函数展开成幂级数及幂级数展开式的应用

合集下载

数学分析中的级数展开

数学分析中的级数展开

数学分析中的级数展开在数学分析中,级数展开是一种重要的数学工具,用于将一个函数表示为无穷级数的形式。

级数展开在数学和物理学中有广泛的应用,可以帮助我们理解函数的性质和行为。

本文将介绍级数展开的基本概念、常见的级数展开方法以及一些实际应用。

一、级数展开的基本概念级数展开是将一个函数表示为无穷级数的形式,即将函数表示为一系列项的和。

通常情况下,我们希望将一个函数展开成幂级数的形式,即形如∑an(x-a)n的级数。

其中,an是系数,x是变量,a是展开点。

二、常见的级数展开方法1. 泰勒级数展开泰勒级数展开是最常见的级数展开方法之一。

它将一个函数在某个展开点附近展开成幂级数的形式。

泰勒级数展开的公式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)2/2! + f'''(a)(x-a)3/3! + ...2. 麦克劳林级数展开麦克劳林级数展开是泰勒级数展开的一种特殊情况,展开点为0。

麦克劳林级数展开的公式为:f(x) = f(0) + f'(0)x + f''(0)x2/2! + f'''(0)x3/3! + ...3. 幂级数展开幂级数展开是将一个函数展开成幂级数的形式,不限于泰勒级数展开和麦克劳林级数展开。

幂级数展开的公式为:f(x) = ∑an(x-a)n三、级数展开的实际应用级数展开在数学和物理学中有广泛的应用。

以下是一些常见的应用领域:1. 函数逼近级数展开可以将一个复杂的函数逼近为一个简单的级数,从而方便计算和分析。

例如,利用泰勒级数展开可以将一个非线性函数逼近为一个多项式函数,从而简化计算。

2. 解析几何级数展开在解析几何中有重要的应用。

例如,利用幂级数展开可以将一个复杂的曲线或曲面表示为一系列简单的项的和,从而方便研究其性质和行为。

3. 物理学级数展开在物理学中有广泛的应用。

函数的幂级数展开式的应用

函数的幂级数展开式的应用

复数项级数绝对收敛的概念
三个基本展开式
揭示了三角函数和复变数指数函数之间的一种关系.
欧拉公式
五、小结
1、近似计算,求不可积类函数的定积分,
2、微分方程的幂级数的解法.(第十二节介绍)
求数项级数的和,欧拉公式的证明;
思考题
利用幂级数展开式, 求极限
思考题解答
将上两式代入
原式=
练 习 题
二、计算定积分
解法
逐项积分
展开成幂级数
定积分的近似值
被积函数
第四项
取前三项作为积分的近似值,得
例3

收敛的交错级数
三、求数项级数的和
1.利用级数和的定义求和:
(1)直接法;
(2)拆项法;
(3)递推法.
例4

2.阿贝尔法(构造幂级数法):
(逐项积分、逐项求导)
例4

例5

四、欧拉公式
复数项级数:
练习题答案
一、近似计算
两类问题:
1.给定项数,求近似值并估计精度;
2.给出精度,确定项数.
关健:
通过估计余项,确定精度或项数.
常用方法:
1.若余项是交错级数,则可用余和的首项来解决;
2.若不是交错级数,则放大余和中的各项,使之成为等比级数或其它易求和的级数,从而求出其和.
例1

余和:
Hale Waihona Puke 例2解其误差不超过 .

函数的幂级数展开式的应用一近似计算

函数的幂级数展开式的应用一近似计算


拓展幂级数展开式在物 理、工程、金融等领域 的应用,提高近似计算
的精度和效率。
探索新的近似计算方法和技术
研究新的近似计算方法,如泰勒级数、傅里叶级 数等,以适应不同问题的需求。
结合人工智能和机器学习技术,开发自适应近似 计算算法,提高计算效率和精度。
探索混合精度计算方法,结合不同精度的数值计 算,以实现更高效的近似计算。
01
幂级数展开式的收敛性是指级数在某个区间内是收敛的,即其 和是有限的。
02
收敛性的判断对于幂级数展开式的应用至关重要,因为只有在
收敛的条件下,级数的近似值才具有意义。
收敛性的判断依据包括柯西收敛准则、阿贝尔定理等,这些准
03
则可以帮助我们确定幂级数的收敛域。
近似计算的精度控制
1
近似计算的精度控制是指在近似计算过程中,如 何控制近似值的误差范围,以确保结果的准确性。
收敛速度快
幂级数展开式的收敛速度通常比其他级数展开式更快,这意味着在 相同的精度要求下,幂级数展开式需要的项数更少。
适用范围广
幂级数展开式适用于多种类型的函数,包括初等函数和某些复杂函 数。
幂级数展开式的局限性
收敛范围有限
幂级数展开式的收敛范围通常较小,这意味着在某些情况下,需要非常接近展开点才能 得到有意义的结果。
幂级数展开式的一般形式为:$f(x) = a_0 + a_1x + a_2x^2 + cdots + a_nx^n + cdots$
幂级数展开式的性质
01
幂级数展开式具有唯一性,即一个函数只有一个幂 级数展开式。
02
幂级数展开式具有收敛性,即当$x$取值在一定范围 内时,级数收敛,否则发散。

高等数学(四)12-函数的幂级数展开式的应用-微分方程的幂级数解法、欧拉公式

高等数学(四)12-函数的幂级数展开式的应用-微分方程的幂级数解法、欧拉公式

n
n!
绝对收敛,
因此级数 1 zn 在整个复平面上是绝对收敛的.
n0 n! ez
1 xn ex
n0 n!
定义 ez 1 z 1 z2 1 zn
2!
n!
当 x 0 时, z 为纯虚数 yi ,
( z )
e yi 1 yi 1 ( yi)2 1 ( yi)3 1 ( yi)n
n2
n2
2a2
3
2a3 x
(4
3a4
1)x 2
(5
4a
a
)x 3
5
2
(6 5a a )x4 63
(n 2)(n 1)an2 an1 xn+
0. y xy 0
a2 0 , a3 0 , a4
1 43
,
a5
0
,
a6
0
,
,
一般地
an 2
(n
an1 2)(n
1)
(n 3, 4,
un
u2 n
vn2
,
vn
u2 n
vn2
(
n 1, 2,
)
则级数 un 、 vn 绝对收敛,
n1
n1
从而级数 (un vni) 绝对收敛.
n1
复数项级数 1 z 1 z2 1 zn (z x yi) ,
2!
n!
1
x2 y2 1
x2 y2
2
2!
1
x2 y2
2!
3!
n!
1 yi 1 y2 1 y3i 1 y4 1 y5i 2 3! 4! 5!
(1 1 y2 1 y4 ) (y 1 y3 1 y5 )i

