2019年湖北省孝感市中考数学试卷及答案

合集下载

2019年湖北省孝感市中考数学试卷附分析答案

2019年湖北省孝感市中考数学试卷附分析答案

第 9页(共 23页)
和阻力臂分别是 1200N 和 0.5m, ∴动力 F(单位:N)关于动力臂 l(单位:m)的函数解析式为:1200×0.5=Fl, 则 F ਰਰ.
故选:B.
7.(3 分)已知二元一次方程组 玨
A.﹣5
B.5
【解答】解: 玨
①, ②
②﹣①×2 得,2y=7,解得 玨,
玨玨

,则 玨 玨 的值是( )
4.(3 分)下列说法错误的是( )
A.在一定条件下,可能发生也可能不发生的事件称为随机事件
B.一组数据中出现次数最多的数据称为这组数据的众数
C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大
D.全面调查和抽样调查是收集数据的两种方式
【解答】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故
2019 年湖北省孝感市中考数学试卷
一、精心选一选,相信自己的判断!(本大题共 10 小题,每小题 3 分,共 30 分)
1.(3 分)计算﹣19+20 等于( )
A.﹣39
B.﹣1
C.1
D.39
2.(3 分)如图,直线 l1∥l2,直线 l3 与 l1,l2 分别交于点 A,C,BC⊥l3 交 l1 于点 B,若∠ 1=70°,则∠2 的度数为( )
故选:B.
3.(3 分)下列立体图形中,左视图是圆的是( )
D.40°
A.
B.
C.
D.
【解答】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;
B、圆柱的左视图是矩形,故此选项不合题意;
第 8页(共 23页)
C、三棱柱的左视图是矩形,故此选项不合题意;

孝感市2019年中考数学试卷及答案(Word解析版)

孝感市2019年中考数学试卷及答案(Word解析版)

湖北省孝感市2019年中考数学试卷一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)2.(3分)(2019•孝感)如图是某个几何体的三视图,则该几何体的形状是()B,故合并;,故能与,故不能与、能与4.(3分)(2019•孝感)如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数()5.(3分)(2019•孝感)已知是二元一次方程组的解,则m﹣n的值是代入方程组得:6.(3分)(2019•孝感)分式方程的解为()﹣x=x=x=7.(3分)(2019•孝感)为了解某社区居民的用电情况,随机对该社区10户居民进行了调8.(3分)(2019•孝感)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是()absinαBabcosαasinBD=×asin absin的面积是:2=9.(3分)(2019•孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D (5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()10.(3分)(2019•孝感)如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()是劣弧的中点,是劣弧的中点,×cmcm,是劣弧11.(3分)(2019•孝感)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()12.(3分)(2019•孝感)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()=1=1﹣二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)13.(3分)(2019•孝感)函数的自变量x的取值范围为x≠1.14.(3分)(2019•孝感)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是①③.(填序号)15.(3分)(2019•孝感)若a﹣b=1,则代数式a2﹣b2﹣2b的值为1.16.(3分)(2019•孝感)如图,已知矩形ABCD,把矩形沿直线AC折叠,点B落在点E处,连接DE、BE,若△ABE是等边三角形,则=.a MN==aMN=a=的面积是×a=的面积是EM=××a==故答案为:.17.(3分)(2019•孝感)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为6.S==,kk=18k=6|k|18.(3分)(2019•孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是(63,32).三、用心做一做,显显自己的能力!(本大题共7小题,满分66分.解答写在答题卡上)19.(6分)(2019•孝感)计算:(﹣)﹣2+﹣|1﹣|20.(8分)(2019•孝感)如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.21.(10分)(2019•孝感)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40;(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.)本次抽样测试的学生人数是:×=54×=700=22.(10分)(2019•孝感)已知关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)试说明x1<0,x2<0;(3)若抛物线y=x2﹣(2k﹣3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB﹣3,求k的值.)∵23.(10分)(2019•孝感)我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,15吨.(1)求y与x之间的函数关系式;(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.)依题意有:24.(10分)(2019•孝感)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB 于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若tan∠ABC=,BE=7,求线段PC的长.ABC=,BE=7,即可求得答案.=中,ABC=,25.(12分)(2019•孝感)如图1,矩形ABCD的边AD在y轴上,抛物线y=x2﹣4x+3经过点A、点B,与x轴交于点E、点F,且其顶点M在CD上.(1)请直接写出下列各点的坐标:A(0,3),B(4,3),C(4,﹣1),D(0,﹣1);(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2.①当线段PH=2GH时,求点P的坐标;②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH面积的最大值.根据相似三角形的性质可得,.时,.。

2019年湖北省孝感市中考数学试卷(含解析)完美打印版

2019年湖北省孝感市中考数学试卷(含解析)完美打印版

2019年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)1.(3分)计算﹣19+20等于()A.﹣39B.﹣1C.1D.392.(3分)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°3.(3分)下列立体图形中,左视图是圆的是()A.B.C.D.4.(3分)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式5.(3分)下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(+)(﹣)=b﹣a6.(3分)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=7.(3分)已知二元一次方程组,则的值是()A.﹣5B.5C.﹣6D.68.(3分)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)9.(3分)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.10.(3分)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为.12.(3分)方程=的解为.13.(3分)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.14.(3分)董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.15.(3分)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=.16.(3分)如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.三、用心做一做,显显自己的能力!(本大题8小题,满分72分)17.(6分)计算:|﹣1|﹣2sin60°+()﹣1+.18.(8分)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.19.(7分)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.20.(8分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.21.(10分)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.22.(10分)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?23.(10分)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.24.(13分)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.2019年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)1.(3分)计算﹣19+20等于()A.﹣39B.﹣1C.1D.39【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:﹣19+20=1.故选:C.2.(3分)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°【分析】根据平行线的性质和垂直的定义解答即可.【解答】解:∵l1∥l2,∴∠1=∠CAB=70°,∵BC⊥l3交l1于点B,∴∠ACB=90°,∴∠2=180°﹣90°﹣70°=20°,故选:B.3.(3分)下列立体图形中,左视图是圆的是()A.B.C.D.【分析】左视图是从物体左面看,所得到的图形.【解答】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;B、圆柱的左视图是矩形,故此选项不合题意;C、三棱柱的左视图是矩形,故此选项不合题意;D、球的左视图是圆形,故此选项符合题意;故选:D.4.(3分)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式【分析】分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.【解答】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.5.(3分)下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(+)(﹣)=b﹣a【分析】根据同底数幂的除法法则判断A;根据积的乘方法则判断B;根据同底数幂的乘法法则判断C;根据平方差公式以及二次根式的性质判断D.【解答】解:A、x7÷x5=x2,故本选项正确;B、(xy2)2=x2y4,故本选项错误;C、x2•x5=x7,故本选项错误;D、(+)(﹣)=a﹣b,故本选项错误;故选:A.6.(3分)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F=.故选:B.7.(3分)已知二元一次方程组,则的值是()A.﹣5B.5C.﹣6D.6【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+x=1,解得,∴==故选:C.8.(3分)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.9.(3分)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.【分析】根据实际问题结合四个选项确定正确的答案即可.【解答】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选:A.10.(3分)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为 1.25×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数1250 000 000用科学记数法可表示为1.25×109.故答案为:1.25×109.12.(3分)方程=的解为x=1.【分析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.【解答】解:两边同时乘2x(x+3),得x+3=4x,解得x=1.经检验x=1是原分式方程的根.13.(3分)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=(20﹣20)米.【分析】根据正切的定义求出BD,根据等腰直角三角形的性质求出CD,结合图形计算,得到答案.【解答】解:在Rt△PBD中,tan∠BPD=,则BD=PD•tan∠BPD=20,在Rt△PBD中,∠CPD=45°,∴CD=PD=20,∴BC=BD﹣CD=20﹣20,故答案为:(20﹣20).14.(3分)董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是108°.【分析】先由A类别人数及其所占百分比求得总人数,再由各类别人数之和等于总人数求出B类别人数,继而用360°乘以B类别人数占总人数的比例即可得.【解答】解:∵被调查的总人数为9÷15%=60(人),∴B类别人数为60﹣(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.15.(3分)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=0.14.【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.【解答】解:∵⊙O的半径为1,∴⊙O的面积S=3.14,∴圆的内接正十二边形的中心角为=30°,∴过A作AC⊥OB,∴AC=OA=,∴圆的内接正十二边形的面积S1=12××1×=3,∴则S﹣S1=0.14,故答案为:0.14.16.(3分)如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn=.【解答】解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m,n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S△BEF=BE•BF=mn=故答案为.三、用心做一做,显显自己的能力!(本大题8小题,满分72分)17.(6分)计算:|﹣1|﹣2sin60°+()﹣1+.【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=﹣1﹣2×+6﹣3=2.18.(8分)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.【解答】证明:∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,在Rt△ACB和Rt△BDA中,,∴Rt△ACB≌Rt△BDA(HL),∴∠ABC=∠BAD,∴AE=BE.19.(7分)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)在﹣2,﹣1,0,1中正数有1个,∴摸出的球上面标的数字为正数的概率是,故答案为:.(2)列表如下:由表知,共有16种等可能结果,其中点M落在四边形ABCD所围成的部分内(含边界)的有:(﹣2,0)、(﹣1,﹣1)、(﹣1,0)、(0,﹣2)、(0,﹣1)、(0,0)、(0,1)、(1,0)这8个,所以点M落在四边形ABCD所围成的部分内(含边界)的概率为.20.(8分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是CD=CE;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.【分析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE =90°知∠CEB=∠CDE,从而得出答案;(2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB==13,知sin∠DAF==,即=,解之求得x=,结合BC=BF=5可得答案.【解答】解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB==13,∴sin∠DAF==,即=,解得x=,∵BC=BF=5,∴tan∠DBF==×=.21.(10分)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;(2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.【解答】解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣3x1x2=16,∴[2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.22.(10分)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.23.(10分)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.【分析】(1)根据三角形内心的性质得∠2=∠7,再利用圆内接四边形的性质得∠ADF=∠ABC,则∠1=∠2,从而得到∠1=∠3,则可判断DG∥AC;(2)根据三角形内心的性质得∠5=∠6,然后证明∠4=∠DAI得到DA=DI;(3)证明△DAE∽△DBA,利用相似比得到AD=6,则DI=6,然后计算BD﹣DI即可.【解答】(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.24.(13分)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为(﹣2,0),点B的坐标为(4,0),线段AC的长为2,抛物线的解析式为y=x2﹣x﹣4.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.【分析】(1)由题意得:﹣8a=﹣4,故a=,即可求解;(2)①分BC是平行四边形的一条边时、BC是平行四边形的对角线时,两种情况分别求解即可;②证明△EPH∽△CAB,∴,即:,则EP=PH,即可求解.【解答】解:(1)由题意得:﹣8a=﹣4,故a=,故抛物线的表达式为:y=x2﹣x﹣4,令y=0,则x=4或﹣2,即点A、B的坐标分别为(﹣2,0)、(4,0),则AC=2,故答案为:(﹣2,0)、(4,0)、2、y=x2﹣x﹣4;(2)①当BC是平行四边形的一条边时,如图所示,点C向右平移4个单位、向上平移4个单位得到点B,设:点P(n,n2﹣n﹣4),点Q(m,0),则点P向右平移4个单位、向上平移4个单位得到点Q,即:n+4=m,n2﹣n﹣4+4=0,解得:m=4或6(舍去4),即点Q(6,0);当BC是平行四边形的对角线时,设点P(m,n)、点Q(s,0),其中n=m2﹣m﹣4,由中心公式可得:m+s=﹣2,n+0=4,解得:s=2或4(舍去4),故点Q(2,0);故点Q的坐标为(2,0)或(6,0);②如图2,过点P作PH∥x轴交BC于点H,∵EP∥AC,∴∠HEP=∠ACB,∵PH∥x轴,∴∠PHE=∠ABC,∴△EPH∽△CAB,∴,即:,则EP=PH,设点P(t,y P),点H(x H,y P),则t2﹣t﹣4=x H﹣4,则x H=t2﹣t,f=PH=[t﹣(t2﹣t)]=﹣(t2﹣4t),当t=m时,f1=﹣(m2﹣4m),当t=4﹣m时,f2=﹣(m2﹣2m),则f1﹣f2=﹣m(3m﹣8),则0<m<2,∴f1﹣f2>0,f1>f2.。

2019年湖北省孝感中考数学试卷(含答案与解析)

2019年湖北省孝感中考数学试卷(含答案与解析)

数学试卷 第1页(共20页)数学试卷 第2页(共20页)绝密★启用前湖北省孝感市2019年初中学业水平考试数 学(本试卷共24题,满分120分,考试时间120分钟)一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分) 1.计算1920-+等于( )A .39-B .1-C .1D .392.如图,直线12l l ∥,直线3l 与1l ,2l 分别交于点A ,C ,BC ⊥交1l 于点B ,若170∠=︒,则2∠的度数为( )A .10︒B .20︒C .30︒D .40︒ 3.下列立体图形在,左视图是圆的是( )ABC D 4.下列说法错误的是( ) A .在一定条件下,可能发生也可能不发生的事件称为随机事件 B .一组数据中出现次数最多的数据称为这组数据的众数C .方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D .全面调查和抽样调查是收集数据的两种方式 5.下列计算正确的是( )A .752x x x ÷=B .224()xy xy =C .2510x x x ⋅=D.b a =-6.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:⨯=⨯阻力阻力臂动力动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1 200 N 和0.5 m ,则动力F (单位:N )关于动力臂(单位:m )的函数解析式正确的是( )A .1200F l =B .600F l =C .500F l=D .0.5F l=7.已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是 ( )A .5-B .5C .6-D .68.如图,在平面直角坐标系中,将点()2,3P 绕原点O 顺时针旋转90︒得到点P ',则P '的坐标为( )A .()3,2B .()3,1-C .()2,3-D .()3,2-9.一个装有进水管和出水管的空容器,从某时刻开始4 min 内只进水不出水,容器内存水8 L ,在随后的8 min 内既进水又出水,容器内存水12 L ,接着关闭进水管直到容器内的水放完.若每分钟进水和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的函数关系的图象大致的是( )ABCD10.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上,BE 与CF 交于点G .若4BC =,1DE AF ==,则GF 的长为( )A .135B .125 C .195D .165-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第3页(共20页)数学试卷 第4页(共20页)二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分) 11.中国“神威·太湖之光”计算机最高运行速度为1 250 000 000亿次/秒,将数1 250 000 000用科学记数法可表示为________. 12.方程1223x x =+的解为________ 13.如图,在P 处利用测角仪测得某建筑物AB 的顶端B 点的仰角为60︒,点C 的仰角为45︒,点P 到建筑物的距离为20PD =米,则BC =________米.14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A .小于5天;B .5天;C .6天;D .7天),则扇形统计图B 部分所对应的圆心角的度数是________. 15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积1S 来近似估计O 的面积S ,设O 的半径为1,则1S S -=________.(π取3.14)16.如图,双曲线9(0)y x x =>经过矩形OABC 的顶点B ,双曲线(0)ky x x=>交AB ,BC 于点E ,F ,且与矩形的对角线OB 交于点D ,连接EF .若:2:3OD OB =,则BEF △的面积为________.三、用心做一做,显显自己的能力!(本大题8小题,满分72分.) 17.(6分)计算:111|2sin 60()6--︒+18.(8分)如图,已知90C D ∠=∠=︒,BC 与AD 交于点E ,AC BD =,求证:AE BE =.19.(本题7分)一个不透明的袋子中装有四个小球,上面分别标有数字2-,1-,0,1,它们除了数字不一样外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________(3分)(2)小聪先从袋子中随机摸出一个小球,记下数字作为点M 的纵坐标,如图,已知四边形ABCD 的四个顶点的坐标分别为()2,0A -,()0,2B -,()1,0C ,()0,1D ,请用画树状图或列表法,求点M 落在四边形ABCD 所围成的部分内(含边界)的概率.(4分).数学试卷 第5页(共20页)数学试卷 第6页(共20页)20.(本题8分)如图,Rt ABC △中,90ACB ∠=︒,一同学利用直尺和圆规完成如下操作: ①以点C 为圆心,以CB 为半径画弧,角AB 于点G ;分别以点G 、B 为圆心,以大于12GB 的长为半径画弧,两弧交点K ,作射线CK ;②以点B 为圆心,以适当的长为半径画弧,交BC 于点M ,交AB 的延长线于点N ;分别以点M 、N 为圆心,以大于12MN 的长为半径画弧,两弧交于点P ,作直线BP 交AC 的延长线于点D ,交射线CK 于点E .请你观察图形,根据操作结果解答下列问题; (1)线段CD 与CE 的大小关系是________(3分)(2)过点D 作DF AB ⊥交AB 的延长线于点F ,若12AC =,5BC =,求t a n D B F ∠的值.(5分)21.(本题10分)已知关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根1x ,2x .(1)若a 为正数,求a 的值;(5分)(2)若12,x x 满足22121216x x x x +-=,求a 的值.22.(本题10分)为了加快“智慧校园”建设,某市准备为试点学校采购一批A 、B 两种型号的一体机,经过市场调查发现,今年每套B 型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B 型一体机. (1)求今年每套A 型、B 型一体机的价格各是多少万元?(5分)毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页)数学试卷 第8页(共20页)(2)该市明年计划采购A 型、B 型一体机1 100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B 型一体机的价格不变,若购买B 型一体机的总费用不低于购买A 型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?(5分)23.(本题10分)如图,点I 是ABC △的内心,BI 的延长线与ABC △的外接圆O 交于点D ,与AC 交于点E ,延长CD 、BA 相交于点F ,ADF ∠的平分线交AF 于点G . (1)求证:DG CA ∥;(4分) (2)求证:AD ID =;(3分)(3)若4DE =,5BE =,求BI 的长.(3分)24.(本题13分)如图1,在平面直角坐标系xOy 中,已知抛物线228y ax ax a =--与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点0,4C -(). (1)点A 的坐标为________,点B 的坐标为________,线段AC 的长为________,抛物线的解析式为________(4分)(2)点P 是线段BC 下方抛物线上的一个动点.①如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形是平行四边形。

2019年孝感市中考数学试卷(解析版)

2019年孝感市中考数学试卷(解析版)

