更好地理解和运用正比例函数。
一、定义正比例函数是指函数的变化规律与自变量的取值成比例关系的函数。
具体而言,若函数y是自变量x的正比例函数,则存在一个常数k,使得对于任意实数x,y满足以下关系式:y = kx其中,k称为正比例系数,表示y与x之间的比例关系。
正比例函数的定义域为实数集合R,值域为实数集合R。
二、图像正比例函数的图像通常表现为一条通过原点的直线。
这是因为当x取0时,y也为0,即函数通过原点(0, 0)。
而且由于函数的性质,不会出现拐点或者折线等情况。
图像的斜率表示了正比例系数k的大小,斜率越大,说明变化的速度越快。
三、性质1. 方程形式简单明确:正比例函数的方程形式为y = kx,可以轻松地表示函数的关系。
2. 通过原点:正比例函数通过原点(0, 0),这是因为当自变量取0时,因变量也为0。
3. 一一对应关系:正比例函数在定义域内具有一一对应的关系,即任意一个自变量只对应一个因变量。
4. 和自变量同向增减:当自变量x增大时,因变量y也随之增大;自变量x减小时,因变量y也减小。
5. 斜率恒定:正比例函数的斜率为常数k,这意味着函数图像是一条直线且直线的斜率恒定。
四、应用正比例函数在实际生活中有着广泛的应用。
以下列举了三个典型的应用场景。
1. 比例关系计算:正比例函数可用于处理各类比例关系问题,例如货币兑换、单位换算等。
通过确定正比例系数,可以准确地计算出不同单位之间的换算关系。
2. 科学实验分析:在科学实验中,正比例函数可以用来描述变量之间的关系。
例如温度和体积的关系、时间和距离的关系等。
根据已知的数据,通过绘制出函数图像,可以推断未知数据的变化规律。
3. 经济增长模型:在经济学中,正比例函数被广泛应用于经济增长模型的构建和分析中。
第16讲 正比例函数的图像及性质(解析版)
第16讲 正比例函数的图像及性质【学习目标】正比例函数的图像及性质是八年级数学上学期第三章第二节内容,主要对正比例函数的图像及性质进行讲解,重点是对正比例函数的性质的理解,难点是正比例函数表达式的归纳总结.通过这节课的学习为我们后期学习正比例函数的应用提供依据.【基础知识】一、正比例函数的图像1.一般地,正比例函数y kx =(k 是常数, 0k ≠)的图象是经过,这两点的一条直线,我们把正比例函数y kx =的图象叫做直线y kx =;2.图像画法:列表、描点、连线. 二、正比例函数的性质:(1) 当0k >时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值 也随着逐渐增大.(2) 当0k <时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值则随着逐渐减小.【考点剖析】考点一:正比例函数的图像例1.已知正比例函数2y x =.列表:取自变量x 的一些值,根据正比例函数的解析式,填写下表.x…… 1.5- -1 0.5- 0 0.5 1 1.5 2 …… 2y x =……-4-3 -2-1 01 234……描点:分别以所取x 的值和相应函数值作为点的横坐标和纵坐标,描出相应点. 连线:用光滑的曲线(包括直线)把描出的点按照横坐标由小到大的顺序连接. 【难度】★【解析】考查正比例函数图像的画法.例2.在同一直角坐标平面内画出下列函数图像.(1)4y x =;(2)14y x =;(3)32y x =-;(4)32y x =.【难度】★【解析】考查正比例函数图像的画法.例3.函数15y x =-的图像是经过点________、________的________.【难度】★【答案】,,一条直线.【解析】考查正比例函数图像的特点.例4.(1)正比例函数y kx =的图像是____________,它一定经过点_______和_______.(2)函数y kx =的图像经过点1(5)2A -,,写出函数解析式,并说明函数图像经过哪几个象限? 【难度】★★【答案】(1)一条直线,,; (2)x y 10-=,经过二、四象限.【解析】考查正比例函数解析式的解法和图像性质.例5.已知2y -与x 成正比例,且x =2时,y =4; (1)求y 与x 之间的函数关系式;(2)若点(m ,2m +7),在这个函数的图象上,求m 的值.【难度】★★【答案】(1)2+=x y ;(2)-5.【解析】(1)设kx y =-2,将x =2时,y =4代入其中可得:1=k ,则2+=x y ;(2)点(m ,2m +7)在这个函数的图象上,则272+=+m m ,解得:5-=m .【总结】本题一方面考查利用待定系数法求函数解析式,另一方面考查根据函数解析式求函数值或者是自变量的值.例6.已知正比例函数图像上的一点到x 轴距离与到y 轴距离之比为1:2,则此正比例函数的解析式是________________. 【难度】★★【答案】x y 21=或x y 21-=. 【解析】由题意可知,该点的横坐标的绝对值是纵坐标绝对值的两倍,然后再求解析式. 【总结】注意距离需要分正负.例7.如果正比例函数的图像经过点(24)-,,说明是否在这个图像上,并作出该正比例函数的图像.【难度】★★【答案】x y 2-=,不在这个图像上,图像略.【解析】设正比例函数解析式为,将点(24)-,代入,可得:2k =-,所以该正 比例函数的解析式为x y 2-=.当4x =-时,,所以点不在该函数的图像上.【总结】考查正比例函数解析式的求法、图像的画法.例8.已知函数2(2)21y t x t =-+-,当t 为何值时该函数图像经过原点?此时函数解析式是什么?【难度】★★ 【答案】21=t ;x y 47-=.【解析】函数2(2)21y t x t =-+-经过原点,则012=-t ,解得:21=t .代入表达式中可得,函数解析式为:x y 47-=.【总结】本题主要考查正比例函数的概念.例9.一个正比例函数的图像经过点A ,B ,求a 的值.