超疏水性材料
超疏水性材料
超疏水性材料超疏水性材料是一种具有极强疏水性能的材料,其表面能够使水珠快速滚动并迅速脱离表面,同时也能有效地抵御水珠的附着和渗透。
这种材料在各个领域都有着广泛的应用,包括纺织、建筑、医疗和环境保护等方面。
在本文中,我们将探讨超疏水性材料的特性、制备方法以及应用前景。
超疏水性材料的特性主要体现在其表面的微观结构和化学成分上。
通常来说,超疏水性材料的表面会具有微纳米级的结构,这些微观结构能够使水珠无法在其表面停留,从而实现疏水效果。
此外,材料的化学成分也会影响其疏水性能,一些特殊的化学成分能够使材料表面形成疏水膜,从而实现超疏水性。
制备超疏水性材料的方法多种多样,常见的方法包括化学表面修饰、纳米结构构筑和表面涂层等。
化学表面修饰是通过改变材料表面的化学成分来实现疏水性能的提升,这种方法通常会采用化学溶液浸渍或气相沉积等技术。
纳米结构构筑则是通过在材料表面构筑微纳米级的结构来实现超疏水性,常见的方法包括溶液浸渍、模板法和电化学沉积等。
表面涂层是在材料表面涂覆一层特殊的疏水性材料,使其表面具有超疏水性能。
超疏水性材料在各个领域都有着广泛的应用前景。
在纺织领域,超疏水性材料可以用于制备防水、防污的功能性纺织品,如雨衣、户外服装等。
在建筑领域,超疏水性材料可以应用于建筑涂料、玻璃表面处理等方面,起到防水、防污的作用。
在医疗领域,超疏水性材料可以用于制备医疗器械表面,减少细菌附着,起到抗菌的作用。
在环境保护领域,超疏水性材料可以用于油水分离、污水处理等方面,起到净化环境的作用。
总的来说,超疏水性材料具有广阔的应用前景,其制备方法也在不断地得到改进和完善。
随着科技的不断发展,相信超疏水性材料在未来会有更加广泛的应用,为各个领域带来更多的创新和发展。
超疏水材料.
目录
01 超疏水高分子材料的综述
02 超疏水材料的制备
03
超疏水材料的应用
04
研究展望
超疏水高分 子材料的综 述
超疏水的概念
表面的疏水性能通常用表面与水静态的接触 角和动态的滚动角描述。 超疏水表面是指与水的接触角大于150°, 而滚动角小于10°的表面。 接触角通常是用接触角测定仪来获得。
超疏水表面的制备
制备原理
一种是在粗 糙表面修饰 低表面能物 质
一种是将疏 水材料构筑 粗糙表面
超疏水表面(材料)制备方法
1、模板法
模板法也称复制模塑法,自20世纪90年代提出以来已经 得到了广泛应用。进入21世纪,复制模塑技术也深入到 超疏水表面的制备研究中,尤其是在仿生超疏水表面的 复制中有着独特的优势。 步骤: 1、复制模塑法是指先用一种预聚物A(一般为PDMS,有 时也可采用溶液)复制出荷叶等超疏水植物叶片表面微 结构; 2、固化A并从荷叶表面剥离,得到负型结构的软膜板B, 然后以此软膜板为图形转移元件,将其表面的负型结构 转移到其他材料C表面,经过2次复制最终得到与荷叶表 面特征相似的仿荷叶微结构。
Cassie模型:气垫模型(由空气和固体组成的固体界面)
超疏水表面的形成原因
固体表面的润湿性能由化学组成和微观结构共同决定: 化学组成结构是内因: 低表面自由能物质如含硅、含氟可以得到疏水的效果, 研究表明,光滑固体表面接触角最大为120°左右。 表面几何结构有重要影响: 具有微细粗糙结构的表面可以有效的提高疏(亲)水表 面的疏(亲)水性能
液面张力
由于Young方程仅适用于理想中的光滑固体表面,Wenzel和Cassie对粗糙表 面的浸润性进行了研究,并分别各自提出理论
超疏水材料介绍
表观接触角和本征接触角的关系
(3)光滑表面的局限性
① 对一个表面如果仅仅采用化学方法处理,通常仅能使接触角增加到120°
②对于超疏水的自清洁表面,水珠滚落的去污能力比滑落强,而倾斜的光滑表面水 珠多处于滑动状态,见下图。
(4)自然界中动植物超疏水表面结构图
莲花表面
Nature 2004,432, 36)发表
2.5 电纺技术
典型应用:Rutledge等用电纺技术制得PS和PS-b-
PDMS的共混物纤维,如右图。由于PDMS表面能低且
与PS的相容性很差,共混物在纺丝过程中发生相分离
且PDMS向表面富集。电纺得到的混合聚合物无纺布
表面自身所具有的粗糙度及PDMS的富集共同作用,
是接触角达到163°。
电纺法制备的超疏水无纺布的典型形貌
特殊浸润性界面材料 —— 超疏水材料介绍
超疏水材料的影响因素 材料表面结构和疏水性的关系 超疏水表面的制备方法及应用 研究展望
一.超疏水材料的影响因素
1 浸润性是材料表面的重要特征之一。根据水对材料表面润湿性的不同将 材料表面分为亲水性表面和疏水性表面。 1.1 浸润性的表征
接触角:通常以接触角θ表征液体对固体的浸润程度。接触角由表面张
若θ﹤90°,则θ’﹤θ,则亲水性随粗糙度的增加而增加; 若θ﹥90°,则θ’﹥θ,则疏水性随粗糙度的增加而增加。
两个基本前提: ①基底的表面粗糙度与液滴的大小相比可以忽略不计; ②基底表面的几何形状不影响其表面积的大小。 ③适用于中等亲水或者疏水表面。
(2)Cassie模型----气垫模型
核心:Cassie和Baxter指出,液滴在粗糙表面的接触是一种复合接触。 复合接触:微细结构的表面因为结构尺度小 于表面液滴的尺度,当表面疏水性较强时, Cassie认为在疏水表面上的液滴并不能填满 粗糙表面上的凹槽,在液珠下有截留的空气 存在,于是表观上的液固接触面其实由固体 和气体共同组成,见右图:
超疏水材料的制备及其表征
超疏水材料的制备及其表征近年来,超疏水材料在各个领域被广泛应用。
超疏水材料的制备和表征成为了当前研究的热点问题。
