常见的相遇问题追问题等计算公式(非常实用)
初中相遇问题公式及解析
![初中相遇问题公式及解析](https://img.taocdn.com/s3/m/bcbaf117f11dc281e53a580216fc700abb6852f8.png)
初中相遇问题公式及解析
初中相遇问题公式及解析如下:
公式:路程=速度×时间
解析:相遇问题的核心是路程,而路程可以用速度和时间的乘积来表示。
在相遇问题中,两个物体从两个不同的地方出发,在某个时间点相遇。
由于两个物体从不同的地方出发,它们各自走过的路程长度是不一样的。
但是,它们相遇时,它们所走过的路程之和是等于两地之间的总距离。
具体来说,假设两个物体从两地A和B出发,在某时刻t相遇。
物体A的速度为v1,物体B的速度为v2,它们相遇时所走过的路程分别为s1和s2。
根据速度和时间的关系,我们有:
s1 = v1 × t
s2 = v2 × t
因为它们是从两地出发,所以两地之间的总距离为s1 + s2。
将s1和s2的表达式代入总距离的公式中,我们得到:
s1 + s2 = (v1 + v2) × t
这就是相遇问题的基本公式。
通过这个公式,我们可以计算出两个物体相遇的时间t,或者知道时间t后计算出两物体相遇时的距离。
需要注意的是,当两个物体从同一个地方出发,它们的速度和时间之间的关系是:
s = (v1 + v2) × t
其中s是两物体相遇时所走过的路程。
这个公式和上面的公式类似,但是在这里,两个物体是从同一个地方出发的。
综上所述,初中相遇问题公式及解析主要涉及到速度、时间和路程之间的关系。
通过这个公式,我们可以解决各种相遇问题,包括两个物体从不同地方出发或者从同一个地方出发的情况。
常见的相遇问题及追及问题等计算公式
![常见的相遇问题及追及问题等计算公式](https://img.taocdn.com/s3/m/d876595776eeaeaad0f3300a.png)
小学常用公式和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数+1)=小数差倍问题差÷(倍数-1)=小数植树问题1 单条线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:棵数=全长÷间隔长+1=间隔数+1全长=间隔长×(棵数-1)间隔长=全长÷(棵数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数⑶如果在非封闭线路的两端都不要植树,那么:棵数=全长÷间隔长-1=间隔数-1全长=间隔长×(棵数+1)间隔长=全长÷(棵数+1)2 双边线路上的植树问题主要也有三种情形:参考单条线路上的植树问题,注意要除以2。
3 环形或叫封闭线路上的植树问题的数量关系如下棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)【题目】一游泳池道长100米,甲乙两个运动员从泳道的两端同时下水做往返训练15分钟,甲每分钟游81米,乙每分钟游89米。
行程问题、相遇问题和追及问题的解题技巧(汇编)
![行程问题、相遇问题和追及问题的解题技巧(汇编)](https://img.taocdn.com/s3/m/80c573f3bceb19e8b8f6ba8d.png)
行程问题、相遇问题和追及问题的解题技巧相遇问题两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。
相遇问题是研究速度,时间和路程三者数量之间关系的问题。
它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,也就是速度和。
相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间相遇路程=甲走的路程+乙走的路程甲的速度=相遇路程÷相遇时间 -乙的速度甲的路程=相遇路程-乙走的路程解答这类问题,要弄清题意,按照题意画出线段图,分析各数量之间的关系,选择解答方法.。
相遇问题除了要弄清路程,速度与相遇时间外,在审题时还要注意一些重要的问题:是否是同时出发,如果题目中有谁先出发,就把先行的路程去掉,找到同时行的路程。
驶的方向,是相向,同向还是背向.不同的方向解题方法就不一样。
是否相遇.有的题目行驶的物体并没有相遇,要把相距的路程去掉;有的题目是两者错过,要把多行的路程加上,得到同时行驶的路程.。
追及问题两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。
这类常常会在考试考到。
一般分为两种:一种是双人追及、双人相遇,此类问题比较简单;一种是多人追及、多人相遇,此类则较困难。
追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间一、行程问题、相遇问题和追及问题的核心公式:行程问题最核心的公式“速度=路程÷时间”。
由此可以演变为相遇问题和追及问题。
其中:相遇时间=相遇距离÷速度和,追及时间=追及距离÷速度差。
速度和=快速+慢速速度差=快速-慢速二、相遇距离、追及距离、速度和(差)及相遇(追及)时间的确定第一:相遇时间和追及时间是指甲乙在完成相遇(追及)任务时共同走的时间。
第二:在甲乙同时走时,它们之间的距离才是相遇距离(追及距离)分为:相遇距离——甲与乙在相同时间内走的距离之和;S=S1+S2甲︳→S1 →∣←S2 ←︳乙A C B追及距离——甲与乙在相同时间内走的距离之差甲︳→S1 ←∣乙→S2 ︳A B C在相同时间内S甲=AC ,S乙=BC 距离差AB =S甲- S乙第三:在甲乙同时走之前,不管是甲乙谁先走,走的方向如何?走的距离是多少?都不影响相遇时间和追及时间,只是引起相遇距离和追及距离的变化,具体变化都应视情况从开始相距的距离中加减。