【难度】★★【答案】41-=a .【解析】设正比例函数的解析式为, ∵图像经过点A , ∴3=-k ,则3-=k . ∵图像经过点B ,∴a a 31=--,则41-=a .【总结】本题一方面考查利用待定系数法求正比例函数的解析式,另一方面考查利用解析式求图像上点的坐标.考点二:正比例函数的性质:例1.直线经过一、三象限,则m ________.【难度】★【答案】2<m .【解析】考查的图像经过一、三象限.例2.已知正比例函数的图像经过第二、四象限,求k 的取值范围.【难度】★ 【答案】25>k . 【解析】由题意,可得:520k -<,解得:25>k . 【总结】考查的图像经过二、四象限.例3.若正比例函数(3)y m x =-,y 的值随x 的增大而减小,则m _______.【难度】★ 【答案】3<m .【解析】由题意,可得:30m -<,解得:3m <. 【总结】考查的图像性质y 的值随x 的增大而减小.例4.(3)y x π=-图像经过_______象限,y 的值随x 的值增大而_______.【难度】★【答案】一、三;增大.【解析】由题意,可得:30π->,所以图像过一、三象限. 【总结】考查的图像y 的值随x 的增大而增大.例5.当a =_______时,2(3)(9)y a x a =-+-是正比例函数,图像经过第______象限.【难度】★ 【答案】;二、四.【解析】因为正比例函数,所以,解得:3a =-,所以图像过二、四象限. 【总结】考查的图像y 的值随x 的增大而减小.例6.已知点(11,x y ),(22,x y )在正比例函数()2y k x =-的图像上,当12x x >时,12y y <,那么k 的取值范围是多少? 【难度】★★ 【答案】2<k .【解析】当12x x >时,12y y <,可以理解成y 的值随x 的增大而减小. 【总结】本题主要考查正比例函数图像的性质.例7.已知正比例函数25(3)mm y m x +-=+,那么它的图像经过____________象限.【难度】★★ 【答案】一、三.【解析】∵152=-+m m ,∴3-=m 或2=m ,又∵03≠+m ,∴2=m .∴图像过一、三 象限. 【总结】本题主要考查正比例函数的概念及图像的性质.例8.正比例函数2mmy mx +=的图像经过第一、三象限,求m 的值.【难度】★★ 【答案】.【解析】由题意,可得:12=+m m ,则251±-=m . ∵正比例函数2m my mx +=的图像经过第一、三象限,∴0>m ,∴215-=m . 【总结】本题主要考查正比例函数的概念及图像的性质.例9.已知0mn <,那么函数my x n =经过______象限,y 的值随x 的值增大而______.【难度】★★【答案】二、四;减小.【解析】∵0mn <,∴,所以图像过二、四象限,并且y 的值随x 的值增大而减小. 【总结】考查的图像y 的值随x 的增大而减小.例10.函数()2(2)2k y k x -=-是正比例函数,且y 的值随着x 的减小而增大,求k 的值.【难度】★★ 【答案】1.【解析】由题意,可得:()122=-k ,则3=k 或1=k .∵y 的值随着x 的减小而增大,∴02<-k ,∴1=k .【总结】本题主要考查正比例函数的概念及图像的性质.例11.如果正比例函数y kx =的自变量增加5,函数值减少2,那么当3x =时,y =_______.【难度】★★【答案】56-.【解析】∵正比例函数y kx =的自变量增加5,函数值减少2,∴52-=k∴正比例函数解析式为x y 52-=.∴当3x =时,26355y =-⨯=-.【总结】本题主要考查正比例函数的概念及图像的性质.例12.(1)已知y ax =是经过第二、四象限的直线,且3a +在实数范围内有意义, 求a 的取值范围;(2)已知函数的值随自变量x 的值增大而增大,且函数的值随自变量x 的增大而减小,求m 的取值范围. 【难度】★★【答案】(1)03<≤-a ;(2)3121-<<-m . 【解析】(1)由题意,可得:,所以;(2)由题意,可得:,解得:,所以1123m -<<-.【总结】考查正比例函数图像的性质.例13.正比例函数()41y m x =-的图像经过点11(,)A x y 和22(,)B x y ,且该图像经过第 二、四象限.(1)求m 的取值范围;(2)当12x x >时,比较1y 与2y 的大小,并说明理由.【难度】★★ 【答案】(1)41<m ;(2)1y 2y <,正比例函数y 的值随着x 的增大而减小. 【解析】考查正比例函数图像的变化情况.【过关检测】一、填空题1.(2020·上海市静安区实验中学八年级课时练习)已知正比例函数的图像过点(3,2),(a ,6),则a 的值=_________. 【答案】9【分析】先根据点(3,2)坐标求出正比例函数解析式,再把点(a ,6)代入解析式,即可求解. 【详解】解:设正比例函数解析式为y=kx (k≠0), ∵正比例函数的图像过点(3,2), ∴3k=2, ∴k=23, ∴正比例函数解析式是23y x =,再把x=a ,y=6代入23y x =得, 263a =, 解得a =9. 故答案为:9【点睛】本题考查了待定系数法求正比例函数和已知正比例函数求字母的值,根据待定系数法求出正比例函数解析式是解题关键.2.(2019·上海凉城第二中学八年级月考)若正比例函数()231my m x-=-的图像经过一、三象限,则函数解析式是_______________. 【答案】y x =.【分析】根据正比例函数的定义和图像所经过的象限即可求出m ,从而求出函数解析式. 【详解】解:∵正比例函数()231m y m x -=-的图像经过一、三象限,∴解得:2m =∴函数解析式是y x =. 故答案为:y x =.【点睛】此题考查的是求正比例函数的解析式,掌握正比例函数的定义和图像所经过的象限与比例系数的关系是解决此题的关键.3.