2019年孝感市中考数学试卷(解析版)一、选择题(每小题3分,共30分) 1.计算2019+-等于( )A. -39B. -1C. 1D. 39 【解答】解:-19+20=1. 故选:C .2. 如图,直线21l l ∥,直线3l 与1l ,2l 分别交于点A,C ,BC ⊥3l 交1l 于点B ,若∠1=70°,则∠2的度数为( )A. 10°B.20°C.30°D.40°【解答】解:∵l 1∥l 2, ∴∠1=∠CAB=70°, ∵BC ⊥l 3交l 1于点B , ∴∠ACB=90°, ∴∠2=180°-90°-70°=20°, 故选:B .3.下列立体图形在,左视图是圆的是( )【解答】解:A 、圆锥的左视图是等腰三角形,故此选项不合题意; B 、圆柱的左视图是矩形,故此选项不合题意; C 、三棱柱的左视图是矩形,故此选项不合题意; D 、球的左视图是圆形,故此选项符合题意; 故选:D .4.下列说法错误的是( )A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式【解答】解:A .在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A 不合题意;B .一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B 不合题意;C .方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C 符合题意;D .全面调查和抽样调查是收集数据的两种方式,正确,故选项D 不合题意. 故选:C .5.下列计算正确的是( )A.257x x x =⋅B.422)(xy xy = C.1052x x x =⋅ D.a b b a b a -=-+))(( 【解答】解:A 、x 7÷x 5=x 2,故本选项正确; B 、(xy 2)2=x 2y 4,故本选项错误; C 、x 2•x 5=x 7,故本选项错误;6.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬根撬动一块石头,已知阻力和阻力臂分别是1200N 和0.5m ,则动力F (单位:N )关于动力臂(单位:m )的函数解析式正确的是 A.F 1200=B.F 600=C.F 500=D.F 5.0=7.已知二元一次方程组⎩⎨⎧=+=+9421y x y x ,则22222y x y xy x -+-的值是 A. -5 B. 5 C. -6 D.68.如图,在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°得到点P ',则P '的坐标为A.(3,2)B.(3,-1)C.(2,-3)D.(3,-2)【解答】解:作PQ ⊥y 轴于Q ,如图, ∵P (2,3), ∴PQ=2,OQ=3,∵点P (2,3)绕原点O 顺时针旋转90°得到点P'相当于把△OPQ 绕原点O 顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3, ∴点P′的坐标为(3,-2). 故选:D .9.一个装有进水管和出水管的空容器,从某时刻开始4min 内只进水不出水,容器内存水8L ,在随后的8min 内既进水又出水,容器内存水12L ,接着关闭进水管直到容器内的水放完.若每分钟进水和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的函数关系的图象大致的是【解答】解:∵从某时刻开始4min 内只进水不出水,容器内存水8L ; ∴此时容器内的水量随时间的增加而增加,∵随后的8min 内既进水又出水,容器内存水12L , ∴此时水量继续增加,只是增速放缓, ∵接着关闭进水管直到容器内的水放完, ∴水量逐渐减少为0, 综上,A 选项符合, 故选:A .10.如图,正方形ABCD 中,点E 、F 分别在边CD,AD 上,BE 与CF 交于点G.若BC=4,DE=AF=1,则GF 的长为 A.513 B.512 C.519 D.516【解答】解:正方形ABCD 中,∵BC=4, ∴BC=CD=AD=4,∠BCE=∠CDF=90°, ∵AF=DE=1, ∴DF=CE=3, ∴BE=CF=5,在△BCE 和△CDF 中,二.填空题(每小题3分,共18分)11.中国“神威·太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为 ☆ .【解答】解:将数1250 000 000用科学记数法可表示为1.25×109. 故答案为:1.25×109. 12.方程3221+=x x 的解为 ☆ . 【解答】解:两边同时乘2x (x+3),得x+3=4x ,解得x=1. 经检验x=1是原分式方程的根.13.如图,在P 处利用测角仪测得某建筑物AB 的顶端B 点的仰角为60°,点C 的仰角为45°,点P 到建筑物的距离为PD=20米,则BC= ☆ 米.14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B 部分所对应的圆心角的度数是 ☆ .【解答】解:∵被调查的总人数为9÷15%=60(人), ∴B 类别人数为60-(9+21+12)=18(人),则扇形统计图B 部分所对应的圆心角的度数是360°×18/60=108°, 故答案为:108°.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积1S 来近似估计⊙O 的面积S ,设⊙O 的半径为1,则=-1S S ☆ .【解答】解:∵⊙O 的半径为1, ∴⊙O 的面积S=3.14,∴则S-S 1=0.14, 故答案为:0.14. 16.如图,双曲线)0(9>=x x y 经过矩形OABC 的顶点B ,双曲线)0(>=x xky 交AB,BC 于点E,F ,且与矩形的对角线OB 交于点D ,连接EF 。

2019年孝感市中考数学试题及答案WORD版

2019年孝感市中考数学试题及答案WORD版

2019年孝感市中考数学试题及答案WORD版2019 年孝感市高中阶段学校招生考试数温馨提示: 1.答题前,考生务必将自己所在县(市、区)、学校、姓名、考号填写在试卷上指定的位置. 2.选择题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效. 3.本试卷满分 120 分,考试时间 120 分钟.一、精心选一选,相信自己的判断!(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得 0 分) 1.的绝对值是 A. 5 B..学1 5D.1 52.我国平均每平方千米的土地上,一年从太阳得到的能量相当于燃烧 130000 吨煤所产生的能量. 130000 用科学记数法表示为 A...下列运算正确的是 A...D....06 C.D...已知是锐角,与互补,与互余,则的值等于5.几个棱长为 1 的正方体组成的几何体的三视图如下图所示,则这个几何体的体积是 A. 4 B. 5 C. 6 D. 76.下列事件中,属于随机事件的是 A.通常水加热到时沸腾 B.测量孝感某天的最低气温,结果为.一个袋中装有 5 个黑球,从中摸出一个是黑球D.篮球队员在罚球线上投篮一次,未投中数学第 1 页(共 6 页)(第 5 题图)主视图俯视图左视图7.如图,在塔 AB 前的平地上选择一点 C ,测出看塔顶的仰角为, C 点向塔底 B 走从100 米到达 D 点,测出看塔顶的仰角为,则塔 AB 的高为A. 50 3 米 C.B. 100 3 米 D.米米.若关于 x 的一元一次不等式组无解,2则 a 的取值范围是 A.a ≥ 1 B...如图,在平面直角坐标系中第二象限内,顶点(第 7 题图)D.A 的坐标是,先把向右平移 4 个单位得到,再作关于 x 轴对称图形,则顶点 A2 的坐标是 A....(第 9 题图)k 10.若正比例函数与反比例函数图象的一个交点坐标为,则另一个交点的 x坐标为 A.....如图,在中,,, BD 平分交 AC 于点 D ,若,则 AD 的长是 A.B.(第 11 题图)C. 5D.12.如图,在菱形 ABCD 中,, E , F 分别是 AB , AD 的中点,DE, BF 相交于点 G ,连接 BD, CG .有下列结论:;;其中正确的结论有 A.1 个 B.2 个 C.3 个;④SΔ3 AB2 . 4(第 12 题图)D.4 个数学第 2 页(共 6 页)二、细心填一填,试试自己的身手!(本大题共 6 小题,每小题 3 分,共 18 分.请将结果直接填写在答题卡相应位置上) 13.分解因式:☆ .☆ .14.计算:15.2019 年北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英国伦敦举行,奥运会的年份与届数如下表所示:年份届数表中 n 的值等于 1896 1 ☆ 19002 .1904 3 ... (2019)n16.把如图所示的长方体材料切割成一个体积最大的圆柱,则这个圆柱的体积是☆ (结果不作近似计算).(第 16 题图)217.已知一组数据的方差是 s ,则新的一组数据( a 为常数)的方差是☆ (用含 a, s2 的代数式表示) .1 (友情提示:x )2 ] ) n18.二次函数是常数,图象的对称轴是直线,其图象的一部分如图所示.对于下列说法:;;其中正确的是;④当时,0 . (把正确说法的序号都填上).数学第 3 页(共 6 页)三、用心做一做,显显自己的能力!(本大题共 7 小题,满分 66 分.解答写在答题卡上) 19.(本题满分 6 分)先化简,再求值:,其中. a a20.(本题满分 8 分)我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形 ABCD 中, E , F , G, H 分别是边 AB, BC , CD , DA 的中点,依次连接各边中点得到中点四边形 EFGH .(1)这个中点四边形 EFGH 的形状是(2)请证明你的结论.分)(6 ☆ ;分)(221.(本题满分 8 分)(第 20 题图)在 6 张卡片上分别写有 1~6 的整数.随机地抽取一张后放回,再随机地抽取一张.(1)用列表法或树形图表示所有可能出现的结果;分)(4 (2)记第一次取出的数字为 a ,第二次取出的数字为 b ,求b 是整数的概率.分)(4 a22.(本题满分 10 分)如图,AB 是⊙ O 的直径,AM , BN 分别切⊙ O 于点 A, B ,CD 交 AM , BN 于点 D, C ,DO 平分.(1)求证: CD 是⊙ O 的切线;分)(5 (2)若,求⊙ O 的半径 R .分)(5(第 22 题图)数学第 4 页(共 6 页)23.(本题满分 10 分)为提醒人们节约用水,及时修好漏水的水龙头.两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为 100 毫升.实验一:小王同学在做水龙头漏水实验时,每隔 10 秒观察量筒中水的体积,记录的数据如下表(漏出的水量精确到 1 毫升):时间 t (秒)漏出的水量 V (毫升) 10 2 20 5 30 8 40 11 50 14 60 17 70 20(1)在图 1 的坐标系中描出上表中数据对应的点;分)(2(2)如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出(精确到 1 秒)?(4 分)(3)按此漏水速度,一小时会漏水☆千克(精确到 0 .1 千克) .分)(2(第 23 题图 1)(第 23 题图 2)实验二:小李同学根据自己的实验数据画出的图象如图 2 所示,为什么图象中会出现与横轴“平行”的部分?(2 分)数学第 5 页(共 6 页)24.(本题满分 12 分)已知关于 x 的一元二次方程.(1)求证:无论 m 取何值,原方程总有两个不相等的实数根;分)(4 (2)若 x1 , x2 是原方程的两根,且,求 m 的值,并求出此时方程的两根.分)(825.(本题满分 12 分)如图,抛物线是常数,与 x 轴交于 A, B 两点,与 y 轴交于点 C ,三个交点坐标分别是B(3,0), C (0,3) .(1)求抛物线的解析式及顶点 D 的坐标;(4 分) (2)若 P 为线段 BD 上的一个动点,过点 P 作轴于点 M ,求四边形 PMAC 面积的最大值和此时 P 点的坐标;(4 分) (3)若点 P 是抛物线在第一象限上的一个动点,过点 P 作PQ // AC 交 x 轴于点 Q .当点 P 的坐标为☆ 时,四边形 PQAC 是平行四边形;当点 P 的坐标为☆ 时,四边形 PQAC 是等腰梯形(直接写出结果,不写求解过程) (4 分) .数学第 6 页(共 6 页)2019 年孝感市高中阶段学校招生考试数学参考答案及评分说明一、选择题题号答案二、填空题1 A2 B3 C5 B14. 1 ;6 D7 D8 A9 B10 B11 C12 C13.;16.;315. 30 ; 18.①②③.17. a s ;2 2三、解答题19.解:原式=……………………………………… 1分=………………………………………= 当原式=……………………………………… ……………………………………… ……………………………………… ………………………………………3分 4分 6分 2分时,20.解:(1)平行四边形;(2)证明:连接AC ……………..…… 3 分∵ E 是 AB 的中点, F 是 BC 的中点,1 AC . 2………4分同理1 AC , …… 5 分 2…………………………………………... …………………………………………..7分 8分∴四边形 EFGH 是平行四边形.说明:连接 AC, BD ,可证明 EF // HG, EH // FG ;或证明FG . 然后得出四边形 EFGH 是平行四边形. 21.解:(1)列表:……………………………………… 数学第 7 页(共 6 页)4分6 ) 5 ) 4 ) 3 ) 2 ) 1 )(1,6 ) (1,5 ) (1,4 ) (1,3 ) (1,2 ) (1,1 ) 1(2,6 ) (2,5 ) (2,4 ) (2,3 ) (2,2 ) (2,1 ) 2(3,6 ) (3,5 ) (3,4 ) (3,3 ) (3,2 ) (3,1 ) 3(4,6 ) (4,5 ) (4,4 ) (4,3 ) (4,2 ) (4,1 ) 4(5,6 ) (5,5 ) (5,4 ) (5,3 ) (5,2 ) (5,1 ) 5(6,6(6,5(6,4(6,3(6,2(6,16说明:能正确画出树形图给 4 分. (2)分是整数的概率22.(1)证明:过 O 点作于点E ……… 1 分∵ AM 切⊙ O 于点 A ,又∵ DO 平分,又∵ OA 为⊙ O 的半径,∴CD 是⊙ O 的切线. ……………………… 5 分说明:通过证明( AAS )得到 O,则 CD 是⊙ O 的切线.给 5 分. (2)解:过 D 点作BC 于点 F ∵ AM, BN 分别切⊙ O 于点 A, B ;∴四边形 ABFD 是矩形,又……………………………… ………………………………… …………………… ………………………2分4分6分,7分又∵ AM , BN, DC 分别切⊙ O 于点 A, B, E ,数学第 8 页(共 6 页);在直角中,2 2 2………8分分…………………………10 分,∴⊙ O 的半径 R 是 6 . 23.解:实验一:(1)画图象如右图所示;……… 2 分(2)设 V 与 t 的函数关系式为根据表中数据知:当时,;当时,;解得:,……………………………………∴ V 与 t 的函数关系式为由题意得:4分,解得:t ≥ 3 3 10..………………………… 6 分.……… ………………. 8 分∴ 337 秒后,量筒中的水会满而开始溢出.(3) 1.1 千克.实验二:因为小李同学接水的量筒装满后并开始溢出..…………………….. 10 分 24.解: 1)证明:(2……………………….1 分……………………....3 分22∵无论 m 取何值,恒大于0 ∴原方程总有两个不相等的实数根. ……… ……………………4 分(2)∵ x1 , x2 是原方程的两根,;∴22……… ……………………..…5 分……… ……………………….7 分………………9 分,数学第 9 页(共 6 页)解得: m12……… ………………………10 分当时,原方程化为:解得: x1;2……… …………………..11 分当时,原方程化为:,解得:分25.解:(1)∵抛物线过点 C (0,3) ∴当时, c2………………1分又∵抛物线过点解得:抛物线的解析式为:分又顶点 D 的坐标是 (1,4)………….………4分(2)设直线 BD 的解析式为直线过点解得:……………………..…………..∴直线 BD 的解析式为:5分∵ P 点在线段 BD 上,因此,设 P 点坐标为又轴于点又设四边形 PMAC 的面积为 S ,则2.……………………………. 6 分 2 2 4 16∵ 19 105 9 时,四边形 PMAC 的最大面积为 16 4 9 3 4 2………………………∴当7分此时, P 点坐标是 ( , ) ..…………………………………… 8 分数学第 10 页(共 6 页)(3) (2,3) ; (11 15 , ). 4 16…………………………………… 12 分注意:1.按照评分标准分步评分,不得随意变更给分点; 2.第 19 题至第 25 题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.数学第 11 页(共 6 页)。