相遇问题的方程公式
![相遇问题的方程公式](https://img.taocdn.com/s3/m/6a71f3be760bf78a6529647d27284b73f24236ca.png)
相遇问题的方程公式
相遇问题是一个经典的数学问题,通常涉及到两个或多个物体(如汽车、船等)从不同的地点出发,最终在某个点相遇。
这类问题的关键在于找出物体之间的相对速度和相对距离。
在解决相遇问题时,通常需要使用以下公式:
1. 相对速度公式:
相对速度 = (速度1 + 速度2) / (1 + 速度1 × 速度2 / 相对速度)
这个公式用于计算两个物体之间的相对速度。
其中,速度1和速度2分别是两个物体的速度,相对速度是两个物体之间的距离。
2. 相对距离公式:
相对距离 = (相对速度× 时间) + 初始距离
这个公式用于计算两个物体相遇时的相对距离。
其中,相对速度是两个物体之间的速度,时间是从出发到相遇所经过的时间,初始距离是两个物体初始时的距离。
3. 时间公式:
时间 = (相对距离 - 初始距离) / 相对速度
这个公式用于计算两个物体相遇所需要的时间。
其中,相对距离是两个物体相遇时的距离,初始距离是两个物体初始时的距离,相对速度是两个物体之间的速度。
这些公式可以帮助我们解决相遇问题,并计算出物体相遇的时间、距离和相对速度。
路程追及相遇问题公式
![路程追及相遇问题公式](https://img.taocdn.com/s3/m/f604ad18ec630b1c59eef8c75fbfc77da3699774.png)
路程追及相遇问题公式路程追及相遇问题是数学中的经典问题之一,涉及到时间、距离和速度等概念。
在解决这类问题时,需要运用代数知识和逻辑推理能力,能够有效地提高学生的数学素养和解决实际问题的能力。
下面是路程追及相遇问题公式的详细讲解:1. 公式一问题描述:两个物体从相反的方向出发,相遇后交换速度,问何时再次相遇?解决方法:设第一个物体的速度为v1,第二个物体的速度为v2。
两个物体相遇时,第一个物体行进的路程为d1,第二个物体行进的路程为d2。
设两个物体再次相遇时的时间为t,则有:2(d1+d2)=t(v1+v2)d1=d2+vt综上两式相减,可得到:t=2d1÷(v1+v2)再代入d1=d2+vt中,可得到:d1=d2+2d1÷(v1+v2)×v12. 公式二问题描述:两个物体从同一起点出发,速度不同,前一个比后一个快,问一段时间后,二者距离是多少?解决方法:设第一个物体的速度为v1,第二个物体的速度为v2。
设二者相遇时的时间为t,则有:v1t=(v1−v2)(t−τ)其中,τ为二者相遇前的时间。
将τ代入v1τ=v2(τ+t)中,可得到:τ=tv2÷(v1−v2)再代入v1t=(v1−v2)(t−τ)中,可得到:t=v1÷(v1−v2)×d其中,d为二者的初始距离。
将t代入v1t=(v1−v2)(t−τ)中,可得到:v1τ=v2tv1÷(v1−v2)综上可得到,二者相遇时的距离为:d1=v1tv1d2=v2tv2d=d1+d23. 公式三问题描述:一个人在开始时向某个方向以速度v行进,另一个人在t时间后沿着同一方向以速度v2行进,问何时另一个人能追上第一个人?解决方法:设第一个人的速度为v1,第二个人的速度为v2。
设第二个人追上第一个人所需时间为t,则有:d1=(v1+v2)td2=v1t综上可得到,第二个人追上第一个人的时间为:t=d2÷(v2−v1)以上是三种常见的路程追及相遇问题公式,希望可以对想要解决这类问题的同学提供帮助。
高一物理追及相遇问题
![高一物理追及相遇问题](https://img.taocdn.com/s3/m/386ca4bec9d376eeaeaad1f34693daef5ef713cd.png)
高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。
解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。
一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。
解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。
定义变量设被追物体为A,追赶物体为B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。
解决相遇问题的关键是找出两个物体之间的位移和速度关系。
定义变量设相遇的两个物体分别为A、B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
如果A、B不能相遇,还可以求出它们之间的距离。
间隔问题公式
![间隔问题公式](https://img.taocdn.com/s3/m/675c56f1ab00b52acfc789eb172ded630b1c989b.png)
间隔问题公式
间隔问题是一种涉及到等差数列、等比数列等问题的题目,常见的间隔问题包括发车间隔、相遇问题、追赶问题等。
对于此类问题,常用的公式如下:
1. 等差数列间隔问题公式:
对于等差数列,相邻两数的差值相等,设公差为 d,首项为 a1,则第 n 项的值可以表示为:
an = a1 + (n - 1)d
