2020初中数学教材教法考试模拟试卷及答案(三套)
2021初中数学教材教法考试模拟试卷及答案(三套)
初中数学教材教法测试模拟试题(一)一填空(1)有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。
(2)《义务教育数学课程标准》的基本理念指出:义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必要的数学;不同的人在数学上得到不同的发展。
(3)学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
(4)《标准》中所陈述课程目标的动词分两类。
第一类,知识与技能目标动词,包括了解或认识、理解、掌握、灵活运用.第二类,数学活动水平的过程性目标动词,包括经历或感受、体验或体会、探索。
二、简述《义务教育数学课程标准》(实验)的总体目标。
(15分)答:通过义务教育阶段的数学学习,学生能够:(1)获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方和必要的应用技能;(2)初步学会运用数学的思维方式支观察、分析现实社会,去解决日常生活中和其它学科学习中的问题,增强应用数学的意识;(3)体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;(4)具有初步的创新精神和实践能力,要情感态度和一般能力方面都能得到充分发展。
三、简述:(1)初中数学新课程的教学内容体系。
1、要点:初中数学新课程的教学内容体系较以前有很大不同。
按照新课程教学内容难易程度与学生的可接受性,将其称为第三学段,隶属于,具体有六个核心概念。
四大学习领域:数与代数、空间与图形、统计与概率、实践与综合应用。
六个核心概念:数感、符号感、空间观念、统计观念、应用意识、推理能力。
2 、要点:(1)评价的内容由重结果转向结果与过程的并重,由重认知转向知识、情感、态度、价值观相结合。
《标准》指出:“价要关注学生学习的结果,更要关注他们学习的过程……要关注他们在数学活动中所表现出来的情感与态度,要帮助学生认识自我、建立自信。
2020年湖南省长沙市教科院中考数学模拟试卷(三) (解析版)
2020年长沙市教科院中考数学模拟试卷(三)一、选择题(共12小题).1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.下列计算正确的是()A.a+a2=a3B.(3a)2=6a2C.a6÷a2=a3D.a2•a3=a5 3.在△ABC中,若∠A﹣∠B=∠C,则此三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4.下列图形中,既是中心对称图形,也是轴对称图形的是()A.赵爽弦图B.科克曲线C.河图幻方D.谢尔宾斯基三角形5.某班6名同学参加体能测试的成绩分别为:80,90,75,75,80,80.下列表述错误的是()A.众数是80B.中位数是75C.平均数是80D.方差是256.中国倡导的“一带一路”建设将促进世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为44亿人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×1010D.4.4×1097.用尺规作图作△ABC的BC边上的高,下列作法正确的是()A.B.C.D.8.不等式组的解集在数轴上表示出来是()A.B.C.D.9.若圆锥的高为4cm,母线长为5cm,则圆锥的全面积为()A.15πcm2B.20πcm2C.24πcm2D.36πcm210.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k<5B.k≥5C.k≤5且k≠1D.k>511.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.12.如图,正方形ABCD中,以BC为边向正方形内部作等边△BCE.连接AE.DE,连接BD交CE于F,下列结论:①∠AED=150°②△DEF~△BAE;③tan∠ECD=④△BEC的面积:△BFC的面积=(+1):2,其中正确的结论有()个.A.4B.3C.2D.1二、填空题(本大题共6个小题,每小题3分,共18分)13.4的平方根是.14.李老师上班途中要经过一个十字路口,十字路口红灯亮30秒、黄灯亮5秒、绿灯亮25秒,李老师到达路口恰好遇到绿灯的概率是.15.已知a+b=4,ab=3,则代数式(a+1)(b+1)的值为.16.如图,点E在∠BOA的平分线上,EC⊥OB,垂足为C,点F在OA上,若∠AFE=30°,EC=3,则EF=.17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为.18.如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数y=(x>0)的图象上,则△OAB的面积等于.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:()﹣1﹣(π+3)0﹣4cos30°+.20.解分式方程:+1=.21.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角度数为多少度?(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.22.在数学综合实践活动课上,某小组要测量学校升旗台旗杆的高度、如图,测得BC∥AD,斜坡AB的长为6米,坡度i=l:,在点B处测得旗杆顶端的仰角为70°,点B到旗杆底部C的距离为4米.(1)求斜坡AB的坡角α的度数;(2)求旗杆顶端离地面的高度ED的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.74,结果精确到0.1米)23.如图所示,⊙O的半径为5,点A是⊙O上一点,直线l过点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD的延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=8,求PB的长.24.某批发市场有考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A,B两种品牌的文具套装共1000套.(1)如果小王按批发价购买这1000套文具花了22000元,那么A,B两种品牌的文具套装各购买了多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡,并用会员卡购买A,B两种品牌文具套装1000套,共用了y元,设A品牌文具套装买了x套,求出y与x之间的函数关系式;(3)小王用会员卡购买A,B两种品牌文具套装1000套,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本?