2019年湖北省孝感市中考数学试卷以及答案解析

2019年湖北省孝感市中考数学试卷以及答案解析

2019年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)1.(3分)计算﹣19+20等于()A.﹣39B.﹣1C.1D.392.(3分)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°3.(3分)下列立体图形中,左视图是圆的是()A.B.C.D.4.(3分)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式5.(3分)下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(+)(﹣)=b﹣a 6.(3分)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=7.(3分)已知二元一次方程组,则的值是()A.﹣5B.5C.﹣6D.68.(3分)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)9.(3分)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.10.(3分)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为.12.(3分)方程=的解为.13.(3分)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.14.(3分)董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.15.(3分)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=.16.(3分)如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.三、用心做一做,显显自己的能力!(本大题8小题,满分72分)17.(6分)计算:|﹣1|﹣2sin60°+()﹣1+.18.(8分)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.19.(7分)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.20.(8分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC 的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.21.(10分)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.22.(10分)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?23.(10分)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.24.(13分)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.2019年湖北省孝感市中考数学试卷答案与解析一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)1.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:﹣19+20=1.故选:C.【点评】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.【分析】根据平行线的性质和垂直的定义解答即可.【解答】解:∵l1∥l2,∴∠1=∠CAB=70°,∵BC⊥l3交l1于点B,∴∠ACB=90°,∴∠2=180°﹣90°﹣70°=20°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.3.【分析】左视图是从物体左面看,所得到的图形.【解答】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;B、圆柱的左视图是矩形,故此选项不合题意;C、三棱柱的左视图是矩形,故此选项不合题意;D、球的左视图是圆形,故此选项符合题意;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.【分析】分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.【解答】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.【点评】本题主要考查了随机事件的定义、众数的定义、方差的意义以及调查的方式,属于基础题.5.【分析】根据同底数幂的除法法则判断A;根据积的乘方法则判断B;根据同底数幂的乘法法则判断C;根据平方差公式以及二次根式的性质判断D.【解答】解:A、x7÷x5=x2,故本选项正确;B、(xy2)2=x2y4,故本选项错误;C、x2•x5=x7,故本选项错误;D、(+)(﹣)=a﹣b,故本选项错误;故选:A.【点评】本题考查了二次根式的运算,整式的运算,掌握同底数幂的乘除法法则、积的乘方法则、平方差公式以及二次根式的性质是解题的关键.6.【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F=.故选:B.【点评】此题主要考查了反比例函数的应用,正确读懂题意得出关系式是解题关键.7.【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+x=1,解得,∴==故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O =90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.9.【分析】根据实际问题结合四个选项确定正确的答案即可.【解答】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选:A.【点评】本题考查了函数的图象的知识,解题的关键是能够将实际问题与函数的图象有机的结合起来,难度不大.10.【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.【点评】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE≌△CDF是解本题的关键.二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数1250 000 000用科学记数法可表示为1.25×109.故答案为:1.25×109.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.【解答】解:两边同时乘2x(x+3),得x+3=4x,解得x=1.经检验x=1是原分式方程的根.【点评】解一个分式方程时,可按照“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”的步骤求出方程的解即可.注意:解分式方程时,最后一步的验根很关键.13.【分析】根据正切的定义求出BD,根据等腰直角三角形的性质求出CD,结合图形计算,得到答案.【解答】解:在Rt△PBD中,tan∠BPD=,则BD=PD•tan∠BPD=20,在Rt△PBD中,∠CPD=45°,∴CD=PD=20,∴BC=BD﹣CD=20﹣20,故答案为:(20﹣20).【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.14.【分析】先由A类别人数及其所占百分比求得总人数,再由各类别人数之和等于总人数求出B类别人数,继而用360°乘以B类别人数占总人数的比例即可得.【解答】解:∵被调查的总人数为9÷15%=60(人),∴B类别人数为60﹣(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.15.【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.【解答】解:∵⊙O的半径为1,∴⊙O的面积S=3.14,∴圆的内接正十二边形的中心角为=30°,∴过A作AC⊥OB,∴AC=OA=,∴圆的内接正十二边形的面积S1=12××1×=3,∴则S﹣S1=0.14,故答案为:0.14.【点评】本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.16.【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn=.【解答】解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m,n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S△BEF=BE•BF=mn=故答案为.【点评】本题考查了反比例系数k的几何意义和反比例函数图象上点的坐标特征、三角形面积等,表示出各个点的坐标是解题的关键.三、用心做一做,显显自己的能力!(本大题8小题,满分72分)17.【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=﹣1﹣2×+6﹣3=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.【解答】证明:∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,在Rt△ACB和Rt△BDA中,,∴Rt△ACB≌Rt△BDA(HL),∴∠ABC=∠BAD,∴AE=BE.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定;熟练掌握等腰三角形的判定定理,证明三角形全等是解题的关键.19.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)在﹣2,﹣1,0,1中正数有1个,∴摸出的球上面标的数字为正数的概率是,故答案为:.(2)列表如下:﹣2﹣101﹣2(﹣2,﹣2)(﹣1,﹣2)(0,﹣2)(1,﹣2)﹣1(﹣2,﹣1)(﹣1,﹣1)(0,﹣1)(1,﹣1)0(﹣2,0)(﹣1,0)(0,0)(1,0)1(﹣2,1)(﹣1,1)(0,1)(1,1)由表知,共有16种等可能结果,其中点M落在四边形ABCD所围成的部分内(含边界)的有:(﹣2,0)、(﹣1,﹣1)、(﹣1,0)、(0,﹣2)、(0,﹣1)、(0,0)、(0,1)、(1,0)这8个,所以点M落在四边形ABCD所围成的部分内(含边界)的概率为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE=90°知∠CEB=∠CDE,从而得出答案;(2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB==13,知sin∠DAF==,即=,解之求得x=,结合BC=BF=5可得答案.【解答】解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB==13,∴sin∠DAF==,即=,解得x=,∵BC=BF=5,∴tan∠DBF==×=.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握过直线外一点作已知直线的垂线和角平分线的尺规作图及全等三角形的判定与性质等知识点.21.【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;(2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.【解答】解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣3x1x2=16,∴[2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.【点评】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a的取值范围,再由根与系数的关系得出方程组是解答此题的关键.22.【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用、一次函数的应用,正确找出等量关系是解题关键.23.【分析】(1)根据三角形内心的性质得∠2=∠7,再利用圆内接四边形的性质得∠ADF =∠ABC,则∠1=∠2,从而得到∠1=∠3,则可判断DG∥AC;(2)根据三角形内心的性质得∠5=∠6,然后证明∠4=∠DAI得到DA=DI;(3)证明△DAE∽△DBA,利用相似比得到AD=6,则DI=6,然后计算BD﹣DI即可.【解答】(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠ADE=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了圆周角定理和三角形的外心.24.【分析】(1)由题意得:﹣8a=﹣4,故a=,即可求解;(2)①分BC是平行四边形的一条边时、BC是平行四边形的对角线时,两种情况分别求解即可;②证明△EPH∽△CAB,∴,即:,则EP=PH,即可求解.【解答】解:(1)由题意得:﹣8a=﹣4,故a=,故抛物线的表达式为:y=x2﹣x﹣4,令y=0,则x=4或﹣2,即点A、B的坐标分别为(﹣2,0)、(4,0),则AC=2,故答案为:(﹣2,0)、(4,0)、2、y=x2﹣x﹣4;(2)①当BC是平行四边形的一条边时,如图所示,点C向右平移4个单位、向上平移4个单位得到点B,设:点P(n,n2﹣n﹣4),点Q(m,0),则点P向右平移4个单位、向上平移4个单位得到点Q,即:n+4=m,n2﹣n﹣4+4=0,解得:m=4或6(舍去4),即点Q(6,0);当BC是平行四边形的对角线时,设点P(m,n)、点Q(s,0),其中n=m2﹣m﹣4,由中心公式可得:m+s=﹣2,n+0=4,解得:s=2或4(舍去4),故点Q(2,0);故点Q的坐标为(2,0)或(6,0);②如图2,过点P作PH∥x轴交BC于点H,∵EP∥AC,∴∠HEP=∠ACB,∵PH∥x轴,∴∠PHE=∠ABC,∴△EPH∽△CAB,∴,即:,则EP=PH,设点P(t,y P),点H(x H,y P),则t2﹣t﹣4=x H﹣4,则x H=t2﹣t,f =PH=[t ﹣(t2﹣t)]=﹣(t2﹣4t),当t=m时,f1=﹣(m2﹣4m),当t=4﹣m时,f2=﹣(m2﹣2m),则f1﹣f2=﹣m(3m﹣8),则0<m<2,∴f1﹣f2>0,f1>f2.【点评】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质等,其中(2),要主要分类求解,避免遗漏.第21页(共21页)。

2019年湖北省孝感市中考数学试卷

2019年湖北省孝感市中考数学试卷

2019年湖北省孝感市中考数学试卷知人者智,自知者明。

《老子》棋辰学校陈慧兰一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)1.(3分)计算﹣19+20等于()A.﹣39 B.﹣1 C.1 D.392.(3分)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°3.(3分)下列立体图形中,左视图是圆的是()A.B.C.D.4.(3分)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式5.(3分)下列计算正确的是()A.x7÷x5=x2 B.(xy2)2=xy4C.x2•x5=x10 D.(+)(﹣)=b﹣a 6.(3分)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=7.(3分)已知二元一次方程组,则的值是()A.﹣5 B.5 C.﹣6 D.68.(3分)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)9.(3分)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.10.(3分)如图,正方形ABCD中,点E、F分别在边CD,AD,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为.12.(3分)方程=的解为.13.(3分)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰为45°,点P到建筑物的距离为PD=20米,则BC=米.14.(3分)董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.15.(3分)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积,设⊙O的半径为1,则S ﹣S1=.16.(3分)如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.、用心做一做,显显自的能力!(本大题8小题,满分72分)17.(6分)计算:|﹣1|﹣2sin60°+()﹣1+.18.(8分)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE =BE.19.(7分)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.20.(8分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF 的值.21.(10分)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.22.(10分)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?23.(10分)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.24.(13分)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a 与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m (0<m<2)时,试比较f的对应函数值f1和f2的大小.2019年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)1.(3分)计算﹣19+20等于()A.﹣39 B.﹣1 C.1 D.39【考点】19:有理数的加法.菁优网版权所有【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:﹣19+20=1.故选:C.【点评】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.(3分)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°【考点】J3:垂线;JA:平行线的性质.菁优网版权所有【分析】根据平行线的性质和垂直的定义解答即可.【解答】解:∵l1∥l2,∴∠1=∠CAB=70°,∵BC⊥l3交l1于点B,∴∠ACB=90°,∴∠2=180°﹣90°﹣70°=20°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.3.(3分)下列立体图形中,左视图是圆的是()A.B.C.D.【考点】U1:简单几何体的三视图.菁优网版权所有【分析】左视图是从物体左面看,所得到的图形.【解答】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;B、圆柱的左视图是矩形,故此选项不合题意;C、三棱柱的左视图是矩形,故此选项不合题意;D、球的左视图是圆形,故此选项符合题意;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(3分)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式【考点】O1:命题与定理;V2:全面调查与抽样调查;W5:众数;W7:方差;X1:随机事件.菁优网版权所有【分析】分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.【解答】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.【点评】本题主要考查了随机事件的定义、众数的定义、方差的意义以及调查的方式,属于基础题.5.(3分)下列计算正确的是()A.x7÷x5=x2 B.(xy2)2=xy4C.x2•x5=x10 D.(+)(﹣)=b﹣a【考点】46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法;79:二次根式的混合运算.菁优网版权所有【分析】根据同底数幂的除法法则判断A;根据积的乘方法则判断B;根据同底数幂的乘法法则判断C;根据平方差公式以及二次根式的性质判断D.【解答】解:A、x7÷x5=x2,故本选项正确;B、(xy2)2=x2y4,故本选项错误;C、x2•x5=x7,故本选项错误;D、(+)(﹣)=a﹣b,故本选项错误;故选:A.【点评】本题考查了二次根式的运算,整式的运算,掌握同底数幂的乘除法法则、积的乘方法则、平方差公式以及二次根式的性质是解题的关键.6.(3分)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=【考点】GA:反比例函数的应用.菁优网版权所有【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F=.故选:B.【点评】此题主要考查了反比例函数的应用,正确读懂题意得出关系式是解题关键.7.(3分)已知二元一次方程组,则的值是()A.﹣5 B.5 C.﹣6 D.6【考点】98:解二元一次方程组.菁优网版权所有【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+y=1,解得,∴=.故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(3分)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)【考点】R7:坐标与图形变化﹣旋转.菁优网版权所有【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O 顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.9.(3分)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.【考点】E6:函数的图象.菁优网版权所有【分析】根据实际问题结合四个选项确定正确的答案即可.【解答】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选:A.【点评】本题考查了函数的图象的知识,解题的关键是能够将实际问题与函数的图象有机的结合起来,难度不大.10.(3分)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.菁优网版权所有【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.【点评】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE≌△CDF是解本题的关键.二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为 1.25×109 .【考点】1I:科学记数法—表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数1250 000 000用科学记数法可表示为1.25×109.故答案为:1.25×109.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)方程=的解为x=1 .【考点】B3:解分式方程.菁优网版权所有【分析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.【解答】解:两边同时乘2x(x+3),得x+3=4x,解得x=1.经检验x=1是原分式方程的根.【点评】解一个分式方程时,可按照“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”的步骤求出方程的解即可.注意:解分式方程时,最后一步的验根很关键.13.(3分)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=(20﹣20)米.【考点】TA:解直角三角形的应用﹣仰角俯角问题.菁优网版权所有【分析】根据正切的定义求出BD,根据等腰直角三角形的性质求出CD,结合图形计算,得到答案.【解答】解:在Rt△PBD中,tan∠BPD=,则BD=PD•tan∠BPD=20,在Rt△PBD中,∠CPD=45°,∴CD=PD=20,∴BC=BD﹣CD=20﹣20,故答案为:(20﹣20).【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.14.(3分)董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是108°.【考点】VB:扇形统计图;VC:条形统计图.菁优网版权所有【分析】先由A类别人数及其所占百分比求得总人数,再由各类别人数之和等于总人数求出B类别人数,继而用360°乘以B类别人数占总人数的比例即可得.【解答】解:∵被调查的总人数为9÷15%=60(人),∴B类别人数为60﹣(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.15.(3分)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=0.14 .【考点】1O:数学常识;MM:正多边形和圆.菁优网版权所有【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.【解答】解:∵⊙O的半径为1,∴⊙O的面积S=3.14,∴圆的内接正十二边形的中心角为=30°,∴过A作AC⊥OB,∴AC=OA=,∴圆的内接正十二边形的面积S1=12××1×=3,∴则S﹣S1=0.14,故答案为:0.14.【点评】本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.16.(3分)如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.【考点】G4:反比例函数的性质;G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征.菁优网版权所有【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn =.【解答】解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m,n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S△BEF=BE•BF=mn=故答案为.【点评】本题考查了反比例系数k的几何意义和反比例函数图象上点的坐标特征、三角形面积等,表示出各个点的坐标是解题的关键.三、用心做一做,显显自己的能力!(本大题8小题,满分72分)17.(6分)计算:|﹣1|﹣2sin60°+()﹣1+.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.菁优网版权所有【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=﹣1﹣2×+6﹣3=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE =BE.【考点】KD:全等三角形的判定与性质.菁优网版权所有【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.【解答】证明:∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,在Rt△ACB和Rt△BDA中,,∴Rt△ACB≌Rt△BDA(HL),∴∠ABC=∠BAD,∴AE=BE.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定;熟练掌握等腰三角形的判定定理,证明三角形全等是解题的关键.19.(7分)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.【考点】X4:概率公式;X6:列表法与树状图法.菁优网版权所有【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)在﹣2,﹣1,0,1中正数有1个,∴摸出的球上面标的数字为正数的概率是,故答案为:.(2)列表如下:﹣2 ﹣1 0 1﹣2 (﹣2,﹣2)(﹣1,﹣2)(0,﹣2)(1,﹣2)﹣1 (﹣2,﹣1)(﹣1,﹣1)(0,﹣1)(1,﹣1)0 (﹣2,0)(﹣1,0)(0,0)(1,0)1 (﹣2,1)(﹣1,1)(0,1)(1,1)由表知,共有16种等可能结果,其中点M落在四边形ABCD所围成的部分内(含边界)的有:(﹣2,0)、(﹣1,﹣1)、(﹣1,0)、(0,﹣2)、(0,﹣1)、(0,0)、(0,1)、(1,0)这8个,所以点M落在四边形ABCD所围成的部分内(含边界)的概率为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是CD=CE;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF 的值.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质;N3:作图—复杂作图;T7:解直角三角形.菁优网版权所有【分析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE=90°知∠CEB=∠CDE,从而得出答案;(2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB==13,知sin∠DAF==,即=,解之求得x=,结合BC=BF =5可得答案.【解答】解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB==13,∴sin∠DAF==,即=,解得x=,∵BC=BF=5,∴tan∠DBF==×=.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握过直线外一点作已知直线的垂线和角平分线的尺规作图及全等三角形的判定与性质等知识点.21.(10分)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.【考点】AA:根的判别式;AB:根与系数的关系.菁优网版权所有【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;(2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.【解答】解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣3x1x2=16,∴[﹣2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.【点评】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a的取值范围,再由根与系数的关系得出方程组是解答此题的关键.22.(10分)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.菁优网版权所有【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用、一次函数的应用,正确找出等量关系是解题关键.23.(10分)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.【考点】M5:圆周角定理;MA:三角形的外接圆与外心;MI:三角形的内切圆与内心.菁优网版权所有【分析】(1)根据三角形内心的性质得∠2=∠7,再利用圆内接四边形的性质得∠ADF=∠ABC,则∠1=∠2,从而得到∠1=∠3,则可判断DG∥AC;(2)根据三角形内心的性质得∠5=∠6,然后证明∠4=∠DAI得到DA=DI;(3)证明△DAE∽△DBA,利用相似比得到AD=6,则DI=6,然后计算BD﹣DI即可.【解答】(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠ADE=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了圆周角定理和三角形的外心.24.(13分)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a 与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为(﹣2,0),点B的坐标为(4,0),线段AC 的长为2,抛物线的解析式为y=x2﹣x﹣4 .(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m (0<m<2)时,试比较f的对应函数值f1和f2的大小.【考点】HF:二次函数综合题.菁优网版权所有【分析】(1)由题意得:﹣8a=﹣4,故a=,即可求解;(2)分BC是平行四边形的一条边时、BC是平行四边形的对角线时,两种情况分别求解即可.(3)证明△EPH∽△CAO,∴,即:,则EP=PH,即可求解.【解答】解:(1)由题意得:﹣8a=﹣4,故a=,故抛物线的表达式为:y=x2﹣x﹣4,令y=0,则x=4或﹣2,即点A、B的坐标分别为(﹣2,0)、(4,0),。