其中,an 表示第 n 项,a1 表示首项,n 表示项数。
2. 等比数列间隔问题公式:
对于等比数列,相邻两数的比值相等,设公比为 r,首项为 a1,则第 n 项的值可以表示为:
an = a1 * r^(n - 1)
其中,an 表示第 n 项,a1 表示首项,n 表示项数。
3. 相遇问题公式:
在相遇问题中,甲乙两人或者物体之间的距离随着时间的变化而变化,假设两人或者物体之间的距离为 s,时间为 t,则甲乙两人或者物体之间的间隔变化可以表示为:
s = ht + c
其中,h 表示甲乙两人或者物体的速度差,c 表示甲乙两人或者物体之间的碰撞损失。
4. 追赶问题公式:
在追赶问题中,追赶者的速度比被追赶者的速度大,假设追赶者与被追赶者之间的距离为 s,时间为 t,则追赶者与被追赶者的间隔变化可以表示为:
s = vt - t
其中,v 表示追赶者的速度。
以上是常见的间隔问题公式,通过这些公式,可以方便地求解等差数列、等比数列等问题,同时也可以应用于其他相关的数学问题。
常见的相遇问题及追及问题等计算公式(非常实用)
![常见的相遇问题及追及问题等计算公式(非常实用)](https://img.taocdn.com/s3/m/b1b80a78e53a580217fcfe9a.png)
小学常用公式和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数+1)=小数差倍问题差÷(倍数-1)=小数植树问题1 单条线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:棵数=全长÷间隔长+1=间隔数+1全长=间隔长×(棵数-1)间隔长=全长÷(棵数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数⑶如果在非封闭线路的两端都不要植树,那么:棵数=全长÷间隔长-1=间隔数-1全长=间隔长×(棵数+1)间隔长=全长÷(棵数+1)2 双边线路上的植树问题主要也有三种情形:参考单条线路上的植树问题,注意要除以2.3 环形或叫封闭线路上的植树问题的数量关系如下棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)【题目】一游泳池道长100米,甲乙两个运动员从泳道的两端同时下水做往返训练15分钟,甲每分钟游81米,乙每分钟游89米.甲运动员一共从乙运动员身边经过了多少次?【解答】从身边经过,包括迎面和追上两种情况。
相遇问题基本公式资料
![相遇问题基本公式资料](https://img.taocdn.com/s3/m/13576e68bc64783e0912a21614791711cd797967.png)
相遇问题基本公式资料相遇问题是数学中的一个经典问题,涉及到两个物体在不同的速度下移动,求它们相遇的时间或位置。
这个问题在解析几何、初等代数和物理学中都有广泛的应用。
在解决相遇问题时,我们需要确定两个物体的运动方程,然后通过解方程求解相遇时间或位置。
以下是几种常见的相遇问题及其基本公式:1.匀速相遇问题:当两个物体以恒定速度沿着同一直线运动时,可以使用以下公式计算它们相遇的时间或位置。
设物体A的速度为v1,物体B的速度为v2,它们的初始位置分别为x1和x2,相遇时间为t,相遇位置为x。
则有以下公式: v1 * t + x1 = v2 * t + x2 (物体A和物体B在相遇时的位置相等) v1 * t = v2 * t + (x2 - x1) v1 * t - v2 * t = x2 - x1 (t * (v1 - v2)) = (x2 - x1) t = (x2 - x1) / (v1 - v2)2.加速度相遇问题:当两个物体在相互作用下加速运动时,可以使用以下公式计算它们相遇的时间或位置。
设物体A的初速度为v1,物体B的初速度为v2,它们的加速度分别为a1和a2,它们的初始位置分别为x1和x2,相遇时间为t,相遇位置为x。
则有以下公式: 1/2 * a1 * t^2 + v1 * t + x1 = 1/2 * a2 * t^2 + v2 * t + x2 (物体A和物体B在相遇时的位置相等) 1/2 * (a1 - a2) * t^2 + (v1 - v2) * t + (x1 - x2) = 0这是一个二次方程,可以使用求根公式求解得到相遇时间t,然后带入任一物体的运动方程计算相遇位置x。
3.圆周运动相遇问题:当两个物体在同一圆周上做匀速圆周运动时,可以使用以下公式计算它们相遇的时间或位置。
设物体A的半径为r1,物体B的半径为r2,它们的角速度分别为ω1和ω2,它们的初始位置角度分别为θ1和θ2,相遇时间为t,相遇位置角度为θ。
高中物理相遇和追及问题(完整版)
![高中物理相遇和追及问题(完整版)](https://img.taocdn.com/s3/m/4f4e832c974bcf84b9d528ea81c758f5f61f2966.png)
高中物理相遇和追及问题(完整版)相遇追及问题一、考点、热点回顾追及问题分为速度小者追速度大者和速度大者追速度小者两种情况。
1.速度小者追速度大者类型:匀加速追匀速图象说明:① t=t 以前,后面物体与前面物体间距离增大② t=t 时,两物体相距最远为x+Δx匀速追匀减速③ t=t 以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者类型:匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即 t=t0 时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为 x0-Δx③若Δx>x0,则相遇两次,设 t1 时刻Δx1=x0,两物体第一次相遇,则 t2 时刻两物体第二次相遇匀减速追匀加速注意:① Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移;② x 是开始追及以前两物体之间的距离;③ t2-t1=t-t2;④ v1 是前面物体的速度,v2 是后面物体的速度。