(2020·上海市位育实验学校八年级月考)已知直线y kx =(k≠0),当直线与x 轴正半轴夹角为30º时,直线解析式是____________ 【答案】y=x.【分析】依题意作图,根据含30°的直角三角形的特点设AO=2a ,得到故求出A 点坐标,再代入解析式即可求解.【详解】如图,AB ⊥x 轴,设OA=2a,∵∠AOB=30°,∴=∴A ,a )代入y kx =,即∴直线解析式是y=x 故填:y=x.【点睛】此题主要考查正比例函数的解析式,解题的关键是熟知含30°的直角三角形的性质. 4.(2019·上海市西南模范中学)正比例函数3y x =-的图像经过_____象限. 【答案】二、四.【分析】由题目可知,该正比例函数过原点,且系数为负数,故函数图象过二、四象限. 【详解】由题意,y=-3x , 可知函数过二、四象限. 故答案为:二、四.【点睛】此题主要考查了正比例函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.5.(2017·上海市青浦区金泽中学八年级期末)如果正比例函数的图象经过点(2,12),则正比例函数解析式是_____. 【答案】y =14x 【分析】设正比例函数解析式为y =kx (k ≠0),把经过的点的坐标代入解析式求出k 值,即可得解. 【详解】设正比例函数的解析式是y =kx (k ≠0),把(2,12)代入就得到:2k =12, 解得:k =14,因而这个函数的解析式为:y =14x .故答案为:y =14x.【点睛】本题考查待定系数法求正比例函数解析式.6.(2020·上海八年级期中)已知正比例函数y kx =的图像经过点()4,3A -,则函数图像经过______象限. 【答案】第二、第四【分析】将点()4,3A -代入正比例函数解析式中,即可求出k 的值,再根据k 的符号即可得出结论. 【详解】解:将点()4,3A -代入y kx =中,得解得:34k =-∴正比例函数34y x =- ∵34-<0 ∴函数图像经过第二、第四象限 故答案为:第二、第四.【点睛】本题考查的是正比例函数的性质,熟知利用待定系数法求正比例函数解析式是解答此题的关键. 7.(2020·上海八年级期中)已知正比例函数()21y a x =-,如果y 的值随着x 的值增大而减小,则a 的取值范围是______. 【答案】12a <【分析】根据正比例函数的性质可知关于a 的不等式,解出即可.【详解】解:∵正比例函数()21y a x =-,y 的值随着x 的值增大而减小, ∴21a -<0 解得:12a <故答案为:12a <. 【点睛】此题考查的是正比例函数图象的性质,掌握正比例函数图象的性质:它是经过原点的一条直线.当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小,是解题关键.8.(2020·上海市静安区实验中学八年级课时练习)正比例函数()21y k x =+的图像经过第二、四象限,则k ______. 【答案】12k <-【分析】根据正比例函数经过象限,得到关于k 的不等式,解不等式即可求解. 【详解】解:∵正比例函数()21y k x =+的图像经过第二、四象限, ∴210k +<, 解得12k <-.故答案为:12k <-【点睛】本题考查了正比例函数的图象与性质,在正比例函数中当k>0时,图象经过第一、三象限,当k<0时,图象经过第二、四象限.9.(2020·上海市静安区实验中学八年级课时练习)函数y =的图像过点(b ,则b=________. 【答案】-1【分析】把点(b b .【详解】解:∵函数y =的图像过点(b ∴, ∴b=-1. 故答案为:-1【点睛】本题考查了已知正比例函数解析式求点的坐标的参数,把点的坐标代入函数解析式是解题关键. 10.(2018·上海八年级期末)如果正比例函数y kx =的图像经过点(2-,6),那么y 随x 的增大而______. 【答案】减小【分析】求出k 的值,根据k 的符号确定正比例函数的增减性. 【详解】解:∵正比例函数y kx =的图像经过点(2-,6), ∴-2k =6, ∴k =-3,∴y 随x 的增大而减小. 故答案为:减小【点睛】本题考查了求正比例函数和正比例函数的性质,求出正比例系数k 的值是解题关键. 二、解答题11.(2020·上海市静安区实验中学八年级课时练习)已知y 与x 成正比例,且当x=12时, 求(1)y 关于x 的函数解析式? (2)当y=-2时,x 的值?【答案】(1)y =;(2)2x =.【分析】(1)首先设反比例函数解析式为y =k x(k≠0),再把x=12时,y=k 的值,进(2)把y=-2代入函数解析式即可.【详解】(1)设,把x=12,12k ,∴k =故y 关于x 的函数解析式是y =.(2)把y=-2代入解析式y =中,得-2=,解得2x =-. 【点睛】此题主要考查了待定系数法求正比例函数解析式,关键是掌握正比例函数解析式的形式. 12.(2020·上海市静安区实验中学八年级课时练习)正比例函数的图像经过点P (-3,2)和Q (-m ,m-1 ),求m 的值.【答案】3【分析】图象经过点,即点的坐标符合图象解析式,据此解题,先用待定系数法设正比例函数解析式,再代入点坐标求m 的值即可.【详解】设正比例函数解析式为(0)y kx k =≠,因为正比例函数的图像过点P (-3,2),将点P 坐标代入得,23y x =- 再代入点Q 坐标,即把x=-m ,y=m-1代入23y x =-左右两边, 解得m=3.【点睛】本题考查正比例函数图象性质、待定系数法等知识,是典型考点,难度较易,掌握相关知识是解题关键.13.(2020·上海市格致初级中学八年级期中)已知点(2,﹣4)在正比例函数y =kx 的图象上. (1)求k 的值;(2)若点(﹣1,m )也在此函数y =kx 的图象上,试求m 的值.