泰勒展开与幂级数的数学计算与应用

泰勒展开与幂级数的数学计算与应用

泰勒展开与幂级数的数学计算与应用泰勒展开是一种重要的数学工具,用于将一个函数在某一点附近展开成无穷级数的形式。

它在数学分析、物理学、工程学等领域中有广泛的应用。

本文将介绍泰勒展开的基本概念、计算方法以及其在数学和实际问题中的应用。

一、泰勒展开的基本概念泰勒展开是一种将函数表示为无穷级数的方法,它利用函数在某一点的导数来逼近函数的值。

设函数f(x)在点x=a处具有无穷阶可导性,那么泰勒展开的基本形式可以表示为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...其中,f'(a)表示函数f(x)在点x=a处的一阶导数,f''(a)表示函数f(x)在点x=a处的二阶导数,依此类推。

展开式中的每一项都是函数在a点处的导数与(x-a)的幂的乘积,系数为导数的阶乘倒数。

二、泰勒展开的计算方法泰勒展开的计算方法主要分为两种:一种是使用泰勒公式,另一种是使用幂级数。

1. 泰勒公式泰勒公式是泰勒展开的基本公式,它给出了函数在某一点处的泰勒展开式。

泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n(x)其中,R_n(x)为余项,表示泰勒展开与原函数之间的误差。

当n趋向于无穷大时,余项趋向于0,泰勒展开式与原函数完全一致。

2. 幂级数幂级数是一种特殊的级数形式,它由无穷多个幂函数的和组成。

泰勒展开可以看作是幂级数的一种特殊情况。

幂级数的一般形式如下:f(x)=a_0+a_1(x-a)+a_2(x-a)^2+a_3(x-a)^3+...其中,a_0、a_1、a_2等为常数系数。

幂级数的收敛区间由常数系数的取值范围决定。

三、泰勒展开的应用泰勒展开在数学和实际问题中有广泛的应用,下面将介绍几个常见的应用领域。

《高等数学Ⅱ》课件-第7章幂级数的展开式及其应用

《高等数学Ⅱ》课件-第7章幂级数的展开式及其应用

(3)求出 x S(t)dt 的幂级数形式,并求其收敛域. 0
解:(1)显 然 该 幂 级 数 的 收 敛 域为 ( 1,1] ;
(2)S'(x)
n1
(1)n1 n
xn
n1
(1)n1 n
xn
(1)n1 xn1, 收敛域为( 1,1);
n1
(3)
x
S(t)dt
0
x 0 n1
bn1 2 bn
an 2 an1
32
5
2
5
3
©
三、幂级数的性质
1. 代数运算性质
设 an xn和 bn xn 的收敛半径各为R1和R2 ,
n0
n0
R minR1, R2
(1) 加减法
an xn bn xn
n0
n0
x (R, R)
©
(2) 乘法 (类似于多形式的乘法)
令余项 则在收敛域上有
例如, 等比级数 它的收敛域是
有和函数
它的发散域是 ( , 1 ] 及 [1, ), 或写作 x 1.
又如, 级数
所以级数的收敛域仅为
级数发散 ;
幂级数
s( x) u1( x) u2( x) un( x) 定义域
s(x) 的定义域就是 级数的收敛域.
(函余数项,1)项一rn级般((1x数,考)的虑)s部函,(但x分数)只和1有s1ns(在nxx(时)xD),,它ln(i的m1定,s1n)义上( x域,)它是才s(是x)
x
S(t) dt
0
an
n0
x 0
tn
dt
an n0n 1
x n 1 ,
x (R, R )

函数的幂级数展开式及其应用

函数的幂级数展开式及其应用

函数的幂级数展开式及其应用通过前面的学习我们看到,幂级数不仅形式简单,而且有一些与多项式类似的性质。

而且我们还发现有一些可以表示成幂级数。

为此我们有了下面两个问题:问题1:函数f(x)在什么条件下可以表示成幂级数;问题2:如果f(x)能表示成如上形式的幂级数,那末系数c n(n=0,1,2,3,…)怎样确定?下面我们就来学习这两个问题。

泰勒级数我们先来讨论第二个问题.假定f(x)在a的邻区内能表示成这种形式的幂级数,其中a是事先给定某一常数,我们来看看系数c n与f(x)应有怎样的关系。

由于f(x)可以表示成幂级数,我们可根据幂级数的性质,在x=a的邻区内f(x)可任意阶可导.对其幂级数两端逐次求导。

得:,,………………………………………………,………………………………………………在f(x)幂级数式及其各阶导数中,令x=a分别得:把这些所求的系数代入得:该式的右端的幂级数称为f(x)在x+a处的泰勒级数.关于泰勒级数的问题上式是在f(x)可以展成形如的幂级数的假定下得出的.实际上,只要f(x)在x=a处任意阶可导,我们就可以写出函数的泰勒级数。

问题:函数写成泰勒级数后是否收敛?是否收敛于f(x)?函数写成泰勒级数是否收敛将取决于f(x)与它的泰勒级数的部分和之差是否随n→+∞而趋向于零.如果在某一区间I中有那末f(x)在x=a 处的泰勒级数将在区间I中收敛于f(x)。

此时,我们把这个泰勒级数称为函数f(x)在区间I中的泰勒展开式.泰勒定理设函数f(x)在x=a的邻区内n+1阶可导,则对于位于此邻区内的任一x,至少存在一点c,c 在a与x之间,使得:此公式也被称为泰勒公式。

(在此不加以证明)在泰勒公式中,取a=0,此时泰勒公式变成:其中c 在0与x之间, 此式子被称为麦克劳林公式。

函数f(x)在x=0的泰勒级数称为麦克劳林级数.当麦克劳林公式中的余项趋于零时,我们称相应的泰勒展开式为麦克劳林展开式.即:几种初等函数的麦克劳林的展开式1.指数函数e x2.正弦函数的展开式3.函数(1+x)m的展开(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

-函数展开成幂级数

-函数展开成幂级数

1 2 1 ln( 2 1) .
2 n1 2n 1
2
在收敛区间内对幂级数逐项求导、逐项 积分后, 得到一个新的幂级数, 且它与原幂级 数具有相同的收敛半径 . 如有必要,可对它连 续进行逐项求导和逐项积分.
就是说, 在收敛区间内幂级数的和函数具 有任意阶的导数及任意次的可积性.
,
(| x|1).
例2

2n 1 n1 2n
之值.