本文将介绍超疏水材料的制备方法及其表征手段。
一、超疏水材料的制备方法超疏水材料的制备方法主要包括可控表面粗糙化、表面化学修饰和特殊涂层三种方法。
1.可控表面粗糙化可控表面粗糙化是制备超疏水材料的一种常用方法。
通过长期算法、电解蚀刻、阳极氧化等方法,可以在普通表面上形成各种化学及物理结构的表面粗糙化。
通过不同结构和尺度的表面粗糙化可以得到不同类型的超疏水材料。
2.表面化学修饰表面化学修饰通常是通过改变表面化学功能团或化学键的种类和密度等手段来实现的。
这种方法一般用于特殊场合,例如在生物医学领域制备超疏水材料等。
3.特殊涂层特殊涂层是制备超疏水材料的另一种方法。
通过是原位合成、溶液浸渍、离子束沉积、以及等离子体蒸汽沉积等方法,可以在普通表面上添加不同材料的涂层,从而得到不同类型的超疏水材料。
二、超疏水材料的表征手段超疏水材料的表征手段主要包括显微镜、接触角计、气-液吸附法及表面粗糙度计等。
1.显微镜针对表面微观结构的研究,显微镜是一种好的表征手段。
分别可以利用扫描电镜、透射电镜、原子力显微镜等技术来研究其表面结构与形貌。
2.接触角计接触角是表征超疏水性的关键指标之一。
通过测量角度可以获得材料与液体的表面张力,并根据静电学的理论公式进行计算。
当接触角大于150度时,即可认为材料为超疏水性。
3.气-液吸附法气-液吸附法可以直接测定材料孔径及比表面积。
该手段用于评价材料内部微结构与机理。
4.表面粗糙度计表面粗糙度计是一个用于测量材料表面形貌参数的工具。
通过测量表面高度和微观成分等参数来获得显示材料表面粗糙度的图像。
三、结论目前,超疏水材料的制备和表征技术已经比较成熟。
通过对超疏水材料的表征,可以更加深入地理解其性质和应用场景,从而更好地推动超疏水材料的研究和应用。
未来随着化学和材料领域的不断发展,相信超疏水材料会有更多的应用前景。
超疏水材料的研究进展
超疏水材料的研究进展摘要:对植物叶表面的超疏水现象研究表明:植物叶表面的微观结构是引起超疏水的根本原因。
本文通过对荷叶表面的研究得到超疏水材料具有的特点:微纳米尺度复合的阶层结构。
通过相分离方法得到超疏水材料,最后对超疏水材料的研究趋势作了展望.关键词:超疏水材料微纳双重结构接触角滚动角Abstract:By studying the nature superhydrophobic bio-surfaces indicates that : the incooperation of micro-structure and nano-structure are both important for the superhydrophobic materials. Such structures are the key for the superhydrophobic material . The phase separation method is employed to prepare the superhydrophobic materials. The latest trends in the study of superhydrophobic materials are also discussed.Key words:Superhydrophobic materials;Micro-structure and nano-structure ; Contect angle; Roll angle引言近年来,植物叶表面的超疏水现象引起了人们的关注。
所谓植物超疏水能力,就是植物叶面具有显著的疏水,脱附,防粘,自清洁功能等。
固体表面浸润性研究的就是材料的疏水能力。
浸润性是指液体可以渐渐渗入或附着在固体表面的特性。
接触角和滚动角是评价固体表面浸润性的重要指标。
所谓超疏水表面一般是指与水的接触角大于150º。
超疏水材料发展趋势
江雷研究小组采用化学气相沉积法构建了表面具有纳米
亚微米的双微观结构的Zn0薄膜,测得这种薄膜的静态接触 角可高达164.3°, Zn0薄膜具有如此优良的疏水性能更进 一步印证了纳米亚微米的双微观结构是构建超疏水表面的必 要条件。该小组还通过反复实验探究了Zn0薄膜超疏水性与 亲水性之间的可逆转变。与此同时,他们还在石英基底上采 用化学气相沉积法构建了阵列碳纳米管(ACNT)膜测得该膜 表面的静态接触角为158.5°,如果对该膜用氟硅烷进行修 饰后,碳纳米管膜表现良好的超双疏性(既疏水又疏油),测 得油和水的静态接触角分别为161°和171°。
.
在微流体控制方面的应用
超疏水材料表面所具有的不浸润性及低表面粘滞力,使 其在微流体控制应用方面也有十分出色的表现。比如控制微 液滴的运动和流动,并以此制造微液滴控制针头,使得在实 验或者生产过程中对液体滴加计量能够精确控制,实验试剂 的添加将更得心应手。如果将这类技术运用到诸如静电喷涂 领域,比如用超疏水材料制造喷漆喷胶等的喷头,将会使喷 涂的液滴更加均匀,雾化效果更好,可以运用在对喷涂效果 有特殊要求的场合。另外如果以这类材料制作毛细管类的材 料,将会使液滴的虹吸量更少,可以制造体积更小精密度更 高的液体传输设备。
在倾斜表面,在水滴即将滚落下的临界状态下,水滴前部和尾部形 成两个不同的接触角θa和θr。接触角滞后值是这两个角的差值,可以用 于表征固体表面所呈现出的亲- 疏水状态。液滴的滚动特性随着该接触 角的滞后值的上升而减弱。
综上所述,固体与液体的相互浸润性的好坏及其所表现出的亲- 疏 水性是由接触角和滚动角两者共同表征。接触角越大和滚动角越小说明 材料表面的疏水性越强。
.