(运算结果取整数)25.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是;(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是.26.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C.(1)填空:b=,c=,点C的坐标为;(2)如图1,若点P是第一象限抛物线上一动点,连接OP交直线AB于点Q,设点P 的横坐标为m,设=y,求y与m的函数关系式,并求出的最大值;(3)如图2,若点P是抛物线上一动点,当∠PBA+∠CBO=45°时,求点P的坐标.参考答案一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.2.下列计算正确的是()A.a+a2=a3B.(3a)2=6a2C.a6÷a2=a3D.a2•a3=a5【分析】根据合并同类项法则,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加对各选项分析判断利用排除法求解.解:A、a与a2不是同类项,不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、a6÷a2=a6﹣2=a4,故C选项错误;D、a2•a3=a2+3=a5,故D选项正确.故选:D.3.在△ABC中,若∠A﹣∠B=∠C,则此三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形【分析】根据三角形的内角和定理得出∠A+∠B+∠C=180°,代入得出2∠A=180°,求出即可.解:∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故选:B.4.下列图形中,既是中心对称图形,也是轴对称图形的是()A.赵爽弦图B.科克曲线C.河图幻方D.谢尔宾斯基三角形【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.5.某班6名同学参加体能测试的成绩分别为:80,90,75,75,80,80.下列表述错误的是()A.众数是80B.中位数是75C.平均数是80D.方差是25【分析】根据众数、中位数、平均数以及方差的概念分别对每一项进行分析,即可得出答案.解:∵80出现了3次,出现的次数最多,∴众数是80;把这些数从小到大排列为:75,75,80,80,80,90,则中位数是=80;平均数是(80+90+75+75+80+80)=80,则方差S2=[3×(80﹣80)2+2×(75﹣80)2+(90﹣80)2]=25;表述错误的是B,6.中国倡导的“一带一路”建设将促进世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为44亿人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×1010D.4.4×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:44亿=4.4×109 ,故选:D.7.用尺规作图作△ABC的BC边上的高,下列作法正确的是()A.B.C.D.【分析】根据三角形的高的定义判断即可.解:∵△ABC的BC边上的高,AD⊥BC,∴选项B正确,故选:B.8.不等式组的解集在数轴上表示出来是()A.B.C.D.【分析】先分别解出不等式的解,再求其公共解集,并在数轴上表示出来.解:由①得x<﹣1,由②得x≤2,故解集为x<﹣1,9.若圆锥的高为4cm,母线长为5cm,则圆锥的全面积为()A.15πcm2B.20πcm2C.24πcm2D.36πcm2【分析】根据勾股定理求出圆锥的底面半径,根据扇形面积公式计算即可.解:圆锥的底面半径==3,∴圆锥的全面积=π×32+×2π×3×5=24π(cm2)故选:C.10.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k<5B.k≥5C.k≤5且k≠1D.k>5【分析】根据根的判别式即可求出答案.解:由题意可知:△=16﹣4(k﹣1)≥0,∴k≤5,∵k﹣1≠0,∴k≠1,∴k≤5且k≠1故选:C.11.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.【分析】分点Q在AC上和BC上两种情况进行讨论即可.解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=x tan30°=,∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B.12.如图,正方形ABCD中,以BC为边向正方形内部作等边△BCE.连接AE.DE,连接BD交CE于F,下列结论:①∠AED=150°②△DEF~△BAE;③tan∠ECD=④△BEC的面积:△BFC的面积=(+1):2,其中正确的结论有()个.A.4B.3C.2D.1【分析】①利用正方形的性质,等边三角形的性质,等腰三角形的性质及三角形的内角和,周角求得判定即可②由①可得到∠ADE的度数,再利用正方形的性质即可得∠DEF=∠ABE,即可判定③可利用含30°的直角三角形的性质即可分别求出,再与tan∠ECD=tan30°作比较即可④两个三角形的底相同,由高的比进行判定即可解:∵△BEC为等边三角形∴∠EBC=∠BCE=∠ECB=60°,AB=EB=EC=BC=DC∵四边形ABCD为正方形∴∠ABE=∠ECD=90°﹣60°=30°∴在△ABE和△DCE中,AB=DC∠ABE=∠ECDBE=EC∴△ABE≌△DCE(SAS)∴∠AEB=∠DEC==75°∴∠AED=360°﹣60°﹣75°×2=150°故①正确由①知AE=ED∴∠EAD=∠EDA=15°∴∠EDF=45°﹣15°=30°∴∠EDF=∠ABE由①知∠AEB=∠DEC,∴△DEF~△BAE故②正确过点F作FM⊥DC交于M,如图设DM=x,则FM=x,DF=x∵∠FCD=30°∴MC=x则在Rt△DBC中,BD=∴BF=BD﹣DF=则∵tan∠ECD=tan30°=∴tan∠ECD=故③正确如图过点E作EH⊥BC交于H,过F作FG⊥BC交于G,得由③知MC=,MC=FG∴FG=∵BC=DC=x∴BH=∵∠EBC=60°∴EH=x,∴====故④正确故选:A.二、填空题(本大题共6个小题,每小题3分,共18分)13.4的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.14.