湖北孝感2019中考试题数学卷解析版

湖北孝感2019中考试题数学卷解析版

分)分,满分30一、选择题(共10小题,每小题3) 1.下列各数中,最小的数是(2 0 D.3 C.5 B.﹣.AB 【答案】【解析】3 5,则最小的数是﹣0<2<试题分析:根据有理数大小比较的法则解答即可.﹣3<考点:有理数大小比较.)等于(,∠a∥b1=110°,则∠2,2.如图,直线ab被直线c所截,若85°.80° D.75A.70° B.° CA【答案】考点:平行线的性质.)3.下列运算正确的是(.a?a =2aD.(a)a..Aa+a=aBa﹣=aCD 【答案】【解析】分别利用合并同类项法则1022252243225 =a以及同底数幂的乘法运算法则和幂的乘方运算法则分别试题分析:化简判断即可.222、Aa+a=2a,故此选项错误; 1﹣B、aa224,故此选项错误;=a?a aC、5210,正确.a=a) D、(考53,无法计算,故此选项错误;点:(1)、幂的乘方与积的乘方;(2)、合并同类项;(3)、同底数幂的乘法.4.如图是由四个相同的小正方体组成的几何体,则这个几何体的主视图是()B. C. D.A.C【答案】考点:简单组合体的三视图.)5.不等式组的解集是(2 >3 Cx<.x<2 D.x3 BA.x>.A 【答案】【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 3.xxx,解①得:>2,解②得:>3,则不等式的解集是:>考点:解一元一次不等式组.,OABOA=2轴上,若如图放置在平面直角坐标系中,OB 在x°角的直角三角板将含有6.30 A75O将三角板绕原点顺时针旋转°,则点的对应点 A′的坐标为()233,﹣) D,) CA.(.(.(,﹣1) B1.(﹣,﹣)2222C【答案】∴°.′=45.∴∠COA=OA ∵将三角板绕原点O顺时针旋转75°,∴∠AOA′=75°,OA′22,﹣).=.OC=2 ×∴A′的坐标为(=,CA′=2×222222考点:坐标与图形变化-旋转.名学生的体育成绩如下表,则这组学生的体育年体育中考中,某班一学习小组620167.在)成绩的众数,中位数,方差依次为(30 27 28 成绩(分)123人数28,27.5,1 C.3,2.5,5 D.28A.28,,1 B.3,2,5【答案】A【解析】试题分析:根据众数、中位数的定义和方差公式分别进行解答即可.这组数据28出现的次数最多,出现了3次,则这组数据的众数是28;把这组数据从小到大排列,最中间两个数的平均数是(28+28)÷2=28,则中位数是28;这组数据的平均数是:(27×2+28×3+30)÷6=28,31222×[2×(27﹣28)+3×(28﹣28)+(30﹣则方差是:28)]=1;6 (3)、中位数;、众数考点:(1)、方差;(2)(度)近视眼镜的度数y“科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:8.函数关与x0.2m,则表示y500与镜片焦距x(m)成反比例.如果度近视眼镜片的焦距为)系的图象大致是(..A. B CD.B【答案】k y=x(米)成反比例,设,根据题意近视眼镜的度数y(度)与镜片焦距x由于点(0.2,500)在此函数解析式上,∴,×500=100k=0.2100 y=.∴x考点:函数的图象.,则,且FEF=2交,交,AD=8AE平分∠BADBC于点EDF平分∠ADCBC于点中,?9.在ABCD )的长为(AB 5 或.或...A3 B5 C23 D3D 【答案】【解析】4考点:平行四边形的性质.2轴的一),且与x)的部分图象,其顶点坐标为(1,n10.如图是抛物线y=ax+bx+c(a≠0 )之间.则下列结论:)和(4,03个交点在点(,022有两个不+bx+c=n﹣ax﹣n);④一元二次方程1 a﹣b+c>0;②3a+b=0;③b=4a(c①相等的实数根.)其中正确结论的个数是(4 3 D..A1 B.2 C.C 【答案】【解析】)0和(﹣1,(﹣试题分析:利用抛物线的对称性得到抛物线与x轴的另一个交点在点2,0)b,=1﹣>0,于是可对①进行判断;利用抛物线的对称轴为直线x=时,则当之间,x=﹣1y a22bac4?,则可对n得到=n,则可对②进行判断;利用抛物线的顶点的纵坐标为即b=﹣2a a4个公共点,2有﹣则抛物线与直线y=n③进行判断;由于抛物线与直线有一个公共点,y=n1 于是可对④进行判断.50)之间,而抛物线的对称轴为直线x=1,轴的一个交点在点(3,0)和(4,∵抛物线与x >0,∴当x=﹣1时,yx∴抛物线与轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.>0,所以①正确;即a﹣b+c b 2a=a,所以②错误;2a,∴3a+b=3a﹣∵抛物线的对称轴为直线x=﹣=1,即b=﹣a22b?4ac =n,,n),∴∵抛物线的顶点坐标为(1a42(c﹣n),所以③正确;∴b=4ac﹣4an=4a 1有2个公共点,有一个公共点,∵抛物线与直线y=n ∴抛物线与直线y=n﹣2 +bx+c=n﹣1∴一元二次方程ax有两个不相等的实数根,所以④正确.考点:二次函数图象与系数的关系. 3分,满分18分)二、填空题(共6小题,每小题2-x.11.的取值范围是若代数式有意义,则x 2 ≥【答案】x 【解析】a,然后解不等式即可.2≥0a≥0得到x试题分析:根据式子﹣有意义的条件为x-2有意义,∴x﹣2≥∵代数式0,∴x≥2.考点:二次根式有意义的条件..﹣8y分解因式:12.2x22=【答案】2(x+2y)(x﹣2y)考点:提公因式法与公式法的综合运用.13.若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是cm.【答案】9【解析】试题分析:利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.=2π×3 解得:l=9,则设母线长为l.考点:圆锥的计算.614.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是步.【答案】6【解析】试题分析:根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径.考点:三角形的内切圆与内心.B轴的垂线与过点作过点Axx+6y=﹣相交于A,B两点,y=15.如图,已知双曲线与直线.的面积为8,则k的值为,若△作y轴的垂线相交于点CABC5【答案】考点:反比例函数与一次函数的交点问题.如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直16.∠tanEFGH的面积是小正方形面积的13倍,那么ABCD角三角形是全等的,如果大正方形 ADE的值为.72【答案】3【解析】(3)、锐角三角函数的定义.考点:(1)、勾股定理;(2)、全等三角形的判定;分)72小题,满分三、解答题(共829.4|+2sin30°﹣17.3计算: +|﹣1 【答案】﹣【解析】二次根式的性质分别化简求出答试题分析:直接利用特殊角的三角函数值以及结合绝对值、案. 1.试题解析:原式=3+4+1﹣9=﹣、特殊角的三角函数值.考点:(1)、实数的运算;(2) .求证:BE=CD.AD=AEEABCEDACBD18.如图,⊥于点,⊥于点,【答案】证明过程见解析8考点:全等三角形的判定与性质.为弘扬中华优秀传统文化,我市教育局在全市中小学积极推广“太极拳”运动.弘孝中19.,,B3月份举行了“太极拳”比赛,比赛成绩评定为A学为争创“太极拳”示范学校,今年)班全体学生参加了学校的比赛,并将比赛结果绘制成如下1,E五个等级,该校七(C,D 两幅不完整的统计图.请根据图中信息,解答下列问题:度;名学生;扇形统计图中C等级所对应扇形的圆心角等于((1)该校七1)班共有并补全条形统计图;名学生作为全班训练的22名女生,现从中任意选取2(2)A等级的4名学生中有名男生,名男生和1名女生的概率.1示范者,请你用列表法或画树状图的方法,求出恰好选到2、50、;144;图形见解析;(2)【答案】(1)3【解析】÷8%=50人;=4试题解析:(1)、由题意可知总人数°;=144360100%50=20C扇形统计图中等级所对应扇形的圆心角÷××°补全条形统计图如图所示:9(2)、列表如下:得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,82 .名男生和1名女生的概率=所以恰好选到1123考点:(1)、列表法与树状图法;(2)、扇形统计图;(3)、条形统计图.20.如图,在Rt△ABC中,∠ACB=90°.∠ACB的平分线,交斜边AB于点D,过点D作AC的垂线,垂足为点E,若CB=4,CA=6,则DE= .12【答案】5【解析】试题分析:根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.试题解析:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE∥BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE∥BC,∴△ADE∽△ABC,∴=,设DE=CE=x,则 x﹣AE=6,101212即DE=,∴=,解得:x=55考点:三角形相似的应用2.有两个实数根x,x已知关于x的一元二次方程x﹣2x+m﹣1=021.21的取值范围;(1)求m22 m的值.x (2)当x+x=6x时,求22113、(1)、m≤2;(2)【答案】2,(﹣4m﹣1)≥试题解析:(1)、∵原方程有两个实数根,∴△=(﹣2) 2;0,解得:m 2 0≤整理得:4﹣4m+4≥222,xx+x)﹣2x?x=6x? +x?x(2)、∵+x=2,xx=m﹣1,x=6xx,∴(2212112122111233,m=<2.﹣即4=8(m1),解得:m=∵223的值为.∴符合条件的m2、根与系数的关系;(2)、根的判别式.考点:(1)两种树木共,BA22.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进元;棵,共需600棵,B种树木52100棵进行校园绿化升级,经市场调查:购买A种树木元.种树木1棵,共需380购买A种树木3棵,B 种,AB种树木每棵各多少元?(1)求倍.学校与中标公司签订种树木数量的3种树木的数量不少于(2)因布局需要,购买AB,实际付款总金额按市场价九的合同中规定:在市场价格不变的情况下(不考虑其他因素)折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.种树B种树木(2)、当购买A75棵,元;种树每棵元,种树每棵、【答案】(1)A100B80. 元855025木棵时,所需费用最少,最少为【解析】11,种树每棵y元,依题意得:解得.(1)试题解析:、设A种树每棵x元,B 80元;元,答:A 种树每棵100B种树每棵)棵,a(2)、设购买A种树木为a棵,则购买B种树木为(100﹣ 753(100﹣a),解得a≥.则a> ],即y=18a+7200.)设实际付款总金额是y元,则y=0.9[100a+80(100﹣a 最小.时,y∴当0,y随a的增大而增大, a=75>∵18 (元).×75+7200=8550即当a=75时,y=18最小值 8550元.种树木75棵,B种树木25棵时,所需费用最少,最少为答:当购买A (2)、二元一次方程组的应用.考点:(1)、一次函数的应用;,与O的⊙与BC相切于点DC=9023.如图,在Rt△ABC中,∠°,点O在AB上,经过点A .相交于点GEFABAC,分别相交于点E,F,连接AD与 CAB;AD(1)求证:平分∠ AFEFH平分∠,DG=1.HOH(2)若⊥AD于点,DF与的数量关系,并说明理由;DH①试判断 O②求⊙的半径.5、(2)DF=DH,理由见解析;、证明过程见解析;【答案】(1) 【解析】(1)试题解析:、如图,连接,OD 12∵∠ODA,∴OD∥AC,∴∠CAD=BC∵⊙O与BC相切于点D,∴OD⊥,∵∠C=90°,,OA=OD .平分∠CAB ∴∠CAD=∠BAD,∴AD∴∠OAD=∠ODA, HAF,EFH,又∠DFG=∠EAD=∠,(2)、①DF=DH,理由如下:∵FH平分∠AFE ∴∠AFH=∠.DFH=∠DHF,∴DF=DH,EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA 即∠∴∠DFG=∠FDG=∠),∵∠DFG=DAF,∠,,则DH=DF=1+x ∵OH⊥AD,∴AD=2DH=2(1+x②设HG=x ∠FDG,∴△DFG∽△DAF,ADF=90°,为直径,∵DF=2,AD=4,∵AF ∴∠∴,∴,∴x=1,22225AF=的半径为∴O.∴⊙5?42DF??AD?2(2)、角平分线的性质;(3)、垂径定理.考点:(1)、切线的性质;2x,﹣4),且与在平面直角坐标系中,已知抛物线y=x的坐标为(﹣+bx+c的顶点M124. C.轴交于点(点A在点B的左边),与y,点轴交于点AB ;的解析式为,直线AC (1)填空:b= ,c=.与x轴相交于点H)直线(2x=t,COD=∠MAN),点AN(如图1D为直线AC下方抛物线上一点,若∠时得到直线①当t=﹣3 D的坐标;求出此时点试P.,,x=t与线段ACAM和抛物线分别相交于点EF,直线)(如图1t3②当﹣<<﹣时2,,求此时FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为,,证明线段HEEF t的值.131133 2、(﹣-,﹣【答案】(1)、b=2,c=-3;y=-x-3;(2));5【解析】,的顶点M的坐标为(﹣1,﹣、∵抛物线试题解析:(1)y=x4+bx+c2)3,∴抛物线解析式为:∴,解得:, y=x+2x2),0(﹣3,),B(1,03x令y=0,得:x+2x 2﹣﹣3=0,解得:=1,x=﹣,∴A21,∴C(0,﹣3),令x=0,得y=﹣3 设直线AC的解析式为:y=kx+b,)代入,得:,,解得:0A将(﹣3,0),C(,﹣3 ∴直线AC 的解析式为:y=3;﹣x﹣2∠COD=tan∠MAN, COD=mD(2)、①设点的坐标为(m,3+2m﹣),∵∠∠MAN,∴tan2m??33 m ,∵﹣3<<0,∴m=∴﹣,解得:, m=±243m2?)m?(?33故点);2的坐标为(﹣D,﹣14考点:二次函数综合题.15。

2019年湖北省孝感市中考数学试卷(解析版)

2019年湖北省孝感市中考数学试卷(解析版)

2019年湖北省孝感市中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.计算﹣19+20等于()A.﹣39 B.﹣1 C.1 D.392.如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°3.下列立体图形中,左视图是圆的是()A.B.C.D.4.下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式5.下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(+)(﹣)=b﹣a6.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=7.已知二元一次方程组,则的值是()A.﹣5 B.5 C.﹣6 D.68.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)9.一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.10.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.二、填空题(共6小题)11.中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为.12.方程=的解为.13.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=﹣米.14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B 部分所对应的圆心角的度数是.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=﹣.16.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.三、解答题(共8小题)17.计算:|﹣1|﹣2sin60°+()﹣1+.18.如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.19.一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.20.如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.21.已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.22.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?23.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.24.如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为﹣,点B的坐标为,线段AC的长为,抛物线的解析式为﹣﹣.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.2019年湖北省孝感市中考数学试卷(解析版)参考答案一、单选题(共10小题)1.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:﹣19+20=1.故选:C.【知识点】有理数的加法2.【分析】根据平行线的性质和垂直的定义解答即可.【解答】解:∵l1∥l2,∴∠1=∠CAB=70°,∵BC⊥l3交l1于点B,∴∠ACB=90°,∴∠2=180°﹣90°﹣70°=20°,故选:B.【知识点】垂线、平行线的性质3.【分析】左视图是从物体左面看,所得到的图形.【解答】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;B、圆柱的左视图是矩形,故此选项不合题意;C、三棱柱的左视图是矩形,故此选项不合题意;D、球的左视图是圆形,故此选项符合题意;故选:D.【知识点】简单几何体的三视图4.【分析】分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.【解答】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.【知识点】方差、众数、随机事件、全面调查与抽样调查、命题与定理5.【分析】根据同底数幂的除法法则判断A;根据积的乘方法则判断B;根据同底数幂的乘法法则判断C;根据平方差公式以及二次根式的性质判断D.【解答】解:A、x7÷x5=x2,故本选项正确;B、(xy2)2=x2y4,故本选项错误;C、x2•x5=x7,故本选项错误;D、(+)(﹣)=a﹣b,故本选项错误;故选:A.【知识点】同底数幂的除法、同底数幂的乘法、幂的乘方与积的乘方、二次根式的混合运算6.【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F=.故选:B.【知识点】反比例函数的应用7.【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+y=1,解得,∴=.故选:C.【知识点】解二元一次方程组8.【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.【知识点】坐标与图形变化-旋转9.【分析】根据实际问题结合四个选项确定正确的答案即可.【解答】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选:A.【知识点】函数的图象10.【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.【知识点】全等三角形的判定与性质、正方形的性质二、填空题(共6小题)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数1250 000 000用科学记数法可表示为1.25×109.故答案为:1.25×109.【知识点】科学记数法—表示较大的数12.【分析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.【解答】解:两边同时乘2x(x+3),得x+3=4x,解得x=1.经检验x=1是原分式方程的根.【知识点】解分式方程13.【分析】根据正切的定义求出BD,根据等腰直角三角形的性质求出CD,结合图形计算,得到答案.【解答】解:在Rt△PBD中,tan∠BPD=,则BD=PD•tan∠BPD=20,在Rt△PBD中,∠CPD=45°,∴CD=PD=20,∴BC=BD﹣CD=20﹣20,故答案为:(20﹣20).【知识点】解直角三角形的应用-仰角俯角问题14.【分析】先由A类别人数及其所占百分比求得总人数,再由各类别人数之和等于总人数求出B类别人数,继而用360°乘以B类别人数占总人数的比例即可得.【解答】解:∵被调查的总人数为9÷15%=60(人),∴B类别人数为60﹣(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.【知识点】扇形统计图、条形统计图15.【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.【解答】解:∵⊙O的半径为1,∴⊙O的面积S=π,∴圆的内接正十二边形的中心角为=30°,∴过A作AC⊥OB,∴AC=OA=,∴圆的内接正十二边形的面积S1=12××1×=3,∴则S﹣S1=π﹣3,故答案为:π﹣3.【知识点】正多边形和圆、数学常识16.【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn=.【解答】解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m,n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S△BEF=BE•BF=mn=故答案为.【知识点】反比例函数系数k的几何意义、反比例函数的性质、反比例函数图象上点的坐标特征三、解答题(共8小题)17.【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=﹣1﹣2×+6﹣3=2.【知识点】特殊角的三角函数值、实数的运算、负整数指数幂18.【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.【解答】证明:∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,在Rt△ACB和Rt△BDA中,,∴∠ABC=∠BAD,∴AE=BE.【知识点】全等三角形的判定与性质19.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)在﹣2,﹣1,0,1中正数有1个,∴摸出的球上面标的数字为正数的概率是,故答案为:.(2)列表如下:﹣2﹣101﹣2(﹣2,﹣2)(﹣1,﹣2)(0,﹣2)(1,﹣2)﹣1(﹣2,﹣1)(﹣1,﹣1)(0,﹣1)(1,﹣1)0(﹣2,0)(﹣1,0)(0,0)(1,0)1(﹣2,1)(﹣1,1)(0,1)(1,1)由表知,共有16种等可能结果,其中点M落在四边形ABCD所围成的部分内(含边界)的有:(﹣2,0)、(﹣1,﹣1)、(﹣1,0)、(0,﹣2)、(0,﹣1)、(0,0)、(0,1)、(1,0)这8个,所以点M落在四边形ABCD所围成的部分内(含边界)的概率为.【知识点】概率公式、列表法与树状图法20.【分析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE=90°知∠CEB=∠CDE,从而得出答案;(2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB==13,知sin∠DAF==,即=,解之求得x=,结合BC=BF=5可得答案.【解答】解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB==13,∴sin∠DAF==,即=,解得x=,∵BC=BF=5,∴tan∠DBF==×=.【知识点】角平分线的性质、作图—复杂作图、全等三角形的判定与性质、解直角三角形21.【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;(2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.【解答】解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣x1x2=16,∴[﹣2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.【知识点】根与系数的关系、根的判别式22.【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【知识点】一元一次不等式的应用、二元一次方程组的应用23.【分析】(1)根据三角形内心的性质得∠2=∠7,再利用圆内接四边形的性质得∠ADF=∠ABC,则∠1=∠2,从而得到∠1=∠3,则可判断DG∥AC;(2)根据三角形内心的性质得∠5=∠6,然后证明∠4=∠DAI得到DA=DI;(3)证明△DAE∽△DBA,利用相似比得到AD=6,则DI=6,然后计算BD﹣DI即可.【解答】(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠ADE=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.【知识点】三角形的内切圆与内心、圆周角定理、三角形的外接圆与外心24.【分析】(1)由题意得:﹣8a=﹣4,故a=,即可求解;(2)分BC是平行四边形的一条边时、BC是平行四边形的对角线时,两种情况分别求解即可.(3)证明△EPH∽△CAO,∴,即:,则EP=PH,即可求解.【解答】解:(1)由题意得:﹣8a=﹣4,故a=,故抛物线的表达式为:y=x2﹣x﹣4,令y=0,则x=4或﹣2,即点A、B的坐标分别为(﹣2,0)、(4,0),则AC=2,故答案为:(﹣2,0)、(4,0)、2、y=x2﹣x﹣4;(2)①当BC是平行四边形的一条边时,如图所示,点C向右平移4个单位、向上平移4个单位得到点B,设:点P(n,n2﹣n﹣4),点Q(m,0),则点P向右平移4个单位、向上平移4个单位得到点Q,即:n+4=m,n2﹣n﹣4+4=0,解得:m=4或6(舍去4),即点Q(6,0);②当BC是平行四边形的对角线时,设点P(m,n)、点Q(s,0),其中n=m2﹣m﹣4,由中心公式可得:m+s=﹣2,n+0=4,解得:s=2或4(舍去4),故点Q(2,0);故点Q的坐标为(2,0)或(6,0);(3)如图2,过点P作PH∥x轴交BC于点H,∵GP∥y轴,∴∠HEP=∠ACB,∵PH∥x轴,∴∠PHO=∠AOC,∴△EPH∽△CAO,∴,即:,则EP=PH,设点P(t,y P),点H(x H,y P),则t2﹣t﹣4=x H﹣4,则x H=t2﹣t,f=PH=[t﹣(t2﹣t)]=﹣(t2﹣4t),当t=m时,f1=(m2﹣4m),当t=4﹣m时,f2=﹣(m2﹣2m),则f1﹣f2=﹣m(m﹣),则0<m<2,∴f1﹣f2>0,f1>f2.【知识点】二次函数综合题。