在船舶提高浮力方面的应用
据实验观察不论是在水面的滑行、跳跃还 是快速掠过水黾都既不会滑破水面更不会浸湿 腿部。因而也就被美誉为“池塘中的溜冰者”根 据这一现象科学家经过论证得出水水黾特殊腿 部微纳米结构和水面间形成的“空气垫”阻碍了 水黾的浸润,让它们实现了自然界版的“水上漂”。 据了解利用新型超疏水材料制成的超级浮力材 料河以使船表面具有超疏水性并因此在其表面 形成具体版的“空气垫” 改变船与水的接触状态 防止船体表面被水浸湿进而使其在水中运行的
浅谈超疏水材料的应用前景
浅谈超疏水材料的应用前景超疏水材料是一类具有极强防水性能的材料,能够在其表面形成高度疏水的特性。
超疏水材料的应用前景非常广泛,以下将从工业、医疗、环境和生活等方面进行探讨。
首先,在工业领域,超疏水材料可以应用于液体分离和油水分离。
传统的分离方法需要耗费大量的能源和资源,而超疏水材料可以通过其疏水特性实现液体分离,从而节省资源并减少环境污染。
例如,将超疏水材料应用于油水分离装置,可以实现高效分离,并减少水资源的浪费。
此外,超疏水材料还可以应用于自清洁涂料、防腐材料等领域,提高工业材料的耐用性和性能。
其次,在医疗领域,超疏水材料有着广泛的应用前景。
例如,超疏水材料可以应用于医疗器械表面涂层,具有阻止细菌和病毒附着的作用,减少交叉感染的风险。
此外,超疏水材料还可以应用于人工皮肤和人工器官的制造,提高其稳定性和生物相容性。
超疏水材料的应用可以大大提高医疗领域的卫生标准和手术效果。
再次,在环境领域,超疏水材料可以应用于净化水源和治理水污染。
水是人类生活的基本需求,而水资源的污染和紧缺已经成为全球面临的问题。
超疏水材料可以通过其高度疏水的特性,使污染物无法进入水体,从而实现水的净化和保护。
例如,超疏水材料可以应用于河流、湖泊的保护和水域生态的恢复工作。
最后,在生活领域,超疏水材料也有着广泛的应用前景。
例如,超疏水材料可以应用于建筑材料,如窗户、墙面等,具有自清洁和防尘的功能。
此外,超疏水材料还可以应用于家居用品,如锅具、餐具等,防止水和油污渗透,提高其使用寿命和卫生程度。
超疏水材料的应用可以为人们的生活提供便利和舒适。
综上所述,超疏水材料具有广泛的应用前景,包括工业、医疗、环境和生活等方面。
随着科学技术的发展和研究的深入,超疏水材料的性能和应用领域将不断拓宽,为人类社会带来更多的福祉。
耐久及导电功能性超疏水材料的研究进展
耐久及导电功能性超疏水材料的研究进展1、研究意义固体材料表面的润湿性是材料科学和表面化学中一个非常重要的特性,许多物理化学过程,如吸附、润滑、粘合、分散和摩擦均与表面浸润性密切相关[1-2]。
受自然界中荷叶表面“出淤泥而不染”的特性的启发,德国科学家Bathlott和Neinhuis首次报道了以荷叶为代表的植物表面的不粘水和自清洁现象,指出这种现象是由表面微结构的乳突和疏水性蜡状物共同引起的,超疏水表面由此诞生[3]。
一般地,我们将水接触角大于150°且滚动角小于10°的固体表面,称为超疏水表面。
除荷叶外,大自然中还存在众多具有特殊浸润性的动植物,如芋叶、水稻叶、玫瑰花瓣以及蝉翼、水黾腿、蝴蝶翅膀、蚊子眼睛等[4,5]。
在自然界中这类生物体的启发下,科研工作者于20世纪后期开展了人工构造超疏水材料的研究工作。
超疏水涂层的构筑一般需满足两个条件:一是低表面能,二是足够的粗糙度。
从制备方法上来说,主要有溶胶-凝胶法、模板法、层层自组装法、化学气相沉积法、刻蚀法等。
近年来,随着科学技术的快速发展,超疏水表面在制备技术及性能研究上有了极大的进步,多种超疏水涂层被相继制备出来,在自清洁[6-7]、金属防腐[8-9]、防覆冰[10-11]、油水分离[12-13]、微流体装置[14-15]等领域展现出巨大的应用价值。
然而,目前制备超疏水材料的方法大多涉及繁琐的工艺过程或昂贵的仪器设备,难以用于大面积的生产;此外,大多数超疏水材料在使用过程中存在持久性不佳、耐用性不强等缺点,特别是容易在机械摩擦或刮擦下受到损伤,导致超疏水性能的丧失;同时,随着现代工业和人工智能化的快速发展,单一的超疏水性已经无法满足材料在柔性电子、快速融冰融雪、无人驱动、透明电极等新兴领域中的使用要求[16-19]。
因此,研究和开发制备工艺简单、抵抗外界破坏能力优异、可实现工业化生产的超疏水材料是具有极大价值的。
另外在设计和制备超疏水材料时,除了使其具备超疏水性,同时赋予其可拉伸性、自修复性、透明性、导电性、导热性等至少一种功能,则会进一步拓宽其应用领域并发挥关键作用,这也是目前在超疏水材料领域中的关键性科学问题。
《生物质超疏水材料》课件
PART FOUR
生物质来源:选 择天然、可再生 的生物质材料, 如木材、秸秆、 玉米芯等
预处理方法:对 生物质材料进行 粉碎、研磨、筛 分等预处理,以 提高材料的表面 粗糙度和孔隙率
材料选择标准: 选择具有良好疏 水性能的生物质 材料,如具有高 亲水性和低疏水 性的纤维素、半 纤维素等