【答案】(1)-2;(2)2【分析】(1)结合点(2,-4)在正比例函数y =kx 的图象上,根据正比例函数的性质,列方程并求解,即(2)根据(1)的结论,得到正比例函数的解析式;结合题意,通过计算即可得到答案.【详解】(1)∵点(2,-4)在正比例函数y=kx的图象上∴-4=2k解得:k=-2;(2)结合(1)的结论得:正比例函数的解析式为y=-2x∵点(-1,m)在函数y=-2x的图象上∴当x=-1时,m=-2×(-1)=2.【点睛】本题考查了正比例函数的知识;解题的关键是熟练掌握正比例函数、坐标的性质,从而完成求解.14.(2018·上海)已知y与x﹣1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)当x=﹣1时,求y的值;(3)当﹣3<y<5时,求x的取值范围.【答案】(1)y=2x﹣2;(2)﹣4;(3)x的取值范围是﹣12<x<72.【分析】(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;(2)利用(1)中关系式求出自变量为-1时对应的函数值即可;(3)先求出函数值是-3和5时的自变量x的值,x的取值范围也就求出了.【详解】(1)设y=k(x﹣1),把x=3,y=4代入得(3﹣1)k=4,解得k=2,所以y=2(x﹣1),即y=2x﹣2;(2)当x=﹣1时,y=2×(﹣1)﹣2=﹣4;(3)当y=﹣3时,x﹣2=﹣3,解得:x=﹣12,当y=5时,2x﹣2=5,解得:x=72,∴x的取值范围是﹣12<x<72.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.15.(2020·上海市静安区实验中学八年级课时练习)正比例函数23my mx -=的图象经过第一、三象限,求m 的值.【答案】2【分析】根据正比例函数的定义和图象经过象限得到关于m 的方程和m 的取值范围,即可求解.【详解】解:∵函数函数23my mx -=为正比例函数, ∴231m -=,∴2m =±,又∵正比例函数的图像经过第一、三象限,∴m >0,∴2m =【点睛】本题考查了正比例函数的定义和性质,注意正比例函数是一次函数,自变量次数为1,熟知正比例函数图象与性质是解题关键.。
正比例函数图象及其性质(教案)
1.教学重点
-函数关系式y=kx的理解:强调k为常数且k≠0的特点,使学生理解正比例函数的本质。
-正比例函数图象的绘制:通过绘制图象,让学生直观感受正比例函数的线性特征。
-正比例函数性质的掌握:包括图象与坐标轴的交点、图象所在的象限、随着x的变化y的增减性等。
-实际问题的应用:将正比例函数应用于解决实际问题,如距离、速度、时间之间的关系。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《正比例函数图象及其性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过路程与时间成正比的情况?”(如:当你以固定速度跑步时,跑得时间越长,跑的距离也就越远。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正比例函数的奥秘。
3.正比例函数的性质:当k>0时,图象位于第一、三象限;当k<0时,图象位于第二、四象限。随着x的增大,y值也相应增大或减小。
本节课将带领学生深入理解正比例函数的图象及其性质,并运用这些性质解决实际问题。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生运用数学语言描述现实世界中的正比例关系,提高数学建模能力。
举例:讲解速度与时间的关系时,强调速度是路程与时间的比值(k为常数),当时间增加时,路程也随之增加,体现了正比例函数的性质。
2.教学难点
-正比例函数图象的绘制:对于初学者来说,如何准确绘制出正比例函数的图象是一个难点。
-正比例函数性质的深入理解:特别是对于k值的正负与图象所在象限的关系,学生容易混淆。
1.讨论主题:学生将围绕“正比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
正比例函数图象性质
击此处添加副标题
演讲者:
复习巩固:
01 一般地,形如y=kx(k是常数,k≠0)的 函数,叫做正比例函数,其中k叫做比例系 数。
02 你能举出一些正比例函数的例子吗?
正比例函数的 图象
1
2
例1、画出下
画函数图步
1
列正比例函数
的图象
骤:
列表;
3
1. y=2x 2. y= x
强化 练习
4.点A(1,m)在函数y=2x的图象
上, 则2 m= ;
5.当a >1时,直线y=(1-a)x从
左向右下降
6.函数y=-5x的图像在第 二、象四限内, 经过点(0, )与0点(1, ), -5 y随x的增大而 减小。
练习
7.若y=(m-1)xm2是关于 x的正比例
函数,-则1m=
8.已知正比例函数的比例系数是-5,
则它的解析式为y:=-5x
9.正比例函数图象y=(m-1)x的图像经 过第一、三象限,则m的取值范围是m—>—1
——
10.若y=(m-2)xlml-1是正比例函数, 则m-2=————
练习
11.正比例函数 y=kx(k≠0) 的图象是 直线 它一定经过点(0 , 0) 和(1 , k)
12.如果函数 y= - kx 的图象在一,三象
Y随x的增 大而
增大 减小
讨论
怎样画正比例函数的 图象最简单?为什么?
两点 作图法
由于两点确定一条直线,画正 比例函数图象时我们只需描点 (0,0)和点 (1,k),连线即可.
两点 作图法
3 2 由于两点确定一条直线,画正比例函数图象
时我们只需描点(0,0)和点 (1,k),连线即 可.