2019年湖北省孝感中考数学试卷-答案

2019年湖北省孝感中考数学试卷-答案

1 / 14湖北省孝感市2019年初中学业水平考试数学答案解析1.【答案】C【解析】解:19201-+=.故选:C .【考点】实数2.【答案】B【解析】解: 12l l ∥,∴170CAB ∠=∠=︒, 3BC l ⊥交1l 于点B ,∴90ACB ∠=︒,∴2180907020∠=︒-︒-︒=︒,故选:B .【考点】线段、角、相交线与平行线3.【答案】D【解析】解:A 、圆锥的左视图是等腰三角形,故此选项不合题意;B 、圆柱的左视图是矩形,故此选项不合题意;C 、三棱柱的左视图是矩形,故此选项不合题意;D 、球的左视图是圆形,故此选项符合题意;故选:D .【考点】三视图的定义4.【答案】C【解析】解:A .在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A 不合题意;B .一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B 不合题意;C .方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C 符合题意;2 / 14D .全面调查和抽样调查是收集数据的两种方式,正确,故选项D 不合题意.故选:C .【考点】数据的收集与整理、概率5.【答案】A【解析】解:A 、752x x x ÷=,故本选项正确;B 、2224xy x y =(),故本选项错误; C 、257x x x ⋅=,故本选项错误;D、a b =-,故本选项错误;故选A .【考点】整式、二次根式6.【答案】B【解析】解: ⨯=⨯阻力阻力臂动力动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1 200 N 和0.5 m ,∴动力F (单位:N )关于动力臂l (单位:m )的函数解析式为:1 2000.5Fl ⨯=, 则600F l=;故选:B . 【考点】反比例函数及其应用7.【答案】C【解析】解:1249x y x y +=⎧⎨+=⎩①② 2-⨯②①得,27y =,解得72x =把72x =代入①得:712y +=,解得52y =-3 / 14∴22222752()226()()1x xy y x y x y x y x y x y x y +-+--====-+-+;故选C . 【考点】一次方程(组)及应用8.【答案】D【解析】解:作PQ y ⊥轴于Q ,如图,2,3P(),∴2PQ =,3OQ =,点2,3P()绕原点O 顺时针旋转90︒得到点'P 相当于把OPQ △绕原点O 顺时针旋转90︒得到'OP Q '△, ∴90P Q O ∠''=︒,90QOQ ∠'=︒,2P Q PQ ''==,3OQ OQ '==,∴点P '的坐标为3,2-();故选:D . 【考点】平移、旋转与对称9.【答案】A【解析】解: 从某时刻开始4 min 内只进水不出水,容器内存水8 L ;∴此时容器内的水量随时间的增加而增加,随后的8 min 内既进水又出水,容器内存水12 L ,∴此时水量继续增加,只是增速放缓,接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,4 / 14综上,A 选项符合,故选:A .【考点】函数及其图像10.【答案】A【解析】解:正方形ABCD 中, 4BC =,∴4BC CD AD ===,90BCE CDF ∠=∠=︒,1AF DE ==,∴3DF CE ==,∴5BE CF ==,在BCE △和CDF △中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,()BCE CDF SAS ∴△≌△,∴CBE DCF ∠=∠,90CBE CEB ECG CEB CGE ︒∠+∠=∠+∠==∠cos cos BC CG CBE ECG BE CE ∠=∠== ∴453CG =,125CG = ∴1213555GF CF CG =-=-=;故选A . 【考点】正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数11.【答案】91.2510⨯【解析】解:将数1 250 000 000用科学记数法可表示为91.2510⨯.故答案为:91.2510⨯.【考点】科学记数法5 / 14【解析】解:两边同时乘23x x +(), 得34x x +=,解得1x =.经检验1x =是原分式方程的根.【考点】分式方程的解法13.【答案】20)-【解析】解:在Rt PBD △中,tan BD BPD PD∠=,则tan BD PD BPD =⋅∠=在Rt PBD △中,45CPD ︒∠=,∴20CD PD ==,∴20BC BD CD =-=-故答案为:20)【考点】解直角三角形及其应用.14.【答案】108︒【解析】解: 被调查的总人数为915%60÷=(人),∴B 类别人数为609211218-++=()(人), 则扇形统计图B 部分所对应的圆心角的度数是1836010860︒⨯=︒, 故答案为:108︒.【考点】统计6 / 14即可得到结论.【解析】解: O 的半径为1,∴O 的面积 3.14S =,∴圆的内接正十二边形的中心角为3603012︒︒= ∴圆的内接正十二边形的面积111211sin 3032S ︒=⨯⨯⨯⨯= ∴则10.14S S -=,故答案为:0.14.【考点】正多边形与圆16.【答案】2518【解析】解:设22D m n (,),:2:3OD OB =,∴3,0Am (),0,3C n (),∴3,3B m n (), 双去线9(0)y x x=>经过矩形OABC 的顶点B , ∴933m n =⋅,∴1mn =双曲线(0)k y x x=>经过点D , ∴4k mn =∴双曲线4(0)mn y x x=> ∴43,3E m n ⎛⎫ ⎪⎝⎭,4,33F m n ⎛⎫ ⎪⎝⎭,7 / 14∴45333BE n n n =-=,45333BF m m m =-=, ∴1252521818BEF S BE BF mn =⋅==△ 故答案为:2518 【考点】反比例函数及其应用17.【答案】解:原式12632=-+-= 【考点】实数18.【答案】证明: 90C D ∠=∠=︒,∴ACB △和BDA △是直角三角形,在Rt ACB △和Rt BDA △中,AB BA AC BD =⎧⎨=⎩()Rt ACB Rt BDA HL ∴△≌△,∴ABC BAD ∠=∠,∴AE BE =.【考点】全等、等腰三角形,直角三角形19.【答案】解:(1)在2-,1-,0,1中正数有1个,∴摸出的球上面标的数字为正数的概率是14,故答案为:14(2)列表如下: 2-1- 0 1 2- 2,2(--) 12--(,) 02-(,) 12-(,)8 / 141- 21--(,) 11--(,) 01-(,) 11-(,)0 2,0-() 1,0-() 0,0() 1,0()1 2,1-() 1,1-() 0,1() 1,1()由表知,共有16种等可能结果,其中点M 落在四边形ABCD 所围成的部分内(含边界)的有:2,0-()、11--(,)、1,0-()、02-(,)、01-(,)、0,0()、0,1()、这8个,所以点M 落在四边形ABCD 所围成的部分内(含边界)的概率为12. 【考点】概率及其应用20.【答案】解:(1)CD CE =,由作图知CE AB ⊥,BD 平分中BD ,∴123∠=∠=∠,3290CEB CDE ∠+∠=∠+∠=︒,∴CEB CDE ∠=∠,∴CD CE =,故答案为:CD CE =;(2) BD 平分CBF ∠,BC CD ⊥,BF DF ⊥,∴BC BF =,CBD FBD ∠=∠,在BCD △和BFD △中,9 / 14DCB DFB CBD FBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BCD BFD AAS △≌△∴CD DF =;设CD DF x ==,在Rt ACB △中,13AB ==, ∴sin DF BC DAF AD AB ∠==,即51213x x =+, 解得:152x =, 5BC BF ==, ∴1513tan 252DF DBF BF ∠==⨯=. 【考点】作图题21.【答案】解:(1) 关于x 的一元二次方程222120x a x a a --+--=()有两个不相等的实数根, ∴[]()2221420a a a =-----△()>, 解得:3a <,a 为正整数,∴12a =,; (2) 1221x x a +=-(),2122x x a a =--, 12122216x x x x +-=,∴2121216x x x x +-=(), ∴[]22213216a a a -----=()(),10 / 14解得:11a =-,26a =,3a <,∴1a =-.【考点】一元二次方程及应用22.【答案】解:(1)设今年每套A 型一体机的价格为x 万元,每套B 型一体机的价格为y 万元,由题意得:0.6500200960y x x y -=⎧⎨+=⎩, 解得: 1.21.8x y =⎧⎨=⎩; 答:今年每套A 型的价格各是1.2万元、B 型一体机的价格是1.8万元;(2)设该市明年购买A 型一体机m 套,则购买B 型一体机1 100m -()套, 由题意可得:1.81 100 1.2125%m m -≥+()(),解得:600m ≤; 设明年需投入W 万元,1.2125% 1.81 100W m m =⨯++-()()0.3 1 980m =-+,0.30-<,∴W 随m 的增大而减小,600m ≤,∴当600m =时,W 有最小值0.3600 1 980 1 800-⨯+=,故该市明年至少需投入1800万元才能完成采购计划.【考点】一元一次不等式(组)及应用23.【答案】(1)证明: 点I 是ABC △的内心,11 / 14∴27∠=∠, DG 平分ADF ∠, ∴112ADF ∠=∠, ADF ABC ∠=∠, ∴12∠=∠, 32∠=∠,∴13∠=∠,∴DG AC ∥;(2)证明: 点I 是ABC △的内心,∴56∠=∠,47536∠=∠+∠=∠+∠,即4DAI ∠=∠,∴DA DI =;(3)解: 37∠=∠,ADE BAD ∠=∠,∴DAE DBA △∽△,∴AD DB DE DA =::,即:94:AD AD =,∴6AD =,∴6DI =,∴963BI BD DI =-=-=.【考点】与圆有关的计算24.【答案】解(1):由题意得:84a -=-,故12a =, 故抛物线的表达式为:2142y x x =--,12 / 14令0y =,则4x =或2-,即点A 、B 的坐标分别为()2,0-、()4,0,则AC =故答案为:()2,0-、()4,0、、2142y x x =--. (2)①当BC 是平行四边形的一条边时,如图所示,点C 向右平移4个单位、向上平移4个单位得到点B , 设:点21,42P n n n ⎛⎫-- ⎪⎝⎭,点(, 0)Q m , 则点P 向右平移4个单位、向上平移4个单位得到点Q即:4n m +=,214402n n --+=; 解得:4m =或6(舍去4),即点60Q (,);②当BC 是平行四边形的对角线时,设点P m n (,)、点0Q s (,),其中2142n m m =--, 由中心公式可得:2m s +=-,04n +=,解得:2s =或4(舍去4),故点20Q (,);故点Q 的坐标为()2,0或()6,0.13 / 14(3)如图,过点P 作PH x ∥轴交BC 于点H ,GP y ∥轴,∴HEP ACB ∠=∠, PH x ∥轴,∴PHO AOC ∠=∠, ∴EPH CAO △∽△,∴EPPHAC AB =,6PH=,则EP =;设点(),p P t y ,点(),H P H x y , 则21442H t t x --=-, 则212H y t t =-,)22142f t t t t t ⎡⎤⎛⎫==--=- ⎪⎢⎥⎝⎭⎣⎦,当t m =时,)214f m m =-, 当142t m =-时,22324f m m ⎫=-⎪⎭,则1283f f m ⎛⎫-=- ⎪⎝⎭,14 / 14则02m <<,∴120f f ->, 12f f >.【考点】二次函数的综合运用。

孝感市2019年中考数学试题及答案

孝感市2019年中考数学试题及答案

孝感市 2019 年高中阶段学校招生考试数学试卷温馨提示:1.答题前,考生务必将自己所在县(市、区)、学校、姓名、考号填写在试卷上指定的位置.2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3.本试卷满分 120 分,考试时间120 分钟.一、精心选一选,相信自己的判断!(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得 0分)1.下列各数中,最小的数是A .3B .2C.( 3)2D.2 1032.已知一个正多边形的每个外角等于60 ,则这个正多边形是A .正五边形B .正六边形C.正七边形D.正八边形3.下列运算正确的是A .a2a3a2B .3a32a26a6C.a8 a 2a4 D .(2a)38a34.如图是一个几何体的三视图,则这个几何体是(第4题)A .正方体B .长方体C.三棱柱D.三棱锥5.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20 .对于这组数据,下列说法错误..的是44A .平均数是15B .众数是10C.中位数是17D.方差是36.在平面直角坐标系中,把点P(5,3) 向右平移8个单位得到点P ,再将点 P 绕原点旋转11 90得到点 P2,则点 P2的坐标是A .(3,3)B .( 3,3)C.(3,3)或( 3,3)D.(3,3)或( 3,3)数学试卷·第1页(共 6页)7.下列命题:yB①平行四边形的对边相等;②对角线相等的四边形是矩形;A③正方形既是轴对称图形,又是中心对称图形;Ox④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是(第8题)A .1B . 2C . 3D . 48.如图, △ AOB 是直角三角形,AOB =90 ,OB2OA ,点 A 在反比例函数 y1 x的图象上.若点k 的图象上,则 k 的值为B 在反比例函数 yxA . 4B . 4C .2D . 29.已知 x 23 ,则代数式 (74 3)x 2( 23) x3 的值是A . 0B . 3C .23D .2310.如图,二次函数yax 2 bx c ( a 0 )的图象与 x 轴交于 A , B 两点,与 y 轴交 于点C ,且OAOC .则下列结论:y① abc 0 ;② b 2 4ac;CAB4axc . O③ ac b 1 0 ;④ OA OBa其中正确结论的个数是(第10题)A .4B . 3C . 2D . 1二、细心填一填,试试自己的身手!(本大题共 6 小题,每小题 3 分,共 18 分.请将结果直接填写在答题卡相应位置上)15 ☆.11.分式方程x 的解是x312.分解因式: (ab)2 4b 2☆.13.已知圆锥的侧面积等于60 cm 2,母线长 10cm ,则圆锥的高是☆cm .14.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m 3,每立方米收费 2元;若用水超过 20m 3,超过部分每立方米加收1 元.小明家 5 月份交水费 64 元 , 则他家该月用水☆m 3.数学试卷·第 2页(共 6页)15.观察下列等式: 112, 1 3 22, 1 35 32,13 5 7 42,⋯⋯,则13572015☆.16.如图,四边形ABCD 是矩形纸片, AB2 .对折矩形纸片 ABCD ,使 AD 与 BC 重合,折痕为 EF ;展平后再过点 B 折叠矩形纸片,使点 A 落在 EF 上的点 N ,折痕 BM 与 EF 相交于点 Q ;再次展平,连接 BN , MN ,延长 MN 交 BC 于点 G . 有如下结论:① ABN60 ;② AM1;3 ;③ QN3④ △ BMG 是等边三角形; ⑤ P 为线段 BM 上一动点,H 是 BN 的中点,则 PNPH 的最小值是3 .其中正确结论的序号是☆.(第16题)三、用心做一做,显显自己的能力! (本大题共 8 小题,满分 72 分.解答写在答题卡上 )17.( 本题满分 6 分)计算: 2 cos303 1(1) 1.218.( 本题满分 8 分)我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB CB , AD CD .对角线 AC , BD 相交于点 O , OEAB , OF CB ,垂足分别是E ,F .求证 OEOF .(第18题)数学试卷·第3页(共 6页)19.(本题满分9 分)2019 年 1 月,市教育局在全市中小学中选取了63 所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.频数 /人时时小小51~~3~4小时4020%1~ 2小时2~ 3小时时间 /小时(第19题)根据上述信息,解答下列问题:( 1)本次抽取的学生人数是☆;扇形统计图中的圆心角等于☆;补全统计直方图;( 4 分= 1 分+ 1 分+ 2 分)(2)被抽取的学生还要进行一次 50 米跑测试,每 5 人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.( 5 分)20.(本题满分8 分)如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O ;(要求保留作图痕迹,不写作法)(4分)(2)若的中点C到弦AB的距离为20m,AB80 m,求所在圆的半径.(4分)CA B(第20题 )数学试卷·第4页(共 6页)21.(本题满分9 分)某服装公司招工广告承诺:熟练工人每月工资至少3000 元.每天工作8 小时,一个月工作 25 天.月工资底薪800 元,另加计件工资.加工 1 件A型服装计酬16 元,加工 1 件B 型服装计酬12 元.在工作中发现一名熟练工加工 1 件A型服装和 2 件B型服装需 4 小时,加工 3 件A型服装和 1 件B型服装需7 小时.(工人月工资=底薪+计件工资)( 1)一名熟练工加工 1 件A型服装和 1 件B型服装各需要多少小时?( 4 分)( 2)一段时间后,公司规定:“每名工人每月必须加工 A , B 两种型号的服装,且加工 A 型服装数量不少于 B 型服装的一半”.设一名熟练工人每月加工 A 型服装 a 件,工资总额为 W 元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?( 5 分)22.(本题满分10 分)已知关于x 的一元二次方程:x2( m 3) x m0 .( 1)试判断原方程根的情况;(4分)( 2)若抛物线y x2(m 3) x m 与 x 轴交于 A(x1,0), B(x2,0) 两点,则 A , B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB x1x2)(6分)数学试卷·第5页(共 6页)23.(本题满分10 分)如图, AB 为⊙O的直径, P 是 BA 延长线上一点,PC切⊙O于点 C,CG是⊙O的弦, CG AB ,垂足为D.( 1)求证:PCA ABC ;(4分)(2)过点A作AE//PC交⊙O于点E,交CD于点F,连接 BE .若 sin P 3, CF 5,求 BE 的长.(6分)5ECFP A D O B24.(本题满分12 分)G(第23题) 1 x2在平面直角坐标系中,抛物线 y bx c 与 x 轴交于点 A , B ,与 y 轴交于点2C ,直线 y x 4 经过 A , C 两点.( 1)求抛物线的解析式;( 3 分)( 2)在AC上方的抛物线上有一动点P .①如图 1,当点P运动到某位置时,以AP,AO 为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P 的坐标;(4分)②如图 2,过点O,P的直线y kx 交 AC 于点 E ,若PE :OE 3 : 8 ,求k的值.(5 分)y yC CP PEA Bx A BO O x图 1(第24题 )图 2数学试卷·第6页(共 6页)孝感市 2019 年高中阶段学校招生考试数学参考答案及评分说明一、选择题题号 1 2 3 4 5 6 7 8 9 10答案ABDBCDCACB二、填空题312.( a b)(a 3b)13. 814. 2811. x415. 10082 (或 1016064)16.①④⑤三、解答题17.解:原式 =23 1) 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分 ( 323 3 1 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分18.证明:在 △ ABD 和△ CBD 中AB CBAD CD ,∴ ABD ≌ CBD ( SSS )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分BDBD∴ ABD CBD , ∴ BD 平分∠ ABC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分又∵ OEAB ,OFCB ,∴ OEOF⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分19.解:( 1) 30; 144 ;⋯⋯⋯ 2 分补全统计图如下:⋯⋯⋯⋯ 4 分( 2)根据题意列表如下:频数 /人1 2 3 4 51(2,1) (3,1) (4,1) (5,1)2( 1,2)(3,2) (4,2) (5,2)3 ( 1,3) (2,3)(4,3) (5,3)4 ( 1,4) (2,4) (3,4)(5,4)5( 1,5) (2,5) (3,5) (4,5)时间 /小时⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分数学试卷·第7页(共 6页)记小红和小花抽在相邻两道这个事件为8 2A ,∴ P( A).⋯⋯⋯⋯⋯⋯⋯ 9 分20520.解:( 1)作图如图所示;⋯⋯⋯⋯⋯⋯⋯ 4 分(2)连接 OB ,OC , OC 交 AB 于 D ,CAB 80,C 为 的中点,OC ABADBADBD 40, CD 20⋯⋯⋯⋯⋯⋯ 5 分O设 OBr ,则 OD r20在 Rt OBD 中,OB 2OD 2 BD 2,r 2(r 20)2402解得: r 50⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分 ∴所在圆的半径是 50 m .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分21.解:( 1)设熟练工加工 1 件 A 型服装需要 x 小时,加工 1 件 B 型服装需要 y 小时.由题意得:x 2 y 4 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分3x y 7解得:x 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分y 1答:熟练工加工1 件 A 型服装需要2 小时,加工 1 件 B 型服装需要 1 小时. ⋯⋯4 分(2)当一名熟练工一个月加工A 型服装 a 件时,则还可以加工B 型服装 (25 82a) 件.W 16a 12(25 8 2a)800W8a 3200⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分又∵ a ≥1(2002a) ,解得: a ≥ 50⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分28 0 , W 随着 a 的增大则减小∴当 a50 时, W 有最大值 2800 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分2800 3000∴该服装公司执行规定后违背了广告承诺.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9 分22.解:( 1)[ (m 3)] 2 4( m)m 2 2m 9= (m 1)2 8⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分∵ (m1)2≥0∴(m1)28 0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分∴数学试卷·第8页(共 6页)原方程有两个不相等的实数根. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)存在.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分由题意知 x 1, x 2 是原方程的两根.∴ x 1 x 2 m 3, x 1x 2m ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分∵ AB x 1 x 2∴ AB 2( x 1 x 2 ) 2 ( x 1 x 2 ) 2 4x 1x 2(m3)24( m)(m 1) 28⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分∴当 m1时, AB 2 有最小值8CE∴ AB 有最小值,即 AB82 2⋯10 分23.解:( 1)证明:连接 OC , F∵PC 切⊙O 于C ,PADOB∴ OC PC ,∴PCO 90 ,即 PCAOCA90 .⋯⋯⋯⋯⋯⋯1 分G∵ AB 为⊙ O 的直径,∴ ACB 90 ,即ABCOAC 90 .⋯⋯⋯⋯ 2 分又∵ OC OA ,∴OCAOAC .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴PCA ABC .⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)∵ AE // PC ,∴ PCACAF又∵ AB CG ,∴ =,∴ACF ABC ,又∵PCA ABC ∴ ACFCAF ,∴ CFAF .又∵CF 5 ,∴ AF5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分又∵ AE // PC ,∴FAD P ,∵ sinP 3,∴ sinFAD355在 Rt AFD 中, AF5 ,sin FAD3FD,AD4,∴CD 8,∴53在 Rt OCD 中,设 OC r ,r 2(r 4) 2 82 , r10 ,∴ AB2r20 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分又∵ AB 为⊙ O 直径,∴ AEB 90 ,在 RtABE 中,∵ sin EAD3 ,∴BE 3,而 AB205 AB5数学试卷·第 9页(共 6页)∴ BE12⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分24.解:( 1)∵直线 y x 4 经过 A ,C 两点,∴ A 点坐标是 (4,0) , C 点坐标是 (0,4) ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分又∵抛物线过,两点,∴1 ( 4)24b c,解得:b 1 ,⋯⋯⋯ 2 分2ACc 4c 4∴抛物线的解析式为y1 x2 x 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分2(2)①∵ y1 x2 x 4 ,∴抛物线的对称轴是直线x1 . ⋯⋯⋯⋯⋯⋯⋯ 4 分2∵以 AP ,AO 为邻边的平行四边形的第四个顶点 Q 恰好也在抛物线上,∴PQ//AO ,PQAO4 .y∵ P ,Q 都在抛物线上,∴P ,Q 关于直线 x1对称,C∴ P 点的横坐标是36 分, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯PQ∴当 x3时, y1 ( 3)2(3) 4 5 ,22AB∴ P 点的坐标是 (3,5) Ox⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分y2②过 P 点作 PF//OC 交 AC 于点 FCOEC ,∴PEPF .∵ PF//OC ,∴PEF ∽POEOCE 又∵PE3,OC3F4,∴ PF⋯⋯⋯⋯⋯ 8 分 AOBOE82x设 P( x ,1 x2 x 4) ,则 F(x , x+4),∴ ( 1 x 2 x 4) (x4)3 ,222化简得: x 24x 3,解得: x 1 1, x 2 3 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分当 x1时, y 9 ;当 x 35 ,2 时, y2即 P 点坐标是(,9)5⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 11 分12 或(3, ).29或k 5又∵点 P 在直线 ykx 上,∴ k⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分26数学试卷·第 10 页(共 6 页)注意: 1.按照评分标准分步评分,不得随意变更给分点;2.第 17 题至第 24 题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.数学试卷·第11 页(共 6 页)。