超疏水性:表面具有超疏水性,水滴不易附着 自清洁性:表面具有自清洁性,易于清洗 耐腐蚀性:表面具有耐腐蚀性,不易被腐蚀 耐高温性:表面具有耐高温性,不易在高温下变形
生物质超疏水材料具有优异的耐久性,能够长时间保持其疏水性能。 生物质超疏水材料在户外环境中能够抵抗紫外线、酸雨等恶劣环境的侵蚀。 生物质超疏水材料在室内环境中能够抵抗高温、高湿等恶劣环境的侵蚀。
研究进展:近年来, 超疏水材料的研究取 得了显著进展,如纳 米材料、生物质材料 等
防水防污:应用于建筑、汽车、 船舶等领域
自清洁:应用于太阳能电池板、 玻璃幕墙等领域
抗腐蚀:应用于化工、石油、 天然气等领域
生物医学:应用于医疗器械、 生物传感器等领域
物理沉积法:通过物理沉积 方法制备超疏水材料
化学合成法:通过化学反应 制备超疏水材料
添加标题
添加标题
添加标题
添加标题
在污水处理领域,生物质超疏水材 料可以用于油水分离,提高污水处 理效率。
在食品加工领域,生物质超疏水材 料可以用于油水分离,提高食品加 工的安全性和卫生性。
建筑领域:作为外墙涂料,提高建筑物的防水性能 农业领域:作为土壤改良剂,提高土壤保水性能 环保领域:作为污水处理剂,提高污水处理效率 医疗领域:作为生物医用材料,提高生物相容性
疏水纳米涂层材料
疏水纳米涂层材料
疏水纳米涂层材料是一种具有超疏水性能的材料,其表面具有微观纳米结构,能够有效排斥水分,具有自清洁、防污、耐腐蚀、耐磨等特点。
常见的疏水纳米涂层材料主要包括以下几种:
1. 氟化物超疏水涂层材料:主要包括氟化聚合物和氟化硅烷等,具有优异的疏水性能和稳定性,广泛应用于建筑、汽车、航空航天等领域。
2. 二氧化硅纳米涂层材料:通过纳米技术处理,将二氧化硅纳米颗粒分散在涂层中,形成具有超疏水性能的表面。
这种涂层材料具有良好的透明性和耐磨性,适用于玻璃、金属等基材的涂覆。
3. 碳纳米管超疏水涂层材料:利用碳纳米管的优异导电性和化学稳定性,制备出具有超疏水性能的涂层材料。
这种涂层材料具有良好的耐腐蚀性和耐磨性,适用于金属、塑料等基材的涂覆。
此外,还有一些其他的疏水纳米涂层材料,如氧化铝、聚四氟乙烯等。
这些材料具有不同的特点和适用范围,可以根据具体需求进行选择和应用。
总的来说,疏水纳米涂层材料在各个领域都有广泛的应用前景,特别是在需要防水、防污、自清洁等功能的场合。
随着纳米技术的不断发展和完善,疏水纳米涂层材料的性能和应用也将得到不断提升和拓展。
超疏水表面材料的制备与润湿性能研究
超疏水表面材料的制备与润湿性能研究近年来,随着科技的不断发展,人们对材料特性的研究也越来越深入。
超疏水表面材料作为一种具有特殊润湿性能的材料,在油水分离、液体滴落等领域展现出巨大的潜力。
本文将介绍超疏水表面材料的制备方法以及润湿性能的研究。
一、超疏水表面材料的制备超疏水表面材料的制备可以采用物理与化学方法相结合的方式。
其中,常见的物理方法包括微纳加工技术和自组装技术。
微纳加工技术通过利用光刻、电子束曝光等手段,在材料表面形成微米或纳米级别的结构,从而实现超疏水性。
而自组装技术则利用分子间的相互作用,在表面构建特殊结构,达到超疏水效果。
化学方法主要是通过特定的化学反应或表面修饰来制备超疏水表面材料。
例如,利用化学反应在材料表面修饰纳米颗粒,可以实现一种具有微观结构的超疏水表面。
而利用化学反应或热处理改变材料表面的能量状况,则可从能学角度调控材料的润湿性能。
二、超疏水表面材料的润湿性能研究超疏水表面材料的润湿性能研究主要包括接触角测量和液滴形状分析两种方法。
接触角测量是一种常见的液滴测量方法,通过测量液滴与材料表面的接触角来评估润湿性能。
一般情况下,超疏水表面的接触角大于150度,而超疏水材料则可以达到接近180度的极值。
液滴形状分析则是通过对液滴形状的测量和分析,得到液滴在不同表面的接触角和液滴的挺立高度等参数。
通过这些参数,可以进一步了解超疏水表面材料的润湿性能和持久性。
除了润湿性能的基本研究外,人们还在探索超疏水表面材料在实际应用中的潜在价值。
例如,超疏水表面材料在油水分离技术中的应用已经取得了一定的突破。
在这种应用中,超疏水材料可以将油滴分离出水中,从而实现高效的油水分离。
此外,超疏水表面材料在液体滴落方面的研究也引起了广泛关注。
通过控制液滴在超疏水材料表面的行为,可以实现液体的滴吸和微液滴的收集,为微流控和微胶囊制备等领域提供了新的解决方案。
总结起来,超疏水表面材料的制备与润湿性能研究是当前材料领域研究的热点之一。
超疏水材料
1、木纹纸质是一种表皮装饰纸,木皮是半天然装饰材料。
2、木纹纸上的花纹为印刷出来的;木皮上的花纹为优质木材本身带有的花纹。
3、木纹纸厚度一般在0.5~1.0mm;木皮的厚度一般为1.0mm~2.0mm。
4、木纹纸按照材质的不同可以用于装饰、家具等的面层或修边;木皮主要用于高级装饰中的面层。
5、木纹纸一般价格低廉;木皮大多都价格较贵。