《正比例函数的图象和性质》教案
《正比例函数的图象和性质》教案第一章:正比例函数的定义1.1 引入正比例函数的概念通过实际例子(如长度和宽度、速度和时间等)引导学生理解正比例关系。
解释正比例函数的定义:形如y = kx (k 是常数)的函数称为正比例函数,其中x 是自变量,y 是因变量。
1.2 解析正比例函数的性质引导学生分析正比例函数的图像特征,如通过观察图像理解正比例函数的单调性、过原点等性质。
引导学生理解正比例函数的斜率k 的意义,如k 的正负决定了函数图象在坐标平面内的位置,k 的绝对值决定了函数图像的倾斜程度。
第二章:正比例函数的图像2.1 绘制正比例函数的图像引导学生通过观察函数式y = kx 理解函数图像的形状,如直线、通过原点等。
利用计算器或绘图软件,让学生实际绘制正比例函数的图像,观察不同k 值对图像的影响。
2.2 分析正比例函数图像的性质引导学生理解正比例函数图像的几个关键点,如原点、正半轴、负半轴等。
第三章:正比例函数的性质3.1 理解正比例函数的斜率解释斜率的概念,即函数图像在任意两点间的斜率等于这两点的纵坐标之差与横坐标之差的比值。
引导学生理解正比例函数的斜率恒为常数k,与x 的取值无关。
3.2 探讨正比例函数的单调性引导学生通过观察图像或分析函数式,理解正比例函数的单调性,即在定义域内,随着x 的增大,y 也随之增大或减小。
第四章:正比例函数的应用4.1 实际问题引入通过实际问题引入正比例函数的应用,如人口增长、商品价格等。
引导学生将实际问题转化为正比例函数问题,即找到自变量和因变量之间的正比例关系。
4.2 解题方法指导引导学生运用正比例函数的性质和解题方法解决实际问题,如通过给定的两个点的坐标求斜率、通过已知斜率求点的坐标等。
第五章:巩固与拓展5.1 练习题提供一些有关正比例函数的练习题,让学生巩固所学知识,如图像绘制、性质分析、实际应用等。
5.2 拓展讨论引导学生思考正比例函数在实际生活中的应用,如如何利用正比例函数模型预测未来的趋势。
正比例函数知识点总结初中
正比例函数知识点总结初中一、正比例函数的概念正比例函数是指函数的导数也是一个常数的函数,它的图象是一条通过原点的直线。
正比例函数的一般形式可以表示为y=kx,其中k是一个常数,称为比例系数。
当x增大时,y也随之增大,且它们之间的比值始终保持不变,这就是正比例函数的特点。
二、正比例函数的性质1. 正比例函数的图象是一条通过原点的直线,且斜率为k。
2. 正比例函数的导数恒为常数k。
3. 正比例函数与y轴平行,可以用y=kx表示。
4. 正比例函数的比例系数k决定了函数图象在坐标系中的倾斜程度和方向。
三、正比例函数的图象和性质分析1. 当k大于0时,正比例函数的图象向右上方倾斜;当k小于0时,图象向左下方倾斜。
2. 当k=0时,正比例函数的图象平行于x轴,函数的图象将是一条通过原点的水平直线。
3. 正比例函数的图象不会有拐点,因为它是一条直线。
四、正比例函数的应用1. 在现实生活中,许多问题可以用正比例函数来描述,比如速度和时间的关系、商品价格和数量的关系等。
2. 在数学学习中,正比例函数的性质可以帮助我们快速理解和求解一些数学问题。
3. 正比例函数也是其他函数的基础,通过研究与比例函数相似的函数,可以更好地理解其他类型的函数。
五、正比例函数的解题技巧1. 当给出一个问题时,首先要明确问题中涉及到的变量和它们之间的关系。
2. 根据问题中的已知条件,列出正比例函数的表达式,并通过图象或计算找出比例系数k。
3. 利用正比例函数的性质,解决问题。
4. 在实际问题中,要注意对函数图象的正确理解,避免出现计算错误。
六、常见错误及解决方法1. 误解正比例函数图象的性质,导致问题解法错误。
解决方法:加强对正比例函数图象特点的理解,多进行实例分析和练习。
2. 对正比例函数的比例系数k概念理解不清,导致计算错误。
解决方法:通过具体的实例及练习,加强对比例系数k的理解,掌握计算方法。
3. 在问题中容易混淆正比例函数和其他函数,导致问题解决错误。
正比例函数的图象和性质
画出正比例函数y=2x的图像
y
6
5 4 3 2
解: 列表:
x … -3 -2 -1 0 1 2 3 … y … -6 -4 -2 0 2 4 6 …
描点:建立直角坐标系,以表里各组对应
值作为点的坐标,在直角坐标系内描出相应的 点。
-4 -3 -2 -1
• • •
1 2 3
y=2x
1
o•
-1 -2 -3
画出正比例函数y=2x的图像
y
6
5 4 3 2
解: 列表:
x y 0 1 0 2
y=2x
•
1 2 3 4 5
描点:建立直角坐标系,以表里两组对应
值作为点的坐标,在直角坐标系内描出相应的 点。
-4 -3 -2 -1
1
o•
-1 -2 -3
x
连线:过这两点作直线,得到y=2x的
图像,
-4
-5 -6
完成课本84页做一做 正比例函数的性质:
1.图象都经过原点; 2.当k>0时, 它的图象经过第一、三象限,y 随 x 的增大而增大; 3.当k<0时, 它的图象经过第二、四象限,y 随 x 的增大而减小;
完成课本85页知识技能第3题。 完成课本84页想一想
补充题:
1.正比例函数y=(m-1)x的图象经过一、三象限,则m的 取值范围是( B )
4
5
x
•
连线:把这些点依次连接起来,得到
y=2x的图像,
• •
-4
-5 -6
画出正比例函数y= -3x的图像。
完成课本84页议一议。 完成课本85页知识技能第1题。
总结:
正比例函数y=kx的图像是一条经过原点(0,0) 的直线。 因此,画正比例函数的图像时,只要再确定一个 点,过这点与原点画直线就可以了。
正比例函数、一次函数的图像与性质
正比例函数与一次函数的图象与性质1,正比例函数2,一次函数y=kx+b的性质(对比正比例函数的性质和图像的性质)3,函数是通过的观念研究已学过或未学过的知识。
4,变量的定义是:常量的定义是:5,函数的定义:则函数的本质是:6,在函数的定义中,自变量x在“在某一范围内”取值,这就是自变量的取值范围,它有两层含义,分别是:(1)(2)7,函数解析式是式子,写函数解析式必写8,函数的表示方法有种,它们分别是:;在运用时不是单独运用某一种,而综合运用它们。
9,由函数解析式画函数图像,一般步骤是10,一次函数的定义是正比例函数的定义是11,一次函数y=kx+b的平移:1)在y轴如何平移2)在x轴如何平移12,正比例函数是一次函数的特例,特殊在什么地方13,一次函数y=kx+b的趋势是由什么决定的如何决定的14,函数y1=k1x+b1与y2=k2x+b2: 1)平行的条件2)相交的条件3)重合的条件15,作图与作题正比例函数的图像是由决定的而一次函数的图像是由决定的16,一次函数是函数中最简单、最基本的一种函数。