二、相遇问题相遇问题分为同向运动的两物体的相遇问题和相向运动的物体的相遇问题。
解此类问题的思路:1.根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系。
2.通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式。
追及的主要条件是两个物体在追上时位置坐标相同。
3.寻找问题中隐含的临界条件。
例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等。
利用这些临界条件常能简化解题过程。
4.求解此类问题的方法,除了根据追及的主要条件和临界条件解联立方程外,还可以利用二次函数求极值,应用图象法和相对运动知识求解。
相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同。
高中物理相遇和追及问题(完整版)
![高中物理相遇和追及问题(完整版)](https://img.taocdn.com/s3/m/082a5ff96c85ec3a86c2c515.png)
相遇追及问题一、考点、热点回忆一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①假设Δx=x0,则恰能追及,两物体只能相遇一次,这也是防止相撞的临界条件匀速追匀加速②假设Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③假设Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.〔1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为此题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按〔解法一〕中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,假设△>0,即有两个解,说明可以相遇两次;假设△=0,说明刚好追上或相碰;假设△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 〔 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】〔2011·新课标全国卷〕甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
第10讲 追及相遇问题的分析技巧(解题方法类)
![第10讲 追及相遇问题的分析技巧(解题方法类)](https://img.taocdn.com/s3/m/adc16b73f524ccbff02184aa.png)
第10讲追及相遇问题的分析技巧【方法指导】一、追及问题(1)特点:两个物体在同一时刻到达同一位置。
(2)满足的位移关系:x2=x0+x1。
其中x0为开始追赶时两物体之间的距离,x1表示前面被追赶物体的位移,x2表示后面追赶物体的位移。
(3)临界条件:v1=v2。
当两个物体的速度相等时,可能出现恰好追上、恰好避免相撞、相距最远、相距最近等临界问题。
二、相遇问题(1)特点:在同一时刻两物体处于同一位置。
(2)条件:同向运动的物体追上即相遇;相向运动的物体,各自发生的位移的绝对值之和等于开始时两物体之间的距离时即相遇。
三、处理“追及”“相遇”问题的三种方法(1)物理方法:通过对物理情和物理过程的分析,找到临界状态和临界条件,然后列出方程求解。
(2)数学方法:由于匀变速运动的位移表达式是时间t的一元二次方程,我们可利用判别式进行讨论:在追及问题的位移关系式中,若Δ>0,即有两个解,说明相遇两次;Δ=0,有一个解,说明刚好追上或相遇;Δ<0,无解,说明不能够追上或相遇。
(3)图象法:对于定性分析的问题,可利用图象法分析,避开繁杂的计算,快速求解。
【对点题组】1. A与B两个质点向同一方向运动,A做初速度为零的匀加速直线运动,B做匀速直线运动.开始计时时,A、B位于同一位置,则当它们再次位于同一位置时()A.两质点速度相等B.A与B在这段时间内的平均速度相等C.A的瞬时速度是B的2倍D.A与B的位移相同2.在平直公路上,自行车与同方向行驶的一辆汽车在t=0时同时经过某一个路标,它们位移x(m)随时间t(s)变化规律为:汽车为x=10t-14t2(m),自行车为x=6t(m),则下列说法正确的是()A.汽车做减速直线运动,自行车做匀速直线运动B .不能确定汽车和自行车各做什么运动C .开始经过路标后较短时间内自行车在前,汽车在后D .当自行车追上汽车时,它们距路标96 m3. 甲、乙两车在公路上沿同一方向做直线运动,它们的v t -图象如下图所示。
相遇问题的三个公式
![相遇问题的三个公式](https://img.taocdn.com/s3/m/8c8949524b7302768e9951e79b89680203d86b8f.png)