6、木纹纸本国产品很多;木皮重大多数珍贵树种产品只能靠进口。
用途还包括:塑料包装、香烟酒类包装、1.碳酸钙主要以石灰石和大理石存在,大理石和石灰石主要成分是CaCO3 。
大理石和石灰石做建筑材料,工业上用石灰石制生石灰(CaO)和二氧化碳、制水泥。
2.碳酸钙的物理性质:白色固体,难溶于水。
纳米碳酸钙又称超微细碳酸钙。
标准的名称即超细碳酸钙。
纳米碳酸钙应用最成熟的行业是塑料工业主要应用于高档塑料制品。
可改善塑料母料的流变性,提高其成型性。
用作塑料填料具有增韧补强的作用,提高塑料的弯曲强度和弯曲弹性模量,热变形温度和尺寸稳定性,同时还赋予塑料滞热性。
纳米碳酸钙用于油墨产品中体现出了优异的分散性和透明性和极好的光泽、及优异的油墨吸收性和高干燥性。
纳米碳酸钙在树脂型油墨中作油墨填料,具有稳定性好,光泽度高,不影响印刷油墨的干燥性能.适应性强等优点。
纳米碳酸钙的应用范围纳米碳酸钙应用最成熟的行业是塑料工业主要应用于高档塑料制品。
造纸业是纳米碳酸钙最具开发潜力的市场。
目前,纳米碳酸钙还主要用于特殊纸制品,如女性用卫生巾、婴儿用尿不湿等。
纳米活性碳酸钙作为造纸填料具有以下优点:高蔽光性、高亮度、可提高纸制品的白度和蔽光性;高膨胀性,能使造纸厂使用更多的填料而大幅度降低原料成本;粒度细、均匀,制品更加均匀、平整;吸油值高、能提高彩色纸的预料牢固性纳米碳酸钙在涂料工业作为颜料填充剂,具有细腻、均匀、白度高、光学性能好等优点。
纳米级超细碳酸钙具有空间位阻效应.在制漆中,能使配方中密度较大的立德粉悬浮,起防沉降作用.制漆后,漆膜白度增加,光泽度高,而遮盖力却不降低,主要用于高档轿车漆。
超疏水金属材料的制备与性能研究
超疏水金属材料的制备与性能研究导语:在日常生活中,我们常常会遭遇到如墙壁上的液体污渍、汽车挡风玻璃上的雨水等问题。
如果这些表面具有较好的疏水性,液体将会迅速滑落而不残留,给我们的生活带来极大便利。
近年来,科学家们通过研究发现,制备超疏水金属材料可以有效解决这些问题。
本文将介绍超疏水金属材料的制备方法和性能研究。
一、超疏水金属材料的制备方法1. 表面纳米结构化法超疏水金属材料的核心在于其表面的微纳米结构。
科学家们通过表面纳米结构化法制备超疏水金属材料。
这种方法可以利用化学腐蚀、电化学沉积、溶液旋涂等技术,在金属材料表面形成微纳米结构。
这些微纳米结构可以增加金属表面的接触角,使液体无法在表面上保持稳定的液膜,从而实现超疏水的效果。
2. 表面改性法除了表面纳米结构化法,表面改性法也是制备超疏水金属材料的常用方法之一。
这种方法在金属表面涂覆一层特殊的材料,如聚氨酯、聚合物等,以改变金属表面的性质。
这些涂层具有较高的疏水性,可以使金属表面呈现出超疏水的效果。
同时,这种方法还可以通过调节涂层的粗糙度和厚度等参数来实现不同程度的疏水性。
二、超疏水金属材料的性能研究1. 液滴滑行性能研究超疏水金属材料的一个重要性能指标是液滴在其表面的滑行性能。
科学家们通过实验研究发现,制备的超疏水金属材料可以使液滴在其表面迅速滑行,而不会残留。
这种滑行性能不仅便于除去表面的液体污渍,还可以减少水滴在汽车挡风玻璃上的滞留,提高行车安全。
2. 自清洁性能研究超疏水金属材料的另一个重要性能是自清洁性能。
科学家们通过观察发现,超疏水金属材料表面的微纳米结构和涂层能够阻碍污渍的吸附,并且当有雨水等清洗液体作用时,这些污渍会随之被冲刷走。
而在干燥的天气条件下,超疏水金属材料的表面也能自动振荡,进一步清除附着的污渍,保持表面的干净。
3. 光学性能研究超疏水金属材料的微纳米结构和涂层还可以对光学性能产生影响。
科学家们发现,通过调节微纳米结构的形状和密度,可以使超疏水金属材料具有特殊的光学效果,如光学反射、折射等。
超疏水-是指水滴在材料表面呈球状,接触角大于150°。
超疏水-是指水滴在材料表面呈球状,接触角大于150°。
超疏水-是指水滴在材料表面呈球状,接触角大于150°。
真正具有本征超疏水的材料是不存在的,对于平整材料而言,最大的水接触角不过119°。
但是可对金属材料进行表面修饰,实现表面粗糙化或者修饰低表面能物质,使其接触角大于150°,从而实现超疏水性能。
学术术语来源---TiAl6Vi4表面超疏水修饰后的体外抑菌实验文章亮点:实验创新性采用电化学阳极氧化法在TiAl6Vi4钛合金表面制备TiO2纳米管薄膜,并通过氟硅烷自组装修饰成功制备超疏水表面,使其接触角>150°。
通过比较超疏水表面、普通疏水表面和亲水表面对金黄色葡萄球菌贴附的作用,验证通过增加内植物表面疏水性可提高其抑菌效果。
关键词:生物材料;骨生物材料;钛金属TiAl6Vi4;细菌贴附;超疏水;钛金属;感染主题词:生物相容性材料;钛;葡萄球菌,金黄色;疏水及亲水作用摘要背景:研究表明,材料表面亲、疏水性(即表面浸润性)是影响细菌黏附的重要原因。
目的:探讨钛金属TiAl6Vi4表面超疏水改性后对金黄色葡萄球菌的抑菌作用。