n1
2n 1 2n


n1
2n 1 2n
xn

x1
符 合 积


n1
2n 1 2n


n1
2n 1 2n
x2n

x1
要 求 了

n1
2n 1 2n
x2 2n
n1

1

n 1
x 2n2

1
x2

x4


1 1 x2
,

x2n1 n1 2n 1
x1 01 x2
d
x

1 2
x 0

x
1 1

x
1 1
d
x
1 ln1 x , ( | x | 1) . 2 1 x
例3
f (n1) ( ) xn1 | e | x |
(n 1) !
| x |n1 (n 1) !
因为
lim an 0 n n !
( 在 0 与x 之间)

2 x2 (2 x2 )2

3.
x1

函数的幂级数展开式ppt课件泰勒级数课件

函数的幂级数展开式ppt课件泰勒级数课件

o
x0
P104,条件1,2
y f (x)
x
Pn的确定
Pn( x) a0 a1( x x0 ) a2( x x0 )2 an( x x0 )n
分析: f (x0) Pn(x0) a0
f (x0) Pn(x0) 1 a1 f (x0) Pn(x0) 2!a2
an
1 n!
代换 恒等变形
求导,积分
数项级数求和
无穷级数
特殊:数项级数
特殊:交正错项
一般:
一般:函数项级数
特殊:幂级数 一般:
判定敛散性
求R,收敛域 求和函数,
2. 数项级数求和
(1)e x 1 x 1 x2 2!
1 xn
n!
n0
1 n!
xn
此公式对应了无数个求和公式!
x0 )n
称为点 x0 处泰勒级数
f (x) 的泰勒级数 :
f (x)
f (x)
f (x0 )
f (x0 )(x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) (x0 ) (x n!
x0 )n
n0
f
(n)( x0 )( x n!
x0 )n
不一定!
2 定理1 设函数 f (x) 在点 x0 的某一邻域
内具有
各阶导数, 则 f (x) 在该邻域内能展成泰勒级数的 充要条件是 f (x) 的__________余项满足:___________
理解1:
f (x) 的 n 阶泰勒公式
f (x) f (x0 ) f (x0 )(x x0 )
f
( x0 2!

函数的幂级数展开

函数的幂级数展开

函数的幂级数展开函数的幂级数展开是数学中重要的概念之一,其应用广泛,涵盖了多个领域,包括工程、物理、计算机科学等。

本文将介绍函数的幂级数展开的定义、性质、推导和应用。

一、定义函数的幂级数展开是将一个函数表示成一个无穷级数的形式,即:f(x) = a0 + a1(x - c) + a2(x - c)^2 + ... +an(x - c)^n + ...其中,a0, a1, a2 ... an 是常数,叫做幂级数的系数,c 是展开点,x 是变量。

二、性质1. 唯一性:如果一个函数在某个点处的幂级数展开式存在,那么它的幂级数展开式唯一。

2. 收敛性:在幂级数的收敛区间内,幂级数展开式收敛,即根据函数的性质可以准确表达函数的值;在展开点之外,则可能发散或发生收敛半径发生变化。

3. 运算性质:幂级数具有良好的运算性质,如加、减、乘、除等运算。

三、推导1. 首先,在幂级数的收敛区间内,函数在展开点 c 处可以通过泰勒公式来展开,即:f(x) = f(c) + f'(c)(x - c) + f''(c)(x - c)^2 / 2! + ... + f^(n)(c)(x - c)^n / n! + Rn其中,f^(n) 表示函数的 n 阶导数,Rn 是余项。

2. 如果展开点 c = 0,则泰勒公式称为麦克劳林公式。

3. 将幂级数的展开式与麦克劳林公式相比较,可以得到幂级数的系数与函数的导数之间的关系,即:a0 = f(c), a1 = f'(c), a2 = f''(c) / 2! ... an = f^(n)(c) / n!4. 将幂级数的系数代入幂级数的展开式中,即可得到函数的幂级数展开式。

四、应用1. 近似计算:当某些函数难以直接计算时,可以通过幂级数展开对其建立近似计算模型。

例如,将正弦函数展开成其傅里叶级数,可以用来近似计算其值。

2. 函数的求导和积分:对于某些函数,其求导和积分可能更容易计算,此时可以通过对函数的幂级数展开式进行求导和积分,得到原函数的导数和积分的展开式。

级数运算与级数展开的应用

级数运算与级数展开的应用

级数在金融中的应用
计算复利:利用级数计算存款或投资的未来价值 风险评估:利用级数展开对金融风险进行量化评估 资产定价:利用级数展开对金融资产进行合理定价 保险精算:利用级数展开计算保险产品的费率和赔付情况
感谢观看
汇报人:XX
添加标题
幂级数的收敛性:幂级数在收敛半径内的点上是收敛的,而在收敛半径外的点上是 发散的。收敛半径的大小取决于幂级数的系数。
添加标题
幂级数的应用:幂级数在数学、物理、工程等领域中有着广泛的应用。例如,在求 解微分方程、近似计算、信号处理等方面,幂级数都发挥着重要的作用。
泰勒级数的运算
定义:泰勒级数是一种将一个函数表示为无穷级数的方法,其一般 形式为 f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...
级数在工程中的应用
计算物理量:级数可以用来计算 各种物理量,如力、速度、加速 度等。

信号处理:级数在信号处理中也 有广泛应用,如傅里叶变换和小 波变换等。
添加标题
添加标题
添加标题
添加标题
近似计算:级数展开可以用来进 行近似计算,例如在工程中常用 的泰勒级数展开。
控制工程:级数在控制工程中也 有应用,例如在控制系统分析和 设计中。
傅里叶级数的运算
傅里叶级数的定义 傅里叶级数的展开形式 傅里叶级数的收敛性 傅里叶级数的运算方法
洛朗兹级数的运算
定义:洛朗兹级 数是无穷级数的 一种,表示函数 在某点的泰勒级 数展开。
运算方法:通过 求导和积分运算, 将函数表示为无 穷级数。
应用领域:在数 学、物理、工程 等领域有广泛应 用。
数学建模:利 用级数展开来 建立数学模型, 解决实际问题, 如物理学、工 程学等领域的

函数展开成幂级数(课堂PPT)

函数展开成幂级数(课堂PPT)