相遇问题的三个公式好的,以下是为您生成的关于“相遇问题的三个公式”的文章:咱今天就来好好唠唠相遇问题的三个公式,这可是数学里挺有意思的一块儿。
先说说啥是相遇问题哈。
就比如说,小明从 A 地出发,以每小时 5 千米的速度往前走,小红从 B 地出发,速度是每小时 3 千米,两人相向而行,过了一段时间在 C 点相遇了。
这种两人或者多个物体相向而行然后碰到一块儿的情况,就是相遇问题。
那这三个公式是啥呢?第一个公式就是:总路程 = (甲速度 + 乙速度)×相遇时间。
这个公式其实很好理解,你想啊,甲和乙一起走,他们的速度加起来,再乘以一起走的时间,不就是两人走过的总路程嘛。
我记得之前有一次,我在公园里散步,看到两个小朋友在玩一个类似的游戏。
他们在公园的一条小道两头,一个喊着“预备,跑!”然后就一起往中间跑,跑着跑着就碰到一起了,还哈哈笑。
我就在旁边想,这多像相遇问题呀。
他们一开始的距离就是总路程,跑的速度就是各自的速度,碰到一起的时间就是相遇时间。
第二个公式是:相遇时间 = 总路程 ÷(甲速度 + 乙速度)。
这个也不难懂,总路程知道了,两人速度加一块儿也知道了,那用总路程除以速度和,不就得出相遇用了多长时间嘛。
有一回,我坐公交车,看到路边有两个骑自行车的人,好像在比赛谁先到前面的那个路口。
我就在心里琢磨,要是把这当成一个相遇问题,假设他们最终在路口相遇了,知道这条路的长度,再知道他们骑车的速度,就能算出他们啥时候能在路口碰头啦。
第三个公式是:甲速度 = 总路程 ÷相遇时间 - 乙速度。
这个公式呢,就是从第一个公式变形来的。
总路程除以相遇时间,先得到速度和,再减去乙的速度,不就得出甲的速度了嘛。
我还想起有一次在商场里,看到有两个促销员,一个从这边,一个从那边,同时往中间的一个促销台走,要一起准备开始促销活动。
我就想,要是知道商场这一块儿的长度,还有他们走到促销台用的时间,就能算出他们各自的速度大概是多少。
常见的相遇问题及追及问题等计算公式(非常实用)
![常见的相遇问题及追及问题等计算公式(非常实用)](https://img.taocdn.com/s3/m/1624cbb6b0717fd5360cdcf7.png)
小学常用公式和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)【题目】一游泳池道长100米,甲乙两个运动员从泳道的两端同时下水做往返训练15分钟,甲每分钟游81米,乙每分钟游89米。
(完整版)相遇问题与追及问题
![(完整版)相遇问题与追及问题](https://img.taocdn.com/s3/m/216384e5376baf1ffd4fad88.png)
相遇与追及问题
一、学习目标
1. 理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个
基本量之间的关系.会利用这个关系来解决一些简单的行程问题.
2. 体会数形结合的数学思想方法.
二、主要内容
1. 行程问题的基本数量关系式:
路程=时间×速度;速度=路程÷时间;时间=路程÷速度.
2.相遇问题的数量关系式:
相遇路程=相遇时间×速度和;
速度和=相遇路程÷相遇时间;
相遇时间=相遇路程÷速度和.
3.追及问题的数量关系式:
追及距离=追及时间×速度差;
速度差=追及距离÷追及时间;
追及时间=追及距离÷速度差.
4. 能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的
行程问题.
三、例题选讲
例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.
例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.
例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?
1。
七年级数学上追及问题与相遇问题
![七年级数学上追及问题与相遇问题](https://img.taocdn.com/s3/m/6d99c824a31614791711cc7931b765ce05087a8c.png)
七年级数学上追及问题与相遇问题
在七年级数学中,追及问题是一个重要的话题。
其中,相向而行的追及问题可以用追及路程除以追及速度和来计算追及时间;同向而行的追及问题可以用追及路程除以追及速度差来计算追及时间。
这些问题研究的是物体速度、时间和行程之间的关系,其中路程等于速度乘以时间,速度等于路程除以时间,时间等于路程除以速度。
除了追及问题外,相遇问题也是一个常见的数学问题。
其中,速度和乘以相遇时间等于相遇路程是一个基本公式。
对于追击问题,追击时间等于路程差除以速度差。
在流水问题中,顺水速度等于船速加上水速,逆水速度等于船速减去水速,静水速度等于顺水速度和逆水速度的平均值,水速等于顺水速度减去逆水速度的一半。
对于过桥问题,关键在于确定物体所运动的路程,可以参照以上公式。
而和差问题、和倍问题、差倍问题和平均数问题都有相应的公式可以使用。
一般行程问题可以用平均速度乘以时间等于路程,路程除以时间等于平均速度,路程除以平均速
度等于时间来计算。
反向行程问题可以分为相遇问题和相离问题,可以用速度和乘以相遇(离)时间等于相遇(离)路程,相遇(离)路程除以速度和等于相遇(离)时间,相遇(离)路程除以相遇(离)时间等于速度和来解答。
同向行程问题也有相应的公式可用。
追及问题公式和相遇问题公式(一)
![追及问题公式和相遇问题公式(一)](https://img.taocdn.com/s3/m/e5274724c381e53a580216fc700abb68a982ade1.png)