方法:将TiAl6Vi4板块经砂纸、酸溶液抛光和超声清洗后,随机分组:超疏水表面组采用电化学阳极氧化法在TiAl6Vi4表面制备TiO2纳米管薄膜,并通过氟硅烷自组装修饰;亲水表面组采用电化学阳极氧化法在TiAl6Vi4表面制备TiO2纳米管薄膜;疏水表面组对TiAl6Vi4表面行氟硅烷自组装修饰,分别测量3组表面的接触角。
将3组样品浸泡于金黄色葡萄球菌菌液中2 h,观察样品表面细菌黏附和分布状态,以及浸泡过样品剩余菌液的A值。
结果与结论:亲水表面组表面多数金葡菌彼此聚集、重叠,呈葡萄串形态;疏水表面组表面细菌有聚在一起的趋势,但没有彼此重叠、覆盖,只是单层排列,没有形成葡萄串表面;超疏水表面组表面细菌分散排布,一般只有两三个细菌在一起,不成串,不重叠。
超疏水材料的原理
超疏水材料的原理
超疏水材料是一种具有特殊表面结构的材料,能够在接触水时使水滚动成水珠并快速从表面滑落,从而实现极强的防水性能。
其原理主要是基于两个因素:一是表面微结构;二是化学结构。
在表面微结构方面,超疏水材料通常采用了纳米或微米级别的微凸起或凹陷结构,例如在莲叶表面上就有许多微小的凸起,这些凸起可以显著减少表面与水的接触面积,从而减少了水分子与材料表面的相互作用力,使得水能够在表面上形成水珠。
同时,这些微凸起还能够形成一种微小的空气层,使水珠与材料表面保持一定距离,进一步减少了水与材料表面之间的接触。
在化学结构方面,超疏水材料通常使用低表面能的化学材料,如氟化物、硅烷等。
这些化学材料具有很低的表面能,水分子与其相互作用力极小,能够形成一种类似于涂有油漆的表面,使水分子无法粘附在表面上,从而实现超疏水性能。
总之,超疏水材料的原理是通过表面微结构和化学结构的优化来减少水分子与表面的相互作用力,使水能够形成水珠并快速从表面滑落,从而实现防水性能。
- 1 -。
静电纺丝法制备功能性超疏水材料
静电纺丝法制备功能性超疏水材料摘要:超疏水材料是一种具有极高水接触角和极低水润湿系数的材料,在自清洁、防水防尘、生物医学等领域具有广泛的应用前景。
静电纺丝法作为一种常见的制备纳米纤维的方法,可用于制备具有优异性能的功能性超疏水材料。
本文主要介绍了静电纺丝法制备功能性超疏水材料的过程、表征及其性质,并与传统纺丝法进行了比较和讨论。
关键词:静电纺丝法、超疏水材料、纺丝法、表征分析。
超疏水材料是一种具有极高水接触角和极低水润湿系数的材料,即水滴在材料表面呈球形,不润湿材料表面,从而具有自清洁、防水防尘等特性。
超疏水材料在生物医学领域也有广泛的应用,如细胞移植、药物传递等。
静电纺丝法是一种制备纳米纤维的方法,其基本原理是在高压电场作用下,聚合物溶液或熔体克服表面张力形成纤维。
静电纺丝法的具体实现过程包括溶液制备、电场设置、纺丝液的喷射和固化等步骤。
采用静电纺丝法制备超疏水材料,需要选择合适的聚合物作为原料,如聚四氟乙烯(PTFE)、聚酰亚胺(PI)等。
然后,将这些聚合物溶解在适当的溶剂中,形成纺丝液。
接下来,将纺丝液放入高压电场中,在电场力作用下,纺丝液克服表面张力形成纤维。
通过热处理或化学处理使纤维固化,并形成超疏水表面。
通过扫描电子显微镜(SEM)对制备出的超疏水材料进行形貌观察,可以发现其纤维直径在纳米级别,且表面光滑。
通过测量水接触角和滚动角,可以进一步确定材料的超疏水性能。
与传统纺丝法相比,静电纺丝法具有更多的优点。
静电纺丝法可以更好地控制纤维的直径和形状,从而更好地满足特定应用的需求。
静电纺丝法可以更好地实现在纤维表面引入特殊功能基团,从而制备出具有更多功能性的超疏水材料。
静电纺丝法的生产效率更高,更适于大规模生产。
本文介绍了静电纺丝法制备功能性超疏水材料的过程、表征及其性质。
通过静电纺丝法成功制备出了具有优异性能的超疏水材料,其纤维直径在纳米级别,表面光滑。
这些材料还具有高透光性、高耐腐蚀性等特点。
神奇的超疏水材料:我虐水滴千百遍水滴待我如初恋
神奇的超疏水材料:我虐水滴千百遍,水滴待我如初恋!神奇的超疏水材料:我虐水滴千百遍,水滴待我如初恋!一盆水泼向一块金属板,水珠像钢珠一样滚落,金属板仍然干爽;一只船桨浸入水缸,拿出来竟然未带出一滴水珠,就像是从没放进去过一样;一杯水倒在一块经过特殊处理的玻璃板上,水紧紧靠在中央“不越雷池半步”,即使用手搅出来一两滴也立即跑回去……这些违背我们肉眼“常识”的现象,就是“超疏水材料”捣的鬼。
这种通过改变材料的表面自由能和表面粗糙度获得的新型材料,灵感来自于自然界中的荷叶。
由于其防水、防腐蚀、抗菌的特殊效果,如今已经成为国际热门的研究领域,可以在环保、工业、医疗等各种你想象不到的领域大展身手。
一、超疏水简介超疏水技术是一种具有特殊表面性质的新型技术,具有防水、防雾、防雪、防污染、抗氧化、防腐蚀和自清洁以及防止电流传导等重要特点,在科学研究和生产、生活等诸多领域中有极为广泛的应用前景。