无穷级数
上一页
下一页
返回
8
证明
Rn ( x)
f (n1) ( ) ( x
(n 1)!
x0
)n1
M x x0 n1 , (n 1)!
x
x0
n1
在(,)收敛,
n0 (n 1)!
x ( x0 R, x0 R)
lim n
x x0 n1 (n 1)!
0,

lim
n
Rn
(
x
)
x
0,
n0
该级数在(,)内和函数s( x) 0. 可见
除s 0外, f ( x)的麦氏级数处处不收敛于 f ( x).
无穷级数
上一页
下一页
返回
6
三、函数展开成泰勒级数的条件
定理 2 f ( x)在点x0 的泰勒级数,在U ( x0 ) 内收
敛于
f
(
x)
在U
(
x0
) 内lim n
Rn
(
x)
0
.
证明 必要性 设f ( x)能展开为泰勒级数,
( x0
R,
x0
R)
可展成点x0的泰勒级数.
无穷级数
上一页
下一页
返回
9
三、函数展开成泰勒级数的方法
1.直接法(泰勒级数法)
步骤:
(1) 求an
f (n)( x0 ); n!
(2)
讨论
lim
n

Rn
0

f
(n) ( x)
M,
则级数在收敛区间内收敛于 f ( x).
无穷级数
上一页
下一页
返回

《应用高等数学》课程标准

《应用高等数学》课程标准

《应用高等数学》课程标准一、课程目标1、课程性质《高等数学》是高职高专理工类专业必修的一门公共基础课,为培养学生成为服务和管理第一线的高端技能型专门人才服务,是加强高职学生综合素质、提升职业可持续发展能力的重要课程。

2、课程目标本课程旨在使学生获得微积分等内容的基本概念、基本理论和基本思想,掌握处理专业实际问题的基本数学方法和手段,培养学生数学软件使用和运用数学方法分析处理问题的初步能力。

同时,通过数学实验与数学实践等活动,训练学生的数学应用意识、提高学生的技术应用水平。

知识目标:通过课程学习,为学习各专业的后继课程和今后工作需要打下必要的数学基础。

技能目标:培养学生初步的数据处理能力、借助数学软件进行数学计算的能力、简单问题的分析、建模能力和逻辑思维能力。

素质目标:培养学生正确的数学学习观、理性的思维方式、数学应用意识和团队协作精神。

二、课程基本构架根据工作过程要素解构得到教学的知识点、素质点、能力点,根据高职学生数学认知特三、课程教学条件与环境1、教学内容组织建议问题驱动。

问题应贯穿教学的始终,每一教学单元均应以问题引入开头,通过问题引出我们要学习的数学概念,激发数学讨论和加强学生对内容的兴趣;通过典型案例解决方案,把数学中的不同部分联系起来,从而使问题解决成为每章的完整组成部分。

侧重说理。

应尽量采用口语式的方法介绍概念,然后用清晰简明的例子加以解释。

强调数学思想的理解和学习方法的使用,打破传统高职数学教学的内容秩序。

使用软件。

在聚焦内容的同时,应鼓励学生充分利用数学软件进行问题的求解。

应强调Matlab的使用方法介绍,将重复性、机械性的数学劳动交给计算机去完成,优化教学过程,强化学生应用能力的培养。

拓展应用。

每一教学单元均应包含与主题密切相关的若干典型综合案例,通过对这些案例的学习,帮助学生理解他们所学的知识,让学生形成数学的应用意识,体会数学的应用价值。

2、网络资源课程建设利用现代信息技术开发视频教学资源,通过搭建起教学资源共享、教学交互、内容开放、时空延续和媒体集成的网络资源课程,使学生的自觉性、积极性和创造性得以充分发挥。