2019年湖北省孝感市中考数学试卷

2019年湖北省孝感市中考数学试卷

2019年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)1. 计算−19+20等于()A.−39B.−1C.1D.39【答案】C【考点】有理数的加法【解析】直接利用有理数的加减运算法则计算得出答案.【解答】解:−19+20=20−19=1.故选C.2. 如图,直线l1 // l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70∘,则∠2的度数为()A.10∘B.20∘C.30∘D.40∘【答案】B【考点】垂线平行线的性质【解析】根据平行线的性质和垂直的定义解答即可.【解答】∵l1 // l2,∴∠1=∠CAB=70∘,∵BC⊥l3交l1于点B,∴∠ACB=90∘,∴∠2=180∘−90∘−70∘=20∘,3. 下列立体图形中,左视图是圆的是()A. B.C. D.D【考点】简单几何体的三视图【解析】左视图是从物体左面看,所得到的图形.【解答】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;B、圆柱的左视图是矩形,故此选项不合题意;C、三棱柱的左视图是矩形,故此选项不合题意;D、球的左视图是圆形,故此选项符合题意.故选D.4. 下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式【答案】C【考点】方差众数全面调查与抽样调查随机事件命题与定理【解析】分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.【解答】B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意(1)C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意(2)D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.5. 下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2⋅x5=x10D.(√a+√b)(√a−√b)=b−a【答案】A【考点】同底数幂的乘法幂的乘方与积的乘方同底数幂的除法根据同底数幂的除法法则判断A ;根据积的乘方法则判断B ;根据同底数幂的乘法法则判断C ;根据平方差公式以及二次根式的性质判断D .【解答】A 、x 7÷x 5=x 2,故本选项正确;B 、(xy 2)2=x 2y 4,故本选项错误;C 、x 2⋅x 5=x 7,故本选项错误;D 、(√a +√b)(√a −√b)=a −b ,故本选项错误;6. 公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N 和0.5m ,则动力F (单位:N )关于动力臂l (单位:m )的函数解析式正确的是( )A.F =1200l B.F =600l C.F =500l D.F =0.5l【答案】B【考点】反比例函数的应用根据实际问题列反比例函数关系式【解析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【解答】解:∵ 阻力×阻力臂=动力×动力臂,小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N 和0.5m ,∴ 动力F (单位:N )关于动力臂l (单位:m )的函数解析式为:1200×0.5=Fl , 则F =600l .故选B .7. 已知二元一次方程组{x +y =12x +4y =9,则x 2−2xy+y 2x 2−y 2的值是( ) A.−5 B.5 C.−6D.6【答案】C【考点】代入消元法解二元一次方程组二元一次方程组的解【解析】解方程组求出x 、y 的值,再把所求式子化简后代入即可.{x +y =12x +4y =9, ②-①×2得,2y =7,解得y =72,把y =72代入①得,72+x =1,解得x =−52,∴ x 2−2xy+y 2x 2−y 2=(x−y)2(x+y)(x−y)=x−y x+y =−52−72−52+72=−68. 如图,在平面直角坐标系中,将点P(2, 3)绕原点O 顺时针旋转90∘得到点P ′,则P ′的坐标为( )A.(3, 2)B.(3, −1)C.(2, −3)D.(3, −2)【答案】D【考点】坐标与图形变化-旋转【解析】作PQ ⊥y 轴于Q ,如图,把点P(2, 3)绕原点O 顺时针旋转90∘得到点P ′看作把△OPQ 绕原点O 顺时针旋转90∘得到△OP ′Q′,利用旋转的性质得到∠P′Q′O =90∘,∠QOQ′=90∘,P′Q′=PQ =2,OQ′=OQ =3,从而可确定P′点的坐标.【解答】作PQ ⊥y 轴于Q ,如图,∵ P(2, 3),∴ PQ =2,OQ =3,∵ 点P(2, 3)绕原点O 顺时针旋转90∘得到点P ′相当于把△OPQ 绕原点O 顺时针旋转90∘得到△OP ′Q′,∴ ∠P′Q′O =90∘,∠QOQ′=90∘,P′Q′=PQ =2,OQ′=OQ =3,∴ 点P′的坐标为(3, −2).9. 一个装有进水管和出水管的空容器,从某时刻开始4min 内只进水不出水,容器内存水8L ;在随后的8min 内既进水又出水,容器内存水12L ;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的函数关系的图象大致的是( ) A.B.C.D.【答案】A【考点】函数的图象【解析】根据实际问题结合四个选项确定正确的答案即可.【解答】∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,10. 如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A.135B.125C.195D.165【答案】A【考点】正方形的性质全等三角形的性质与判定【解析】证明△BCE≅△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90∘,根据等角的余弦可得【解答】正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90∘,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,{BC=CD∠BCE=∠CDF CE=DF,∴△BCE≅△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90∘=∠CGE,cos∠CBE=cos∠ECG=BCBE =CGCE,∴45=CG3,CG=125,∴GF=CF−CG=5−125=135,二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为________.【答案】1.25×109【考点】科学记数法–表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】将数1250 000 000用科学记数法可表示为1.25×109.方程12x =2x+3的解是x=________.【答案】1【考点】解分式方程【解析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.【解答】解:两边同时乘2x(x+3),得x+3=4x,经检验x=1是原分式方程的根.故答案为:1.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60∘,点C的仰角为45∘,点P到建筑物的距离为PD=20米,则BC=________米.【答案】(20√3−20)【考点】解直角三角形的应用-仰角俯角问题【解析】根据正切的定义求出BD,根据等腰直角三角形的性质求出CD,结合图形计算,得到答案.【解答】,在Rt△PBD中,tan∠BPD=BDPD则BD=PD⋅tan∠BPD=20√3,在Rt△PBD中,∠CPD=45∘,∴CD=PD=20,∴BC=BD−CD=20√3−20,董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是________.【答案】108∘【考点】扇形统计图【解析】先由A类别人数及其所占百分比求得总人数,再由各类别人数之和等于总人数求出B类别人数,继而用360∘乘以B类别人数占总人数的比例即可得.【解答】∵被调查的总人数为9÷15%=60(人),∴B类别人数为60−(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360∘×1860=108∘,刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S−S1=________.【答案】0.14【考点】数学常识正多边形和圆【解析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12×12×1×1×sin30∘=3,即可得到结论.【解答】∵⊙O的半径为1,∴⊙O的面积S=3.14,∴圆的内接正十二边形的中心角为36012=30∘,∴过A作AC⊥OB,∴AC=12OA=12,∴圆的内接正十二边形的面积S1=12×12×1×12=3,∴则S−S1=0.14,如图,双曲线y=9x (x>0)经过矩形OABC的顶点B,双曲线y=kx(x>0)交AB,BC于点E,F,且与矩形的对角线OB交于点D,连接EF,若OD:OB=2:3,则△BEF的面积为________.【答案】2518【考点】矩形的性质反比例函数图象上点的坐标特征反比例函数系数k的几何意义反比例函数的性质【解析】设D(2m, 2n),根据题意A(3m, 0),C(0, 3n),B(3m, 3n),即可得出9=3m⋅3n,k=2m⋅2n=4mn,解得mn=1,由E(3m, 43n),F(43m, 3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=12BE⋅BF=2518mn=2518.【解答】解:设D(2m, 2n),∵OD:OB=2:3,∴A(3m, 0),C(0, 3n),∴B(3m, 3n),∵双曲线y=9x(x>0)经过矩形OABC的顶点B,∴9=3m⋅3n,∴mn=1,∵双曲线y=kx(x>0)经过点D,∴k=4mn,∴双曲线y=4mnx(x>0),∴E(3m, 43n),F(43m, 3n),∴BE=3n−43n=53n,BF=3m−43m=53m,∴S△BEF=12BE⋅BF=2518mn=2518.故答案为:2518.三、用心做一做,显显自己的能力!(本大题8小题,满分72分)∘1−13【答案】原式=√3−1−2×√32+6−3=2. 【考点】实数的运算特殊角的三角函数值零指数幂、负整数指数幂【解析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂法则,以及立方根定义计算即可求出值.【解答】原式=√3−1−2×√32+6−3=2.如图,已知∠C =∠D =90∘,BC 与AD 交于点E ,AC =BD ,求证:AE =BE .【答案】证明:∵ ∠C =∠D =90∘,∴ △ACB 和△BDA 是直角三角形,在Rt △ACB 和Rt △BDA 中,{AB =BA AC =BD, ∴ Rt △ACB ≅Rt △BDA(HL),∴ ∠ABC =∠BAD ,∴ AE =BE .【考点】全等三角形的性质与判定【解析】由HL 证明Rt △ACB ≅Rt △BDA 得出∠ABC =∠BAD ,由等腰三角形的判定定理即可得出结论.【解答】证明:∵ ∠C =∠D =90∘,∴ △ACB 和△BDA 是直角三角形,在Rt △ACB 和Rt △BDA 中,{AB =BA AC =BD, ∴ Rt △ACB ≅Rt △BDA(HL),∴ ∠ABC =∠BAD ,∴ AE =BE .一个不透明的袋子中装有四个小球,上面分别标有数字−2,−1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________.标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(−2, 0),B(0, −2),C(1, 0),D(0, 1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.【答案】14列表如下:由表知,共有16种等可能结果,其中点M落在四边形ABCD所围成的部分内(含边界)的有:(−2, 0)、(−1, −1)、(−1, 0)、(0, −2)、(0, −1)、(0, 0)、(0, 1)、(1, 0)这8个,.所以点M落在四边形ABCD所围成的部分内(含边界)的概率为12【考点】概率公式列表法与树状图法【解析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】在−2,−1,0,1中正数有1个,∴摸出的球上面标的数字为正数的概率是1,4.故答案为:14列表如下:由表知,共有16种等可能结果,其中点M落在四边形ABCD所围成的部分内(含边界)的有:(−2, 0)、(−1, −1)、(−1, 0)、(0, −2)、(0, −1)、(0, 0)、(0, 1)、(1, 0)这8个,所以点M落在四边形ABCD所围成的部分内(含边界)的概率为12.如图,Rt△ABC中,∠ACB=90∘,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于12GB 的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于12MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段________与________的大小关系是________;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.【答案】CD,CE,CD=CE∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵{∠DCB=∠DFB ∠CBD=∠FBD BD=BD,∴△BCD≅△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB=√AC2+BC2=13,∴sin∠DAF=DFAD =BCAB,即x12+x=513,解得x=152,∵BC=BF=5,∴tan∠DBF=DFBF =152×15=32.【考点】全等三角形的性质与判定角平分线的性质作图—复杂作图解直角三角形【解析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE=90∘知∠CEB=∠CDE,从而得出答案;(2)证△BCD≅△BFD得CD=DF,从而设CD=DF=x,求出AB=√AC2+BC2=13,知sin∠DAF=DFAD =BCAB,即x12+x=513,解之求得x=152,结合BC=BF=5可得答案.【解答】CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90∘,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵{∠DCB=∠DFB ∠CBD=∠FBD BD=BD,∴△BCD≅△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB=2+BC2=13,∴sin∠DAF=DFAD =BCAB,即x12+x=513,解得x=152,∵BC=BF=5,∴tan∠DBF=DFBF =152×15=32.已知关于x的一元二次方程x2−2(a−1)x+a2−a−2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22−x1x2=16,求a的值.【答案】∵关于x的一元二次方程x2−2(a−1)x+a2−a−2=0有两个不相等的实数根,∴△=[−2(a−1)]2−4(a2−a−2)>0,解得:a<3,∵a为正整数,∴a=1,2;∵x1+x2=2(a−1),x1x2=a2−a−2,∵x12+x22−x1x2=16,∴(x1+x2)2−3x1x2=16,∴[2(a−1)]2−3(a2−a−2)=16,解得:a1=−1,a2=6,∵a<3,∴a=−1.【考点】根与系数的关系根的判别式【解析】(1)根据关于x的一元二次方程x2−2(a−1)x+a2−a−2=0有两个不相等的实数根,得到△=[−2(a−1)]2−4(a2−a−2)>0,于是得到结论;(2)根据x1+x2=2(a−1),x1x2=a2−a−2,代入x12+x22−x1x2=16,解方程即可得到结论.【解答】∵关于x的一元二次方程x2−2(a−1)x+a2−a−2=0有两个不相等的实数根,∴△=[−2(a−1)]2−4(a2−a−2)>0,解得:a<3,∵a为正整数,∴a=1,2;∵x1+x2=2(a−1),x1x2=a2−a−2,∵x12+x22−x1x2=16,∴(x1+x2)2−3x1x2=16,∴[2(a−1)]2−3(a2−a−2)=16,解得:a1=−1,a2=6,∵a<3,∴a=−1.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A 型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划? 【答案】设今年每套A 型一体机的价格为x 万元,每套B 型一体机的价格为y 万元, 由题意可得:{y −x =0.6500x +200y =960 , 解得:{x =1.2y =1.8, 答:今年每套A 型的价格各是1.2万元、B 型一体机的价格是1.8万元; 设该市明年购买A 型一体机m 套,则购买B 型一体机(1100−m)套, 由题意可得:1.8(1100−m)≥1.2(1+25%)m , 解得:m ≤600,设明年需投入W 万元,W =1.2×(1+25%)m +1.8(1100−m) =−0.3m +1980, ∵ −0.3<0,∴ W 随m 的增大而减小, ∵ m ≤600,∴ 当m =600时,W 有最小值−0.3×600+1980=1800, 故该市明年至少需投入1800万元才能完成采购计划. 【考点】二元一次方程组的应用——行程问题 一元一次不等式的实际应用 二元一次方程的应用 【解析】(1)直接利用今年每套B 型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B 型一体机,分别得出方程求出答案; (2)根据题意表示出总费用进而利用一次函数增减性得出答案. 【解答】设今年每套A 型一体机的价格为x 万元,每套B 型一体机的价格为y 万元, 由题意可得:{y −x =0.6500x +200y =960 , 解得:{x =1.2y =1.8, 答:今年每套A 型的价格各是1.2万元、B 型一体机的价格是1.8万元; 设该市明年购买A 型一体机m 套,则购买B 型一体机(1100−m)套, 由题意可得:1.8(1100−m)≥1.2(1+25%)m , 解得:m ≤600,设明年需投入W 万元,W =1.2×(1+25%)m +1.8(1100−m) =−0.3m +1980, ∵ −0.3<0,∴ W 随m 的增大而减小, ∵ m ≤600,∴ 当m =600时,W 有最小值−0.3×600+1980=1800, 故该市明年至少需投入1800万元才能完成采购计划.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG // CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.【答案】证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=1∠ADF,2∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG // AC;证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD−DI=9−6=3.【考点】圆周角定理三角形的外接圆与外心三角形的内切圆与内心【解析】(1)根据三角形内心的性质得∠2=∠7,再利用圆内接四边形的性质得∠ADF=∠ABC,则∠1=∠2,从而得到∠1=∠3,则可判断DG // AC;(2)根据三角形内心的性质得∠5=∠6,然后证明∠4=∠DAI得到DA=DI;(3)证明△DAE∽△DBA,利用相似比得到AD=6,则DI=6,然后计算BD−DI即可.【解答】证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=1∠ADF,2∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG // AC;证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD−DI=9−6=3.如图1,在平面直角坐标系xOy中,已知抛物线y=ax2−2ax−8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0, −4).(1)点A的坐标为________,点B的坐标为________,线段AC的长为________,抛物线的解析式为________.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE // CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于m(0<m<2)时,试比较f 点G,记PE=f,求f关于t的函数解析式;当t取m和4−12的对应函数值f1和f2的大小.【答案】x2−x−4(−2, 0),(4, 0),2√5,y=12①当BC是平行四边形的一条边时,如图所示,点C向右平移4个单位、向上平移4个单位得到点B,n2−n−4),点Q(m, 0),设:点P(n, 12则点P向右平移4个单位、向上平移4个单位得到点Q,n2−n−4+4=0,即:n+4=m,12解得:m=4或6(舍去4),即点Q(6, 0);当BC是平行四边形的对角线时,m2−m−4,设点P(m, n)、点Q(s, 0),其中n=12由中心公式可得:m+s=−2,n+0=4,解得:s=2或4(舍去4),故点Q(2, 0);故点Q的坐标为(2, 0)或(6, 0);②如图2,过点P作PH // x轴交BC于点H,∵EP // AC,∴∠HEP=∠ACB,∵PH // x轴,∴∠PHE=∠ABC,∴△EPH∽△CAB,∴EPAC =PHAB,即:2√5=PH6,则EP=√53PH,设点P(t, y P),点H(x H, y P),则12t2−t−4=x H−4,则x H=12t2−t,f=√53PH=[t−(12t2−t)]=−√56(t2−4t),当t=m时,f1=−√56(m2−4m),当t=4−12m时,f2=−√56(14m2−2m),则f1−f2=−√58m(3m−8),则0<m<2,∴f1−f2>0,f1>f2.【考点】二次函数综合题【解析】(1)由题意得:−8a=−4,故a=12,即可求解;(2)①分BC是平行四边形的一条边时、BC是平行四边形的对角线时,两种情况分别求解即可;②证明△EPH∽△CAB,∴EPAC =PHAB,即:2√5=PH6,则EP=√53PH,即可求解.【解答】由题意得:−8a=−4,故a=12,故抛物线的表达式为:y=12x2−x−4,令y=0,则x=4或−2,即点A、B的坐标分别为(−2, 0)、(4, 0),则AC=2√5,故答案为:(−2, 0)、(4, 0)、2√5、y=12x2−x−4;①当BC是平行四边形的一条边时,如图所示,点C向右平移4个单位、向上平移4个单位得到点B,设:点P(n, 12n2−n−4),点Q(m, 0),则点P向右平移4个单位、向上平移4个单位得到点Q,即:n+4=m,12n2−n−4+4=0,解得:m=4或6(舍去4),即点Q(6, 0);当BC是平行四边形的对角线时,设点P(m, n)、点Q(s, 0),其中n=12m2−m−4,由中心公式可得:m+s=−2,n+0=4,解得:s=2或4(舍去4),故点Q(2, 0);故点Q的坐标为(2, 0)或(6, 0);②如图2,过点P作PH // x轴交BC于点H,∵EP // AC,∴∠HEP=∠ACB,∵PH // x轴,∴∠PHE=∠ABC,∴△EPH∽△CAB,∴EPAC =PHAB,即:25=PH6,则EP=√53PH,设点P(t, y P),点H(x H, y P),则12t2−t−4=x H−4,则x H=12t2−t,f=√53PH=[t−(12t2−t)]=−√56(t2−4t),当t=m时,f1=−√56(m2−4m),当t=4−12m时,f2=−√56(14m2−2m),则f1−f2=−√58m(3m−8),则0<m<2,∴f1−f2>0,f1>f2.试卷第21页,总21页。