超疏水技术对于建筑工业、汽车工业、金属行业等的防腐防锈及防污也很有现实意义。
特别是近年来的微电子系统、光电子元器件及纳米科技等高新技术的高速发展,给超疏水涂层的研究和应用于勃勃生机。
超疏水材料的研究以诗句“出淤泥而不染,灌清涟而不妖”为契机,以科学的手段向我们解释这一奇特的自然现象,荷花表面覆盖的天然超疏水薄膜,使得水滴聚集成股,顺势流下,冲刷着荷叶表面的淤泥,营造了出淤泥而不染的状态。
因此荷叶在雨后会变得一尘不染,这种现象在生活中很常见,我们称之为“荷叶效应”。
二、超疏水现象荷叶效应--超疏水性原理为什么“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。
由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。
即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。
超疏水性材料
超疏水性材料超疏水性材料是一种具有极强疏水性能的材料,其表面能够将水迅速排斥并形成水珠,同时还能有效抵抗水珠的粘附和渗透。
这种材料在许多领域都具有重要的应用前景,比如防水涂料、防水纺织品、自清洁表面等方面。
超疏水性材料的研究和开发已经成为材料科学领域的热点之一。
超疏水性材料的研究旨在寻找能够实现极强疏水性能的材料,并且在实际应用中能够稳定持久地保持这种性能。
目前,研究人员已经提出了许多方法来制备超疏水性材料,主要包括表面微纳结构设计、化学改性和涂层技术等。
这些方法可以通过改变材料表面的形貌和化学性质来实现超疏水性能的提升。
在表面微纳结构设计方面,研究人员通过仿生学的方法,设计出一些特殊的微纳结构来实现超疏水性能。
比如,莲叶表面的微米级凸起和纳米级微结构能够使得水珠在表面上滚动,从而起到自清洁的作用。
在化学改性方面,研究人员通过在材料表面引入亲水基团或者疏水基团,来改变材料表面的亲水性或者疏水性,从而实现超疏水性能。
而涂层技术则是将具有超疏水性能的材料涂覆在基底材料表面,形成超疏水性表面。
超疏水性材料在实际应用中具有广泛的前景。
在建筑领域,超疏水性材料可以用于防水涂料,能够有效地防止建筑物表面的水渗透,提高建筑物的耐久性。
在纺织领域,超疏水性材料可以用于制备防水纺织品,能够使得纺织品具有优异的防水性能,同时还能够保持良好的透气性。
在航空航天领域,超疏水性材料可以用于制备飞机表面的自清洁涂层,能够减少飞机表面的沾污,提高飞行性能。
总的来说,超疏水性材料具有广阔的应用前景,其研究和开发对于提高材料的功能性、降低能源消耗、改善人类生活环境具有重要意义。
随着科学技术的不断进步,相信超疏水性材料将会在更多领域展现出其独特的价值和潜力。
超疏水材料在液体分离中的应用
超疏水材料在液体分离中的应用近年来,超疏水材料因其独特的性质和广泛的应用前景,引起了科研领域的广泛关注。
超疏水材料不仅具有优异的液体分离性能,还可以在生物医学、环境保护和能源等领域发挥重要作用。
本文将着重探讨超疏水材料在液体分离中的应用,并从两个方面进行阐述。
首先,超疏水材料在油水分离中的应用备受关注。
由于人类工业生产和日常生活中产生大量有机溶液及油性废水,油水分离技术迫在眉睫。
传统的油水分离方法往往无法高效、经济地去除其中微小颗粒和油脂,这使得环境净化难以实现。
而超疏水材料的独特结构和性质为油水分离提供了新的思路。
通过将超疏水材料置于油水混合物中,油水分离科学家发现,油滴会在超疏水材料表面形成球形,并滚落出溶液。
这是因为超疏水材料表面纳米纹理结构使得液体无法与其接触,从而形成气体垫层,实现了油滴的分离。
超疏水材料不仅能高效去除油水污染,还可以实现资源的回收和节约。
这一技术的应用前景十分辽阔。
其次,超疏水材料在液体纯化中的应用也迅速崭露头角。
液体纯化在化工生产中起到重要的作用,但传统的过滤、膜分离等方法费时费力,效率低下。
超疏水材料的出现为液体纯化带来了新的思路。
研究人员通过构建超疏水材料膜,有效去除溶液中的杂质。
具体来说,超疏水材料膜的微纳孔隙可以选择性地分离出特定大小的颗粒或分子,使得溶液得到纯化。
同时,超疏水材料膜具有良好的稳定性和耐腐蚀性,有助于降低生产成本。
因此,超疏水材料膜在化工领域得到了广泛应用,如水处理领域中的海水淡化和废水处理,以及分离纯化生物分子等方面。
当然,超疏水材料在液体分离中的应用还有很大的拓展空间。
例如,在制药工业中,超疏水材料的使用可以提高药物纯度和产率,从而节省生产成本。
此外,超疏水材料还可以应用于电化学和能源领域中的离子分离和电池技术等。
在人们对健康和环境意识提高的背景下,超疏水材料的应用前景十分广阔。
总之,超疏水材料在液体分离中的应用是近年来科研领域的热门话题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
揭秘超疏水性表面