追及问题公式和相遇问题公式(一)追及问题公式和相遇问题公式追及问题公式•追及问题公式可以用来计算两个物体相对运动的时间和距离。
公式一:时间 = 距离 / 速度这个公式适用于两个物体以恒定速度运动,其中时间以单位时间(如小时或分钟)计算,距离以单位长度计算(如米或千米),速度以单位速度计算(如米/秒或千米/小时)。
示例:假设小明以每小时50千米的速度向前跑,而小红以每小时40千米的速度跑在小明后面。
要计算小红追上小明所需的时间,可以使用追及问题公式。
1.首先,我们要明确两个物体相对的距离。
假设小明前进了100千米,小红距离小明还有60千米。
2.利用追及问题公式,将距离和速度代入计算。
时间 =60千米 / (50千米/小时 - 40千米/小时) = 6小时。
因此,小红需要追赶小明6小时,才能追上他。
公式二:时间 = 相对距离 / 相对速度这个公式适用于两个物体以不同的速度运动,并且相对速度是两个速度的差。
公式中的相对距离是指两个物体之间的距离。
示例:假设小明以每小时50千米的速度向前跑,而小红以每小时40千米的速度追赶小明。
要计算小红追上小明所需的时间,可以使用追及问题公式。
1.首先,我们要明确两个物体之间的距离。
假设小明和小红之间有100千米的距离。
2.利用追及问题公式,将相对距离和相对速度代入计算。
时间 = 100千米 / (50千米/小时 - 40千米/小时) = 10小时。
因此,小红需要追赶小明10小时,才能追上他。
相遇问题公式•相遇问题公式可以用来计算两个物体从相对位置到相互接触的时间和距离。
公式一:时间 = 距离 / (速度1 + 速度2)这个公式适用于两个物体以恒定速度运动,其中时间以单位时间计算,距离以单位长度计算,速度以单位速度计算。
示例:假设小明以每小时50千米的速度向前跑,小红以每小时40千米的速度追赶小明。
要计算两个人相遇所需的时间,可以使用相遇问题公式。
1.首先,我们要明确两个物体相对的距离。
小升初数学专题讲练--行程问题(一):相遇问题-追及问题
![小升初数学专题讲练--行程问题(一):相遇问题-追及问题](https://img.taocdn.com/s3/m/88a1435ca6c30c2258019e1f.png)
行程问题(一)相遇问题追及问题【基本公式】1、路程=速度×时间2、相遇问题:相遇路程=速度和×相遇时间3、追及问题:相差路程=速度差×追及时间行程问题(一)-----相遇问题【典型例题】1、老李和老刘同时从两地相对出发,老李步行每分钟走8米,老刘骑自行车的速度是老李步行的3倍,经过5分钟后两人相遇,问这两地相距多少米2、在一条笔直的公路上,王辉和李明骑车从相距900米的A、B两地同时出发,王辉每分钟行200米,李明每分钟行250米,经过多少时间两人相距2700米(分析各种情况)3、客货两车同时从甲、乙两地相对开出,客车每小时行44千米,货车每小时行52千米,两车相遇后继续以原速度前进,到达乙、甲两地后立即返回,第二次相遇时,货车比客车多行60千米。
问甲、乙两地相距多千米4、小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又迅速返回,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处,问甲、乙两地相距多少米5、甲村、乙村相距6千米,小张与小王分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。
在出发后40分钟两人第一次相遇。
小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇。
问小张和小王两人的速度各是多少6、小张与小王分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。
他们离甲村千米处第一次相遇,在离乙村2千米处第二次相遇。
问他们两人第四次相遇的地点离乙村有多远(相遇指迎面相遇)7、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地间的距离是多少千米8、甲、乙两地相距15千米,小聪和小明分别从甲、乙两地同时相向而行,2小时后在离中点千米处相遇,求小聪和小明的速度。
9、甲、乙两人同时从相距50千米的两地同时出发相向而行,甲每小时行3千米,乙每小时行2千米,与甲同时同向而行的一条小狗,每小时行5千米,小狗在甲、乙之间不停往返,直到两人相遇为止。
应用题板块-行程问题之相遇追及(小学四年级奥数题)
![应用题板块-行程问题之相遇追及(小学四年级奥数题)](https://img.taocdn.com/s3/m/f4ec686dbf1e650e52ea551810a6f524cdbfcb4d.png)
应用题板块-行程问题之相遇追及(小学四年级奥数题)【一、题型要领】1. 相遇问题【基本概念】小王在A地要去B地,小张在B地要去A地(下图左侧部分),两人分别行走一段时间后,就会在途中相遇(下图右侧部分)。