函数幂级数的展开和应用

函数幂级数的展开和应用

函数幂级数的展开和应用我们称形如200102000()()()()nn nn n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的级数为幂级数,它是一类最简单的函数项级数.从某种意义上说,它也可以看作是多项式函数的延伸.幂级数在理论和实际上都有很多应用,特别在应用它表示函数方面,又由于函数幂级数的逐项求导和逐项可积等好的运算性质,为函数的研究和应用提供了便利的条件.1 函数幂级数展开的条件函数()f x 可以在点0x x =作幂级数展开,是指存在0x x =,使得在(r x r x +-00,)上,00()()n n n f x a x x ∞==-∑ (1) 其中()f x 是此幂级数的和函数.根据幂级数的逐项可积性,若函数()f x 能表示成幂级数()nnn a x x ∞=-∑且其收敛半径0r >,则函数()f x 在区间(,)r r -上有任意阶导数,且1'1()()n nn f x na x x -∞==-∑,'01()f x a = ,,()()00()()!,!n n n f x fx n a n ==因此自然会提出下述问题,是否每一个在区间(,)r r -上有任意阶导数的函数()f x 一定能在区间上展成形如()nnn a x x ∞=-∑的幂级数呢?回答是不一定的.例1 在),(+∞-∞上具有任意阶导数的函数21()0x e f x -⎧⎪=⎨⎪⎩ 00x x ≠=,易验证当0x ≠时,21'32()x f x e x -= , 2211''4664()x x f x e e x x--=-+ ,一般来说,有21()1()()n x n fx P e x -= (0x ≠),其中1()n P x 是关于1x的某个多项式.令21t x =,易得21201lim lim 0mx m t x t te x e-→→+∞==.由此可知21()()0001lim ()lim ()lim ()0n n x n x x x fx f x P e x-+-→→→=== ),2,1,0( =n ,又因为()f x 在0x =处连续,所以有'(0)0f =.类似逐次可推得()(0)0n f = ),3,2( =n 所以()f x 在0x =的幂级数为200002!!nx x n +⨯+++显然它在),(+∞-∞上收敛,且其和函数()0s x =. 但是,()f x 只在0x =处为零值.0x ∀≠,都有 ()()f x s x ≠.上述例子告诉我们:具有任意阶导数的函数,其幂级数(泰勒级数)并不是都收敛于函数本身.那么具备什么条件的函数()f x ,它的幂级数(泰勒级数)才能收敛于()f x 本身呢?定理1 设()f x 在点0x x =具有任意阶导数,那么()f x 在区间00(,)x r x r -+内等于它的泰勒级数的和函数的充分必要条件是:对一切满足不等式0x x r -<的x ,都有lim ()0n n R x →∞=.这里()n R x 是()f x 在0x 的泰勒公式余项.应用定理1 判别一个函数是否可以展成泰勒级数常常是不方便的,我们有如下充分条件: 定理2 设()f x 在00(,)x r x r -+内有任意阶导数,若存在0M >,使得00(,)x x r x r ∀∈-+,及 ,2,1,0=∀n , 有 ()()n n f x M ≤ (2) 则 ()000()()()!n n n f x f x x x n ∞==-∑(3) 证明 由条件(2)得,00(,)x x r x r ∀∈-+有()0()()0!!n n n nf M r x x n n ξ-≤→ ()n →∞ 即得所证. 若()f x 在0x 这一邻域内可以展开成泰勒级数,即+-++-+-+=n n x x n x f x x x f x x x f x f x f )(!)()(!2)())(()()(00)(200''00'0(4) 则(4)的右边为()f x 在0x x =处的泰勒展开式,或称幂级数展开式.在实际应用中,主要讨论函数在00x =处的展开式,这时(4)式可以写作+++++=nn x n f x f x f f x f !)0(!2)0()0()0()()(2''',称为麦克劳林级数,简称幂级数.2 函数幂级数的展开一般说来,可以将一个函数展成幂级数的方法分为直接展开法和间接展开法,下面就这两种方法做一一介绍.2.1 直接展开法这种方法也可以称其为余项估算法.设()f x 在0x x =处任意次可导,记()000()()()()!k nk n k f x R x f x x x k ==--∑()k N +∈,若()000()()()!n n n f x f x x x n ∞==-∑,只需0()x U x ∀∈,有lim ()0n n R x →∞=.当00x =时,()n R x 的各种表达式:()()n n R x x ο= (佩亚诺型余项);(1)1()()(1)!n n n f R x x n ξ++=+,ξ在0与x 之间 (拉格朗日型余项);(1)01()()()!x n n n R x x t f t dt n +=-⎰(积分型余项); (1)1()()(1)!n n n n f x R x x n θθ++=-,01θ≤≤(柯西型余项);佩亚诺型余项只是定性的描述了余项的性态不利于具体估算误差,所以我们常用其它三种余项形式.用直接展开法可得[1](5457)P -:201111!1!2!!n xnn x e x x x n n ∞===+++++∑ ,(,)x ∈-∞+∞;213210(1)11sin (1)(21)!3!(21)!n n nn n x x x x x n n ∞++=-==-++-+++∑ ,(,)x ∈-∞+∞;2220(1)11cos 1(1)(2)!2!(2)!n n nn n x x x x n n ∞=-==-++-+∑ ,(,)x ∈-∞+∞;12311(1)111ln(1)(1)23n n n nn x x x x x x n n-∞-=-+==-+-+-+∑ ,(1,1]x ∈-;2(1)(1)(1)(1)12!!nn x x x x n ααααααα---++=+++++,(1,1)x ∈-;arctan x =3521210(1)(1)213521n n n nn x x x x x n n +∞+=-=-+-+-+++∑ ,[1,1]x ∈-;211(21)!!arcsin (2)!!21n n n x x x n n +∞=-=++∑ ,[1,1]x ∈-;例2 求函数23()3247f x x x x =+-+在1x =处的幂级数展开式.解 由于'21(1)8,(1)(2821)15,x f f x x ===-+=''1(1)(842)34x f x ==-+=,'''()(1)42,,(1)0n f f ==,(3n >),从而总有 lim ()0n n R x →∞=(其中(1)1()(),(1)!n n n f R x x n ξ++=+ξ在0与x 之间),所以23233442()815(1)(1)(1)815(1)17(1)7(1)2!3!f x x x x x x x =+-+-+-=+-+-+- 例3 求2()sin f x x =的幂级数展式.解 由于'''00(0)0,(0)(sin 2)0,(0)(2cos 2)2,x x f f x f x ======='''(4)00(0)(4sin 2)0,()(8cos 2)8x x f x f x x ===-==-=-,,(21)(2)121(0)0,(0)(1)2,n n n n f f ---==- ,因此2122412282sin (1)(,)2!4!(2)!n n nx x x x n --=-++-+-∞+∞;x ∀,级数的拉格朗日余项2212()(21)!n n n R x x n +≤+,显然有lim ()0n n R x →∞=. 所以上述展式成立.2.2 间接展开法上面讨论的几个函数展开都是采用直接展开法.一般说来,求函数的各阶导数比较麻烦,尤其要检验余项是否趋向于零,往往不是一件容易的事.因此,在可能的情况下,我们总是尽可能不用直接方法,而采用间接方法把已给函数展成幂级数,所谓间接展开法指的是,利用已知的函数展开式作为出发点,把给定函数展开成幂级数.由于函数展成幂级数的唯一性,用这种方法展开的结果应与直接方法展开的结果完全一致.在实际的练习中,将初等函数展开为幂级数,要用到多种方法,现将其常用的方法归结如下: 2.2.1通过变形,利用已知的展开式例4 将下列函数展成x 的幂级数.1)241()(1)(1)(1)f x x x x =+++ 解 241()(1)(1)(1)f x x x x =+++811x x -==- 8898810(1)1n n n n x x x x x x x ∞+=-=-+-++-+∑ ,(11)x -<<.2)3()sin x x ϕ=解 2121300313(1)1(1)(3)sin sin sin 3444(21)!4(21)!n n n n n n x x x x x n n ++∞∞==--=-=-++∑∑34=2210(1)(13)(21)!nn n n x n ∞+=--+∑ , (,)x ∈-∞+∞. 例5 设0x >,求证:㏑x =2[ ++-++-++-53)11(51)11(3111x x x x x x ] 证明 令11x t x -=+即11tx t+=-,从而 121111ln ln ln(1)ln(1)(1)(1)1n n n n n n t t t x t t t n n ∞∞--==+==+--=----∑∑ 1211211111[(1)(1)][(1)(1)]()1nn n n n n n n t x n n x ∞∞----==-=---=---+∑∑ 35111112[()()]13151x x x x x x ---=++++++例6 求函数2()(1)(1)xf x x x =--的麦克劳林展式. 解 设222(1)(1)(1)(1)11(1)x x A B C x x x x x x x ==++--+-+--得111,,,442A B C =-=-=又221(1)(1)(1)n n x n x x ∞-==-=+-∑,01(1)1n n n x x ∞==-+∑,011nn x x ∞==-∑ (11x -<<) 所以20011(1)11(1)((1))()(1)(1)2222n n n nn n x n x n x x x ∞∞==+---=+-=+--∑∑,(11x -<<) 2.2.2 利用逐项积分或逐项微分法 例7 求2()xt F x e dt -=⎰的幂级数展开式.解 将2x -代替xe 展式中的x ,得+-+++-=-nn x x n x x e242!)1(!21!1112,()x -∞<<+∞.再逐项求积分就得到()F x 在(,-∞+∞)展开式2357210111(1)()1!32!53!7!21n n xt x x x x F x e dt x n n +--==-+-++++⎰ .例8 试求22()arctan2xf x x =-的幂级数展开式. 解 2''22000221()()(arctan )(1)221()2xxx t t f x f x dt dt dt t t ===+-+⎰⎰⎰ =2400(1)(1)()24nxn n t t dt ∞=+-∑⎰ (t < 2222222234500[1()()()()](1)()222222n xx nn t t t t tt dt dt ⎡⎤∞⎢⎥⎣⎦==+--++-=-∑⎰⎰2120(1)2(21)n n n n x n⎡⎤+∞⎢⎥⎣⎦==-+∑,(t <当x =2122011111(1)(1))2(21)21357911n n nnn n n n ⎡⎤⎡⎤+∞∞⎢⎥⎢⎥⎣⎦⎣⎦==-=-=+--++-++∑∑001111111(1)()()2((1)(1))3579114143n nn n n n ∞∞==⎤=+-+++-=-+-⎥++⎦∑∑可见x=x =22()arctan2xf x x=-在x =所以上面展式在⎡⎣上成立.2.2.3 利用待定系数法 例9 求2sin 12cos x x xαα-+ (1)x <的幂级数展式. 