函数与方程不同,方程是从静态的角度看待问题,是求方程所代表的未知数,如x+y=1,就方程而言一个二元一次方程没有意义,要想有意义就要是方程组,才能有一对实数解,这个解用平面直角坐标系来解释就是一个点;而函数是运用运动的观念来研究问题的,是从动态的角度看待问题的,也就是说自变量在某一变化过程中有一定的取值范围,从函数图像上看其就是点的集合,运用方程思想或方法只能求出一点,因此要想确定函数解析式或画出函数图像就要知道函数解析式中自变量的系数与常数即可,这就是待定系数法的由来。
17,待定系数法的定义是:待定系数法是解出函数解析式的方法,是运用方程思想解出函数解析式中未知的系数与常数,其步骤有:(1)根据图像或条件设定函数解析式;(2)运用方程思想方法解出未知的系数与常数。
那么一次函数系数的确定需要的条件是:正比例函数系数的确定需要的条件是:18,一次函数与二元一次方程组二元一次方程组有解是二元一次方程组无解是阅读——函数与方程的联系与区别:区别:(1)方程有若干个未知数,而函数则有若干个变量;(2)方程用等式表示若干个未知数的关系,而函数既可以用等式表示变量之间的关系,又可以用列表或图象来表示两个变量之间的关系。
正比例函数及性质
解决实际问题
正比例函数在解决实际问题中也 有广泛应用,例如速度、加速度 等物理量可以用正比例函数表示。
THANKS FOR WATCHING
感谢您的观看
与反比例函数的区别
反比例函数的一般形式为 $y = frac{k}{x}$,其中 $k$ 是常数且 $k neq 0$。正比例函数和反比例函数在 图像上都是直线,但它们的斜率不同。正比例函数的斜率为 $k$,而反比例函数的斜率为 $-k$。此外, 正比例函数的图像过原点,而反比例函数的图像不过原点。
一次函数的一般形式为 $y = ax + b$,其中 $a$ 和 $b$ 是常数,$a neq 0$。正比例函数是特殊的一次函数,其形式为 $y = kx$,其中 $k$ 是常数且 $k neq 0$。正比例函数和一次函数在图像上都是直线,但正比例函数的图像过原点,而一次函数的图 像不过原点。
正比例函数和一次函数的斜率不同。正比例函数的斜率为 $k$,而一次函数的斜率为 $a$。斜率决定了函数的增减性,因此正比 例函数和一次函数的增减性也可能不同。
截距
截距定义
正比例函数的图像是一条通过原点的直线,因此没有固定 的截距。但当我们在坐标轴上标出与直线交点的数值时, 这个数值即为该正比例函数的截距。
截距的计算
对于正比例函数$y=kx$,当$x=0$时,$y=0$,因此其 截距为0。
截距的影响
正比例函数的截距不影响函数的增减性,但会影响函数与 坐标轴的交点位置。
正比例函数和二次函数的开口方向也不同。正比例函数的图 像总是向上或向下开口,而二次函数的开口方向取决于 $a$ 的值。当 $a > 0$ 时,抛物线向上开口;当 $a < 0$ 时,抛 物线向下开口。
正比例函数的图象和性质
14 3
2) 一般地, s=1.5 t 的图象是过点(0,0)和(1,1.5)
的直线,由于 0≤t≤ 134所以函数的图象以O(0,0) B(14 ,7)为端点的一条线段。
3
7
B•
6 5
4
3
2•
1
o1 2 3 45
x
3) 由图象可见,当 t 增大时,s随着增大
4、正比例函数y=kx在实际应用中、自变量、函数值受 实际条件的制约。
补充题:
1.正比例函数y=(m-1)x的图象经过一、三象限,则
m的取值范围是
()
A.m=1 B.m>1 C.m<1 D.m≥1
2.下列函数y=5x,y=-3x,y=1/2x,y=-1/3x中,y随x的 增大而减小的是———,y随x的增大而减小且最先 达到-10的是——。
-5
(0,0),(1,k)这两点的直线,我 们把正比例函数y=kx的图象叫做直线y=kx。
•
-6
例1、在同一平面直角坐标系内,分别画出下列正比例函数的图象:
பைடு நூலகம்
(1) y=x
1 (2) y= 2 x
(3) y=-x
1 (4) y=-2 x
解(1) 正比例函数y=x的图象是经过(0,0),(1,1)的直线
3. 已知正比例函数y=mx m2的图象在第二、四象限, 求m的值。
4.直线y=kx经过点(1,—1/2),那么k=—
这条直线在第——象限内,直线上的点的纵 坐标随 横坐标的增大而——。已知点 A(a,1),B(-2,b)在这条直线上,则a=—,b=—。
例2、滑车以每分15米的速度匀速地从轨道的一端滑向另一端
(2) 正比例函数y=1 x的图象是经过(0,0),(2,1)的直线 2
正比例函数的图象与性质
的图象从左向右下降.
(3)当m <2 时,正比例函数 y=(2小.
(4) 正比例函数 y (2m 1) x 的图象上 的两点 A( x1, y1 ), B( x2 , y2 ) ,当 x1 x2 时, 有 y1 y2 ,求 m 的取值范围.
1、巩固练习:
(1)正比例函数 y 2 x 是一条经
过原点的直线,位于第 一、三 象 限,从左向右上升 ,即随着x 的增 大y也增大 .
(2)正比例函数y=-5x 是一条经 过 原点 直线,位于第 二、四 象
限,从左向右 下降 ,即随着x的
增大y 减小 .
2、进阶练习: (1)正比例函数y=(m-4)x , 当m >4 时,图象过第一、三象限.
比较 y1 、y2 、y3 的大小.
(2)当m
时,正比例函数 y=(2m-4)x
的图象从左向右下降.
(3)当m 时,正比例函数 y=(2m-4)x
中,y 的值随x 的增大而减小.
(4) 正比例函数
y (2m 1) x 的图象上的 两点 A( x1, y1 ), B( x2 , y2 ) ,当 x1 x2 时, 有 y1 y2 ,求 m 的取值范围.
3、拓展练习:
5 已知 A(11, y1 ), B ( , y2 ), C (5, y3 ) 2 在正比例函数 y 6 x 的图象上,试
比较
y3 的大小. y1 、y2 、
思考:
5 已知 A(11, y1 ), B ( , y2 ), C (5, y3 ) 2 在正比例函数 y mx 的图象上,试
正比例函数图像(共16张PPT)
〕
A.m=1
B.m>1
C.m<1
D.m≥1
3. 假设正比例函数图像又y=(3k-6)x的图像经过 点A〔x1,x2〕和B〔y1,y2〕,当x1<x2时 , y1>y2,那么k的取值范围B是 〔 〕 A.k>2 B.k<2 C.k=2 D.无法确定
4.正比例函数y=(3m-1)x的图像经过点A〔 x1,x2〕和B〔y1,y2〕,且该图像经过第二 、四象限.