【基本公式】(1)总路程= 小王行走的路程+ 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)总路程= 小王行走的速度* 小王行走的时间+ 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)总路程=(小王行走的速度 + 小张行走的速度)* 行走的时间【解题关键】两地相距的距离等于小王行走的路程加上小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可2. 追及问题【基本概念】小张在前方行走,小王在后方与小张同方向行走(下图左侧部分),如果小王行走的速度大于小张,则经过一段时间以后,小王就会追上小张(下图右侧部分)【基本公式】(1)小王和小张相距的路程= 小王行走的路程- 小张行走的路程(2)小王行走的路程= 小王行走的速度* 小王行走的时间(3)小张行走的路程= 小张行走的速度* 小张行走的时间由(1)(2)(3)可得(4)小王和小张相距的路程 = 小王行走的速度* 小王行走的时间- 小张行走的速度* 小张行走的时间如果小张和小王同时出发,可得(5)小王和小张相距的路程 =(小王行走的速度 - 小张行走的速度)* 行走的时间【解题关键】小王和小张相距的距离等于小王行走的路程减去小张行走的路程,再分别根据两人的速度和时间去计算两人行走的路程即可【举一反三】有一类题目是为赶时间,题目描述“为了节省XX时间从原本的速度x变成了之后的速度y”,解题时可以假象成另一个人以原速度提前走了XX 时间,而自身以修改后的速度从原地出发,最终两人同时到达终点,即可用“追及”问题解答【二、重点例题】例题1【题目】小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟,他们同时出发,几分钟后两人相遇?【分析】走同样长的距离,小张花费的时间是小王花费时间的36 ÷ 12 = 3(倍),因此自行车的速度是步行速度的3倍。
高中物理相遇及追及问题[(完整版)]
![高中物理相遇及追及问题[(完整版)]](https://img.taocdn.com/s3/m/746da95c482fb4daa58d4bb3.png)
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学常用公式和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数+1)=小数差倍问题差÷(倍数-1)=小数植树问题1 单条线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:棵数=全长÷间隔长+1=间隔数+1全长=间隔长×(棵数-1)间隔长=全长÷(棵数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数⑶如果在非封闭线路的两端都不要植树,那么:棵数=全长÷间隔长-1=间隔数-1全长=间隔长×(棵数+1)间隔长=全长÷(棵数+1)2 双边线路上的植树问题主要也有三种情形:参考单条线路上的植树问题,注意要除以2。
3 环形或叫封闭线路上的植树问题的数量关系如下棵数=间隔数=全长÷间隔长全长=间隔长×棵数间隔长=全长÷棵数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)【题目】一游泳池道长100米,甲乙两个运动员从泳道的两端同时下水做往返训练15分钟,甲每分钟游81米,乙每分钟游89米。
甲运动员一共从乙运动员身边经过了多少次?【解答】从身边经过,包括迎面和追上两种情况。
能迎面相遇【(81+89)×15+100】÷200,取整是13次。
第一次追上用100÷(89-81)=12.5分钟,以后每次追上需要12.5×2=25分钟,显然15分钟只能追上一次。
因此经过13+1=14次。
如果甲乙从A,B两点出发,甲乙第n次迎面相遇时,路程和为全长的2n-1倍,而此时甲走的路程也是第一次相遇时甲走的路程的2n-1倍(乙也是如此)。
总结:若两人走的一个全程中甲走1份M米,两人走3个全程中甲就走3份M米。
(含义是说,第一次相遇时,甲乙实际就是走了一个全程,第二次相遇时,根据上面的公式,甲乙走了2x2-1=3个全程,如果在第一次相遇时甲走了m米,那么第二次相遇时甲就走了3个m米)下面我们用这个方法看一道例题。
湖中有A,B两岛,甲、乙二人都要在两岛间游一个来回。
两人分别从A,B两岛同时出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米。
问:两岛相距多远?【解】从起点到第一次迎面相遇地点,两人共同完成1个全长,从起点到第二次迎面相遇地点,两人共同完成3个全长,此时甲走的路程也为第一次相遇地点的3倍。
画图可知,由3倍关系得到:A,B两岛的距离为 700×3-400=1700米小学奥数行程问题分类讨论2010-06-08 12:00:20 来源:网络资源行程问题是小升初考试和小学四大杯赛四大题型之一(计算、数论、几何、行程)。
具体题型变化多样,形成10多种题型,都有各自相对独特的解题方法。
现根据四大杯赛的真题研究和主流教材将小题型总结如下,希望各位看过之后给予更加明确的分类。
一、一般相遇追及问题。
包括一人或者二人时(同时、异时)、地(同地、异地)、向(同向、相向)的时间和距离等条件混合出现的行程问题。
在杯赛中大量出现,约占80%左右。
建议熟练应用标准解法,即s=v×t结合标准画图(基本功)解答。
由于只用到相遇追及的基本公式即可解决,并且要就题论题,所以无法展开,但这是考试中最常碰到的,希望高手做更为细致的分类。
二、复杂相遇追及问题。
(1)多人相遇追及问题。
比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题。
解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态。
(2)多次相遇追及问题。