解 设2sin 12cos n n n x a x x x αα∞==-+∑,则20sin (12cos )nn n x x x a x αα∞==-+∑232323012301201(2cos )(2cos )(2cos )a a x a x a x a x a x a x a x a x ααα=++++---++++比较等式两边同次幂的系数,得0120,sin ,sin 2,,sin n a a a a n ααα====,这里用到三角恒等式sin(1)2sin cos sin(1)n n n αααα+=⋅-- (2,3,)n =,所以 原式= ++++nx n x x αααsin 2sin sin 22.2.4 利用级数的运算(加,减,乘,复合) 例10 求2()ln (1)f x x =-的幂级数展开式.解 由于10ln(1)1n n x x n +∞=-=-+∑在[1,1)-上内闭一致收敛,故[1,1)-上可用级数乘法2321111111111()()23121321n n x x f x x x n n n n ∞+=⎡⎤=----=++++⎢⎥--⎣⎦∑ =()()111111111()()(1)11nn n n n k n k k n k x x k n k n k n k ∞∞++====++-⎡⎤⎣⎦=+-++-∑∑∑∑ 111111111112111n n n n n k n k x x n n k k n k ∞∞++====⎡⎤⎛⎫⎛⎫=+= ⎪ ⎪⎢⎥++-+⎝⎭⎝⎭⎣⎦∑∑∑∑ 1111121231n n x n n +∞=⎛⎫=++++ ⎪+⎝⎭∑ 上面的展式在[1,1)-内成立.例11 求()()111x f x x e =+按x 的幂的展开式至三次项.解 ()()111x f x x e=+()()111111ln 11nn n x x x nxee∞-=--+-∑== (1)x <= +-+-43232x x x e23232323111()()()23422346234x x x x x x x x x =+-+-++-+-++-+-+)11(,167241121132<<-+-+-=x x x x 2.2.5 其它方法举例例 12 求函数()sin xf x e x =的麦克劳林级数的前四项. 解23521111111sin (1)((1))1!2!!3!5!(21)!x nnn e x x x x x x x x n n +=+++++-+++-++233441111()()3!2!3!3!x x x x x x =++-++-++ 2313x x x =+++3 幂级数的应用3.1 计算积分 例13 计算积分120ln 1xdx x -⎰ 解 11112222220000ln 1ln ln ln 111x x x x dx xdx xdx xdx x x x -+==+---⎰⎰⎰⎰ 因为10ln 1xdx =-⎰,及2221ln ln 1nn x x x x x ∞==-∑,故 原式=12101ln n n x xdx ∞=-+∑⎰. 又知级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可在(0,1]上逐项积分①,因此原式12011ln nn x xdx ∞==-+∑⎰()()2211112121n n n n ∞∞===--=-++∑∑()()22220111111()2212n n n n n n ∞∞∞====-+++∑∑∑2222221111126248n n nnπππ∞∞===-+=-+=-∑∑ 例14 计算22cos(sin )x x d πθπ⎰解 因()()21(sin )cos sin 11(2)!k kk x x k θθ∞==+-∑ ()()221sin 112!k k kk x k θ∞==+-∑ , (,)x ∈-∞+∞故2222222001122(1)(1)cos(sin )sin 12(2)!(!)2k k k k kk k k xx x d d k k πππθθθθππ∞∞==⎡⎤--=+=+⎢⎥⎣⎦∑∑⎰⎰ 3.2 证明不等式幂级数是表达函数的重要工具,因此也可应用于证明函数不等式. 例15 证明不等式222,(,)x x x e e e x -+≤∈-∞+∞ 证明 因2022(2)!n xxn x e echx n ∞-=+==∑,222022(2)!!x nn x e n ∞==∑,而22(2)!(2)!!n n x x n n ≤,故222,xx xe e e -+≤ 例16 确定λ的值,使得22,(,)x x x e e e x λ-+≤∈-∞+∞解1)若上述不等式成立,则有222220001110()()2!2!2!2!x x n n n n n x n nn n n n n n n e e x x x x e n n n n λλλλ-∞∞∞∞====+≤-=-=-=-∑∑∑∑ 两端除以2x ,再令0x =,可得12λ≥.2)若12λ≥ ,则有22222002(2)!2!x x x n nx n n n e e x x e e n n λ-∞∞==+===≤∑∑3.3 近似计算幂级数常常用于近似计算. 例17 求下列各值的近似值: (1)e ,使误差小于0.001;解 在xe 的展开式中令1x =,得111112!3!!e n =++++++ 若取上述级数的前(1)n +项作为e 的近似值,即设111112!3!!e n ≈+++++则误差11(1)!(2)!n R n n =++++ 111[1](1)!2(2)(3)n n n n =+++++++2111111[1]1(1)!1(1)(1)!!11n n n n n nn <+++==++++-+ 所以要使0.001n R <,只要!1000n n >,可算出当6n =时就满足要求.因而可取前七位即可,即11111 2.7182!3!6!e ≈+++++= (2)6π,使误差小于0.001;解 在arcsin x 的展开式中令12x =,得3521111131(21)!!1622322452(2)!!(21)2n n n n π+⨯-≈+++++⨯⨯⨯+若取前(1)n +项作为6π的近似值,误差2325(21)!!1(23)!!1(22)!!(23)2(24)!!(25)2n n n n n R n n n n ++++=++++++2324(21)!!111(1)(22)!!(23)222n n n n ++<+++++234(21)!!13(22)!!(23)2n n n n ++=++要使0.001n R <,只要使上式右端小于0.001即可,不难算出当2n =时即满足要求,因而取前三项即可,即45111310.52362322452π⨯≈++=⨯⨯⨯ 3.4 应用幂级数性质求下列级数的和 例18()11!n nn ∞=+∑ 分析 ()11!n n n ∞=+∑是幂级数()111!n n nx n ∞+=+∑的和函数在1x =处的值.解 设()()111!n n nf x x n ∞+==+∑ ()x -∞<<+∞, 则()1110'()1!(1)!!n n nx n n n x x x f x x x xe n n n -∞∞∞=======--∑∑∑ ()x -∞<<+∞,所以0()(0)'()1xxtxxf x f f t dt te dt xe e =+==-+⎰⎰,从而()1(1)11!n nf n ∞===+∑.3.5 利用函数的幂级数展开式求下列不定式极限 例19 21lim ln 1x x x x →∞⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦解 因为23311111ln 123o x x x x x ⎛⎫⎛⎫+=-++ ⎪ ⎪⎝⎭⎝⎭,所以 原式223311111111lim lim 23232x x x x x x x x x x x x οο→∞→∞⎧⎫⎡⎤⎡⎤⎛⎫⎛⎫=--++=-+-+=⎨⎬ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎩⎭ 例20 3arcsin limsin x x x x→∞-解 因为()()331arcsin ,sin 6x x x o x x x o x =++=+,所以原式=()()()()()333333311166lim lim 6x x x x x o x x o x x o x x o x →∞→∞⎛⎫-++-+ ⎪⎝⎭==-++ 3.6 求幂级数的和函数例21 +++++++12531253n x x x x n 解 设2121n n x n μ+=+,因21lim n x nu x u +→∞=,故原级数的收敛半径1R =,又当1x =±时,原级数可化为0121n n ∞=⎛⎫± ⎪+⎝⎭∑发散,从而得收敛域为(1,1)-. 设()()21021n n x S x n +∞==+∑ ()()1,1x ∈-,在()1,1x ∈-内逐项求导,得()2201'1nn S x x x ∞===-∑, 故和函数()()()2011'0ln 121xxdt xS x S t dt S t x +==+=--⎰⎰ ()1,1x ∈-. 例22 求幂级数()()211nn n x n n ∞=--∑的和函数. 解 易知原级数的收敛域为[1,1]-.记()()21()1nn n F x x n n ∞=-=-∑,则()()()()()1222111'()()'()'111nnnn nn n n n F x x x x n n n n n ∞∞∞-===---===---∑∑∑,()()()()21122222111''()()'()'1111nnn n n n n n n n F x xxnxx n n x ∞∞∞∞----====--===-==--+∑∑∑∑故()001'()''()ln 11xxF x F t dt dt x t ===++⎰⎰, ()()()0()'()ln 11ln 1xxF x F t dt t dt x x x ==+=++-⎰⎰,所以()()()()211ln 11n n x x x x n n ∞=-=++--∑ ,(1,1)-.注释: ① 求证级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可以在(0,1]上逐项积分证 1当1x =时级数通项()211ln |0nn x u x x ===.当01x <<,21nn xlnx ∞=∑为等比级数,所以和22ln ()10x x S x x⎧⎪=-⎨⎪⎩, 011x x <<= 时,可见211(10)lim ln(1(1))(1).(1)(1)2x x S x S x x -→-=--=≠+- 故 该级数非一致收敛(根据和函数连续定理).2(证明能逐项积分)因22222221ln ()ln ln ,11n kn n k n x x x R x x x x x x x +∞=+===⋅--∑其中220ln lim 1x x xx +→-及221ln lim 1x x x x -→-都有有限极限,且22ln 1x x x -在(0,1)内连续,所以22ln 1x x x -在(0,1)内有界,即0M ∃>,使得22ln ||1x xM x ≤-,故 2|()|n n R x M x ≤⋅, 11120|()||()|0().21n n n MR x dx R x dx M x dx n n ≤≤=→→∞+⎰⎰⎰ 此即表明1lim ()0.n n R x dx →∞=⎰级数可以逐项取积分.。