2019年中考数学试题-2019年湖北省孝感市中考试题及答案解析

2019年中考数学试题-2019年湖北省孝感市中考试题及答案解析

湖北省孝感市2019年中考数学试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分) 1.计算2019+-等于( ) A. -39B. -1C. 1D. 39【答案】C【解析】-19+20=1.故选:C .2. 如图,直线21l l ∥,直线3l 与1l ,2l 分别交于点A ,C ,BC ⊥3l 交1l 于点B ,若∠1=70°,则∠2的度数为( )A . 10°B .20°C .30°D .40°【答案】B【解析】∵l 1∥l 2,∴∠1=∠CAB =70°, ∵BC ⊥l 3交l 1于点B ,∴∠ACB =90°, ∴∠2=180°-90°-70°=20°,故选:B . 3.下列立体图形在,左视图是圆的是( )【答案】D【解析】A .圆锥的左视图是等腰三角形,故此选项不合题意; B .圆柱的左视图是矩形,故此选项不合题意; C .三棱柱的左视图是矩形,故此选项不合题意; D .球的左视图是圆形,故此选项符合题意; 故选:D .4.下列说法错误的是( )A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式 【答案】C【解析】A .在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A 不合题意;B .一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B 不合题意;C .方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C 符合题意;D .全面调查和抽样调查是收集数据的两种方式,正确,故选项D 不合题意. 故选:C .5.下列计算正确的是( ) A.257x x x =⋅ B.422)(xy xy =C.1052x x x =⋅D.a b b a b a -=-+))((【答案】A【解析】A .x 7÷x 5=x 2,故本选项正确; B .(xy 2)2=x 2y 4,故本选项错误; C .x 2•x 5=x 7,故本选项错误;6.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬根撬动一块石头,已知阻力和阻力臂分别是1200N 和0.5m ,则动力F (单位:N )关于动力臂(单位:m )的函数解析式正确的是( ) A.lF 1200=B.lF 600=C.lF 500=D.lF 5.0=【答案】B【解析】∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N 和0.5m ,∴动力F (单位:N )关于动力臂l (单位:m )的函数解析式为:1200×0.5=Fl ,则lF 600=.故选:B . 7.已知二元一次方程组⎩⎨⎧=+=+9421y x y x ,则22222y x y xy x -+-的值是( ) A. -5B. 5C. -6D.6【答案】C8.如图,在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°得到点P ',则P '的坐标为( )A.(3,2)B.(3,-1)C.(2,-3)D.(3,-2)【答案】D【解析】作PQ ⊥y 轴于Q ,如图, ∵P (2,3), ∴PQ =2,OQ =3,∵点P (2,3)绕原点O 顺时针旋转90°得到点P '相当于把△OPQ 绕原点O 顺时针旋转90°得到△OP 'Q ′,∴∠P ′Q ′O =90°,∠QOQ ′=90°,P ′Q ′=PQ =2,OQ ′=OQ =3, ∴点P ′的坐标为(3,-2).故选:D .9.一个装有进水管和出水管的空容器,从某时刻开始4min 内只进水不出水,容器内存水8L ,在随后的8min 内既进水又出水,容器内存水12L ,接着关闭进水管直到容器内的水放完.若每分钟进水和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的函数关系的图象大致的是( )【答案】A【解析】∵从某时刻开始4min 内只进水不出水,容器内存水8L ; ∴此时容器内的水量随时间的增加而增加, ∵随后的8min 内既进水又出水,容器内存水12L , ∴此时水量继续增加,只是增速放缓, ∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A 选项符合,故选:A .10.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上,BE 与CF 交于点G .若BC =4,DE =AF =1,则GF 的长为( )A.513B.512C.519D.516 【答案】A【解析】正方形ABCD 中,∵BC =4, ∴BC =CD =AD =4,∠BCE =∠CDF =90°, ∵AF =DE =1, ∴DF =CE =3,∴BE =CF =5,在△BCE 和△CDF 中,二、细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分)11.中国“神威·太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为 ☆ . 【答案】1.25×109【解析】将数1250 000 000用科学记数法可表示为1.25×109. 故答案为:1.25×109. 12.方程3221+=x x 的解为 ☆ . 【答案】x =1【解析】两边同时乘2x (x +3),得x +3=4x ,解得x =1. 经检验x =1是原分式方程的根.13.如图,在P 处利用测角仪测得某建筑物AB 的顶端B 点的仰角为60°,点C 的仰角为45°,点P 到建筑物的距离为PD =20米,则BC = ☆ 米.【答案】20-2014.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是☆ .【答案】108°【解析】∵被调查的总人数为9÷15%=60(人),∴B类别人数为60-(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360°×18/60=108°,故答案为:108°.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积1S 来近似估计⊙O 的面积S ,设⊙O 的半径为1,则=-1S S ☆ . 【答案】0.14【解析】∵⊙O 的半径为1,∴⊙O 的面积S =3.14,∴则S -S 1=0.14, 故答案为:0.14. 16.如图,双曲线)0(9>=x x y 经过矩形OABC 的顶点B ,双曲线)0(>=x xky 交AB ,BC 于点E ,F ,且与矩形的对角线OB 交于点D ,连接EF 。

2019年湖北省孝感市中考数学试题及参考答案(word解析版)

2019年湖北省孝感市中考数学试题及参考答案(word解析版)

2019年湖北省孝感市中考数学试题及参考答案与解析(本试卷满分120分,考试时间120分钟)一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的,不涂,错涂或涂的代号超过一个,一律得0分。

)1.计算﹣19+20等于()A.﹣39 B.﹣1 C.1 D.392.如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°3.下列立体图形中,左视图是圆的是()A.B.C.D.4.下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式5.下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(+)(﹣)=b﹣a 6.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=7.已知二元一次方程组,则的值是()A.﹣5 B.5 C.﹣6 D.68.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)9.一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.10.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为.12.方程=的解为.13.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O 的面积S,设⊙O的半径为1,则S﹣S1=.16.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.三、用心做一做,显显自己的能力!(本大题8小题,满分72分)17.(6分)计算:|﹣1|﹣2sin60°+()﹣1+.18.(8分)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.19.(7分)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.20.(8分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.21.(10分)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.22.(10分)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A 型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?23.(10分)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.24.(13分)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B 两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.参考答案与解析(本试卷满分120分,考试时间120分钟)一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分。

2019年湖北省孝感市中考数学试卷

2019年湖北省孝感市中考数学试卷

2019年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.计算-19+20等于()A. B. C. 1 D. 392.如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A. B. C. D.3.下列立体图形中,左视图是圆的是()A. B. C. D.4.下列说法错误的是()A. 在一定条件下,可能发生也可能不发生的事件称为随机事件B. 一组数据中出现次数最多的数据称为这组数据的众数C. 方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D. 全面调查和抽样调查是收集数据的两种方式5.下列计算正确的是()A. B.C. D.6.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A. B. C. D.7.已知二元一次方程组,则的值是()A. B. 5 C. D. 68.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.B.C.D.9.一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A. B.C. D.10.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.二、填空题(本大题共6小题,共18.0分)11.中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为______.12.方程=的解为______.13.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=______米.14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是______.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S-S1=______.16.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为______.三、计算题(本大题共1小题,共6.0分)17.计算:|-1|-2sin60°+()-1+.四、解答题(本大题共7小题,共66.0分)18.如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.19.一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是______.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M 的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(-2,0),B(0,-2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD 所围成的部分内(含边界)的概率.20.如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP 交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是______;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.21.已知关于x的一元二次方程x2-2(a-1)x+a2-a-2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22-x1x2=16,求a的值.22.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?23.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.24.如图1,在平面直角坐标系xOy中,已知抛物线y=ax2-2ax-8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,-4).(1)点A的坐标为______,点B的坐标为______,线段AC的长为______,抛物线的解析式为______.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4-m(0<m<2)时,试比较f的对应函数值f1和f2的大小.答案和解析1.【答案】C【解析】解:-19+20=1.故选:C.直接利用有理数的加减运算法则计算得出答案.此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.【答案】B【解析】解:∵l1∥l2,∴∠1=∠CAB=70°,∵BC⊥l3交l1于点B,∴∠ACB=90°,∴∠2=180°-90°-70°=20°,故选:B.根据平行线的性质和垂直的定义解答即可.此题考查平行线的性质,关键是根据平行线的性质解答.3.【答案】D【解析】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;B、圆柱的左视图是矩形,故此选项不合题意;C、三棱柱的左视图是矩形,故此选项不合题意;D、球的左视图是圆形,故此选项符合题意;故选:D.左视图是从物体左面看,所得到的图形.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.本题主要考查了随机事件的定义、众数的定义、方差的意义以及调查的方式,属于基础题.5.【答案】A【解析】解:A、x7÷x5=x2,故本选项正确;B、(xy2)2=x2y4,故本选项错误;C、x2•x5=x7,故本选项错误;D、(+)(-)=a-b,故本选项错误;故选:A.根据同底数幂的除法法则判断A;根据积的乘方法则判断B;根据同底数幂的乘法法则判断C;根据平方差公式以及二次根式的性质判断D.本题考查了二次根式的运算,整式的运算,掌握同底数幂的乘除法法则、积的乘方法则、平方差公式以及二次根式的性质是解题的关键.解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F=.故选:B.直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.此题主要考查了反比例函数的应用,正确读懂题意得出关系式是解题关键.7.【答案】C【解析】解:,②-①×2得,2y=7,解得,把代入①得,+y=1,解得,∴=.故选:C.解方程组求出x、y的值,再把所求式子化简后代入即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.【答案】D【解析】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,-2).故选:D.作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.9.【答案】A【解析】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选:A.根据实际问题结合四个选项确定正确的答案即可.本题考查了函数的图象的知识,解题的关键是能够将实际问题与函数的图象有机的结合起来,难度不大.10.【答案】A【解析】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF-CG=5-=,故选:A.证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE≌△CDF是解本题的关键.11.【答案】1.25×109【解析】解:将数1250 000 000用科学记数法可表示为1.25×109.故答案为:1.25×109.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】x=1【解析】解:两边同时乘2x(x+3),得x+3=4x,解得x=1.经检验x=1是原分式方程的根.观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.解一个分式方程时,可按照“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”的步骤求出方程的解即可.注意:解分式方程时,最后一步的验根很关键.13.【答案】(20-20)【解析】解:在Rt△PBD中,tan∠BPD=,则BD=PD•tan∠BPD=20,在Rt△PBD中,∠CPD=45°,∴CD=PD=20,∴BC=BD-CD=20-20,故答案为:(20-20).根据正切的定义求出BD,根据等腰直角三角形的性质求出CD,结合图形计算,得到答案.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.14.【答案】108°【解析】解:∵被调查的总人数为9÷15%=60(人),∴B类别人数为60-(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.先由A类别人数及其所占百分比求得总人数,再由各类别人数之和等于总人数求出B类别人数,继而用360°乘以B类别人数占总人数的比例即可得.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.15.【答案】0.14【解析】解:∵⊙O的半径为1,∴⊙O的面积S=3.14,∴圆的内接正十二边形的中心角为=30°,∴圆的内接正十二边形的面积S1=12××1×1×sin30°=3,∴则S-S1=0.14,故答案为:0.14.根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.16.【答案】【解析】解:设D (2m ,2n ), ∵OD :OB=2:3,∴A (3m ,0),C (0,3n ), ∴B (3m ,3n ),∵双曲线y=(x >0)经过矩形OABC 的顶点B , ∴9=3m•3n , ∴mn=1,∵双曲线y=(x >0)经过点D , ∴k=4mn∴双曲线y=(x >0),∴E (3m ,n ),F (m ,3n ),∴BE=3n-n=n ,BF=3m-m=m ,∴S △BEF =BE•BF=mn=故答案为.设D (2m ,2n ),根据题意A (3m ,0),C (0,3n ),B (3m ,3n ),即可得出9=3m•3n ,k=2m•2n=4mn ,解得mn=1,由E (3m ,n ),F (m ,3n ),求得BE 、BF ,然后根据三角形面积公式得到S △BEF =BE•BF=mn=.本题考查了反比例系数k 的几何意义和反比例函数图象上点的坐标特征、三角形面积等,表示出各个点的坐标是解题的关键.17.【答案】解:原式= -1-2×+6-3=2. 【解析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂法则,以及立方根定义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】证明:∵∠C =∠D =90°, ∴△ACB 和△BDA 是直角三角形, 在Rt △ACB 和Rt △BDA 中,,∴Rt△ACB≌Rt△BDA(HL),∴∠ABC=∠BAD,∴AE=BE.【解析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.本题考查了全等三角形的判定与性质、等腰三角形的判定;熟练掌握等腰三角形的判定定理,证明三角形全等是解题的关键.19.【答案】【解析】解:(1)在-2,-1,0,1中正数有1个,∴摸出的球上面标的数字为正数的概率是,故答案为:.由表知,共有16种等可能结果,其中点M落在四边形ABCD所围成的部分内(含边界)的有:(-2,0)、(-1,-1)、(-1,0)、(0,-2)、(0,-1)、(0,0)、(0,1)、(1,0)这8个,所以点M落在四边形ABCD所围成的部分内(含边界)的概率为.(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】CD=CE【解析】解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB==13,∴sin∠DAF==,即=,解得x=,∵BC=BF=5,∴tan∠DBF==×=.(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE=90°知∠CEB=∠CDE,从而得出答案;(2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB==13,知sin∠DAF==,即=,解之求得x=,结合BC=BF=5可得答案.本题主要考查作图-复杂作图,解题的关键是掌握过直线外一点作已知直线的垂线和角平分线的尺规作图及全等三角形的判定与性质等知识点.21.【答案】解:(1)∵关于x的一元二次方程x2-2(a-1)x+a2-a-2=0有两个不相等的实数根,∴△=[-2(a-1)]2-4(a2-a-2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a-1),x1x2=a2-a-2,∵x12+x22-x1x2=16,∴(x1+x2)2-x1x2=16,∴[-2(a-1)]2-3(a2-a-2)=16,解得:a1=-1,a2=6,∵a<3,∴a=-1.【解析】本题主要考查的是一元二次方程根与系数的关系及根的判别式,先判别出a 的取值范围,再由根与系数的关系得出方程组是解答此题的关键.(1)根据关于x的一元二次方程x2-2(a-1)x+a2-a-2=0有两个不相等的实数根,得到△=[-2(a-1)]2-4(a2-a-2)>0,于是得到结论;(2)根据x1+x2=2(a-1),x1x2=a2-a-2,代入x12+x22-x1x2=16,解方程即可得到结论.22.【答案】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,由题意可得:1.8(1100-m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100-m)=-0.3m+1980,∵-0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值-0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【解析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.此题主要考查了二元一次方程组的应用以及一元一次不等式的应用、一次函数的应用,正确找出等量关系是解题关键.23.【答案】(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠ADE=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD-DI=9-6=3.【解析】(1)根据三角形内心的性质得∠2=∠7,再利用圆内接四边形的性质得∠ADF=∠ABC,则∠1=∠2,从而得到∠1=∠3,则可判断DG∥AC;(2)根据三角形内心的性质得∠5=∠6,然后证明∠4=∠DAI得到DA=DI;(3)证明△DAE∽△DBA,利用相似比得到AD=6,则DI=6,然后计算BD-DI即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了圆周角定理和三角形的外心.24.【答案】(-2,0)(4,0)2y=x2-x-4【解析】解:(1)由题意得:-8a=-4,故a=,故抛物线的表达式为:y=x2-x-4,令y=0,则x=4或-2,即点A、B的坐标分别为(-2,0)、(4,0),则AC=2,故答案为:(-2,0)、(4,0)、2、y=x2-x-4;(2)①当BC是平行四边形的一条边时,如图所示,点C向右平移4个单位、向上平移4个单位得到点B,设:点P(n,n2-n-4),点Q(m,0),则点P向右平移4个单位、向上平移4个单位得到点Q,即:n+4=m,n2-n-4+4=0,解得:m=4或6(舍去4),即点Q(6,0);②当BC是平行四边形的对角线时,设点P(m,n)、点Q(s,0),其中n=m2-m-4,由中心公式可得:m+s=-2,n+0=4,解得:s=2或4(舍去4),故点Q(2,0);故点Q的坐标为(2,0)或(6,0);(3)如图2,过点P作PH∥x轴交BC于点H,∵GP∥y轴,∴∠HEP=∠ACB,∵PH∥x轴,∴∠PHO=∠AOC,∴△EPH∽△CAO,∴,即:,则EP=PH,设点P(t,y P),点H(x H,y P),则t2-t-4=x H-4,则x H=t2-t,f=PH=[t-(t2-t)]=-(t2-4t),当t=m时,f1=(m2-4m),当t=4-m时,f2=-(m2-2m),则f1-f2=-m(m-),则0<m<2,∴f1-f2>0,f1>f2.(1)由题意得:-8a=-4,故a=,即可求解;(2)分BC是平行四边形的一条边时、BC是平行四边形的对角线时,两种情况分别求解即可.(3)证明△EPH∽△CAO,∴,即:,则EP=PH,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(2),要主要分类求解,避免遗漏.。