即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称反复折腾型问题。
分为标准型(如已知两地距离和两者速度,求n次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数)和纯周期问题(少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数)。
标准型解法固定,不能从路程入手,将会很繁,最好一开始就用求单位相遇、追及时间的方法,再求距离和次数就容易得多。
如果用折线示意图只能大概有个感性认识,无法具体得出答案,除非是非考试时间仔细画标准尺寸图。
一般用到的时间公式是(只列举甲、乙从两端同时出发的情况,从同一端出发的情况少见,所以不赘述):单程相遇时间:t单程相遇=s/(v甲+v乙)单程追及时间:t单程追及=s/(v甲-v乙)第n次相遇时间:Tn= t单程相遇×(2n-1)第m次追及时间:Tm= t单程追及×(2m-1)限定时间内的相遇次数:N相遇次数=[ (Tn+ t单程相遇)/2 t单程相遇]限定时间内的追及次数:M追及次数=[ (Tm+ t单程追及)/2 t单程追及]注:[]是取整符号之后再选取甲或者乙来研究有关路程的关系,其中涉及到周期问题需要注意,不要把运动方向搞错了。
简单例题:甲、乙两车同时从A地出发,在相距300千米的A、B两地之间不断往返行驶,已知甲车的速度是每小时30千米,乙车的速度是每小时20千米,问(1)第二次迎面相遇后又经过多长时间甲、乙追及相遇?(2)相遇时距离中点多少千米?(3)50小时内,甲乙两车共迎面相遇多少次?三、火车问题。
特点无非是涉及到车长,相对容易。
小题型分为:(1)火车vs点(静止的,如电线杆和运动的,如人)s火车=(v火车±v人)×t 经过(2)火车vs线段(静止的,如桥和运动的,如火车)s火车+s桥=v火车×t经过和s火车1+s火车2=(v火车1±v火车2)×t经过合并(1)和(2)来理解即s和=v相对×t经过把电线杆、人的水平长度想象为0即可。
火车问题足见基本公式的应用广度,只要略记公式,火车问题一般不是问题。
(3)坐在火车里。
本身所在火车的车长就形同虚设了,注意的是相对速度的计算。
电线杆、桥、隧道的速度为0(弱智结论)。
四、流水行船问题。
理解了相对速度,流水行船问题也就不难了。
理解记住1个公式(顺水船速=静水船速+水流速度)就可以顺势理解和推导出其他公式(逆水船速=静水船速-水流速度,静水船速=(顺水船速+逆水船速)÷2,水流速度=(顺水船速-逆水船速)÷2),对于流水问题也就够了。
技巧性结论如下:(1)相遇追及。
水流速度对于相遇追及的时间没有影响,即对无论是同向还是相向的两船的速度差不构成“威胁”,大胆使用为善。
(2)流水落物。
漂流物速度=水流速度,t1= t2(t1:从落物到发现的时间段,t2:从发现到拾到的时间段)与船速、水速、顺行逆行无关。
此结论所带来的时间等式常常非常容易的解决流水落物问题,其本身也非常容易记忆。
例题:一条河上有甲、乙两个码头,甲码头在乙码头的上游50千米处。
一艘客船和一艘货船分别从甲、乙两码头同时出发向上游行驶,两船的静水速度相同。
客船出发时有一物品从船上落入水中,10分钟后此物品距客船5千米。
客船在行驶20千米后掉头追赶此物品,追上时恰好和货船相遇。
求水流速度。
五、间隔发车问题。
空间理解稍显困难,证明过程对快速解题没有帮助。
一旦掌握了3个基本公式,一般问题都可以迎刃而解。
(1)在班车里。
即柳卡问题。
不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题:A、B是公共汽车的两个车站,从A站到B站是上坡路。
每天上午8点到11点从A、B两站每隔30分同时相向发出一辆公共汽车。
已知从A站到B 站单程需要105分钟,从B站到A站单程需要80分钟。
问8:30、9:00从A 站发车的司机分别能看到几辆从B站开来的汽车?(2)在班车外。
联立3个基本公式好使。
汽车间距=(汽车速度+行人速度)×相遇事件时间间隔------1汽车间距=(汽车速度-行人速度)×追及事件时间间隔------2汽车间距=汽车速度×汽车发车时间间隔------31、2合并理解,即汽车间距=相对速度×时间间隔分为2个小题型:1、一般间隔发车问题。
用3个公式迅速作答;2、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图-尽可能多的列3个好使公式-结合s全程=v×t-结合植树问题数数。
例题:小峰在骑自行车去小宝家聚会的路上注意到,每隔9分钟就有一辆公交车从后方超越小峰。
小峰骑车到半路车坏了,于是只好坐出租车去小宝家。
这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,如果这3种车辆在行驶过程中都保持匀速,那么公交车站每隔多少分钟发一辆车?六、平均速度问题。
相对容易的题型。
大公式要牢牢记住:总路程=平均速度×总时间。
用s=v×t写出相应的比要比直接写比例式好理解并且规范,形成行程问题的统一解决方案。
七、环形问题。
是一类有挑战性和难度的题型,分为“同一路径”、“不同路径”、“真实相遇”、“能否看到”等小题型。
其中涉及到周期问题、几何位置问题(审题不仔细容易漏掉多种位置可能)、不等式问题(针对“能否看到”问题,即问甲能否在线段的拐角处看到乙)。
仍旧属于就题论题范畴,不展开了。
八、钟表问题。
是环形问题的特定引申。
基本关系式:v分针= 12v时针(1)总结记忆:时针每分钟走1/12格,0.5°;分针每分钟走1格,6°。