思考
如图,三个正比例函数的图像分别对 应的解析式是 ①y=ax② y=bx ③ y=cx,那么a、b、c的大小关系是(
)
y= kx (k>0)
不同点:函数y=2x的图象经过第
象限,从左向右
,函数y=-2x的图象经过第
象
A.a>b>c ( 2 ) 正比例函数y=-2x的图象上的点(x,y)都满足
函数y=-7x的图象在第
5x,y=x,y=5x的图象,然后比较哪一个与x轴正方向所成的锐角最大,由此你得到什么猜测?再选几个图象验证你的猜测.
第十一章 一次函数
①
自学画图步骤,并在同一个直角坐标系上画出y=2x和y=-2x的图像并比较两个函数图像的相同点与不同点
自学画图步骤,并在同一个直角坐标系上画出y=2x和y=-2x的图像并比较两个函数图像的相同点与不同点
x增大时,y的值反而减小。 y随x的增大而减小
y y = 2x
y = 2x
3
y
4
4
2
2
0 12 x
-6 -3 0
x
画板演示
自学检测:
1.函数y=-7x的图象在第 二、四 象限内,经
过点(0,
0 )与点(1, -7 ),y随x的增大而
《正比例函数的图象和性质》教案
《正比例函数的图象和性质》教案第一章:正比例函数的定义与表达式1.1 引入正比例函数的概念通过实际例子,让学生理解正比例函数的定义,即两个变量之间的比例保持不变。
解释正比例函数的表达式为y = kx (k 为常数)。
1.2 学习正比例函数的参数k解释参数k 的含义,即比例常数。
引导学生理解k 的正负对函数图象的影响。
第二章:正比例函数的图象特点2.1 绘制正比例函数的图象利用数轴和坐标系,引导学生绘制正比例函数的图象。
强调图象是一条通过原点的直线,且斜率为k。
2.2 分析正比例函数图象的性质解释正比例函数图象的斜率表示y 随x 变化的速率。
引导学生观察图象的截距为0,即函数在y 轴上的截距为0。
第三章:正比例函数的性质3.1 单调性解释正比例函数的单调性,即函数图象是一条单调增加或单调减少的直线。
引导学生通过观察图象和分析表达式来判断函数的单调性。
3.2 过原点强调正比例函数图象一定经过原点(0,0)。
引导学生通过实际例子来验证这一性质。
第四章:正比例函数的图象与坐标轴的交点4.1 横轴交点解释正比例函数与x 轴的交点为(0,0)。
引导学生通过表达式和图象来确定横轴交点。
4.2 纵轴交点解释正比例函数与y 轴的交点为(0,k)。
引导学生通过表达式和图象来确定纵轴交点。
第五章:正比例函数的应用5.1 实际问题引入通过实际问题引入正比例函数的应用,例如速度与时间的关系。
引导学生理解速度随时间的变化是成正比例的。
5.2 解题方法解释如何利用正比例函数解决实际问题。
引导学生通过建立方程和绘制图象来解决实际问题。
第六章:正比例函数的图象变换6.1 横向变换讲解正比例函数图象在x 轴方向上的变换,如平移、翻折等。
引导学生通过图象来理解和掌握变换规律。
6.2 纵向变换讲解正比例函数图象在y 轴方向上的变换,如平移、翻折等。
引导学生通过图象来理解和掌握变换规律。
第七章:正比例函数与坐标系的交点7.1 函数图象与坐标系的交点讲解正比例函数图象与坐标系的交点,包括原点、横轴交点和纵轴交点。
正比例函数图象与性质
图象:经过原点的直线. 当k>0时,经过第一、三象限; 当k<0时,经过第二、四象限.
性质:当k>0时,y的值随x值的增大
而增大;
当k<0时,y的值随x值的增大而减小.
课后作业
《全品》P67-68
当堂练习
1.下列图象哪个可能是函数y=-x的图象( B )
2.对于正比例函数y =(k-2)x,当x 增大时,y 随 x 的增大而增大,则k的取值范围 ( C )
x … -2 -1 0 1 2 …
y= 2x …
…
y= -4x …
…
用两点法画出下列正比例函数的图象:
(1)y= -x, (2)y 2 x .
3
小组讨论 观察图象填空:
1.当k>0时,图象经过 一、三 象限。 2.当k<0时,图象经过 二、四 象限。 3.当k>0时,y随x的增大而 增大 。 4.当k<0时,y随x的增大而 减小 。
第十九章 一次函数
19.2.1 正比例函数
第2课时 正比例函数的图象和性质
学习目标
情境引入
1.理解正比例函数的图象的特点,会利用
两点(法)画正比例函数的图象.(重点)
2.掌握正比例函数的性质,并能灵活运用
解答有关问题.(难点)
讲授新课
一 正比例函数的图象
在坐标系中画出下列正比例函数的图象:
(1)y= 2x, (2)y= -4x.
二 根据图象性质解决问题
类型1 求k的取值范围
例1 已知正比例函数y=(k+1)x.
若函数图象经过第一、三象限,则k的取值 范围是__k_>__-_1__.