(完整版)2019年孝感市中考数学试题、答案(解析版)

(完整版)2019年孝感市中考数学试题、答案(解析版)

2019年湖北省孝感市中考数学试题、答案(解析版)(本试卷共24题,满分120分,考试时间120分钟)一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分) 1.计算1920-+等于( )A .39-B .1-C .1D .392.如图,直线12l l ∥,直线3l 与1l ,2l 分别交于点A ,C ,BC ⊥交1l 于点B ,若170∠=︒,则2∠的度数为( )A .10︒B .20︒C .30︒D .40︒ 3.下列立体图形在,左视图是圆的是( )ABCD4.下列说法错误的是( )A .在一定条件下,可能发生也可能不发生的事件称为随机事件B .一组数据中出现次数最多的数据称为这组数据的众数C .方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D .全面调查和抽样调查是收集数据的两种方式 5.下列计算正确的是( )A .752x x x ÷=B .224()xy xy =C .2510x x x ⋅=D .()()a b a b b a +-=-6.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:⨯=⨯阻力阻力臂动力动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1 200 N 和0.5 m ,则动力F (单位:N )关于动力臂(单位:m )的函数解析式正确的是( )A .1200F l =B .600F l =C .500F l=D .0.5F l=7.已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是 ( )A .5-B .5C .6-D .68.如图,在平面直角坐标系中,将点()2,3P 绕原点O 顺时针旋转90︒得到点P ',则P '的坐标为( ) A .()3,2 B .()3,1- C .()2,3-D .()3,2-9.一个装有进水管和出水管的空容器,从某时刻开始4 min 内只进水不出水,容器内存水8 L ,在随后的8 min 内既进水又出水,容器内存水12 L ,接着关闭进水管直到容器内的水放完.若每分钟进水和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的函数关系的图象大致的是( )ABCD10.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上,BE 与CF 交于点G .若4BC =,1DE AF ==,则GF 的长为( ) A.135 B .125 C .195D .165二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分)11.中国“神威·太湖之光”计算机最高运行速度为1 250 000 000亿次/秒,将数1 250 000 000用科学记数法可表示为________. 12.方程1223x x =+的解为________ 13.如图,在P 处利用测角仪测得某建筑物AB 的顶端B 点的仰角为60︒,点C 的仰角为45︒,点P 到建筑物的距离为20PD =米,则BC =________米.14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A .小于5天;B .5天;C .6天;D .7天),则扇形统计图B 部分所对应的圆心角的度数是________.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积1S 来近似估计O e 的面积S ,设O e 的半径为1,则1S S -=________.(π取3.14) 16.如图,双曲线9(0)y x x =>经过矩形OABC 的顶点B ,双曲线(0)ky x x=>交AB ,BC 于点E ,F ,且与矩形的对角线OB 交于点D ,连接EF .若:2:3OD OB =,则BEF △的面积为________.三、用心做一做,显显自己的能力!(本大题8小题,满分72分.) 17.(6分)计算:131|31|2sin 60()27.6---︒++-18.(8分)如图,已知90C D ∠=∠=︒,BC 与AD 交于点E ,AC BD =,求证:AE BE =.19.(本题7分)一个不透明的袋子中装有四个小球,上面分别标有数字2-,1-,0,1,它们除了数字不一样外,其它完全相同. (1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________(3分)(2)小聪先从袋子中随机摸出一个小球,记下数字作为点M 的纵坐标,如图,已知四边形ABCD 的四个顶点的坐标分别为()2,0A -,()0,2B -,()1,0C ,()0,1D ,请用画树状图或列表法,求点M 落在四边形ABCD 所围成的部分内(含边界)的概率.(4分).20.(本题8分)如图,Rt ABC △中,90ACB ∠=︒,一同学利用直尺和圆规完成如下操作:①以点C 为圆心,以CB 为半径画弧,角AB 于点G ;分别以点G 、B 为圆心,以大于12GB 的长为半径画弧,两弧交点K ,作射线CK ;②以点B 为圆心,以适当的长为半径画弧,交BC 于点M ,交AB 的延长线于点N ;分别以点M 、N 为圆心,以大于12MN 的长为半径画弧,两弧交于点P ,作直线BP 交AC 的延长线于点D ,交射线CK 于点E .请你观察图形,根据操作结果解答下列问题; (1)线段CD 与CE 的大小关系是________(3分)(2)过点D 作DF AB ⊥交AB 的延长线于点F ,若12AC =,5BC =,求tan DBF ∠的值.(5分)21.(本题10分)已知关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根1x ,2x . (1)若a 为正数,求a 的值;(5分)(2)若12,x x 满足22121216x x x x +-=,求a 的值.22.(本题10分)为了加快“智慧校园”建设,某市准备为试点学校采购一批A 、B 两种型号的一体机,经过市场调查发现,今年每套B 型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B 型一体机. (1)求今年每套A 型、B 型一体机的价格各是多少万元?(5分)(2)该市明年计划采购A 型、B 型一体机1 100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B 型一体机的价格不变,若购买B 型一体机的总费用不低于购买A 型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?(5分)23.(本题10分)如图,点I 是ABC △的内心,BI 的延长线与ABC △的外接圆O e 交于点D ,与AC 交于点E ,延长CD 、BA 相交于点F ,ADF ∠的平分线交AF 于点G .(1)求证:DG CA ∥;(4分) (2)求证:AD ID =;(3分)(3)若4DE =,5BE =,求BI 的长.(3分)24.(本题13分)如图1,在平面直角坐标系xOy 中,已知抛物线228y ax ax a =--与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y轴交于点0,4C -().(1)点A 的坐标为________,点B 的坐标为________,线段AC 的长为________,抛物线的解析式为________(4分) (2)点P 是线段BC 下方抛物线上的一个动点.①如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形是平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)1.计算﹣19+20等于()A.﹣39B.﹣1C.1D.392.如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°3.下列立体图形中,左视图是圆的是()A.B.C.D.4.下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式5.下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(+)(﹣)=b﹣a6.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=7.已知二元一次方程组,则的值是()A.﹣5B.5C.﹣6D.68.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)9.一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.10.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为.12.方程=的解为.13.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=.16.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF 的面积为.三、用心做一做,显显自己的能力!(本大题8小题,满分72分)17.(6分)计算:|﹣1|﹣2sin60°+()﹣1+.18.(8分)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.19.(7分)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.20.(8分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC 的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.21.(10分)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.22.(10分)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?23.(10分)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.24.(13分)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.2019年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分)1.计算﹣19+20等于()A.﹣39B.﹣1C.1D.39【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:﹣19+20=1.故选:C.【点评】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°【分析】根据平行线的性质和垂直的定义解答即可.【解答】解:∵l1∥l2,∴∠1=∠CAB=70°,∵BC⊥l3交l1于点B,∴∠ACB=90°,∴∠2=180°﹣90°﹣70°=20°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.3.下列立体图形中,左视图是圆的是()A.B.C.D.【分析】左视图是从物体左面看,所得到的图形.【解答】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;B、圆柱的左视图是矩形,故此选项不合题意;C、三棱柱的左视图是矩形,故此选项不合题意;D、球的左视图是圆形,故此选项符合题意;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式【分析】分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.【解答】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.【点评】本题主要考查了随机事件的定义、众数的定义、方差的意义以及调查的方式,属于基础题.5.下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(+)(﹣)=b﹣a【分析】根据同底数幂的除法法则判断A;根据积的乘方法则判断B;根据同底数幂的乘法法则判断C;根据平方差公式以及二次根式的性质判断D.【解答】解:A、x7÷x5=x2,故本选项正确;B、(xy2)2=x2y4,故本选项错误;C、x2•x5=x7,故本选项错误;D、(+)(﹣)=a﹣b,故本选项错误;故选:A.【点评】本题考查了二次根式的运算,整式的运算,掌握同底数幂的乘除法法则、积的乘方法则、平方差公式以及二次根式的性质是解题的关键.6.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F=.故选:B.【点评】此题主要考查了反比例函数的应用,正确读懂题意得出关系式是解题关键.7.已知二元一次方程组,则的值是()A.﹣5B.5C.﹣6D.6【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+y=1,解得,∴=.故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.9.一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.【分析】根据实际问题结合四个选项确定正确的答案即可.【解答】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选:A.【点评】本题考查了函数的图象的知识,解题的关键是能够将实际问题与函数的图象有机的结合起来,难度不大.10.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.【点评】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE≌△CDF是解本题的关键.二.细心填一填,试试自己的身手!(本大题6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为 1.25×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数1250 000 000用科学记数法可表示为1.25×109.故答案为:1.25×109.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.方程=的解为x=1.【分析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.【解答】解:两边同时乘2x(x+3),得x+3=4x,解得x=1.经检验x=1是原分式方程的根.【点评】解一个分式方程时,可按照“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”的步骤求出方程的解即可.注意:解分式方程时,最后一步的验根很关键.13.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=(20﹣20)米.【分析】根据正切的定义求出BD,根据等腰直角三角形的性质求出CD,结合图形计算,得到答案.【解答】解:在Rt△PBD中,tan∠BPD=,则BD=PD•tan∠BPD=20,在Rt△PBD中,∠CPD=45°,∴CD=PD=20,∴BC=BD﹣CD=20﹣20,故答案为:(20﹣20).【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是108°.【分析】先由A类别人数及其所占百分比求得总人数,再由各类别人数之和等于总人数求出B类别人数,继而用360°乘以B类别人数占总人数的比例即可得.【解答】解:∵被调查的总人数为9÷15%=60(人),∴B类别人数为60﹣(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=0.14.【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.【解答】解:∵⊙O的半径为1,∴⊙O的面积S=3.14,∴圆的内接正十二边形的中心角为=30°,∴圆的内接正十二边形的面积S1=12××1×1×sin30°=3,∴则S﹣S1=0.14,故答案为:0.14.【点评】本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.16.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF 的面积为.【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn=.【解答】解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m,n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S△BEF=BE•BF=mn=故答案为.【点评】本题考查了反比例系数k的几何意义和反比例函数图象上点的坐标特征、三角形面积等,表示出各个点的坐标是解题的关键.三、用心做一做,显显自己的能力!(本大题8小题,满分72分)17.(6分)计算:|﹣1|﹣2sin60°+()﹣1+.【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=﹣1﹣2×+6﹣3=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.【解答】证明:∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,在Rt△ACB和Rt△BDA中,,∴Rt△ACB≌Rt△BDA(HL),∴∠ABC=∠BAD,∴AE=BE.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定;熟练掌握等腰三角形的判定定理,证明三角形全等是解题的关键.19.(7分)一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)在﹣2,﹣1,0,1中正数有1个,∴摸出的球上面标的数字为正数的概率是,故答案为:.(2)列表如下:﹣2﹣101﹣2(﹣2,﹣2)(﹣1,﹣2)(0,﹣2)(1,﹣2)﹣1(﹣2,﹣1)(﹣1,﹣1)(0,﹣1)(1,﹣1)0(﹣2,0)(﹣1,0)(0,0)(1,0)1(﹣2,1)(﹣1,1)(0,1)(1,1)由表知,共有16种等可能结果,其中点M落在四边形ABCD所围成的部分内(含边界)的有:(﹣2,0)、(﹣1,﹣1)、(﹣1,0)、(0,﹣2)、(0,﹣1)、(0,0)、(0,1)、(1,0)这8个,所以点M落在四边形ABCD所围成的部分内(含边界)的概率为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC 的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是CD=CE;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.【分析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE=90°知∠CEB=∠CDE,从而得出答案;(2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB==13,知sin∠DAF==,即=,解之求得x=,结合BC=BF=5可得答案.【解答】解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB==13,∴sin∠DAF==,即=,解得x=,∵BC=BF=5,∴tan∠DBF==×=.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握过直线外一点作已知直线的垂线和角平分线的尺规作图及全等三角形的判定与性质等知识点.21.(10分)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;(2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.【解答】解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣x1x2=16,∴[﹣2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.【点评】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a的取值范围,再由根与系数的关系得出方程组是解答此题的关键.22.(10分)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用、一次函数的应用,正确找出等量关系是解题关键.23.(10分)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.【分析】(1)根据三角形内心的性质得∠2=∠7,再利用圆内接四边形的性质得∠ADF =∠ABC,则∠1=∠2,从而得到∠1=∠3,则可判断DG∥AC;(2)根据三角形内心的性质得∠5=∠6,然后证明∠4=∠DAI得到DA=DI;(3)证明△DAE∽△DBA,利用相似比得到AD=6,则DI=6,然后计算BD﹣DI即可.【解答】(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠ADE=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了圆周角定理和三角形的外心.24.(13分)如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为(﹣2,0),点B的坐标为(4,0),线段AC的长为2,抛物线的解析式为y=x2﹣x﹣4.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x 轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.【分析】(1)由题意得:﹣8a=﹣4,故a=,即可求解;(2)分BC是平行四边形的一条边时、BC是平行四边形的对角线时,两种情况分别求解即可.(3)证明△EPH∽△CAO,∴,即:,则EP=PH,即可求解.【解答】解:(1)由题意得:﹣8a=﹣4,故a=,故抛物线的表达式为:y=x2﹣x﹣4,令y=0,则x=4或﹣2,即点A、B的坐标分别为(﹣2,0)、(4,0),则AC=2,故答案为:(﹣2,0)、(4,0)、2、y=x2﹣x﹣4;(2)①当BC是平行四边形的一条边时,如图所示,点C向右平移4个单位、向上平移4个单位得到点B,设:点P(n,n2﹣n﹣4),点Q(m,0),则点P向右平移4个单位、向上平移4个单位得到点Q,即:n+4=m,n2﹣n﹣4+4=0,解得:m=4或6(舍去4),即点Q(6,0);②当BC是平行四边形的对角线时,设点P(m,n)、点Q(s,0),其中n=m2﹣m﹣4,由中心公式可得:m+s=﹣2,n+0=4,解得:s=2或4(舍去4),故点Q(2,0);故点Q的坐标为(2,0)或(6,0);(3)如图2,过点P作PH∥x轴交BC于点H,∵GP∥y轴,∴∠HEP=∠ACB,∵PH∥x轴,∴∠PHO=∠AOC,∴△EPH∽△CAO,∴,即:,则EP=PH,设点P(t,y P),点H(x H,y P),则t2﹣t﹣4=x H﹣4,则x H=t2﹣t,f=PH=[t﹣(t2﹣t)]=﹣(t2﹣4t),当t=m时,f1=(m2﹣4m),当t=4﹣m时,f2=﹣(m2﹣2m),则f1﹣f2=﹣m(m﹣),则0<m<2,∴f1﹣f2>0,f1>f2.【点评】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(2),要主要分类求解,避免遗漏.。

相关文档
最新文档