函数展开成幂级数讲解

函数展开成幂级数讲解
把 x 换成 x 2 , 得
n 0

(1)
x
2n
( 1 x 1 ).
17
例2 将 f ( x ) e 2 x 展开成x的幂级数. 2 3 x x 1 n x 解 e 1 x x , x (, ) 2! 3! n 0 n ! 将-2x代入上式中x的位置,即得

f ( x)
a
n 0
n
x
n
问题: 1.如果能展开, a n 是什么? 2.展开式是否唯一? 3.在什么条件下才能展开成幂级数?
6
函数能展开成幂级数的定义:
给定函数 如果能找到一个幂级数,使得 它在某区间内收敛,且其和恰好就是给定的函数 则称函数在该区间内能展开成幂级数

f ( x)
例如:
x
a
n
f ( n ) (0) (0) 1 (n 0 ,1,), an n!
x
( n 1)!
0,
e x n 1 e (n 1)!
lim Rn ( x ) 0.
n
x
( 在0与x 之间)
ex
1 n x , x ( , ) n 0 n !
n 0
( an x n ) (an x n )
n 0
x


n 0
x x0
收敛域 x
x ( R , R )
x ( R , R )
2
n 0
0 ( an x )d x (an xn )d x
n
x


n 0
n 0
0
二、幂级数和函数的求法
• 求部分和式的极限 (在收敛区间内) •逐项求导或求积分法

高数-函数展开成幂级数

高数-函数展开成幂级数

2!
n!
x (, )
• ln(1 x) x 1 x2 1 x3 1 x4 (1)n xn1
234
n 1
x (1, 1]
• sin x x x3 x5 x7 (1)n x2n1
3! 5! 7!
(2n 1)!
x (, )
• cos x 1 x2 x4 x6 (1)n x2n
f (x) =
f
x0 +
f ' x0 ( x - x0 ) +
f
(0) 2!
(x
-
x0
)2
+
+
f
(n) ( x0 n!
)
(x
-
x0
)n
+
(R<x x0<R)
否则,第三步求出的幂级数虽然在其收敛区间上收敛,
但它的和并不是函数f(x).
例 1. 试将函数 f(x) = ex 展开成 x 的幂级数.
将所给函数展开成 幂级数.
例3.将函数
展开成 x的幂级数.
解: 因为
1 1 x x2 (1)n xn ( 1 x 1 ) 1 x
把x 换成x2 , 得
1 1 x2
1
x2
x4
(1)n
x2n (1
x
1)
例 4. 试求函数 f ( x) cosx 的幂级数展开式.
解: 因为 (sinx) cosx , 而
sinx x 1 x3 1 x5 (1)n x 2n1
3! 5!
(2n 1)!
( x ) .
所以根据幂级数可逐项求导的法则, 可得
cosx
1
1 x2 2!
1 x4 4!