哈工大报讯(潘钦敏)[编者的话] 宋代周敦颐在《爱莲说》中写道“予独爱莲之出淤泥而不染”。
一千年后的今天,人们已经可以从科学的角度解释莲这种“出淤泥而不染”的特性。
与之相关的“仿生超疏水性表面”的研究已成为化学模拟生物体系研究中的一个新领域。
本期,化工学院副教授潘钦敏为我们揭开“超疏水性表面”的神秘面纱。
浸润性是固体表面的重要特征之一,它由表面的化学组成和微观形貌共同决定。
超亲水和超疏水特性是表面浸润性研究的主要内容。
所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。
人们对超疏水表面的认识,主要来自植物叶——荷叶表面的“自清洁”现象。
比如,水珠可以在荷叶的表面滚来滚去,即使在上面浇一些污水,也不会在叶子上留下污痕。
荷叶这种出污泥而不染的特性被称作“自清洁”效应。
荷叶效应——超疏水性原理
尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。
直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。
其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。
为什么这样的“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。
由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。
即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。
这种接触角大于150度的表面就被称为“超疏水表面”,而一般疏水表面的接触角仅大于90度。
自然界里具有“自清洁”能力的植物除了荷叶之外,还有水稻、芋头之类的植物以及鸟类的羽毛。
这种“自清洁”效应除了保持表面的清洁外,对于防止病原体的入侵还有特别的意义。
因为即使有病原体到了叶面上,一沾水也就被冲走了。
所以象荷花这样的植物即使生长在很“脏”的环境中也不容易生病,很重要的原因就是这种自清洁能力。
超疏水表面制备方法
人们知道荷叶自清洁效应已经很多年了,但是很长的时间内却无法做出荷叶那样的表面来。
通过对自然界中典型的超疏水性表面——荷叶的研究发现,在低表面能的固体表面构建具有特殊几何形状的粗糙结构对超疏水性起重要的作用。
基于这些原理,科学家们就开始模仿这种表面。
现在,关于超疏水粗糙表面的研制已有相当多的报道。
一般来说, 超疏水性表面可以通过两种方法来制备:一种是在疏水材料表面上构建粗糙结构;另一种是在粗糙表面上修饰低表面能的物质。
比如材料学家们可以通过表面处理仿生制备了碳纳米管阵列、碳纳米纤维、聚合物纳米纤维等多种超疏水性表面。
关于超疏水表面的研制方法总结起来主要有:熔融物的固化、刻蚀、化学气相沉积法、阳极氧化法、乳液聚合、相分离法以及模板法等。
但是这些方法涉及复杂的化学物质和晶体生长,实验条件比较苛刻,成本高,还不能进行工
业化生产,因而其实际应用受到限制。
同时这些制备方法对基体的要求比较高,还不能推广到工程材料表面。
超疏水表面的应用
超疏水表面在工农业生产和人们的日常生活中都有着极其广阔的应用前景。
荷叶的“自清洁”功能启发了人们将超疏水表面应用到日常的自清洁技术中。
例如:它可以用来防雪、防污染、抗氧化以及防止电流传导等。
如果建筑物的外墙、露天的广告牌等表面像荷叶一样,就可以保持清洁。
超疏水表面在减阻中的应用
船只等在水面航行时需要消耗很多的能源来克服行进中的摩擦阻力,对于水下航行体如潜艇等甚至可达到80%;而对于运输管道如输油(水)管道,其能量几乎全部被用来克服流固表面的摩擦阻力。
随着微机电的发展, 机构尺度越来越小,固液界面中的摩擦力相对越来越大,如微通道流等摩擦阻力问题已成为相关器件发展的一个重要的制约因素。
因此尽量减少表面摩擦阻力是提高航速和节约能源的主要途径。
近年来利用超疏水表面减阻的研究越来越受研究者的重视。
如利用超疏水硅表面进行减阻研究中发现,减阻可达30%-40%。
利用改性硅橡胶和聚氨酯树脂为主,添加低表面能无机填料或有机填料,在制成的双组分涂料的疏水表面减阻的实验中发现,在相对较低的流速时,其最大表面减阻可达30%,但随着流速的增加这种减阻效果下降,原因归于表面粗糙度的影响。
目前,有关这方面的研究有待进一步深入。
展望
有关超疏水性表面的研究近几年有较多的报道,成为各学科发展的热点之一。
但目前有关超疏水表面的制备方法的种类并不多,且过于依赖精密的仪器设备和复杂的化学物质,可供使用的基底还有限,不能够规模化生产。
另外,对仿生超疏水性表面的结构与疏水性之间的关系以及动力学还没有系统研究。
因此,今后的研究将在以下几个方面进行:实现在广泛的工程材料表面的超疏水性;发展制备超疏水性表面的有效方法;扩展超疏水性表面的应用领域。
来源:哈工大报。