练一练
1.正比例函数y=(m-1)x的图象经过二、四象限,则
正比例函数的图象和性质
正比例函数的图象和性质付斌教学目标•(1)知识与技能•会画正比例函数的图象,能从形状、位置、增减性、特殊点等角度理解函数的图象特征,能根据正比例函数的图象特征和表达式特点,理解正比例函数的性质。
•经历画正比例函数图象和借助函数图象归纳函数性质的过程,提高观察能力、分析能力和归纳概括能力,自主学习能力,提高创新意识。
•(2)过程与方法•通过描点法来研究正比例函数的图象,经历知识的归纳、探究过程。
•通过画正比例函数的图象归纳它的性质,体验数形结合的思想。
•体验从特殊到一般,分类讨论的数学思想。
•(3)情感态度与价值观•通过画图象,并借助图象研究性质,体验数与形内在的联系,感受函数图象的简洁美。
通过一系列的活动,渗透与人交流合作和探究精神。
•3、重点、难点•重点:正比例函数的图象与性质。
• 难点:由正比例函数的图象归纳得出它的性质以及对性质的理解。
• 复习导入• 1、什么是正比例函数?请举几个实例。
• 2、 函数关系的三种表达方式是什么?• 学习目标• 1、学会选择特殊的点,用两点法画出正比例函数的图象• 2、了解正比例函数图象的性质• 预习检测• 1.画函数图象的一般步骤是什么?• 2.正比例函数的图象是什么?• 共同探讨• 画正比例函数 y =2x 的图象• 画一画• 用两点法在同一直角坐标系内画出下列正比例函数的图象• x y x y x y x y 31,31,3,3-==-== • 小组交流• (1)左(右)图两个正比例函数的比例系数的符号有什么• 共同特征?它们的图象又有什么共同特征?(从象限、• “从左往右”看图象的变化趋势、函数y 的值与x 的变化情• 况上分析)• (2)你能从上面的分析中,得出正比例函数y=kx(k ≠0)的性质吗?(从k>0,k<0两种情况考虑)••(1) 当k>0时,正比例函数的图像经过第 象限,自变量x 逐渐增大时,y 的值也随着逐渐 。
图象从左向右 ,(2) 当k<0时,正比例函数的图像经过第 象限, 自变量x 逐渐增大时,y 的值则随着逐渐 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.2.2 正比例函数图象及性质
罗江中学初中数学组:张恩东
【教材分析】
正比例函数图像及性质位于第十四章第二节,是学好正比例函数解析式的后续内容,这一节内容是函数与直角坐标平面第一次完美的结合,在这节课中如果学生能够很好的感悟和内化数形结合的思想,将为研究更为复杂的反比例函数图像、二次函数图像奠定坚实的基础,本节内容在初中数学里起着承上启下的重要作用。
在感悟数形结合思想同时也适合对学生分析、对比、归纳等能力的培养。
一、教学目标
1、知识与技能: 认识正比例函数图像是一条直线,学会画正比例函数图像
2、过程与方法: 通过计算机辅助教学使学生在观察、探究中自主发现正比例
函数的性质,并认识k 的符号对函数图象的影响.
3、情感态度与价值观: 通过性质的探索、研究、发现,使学生感受、领悟数
形结合思想,同时培养学生的观察、分析、归纳的逻辑思维
能力。
二、教学重点: 正比例函数图像的画法及其性质的发现。
三、教学难点: 正比例函数图像的画法及其性质的发现。
四、教学过程
知识复习:
上一节课我们学习了正比例函数,那么正比例函数一般解析式是什么呢?
y=kx (k 是常数,k ≠0)其中k 叫做比例系数.称y 与x 成正比例
怎样判断一个函数是正比例函数呢?
正比例函数的图象是什么呢?这节课我们一起来探索正比例函数图象及性质 现在请同学们在同一直角坐标系中画出下列正比例函数的图象
(1)x y 2= (2)x y 2-=
提问:要画出这两个函数图象应采用什么方法呢?这种方法有哪些步骤?
自变量的取值有没有要求呢?
观察、 比较两个函数的相同点与不同点.
两图象都是经过原点的___________.函数y=2x 的图象从左向右____________,经过第________象限;函数y=-2x 的图象从左向右_________,经过第_________象限. 为什么函数图象不同?请大家观察这两个函数的解析式同不同?不同在哪个地方?
说明k 的值对函数图象有影响吗?
请大家在刚才直角坐标系中画下列两个正比例函数的图象 (1)x y 21=
(2) x y 2
1-= k 的值对函数图象有影响吗?(没有)
k 的符号对函数图象有影响,有怎样的影响呢?
当k>0时,直线y=kx 经过第三、一象限,从左向右上升,即函数值y 随x 的增大而增大;当k<0时,直线y=kx 经过第二、四象限,从左向右下降,即函数值y 随x 的增大而减小. 我们来总结正比例函数的图象及性质:
一般地,正比例函数 y=kx (k 是常数,k ≠0 )的图象是一条经过原点的直线,我们称它为直线 y=kx .当k>0时,直线y=kx 经过第三、一象限,从左向右上升,即函数值y 随x 的增大而增大;当k<0时,直线y=kx 经过第二、四象限,从左向右下降,即函数值y 随x 的增大而减小.
例1 正比例函数y=(m -1)x 的图象经过一、三象限,则m 的取值范围是________
例2 如果 是正比例函数,且y 随x 的增大而减小,那么m=
例3 若正比例函数图像又y=(3k-6)x 的图像经过点A (x1,x2)和B (y1,y2),当x1<x2时, y1>y2,则k 的取值范围是
例4 正比例函数y=(3m-1)x 的图像经过点A (x1,x2)和B (y1,y2),且该图像经过第二、四象限.
(1)求m 的取值范围
(2)当x1>x2时,比较 y1与y2的大小,并说明理由.
补充: 已知某种小汽车的耗油量是每100km 耗油15升.所使用的90#汽油今日涨价到5元/升.
(1)写出汽车行驶途中所耗油费 y (元)与行程 x (km )之间的函数关系式;
(2)在平面直角坐标系内描出大致的函数关系图;
(3)计算娄底到长沙220 km 所需油费是多少?
小结: 1、这节课你学到了些什么知识?
2、你有什么收获?
课后思考题:
(1)经过原点与点(1,k)的直线是哪个函数的图象?
(2)画正比例函数图象时,怎样画最简单?为什么?
你认为最简单的画法画下列函数图象 x y 2
3= x y 3-= 教学反思:
板书设计:1、通过复习引入今天的课题
2、画正比例函数图象
3、k 的符号对函数图象的影响
4、正比例函数图象及性质 22)1(--=m x m y。