初等函数的幂级数展开

初等函数的幂级数展开
14
2. 间接展开法 利用一些已知的函数展开式及幂级数的运算性质, 将所给函数展开成 幂级数. 1 例4. 将函数 展开成 x 的幂级数. 2 1+ x 1 2 n 解: 因为 = 1+ x + x +L+ x +L ( −1 < x < 1 ) 1− x 把 x 换成− x 2 , 得 1 2 4 n 2n = 1 − x + x + L + ( − 1 ) x +L 2 1+ x ( −1 < x < 1 ) 1 2 n ( ) ( ) ( ) = 1 + ϕ x + ϕ x + L + ϕ x + 1 − ϕ (x) ϕ (x) < 1
π )] = 1 [ cos( x − π ) + sin( x − 4 4 2 1 − 1 (x − π )2 + 1 ( x − π )4 − L 1 = 2 2! 4 4! 4
1 π 3 1 π 5 π − ( x − ) + ( x − ) − L + ( x − ) 3! 4 5! 4 4 1 π 1 π 2 1 π 3 = 1 + ( x − ) − ( x − ) − ( x − ) + L 2 4 2! 4 3! 4 ( − ∞ < x < +∞ )
13
1 ,−1 , − 对应 m = 1 的二项展开式分别为 2 2
1 2 1 1⋅ 3 3 1⋅ 3 ⋅ 5 4 x + 1+ x =1+ x − x − x +L 2⋅ 4 2 2⋅4⋅6 2 ⋅ 4 ⋅ 6 ⋅8 ( − 1 ≤ x ≤ 1) 1⋅ 3 2 1⋅ 3 ⋅ 5 3 1⋅ 3 ⋅ 5 ⋅ 7 4 1 1 x − x + x −L =1 − x + 2⋅ 4 2 2⋅4⋅6 2 ⋅ 4 ⋅ 6 ⋅8 1+ x ( − 1 < x ≤ 1) 1 n n 2 3 + L + ( − 1 ) x +L − x + x − x =1 1+ x ( − 1 < x < 1) 1 = 1 + x + x2 + L + xn + L 1− x ( −1 < x < 1)

解析函数展成幂级数的方法分析论文

解析函数展成幂级数的方法分析论文

┊┊ ┊┊ ┊┊┊ ┊┊┊┊ ┊ ┊装 ┊ ┊┊ ┊ ┊ 订┊ ┊┊┊ ┊ 线 ┊┊┊ ┊┊┊ ┊┊ ┊ ┊┊ ┊┊ 解析函数展开成幂级数的方法分析 樊庆仓 (伊犁师范学院数学与统计学院 新疆 伊宁 835000) 摘要:将解析函数展开成幂级数的方法不一,且比较复杂。

本文将从直接法和间接法这两大方法对解析函数进行幂级数的展开并加以分析。

关键词:解析函数;幂级数;直接展开;间接展开。

中图分类号: O175.8 一、 一、引言 解析函数的幂级数展开是作为一个强有力的教学工具,在整个分析学中占有举足轻重 的地位。

将一个函数展开为幂级数是级数部分最重要的运算之一。

展开的方法可分为两种, 一是直接展开法,即先求各阶导数,再按泰勒级数或麦克劳林级数写出,最后验证在级数 收敛区间内lim n →∞n R(x )=0 。

二是间接展开法,即利用某些已知的初等函数的幂级数展 开式和幂级数的代数运算及分析运算的性质,推出相应的展开式。

用直接展开法具有一定的 缺点,即工作量大,()()n f x 的规律难以寻求,还要讨论余项的性质不易使用。

为了避免余项 的讨论经常使用间接展开法。

本文通过举例讲解将函数展开成幂级数的各种方法,比较它们 优缺点,使学生在充分认识函数的幂级数展开的重要性的基础上,掌握如何针对不同的函数 选择最简单快捷的方法来展开幂级数,提高学生的计算和运算能力。

二、预备知识 (一)、幂级数的解析性 定理:幂级数)(0a z C n n -∑∞=n 的和函数,f(z)是收敛圆内的一个解析函数,且其各阶导数为: )1()()(-=∑∞=n n C z f pn n p ……p n a z p n --+-))(1(,其中,p 为自然数,2,1,0(!)()(==p n a f C p P …) (二)、解析函数的泰勒展开 泰勒(Taylor)展开定理:设f(z)在区域D :)(0R z z <-内解析,则在D 内f(z)可展为泰勒级数:nn n z z a z f )()(00-=∑+∞=,)(0R z z <-,其中,2,1,0(!)()()(210)(10==-=⎰+n n z f z d f i a n c n n ξξξπ…)。

函数的幂级数展开及其应用

函数的幂级数展开及其应用

函数的幂级数展开及其应用
函数的幂级数展开指将一个函数表示成一个无穷级数的形式,其中每一项都是该函数的幂函数,常常用于求解微积分问题和数学物理问题。

以函数$f(x)$在$x_0$处的幂级数展开为例,其一般形式为:
$$ f(x) = \\sum_{n=0}^{\\infty} a_n (x-x_0)^n $$
其中,$a_n$为展开系数,可以通过求解$f(x)$在$x_0$处的各阶导数来计算,即:
$$ a_n = \\frac{f^{(n)}(x_0)}{n!} $$
应用幂级数展开,可以求解一些常见的数学问题,例如:
1. 求解函数在某一点的近似值:可以通过对函数在该点处的幂级数展开,截取前几项进行计算,得到一个逼近函数。

2. 求解函数的极限:当幂级数的展开系数趋近于零时,可以证明该函数收敛于幂级数展开式。

3. 求解常微分方程:有些常微分方程可以通过将其转化为幂级数展开的形式,从而求解其解析解。

4. 计算函数的积分、导数等:有时候可以通过将函数先展开成幂级数,在进行积分、导数等运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂级数展勒级数的概念,若函数在某邻域内具有n+1阶导数,则可用泰勒公式表示。特别地,当x0=0时,泰勒级数变为麦克劳林级数。文档进一步指出,若函数能展成x的幂级数,则这种展开式是唯一的,且与麦克劳林级数相同。接下来,文档介绍了两种展开方法:直接展开法,即利用泰勒级数进行展开;间接展开法,则是利用已知的函数展开式及幂级数的运算性质进行展开。为了加深理解,文档还给出了多个具体的展开示例,如将函数ex、(1+x)α、sinx等展开成幂级数,并详细展示了展开过程与结果。这些示例不仅有助于理解幂级数展开的原理和方法,也为实际应用提供了参考。
相关文档
最新文档