李老师上班途中要经过一个十字路口,十字路口红灯亮30秒、黄灯亮5秒、绿灯亮25秒,李老师到达路口恰好遇到绿灯的概率是.【分析】利用概率公式求解.解:李老师到达路口恰好遇到绿灯的概率==.故答案为.15.已知a+b=4,ab=3,则代数式(a+1)(b+1)的值为8.【分析】原式利用多项式乘多项式法则计算,整理后把已知等式代入计算即可求出值.解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=4,ab=3时,原式=3+4+1=8.故答案为:816.如图,点E在∠BOA的平分线上,EC⊥OB,垂足为C,点F在OA上,若∠AFE=30°,EC=3,则EF=6.【分析】作EG⊥AO于点G,根据角平分线的性质求得EG的长,然后利用直角三角形中30°的直角边等于斜边的一半求解即可.解:如图,作EG⊥AO于点G,∵点E在∠BOA的平分线上,EC⊥OB,EC=3,∴EG=EC=3,∵∠AFE=30°,∴EF=2EG=2×3=6,故答案为:6.17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为45°.【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.解:连接OA,如图,∵∠ACO=45°,OA=OC,∴∠ACO=∠CAO=45°,∴∠AOC=90°,∴∠B=45°.故答案为:45°18.如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数y=(x>0)的图象上,则△OAB的面积等于3.【分析】过点B、点C作x轴的垂线,垂足为D,E,则BD∥CE,得出===,设CE=x,则BD=2x,根据反比例函数的解析式表示出OD=,OE=,OA =,然后根据三角形面积公式求解即可.解:如图,过点B、点C作x轴的垂线,垂足为D,E,则BD∥CE,∴==,∵OC是△OAB的中线,∴===,设CE=x,则BD=2x,∴C的横坐标为,B的横坐标为,∴OD=,OE=,∴DE=OE﹣OD=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA•BD=××2x=3.故答案为3.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:()﹣1﹣(π+3)0﹣4cos30°+.【分析】直接利用负整数指数幂的性质以及零指数幂的性质、特殊角的三角函数值、二次根式的性质分别化简得出答案.解:原式=2﹣1﹣4×+2=2﹣1﹣2+2=1.20.解分式方程:+1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:4+x2﹣1=x2﹣2x+1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解.21.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角度数为多少度?(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.【分析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以样本中C饮品人数占被调查人数的比例可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一名男生和一名女生的结果数,根据概率公式求解可得.解:(1)∵抽查的总人数为:20÷40%=50人,∴C类人数=50﹣20﹣5﹣15=10人,补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:10÷50×360°=72°;(3)画树状图得:所有等可能的情况数有20种,其中一男一女的有12种,所以P(恰好抽到一男一女)==.22.在数学综合实践活动课上,某小组要测量学校升旗台旗杆的高度、如图,测得BC∥AD,斜坡AB的长为6米,坡度i=l:,在点B处测得旗杆顶端的仰角为70°,点B到旗杆底部C的距离为4米.(1)求斜坡AB的坡角α的度数;(2)求旗杆顶端离地面的高度ED的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.74,结果精确到0.1米)【分析】(1)过点B作BF⊥AD于点F,由i=tan∠BAF=,可得∠BAF=30°;(2)由∠BAF=30°、AB=6,知CD=BF=AB=3米,再由EC=BC tan∠EBC可得答案.解:(1)如图所示,过点B作BF⊥AD于点F,∵i=tan∠BAF=,∴∠BAF=30°,即α=30°;(2)∵∠BAF=30°,AB=6,∴CD=BF=AB=3米,在Rt△BCE中,∵∠EBC=70°,BC=4,∴EC=BC tan∠EBC=4tan70°≈10.96,则ED=EC+CD=3+10.96=13.96≈14.0(米),答:旗杆顶端离地面的高度ED的长约为14.0米.23.如图所示,⊙O的半径为5,点A是⊙O上一点,直线l过点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD的延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=8,求PB的长.【分析】(1)连接DE,OA.想办法证明OA⊥BF即可;(2)连接AD,只要证明△PAD∽△PBA,可得=,即可解决问题.【解答】(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:连接AD.∵=,∴∠APD=∠APB,∵PD是直径,∴∠PAD=90°,∴∠PAD=∠ABP=90°,∴△PDA∽△PAB,∴=,∴=,∴PB=.24.某批发市场有考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A,B两种品牌的文具套装共1000套.(1)如果小王按批发价购买这1000套文具花了22000元,那么A,B两种品牌的文具套装各购买了多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡,并用会员卡购买A,B两种品牌文具套装1000套,共用了y元,设A品牌文具套装买了x套,求出y与x之间的函数关系式;(3)小王用会员卡购买A,B两种品牌文具套装1000套,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本?(运算结果取整数)【分析】(1)设小王需购买A、B两种品牌文具套装分别为x套、y套,根据“购买A,B两种品牌的文具套装共1000套,花了22000元”列方程组解答即可;(2)根据题意,可得y=500+0.8×[20x+25(1000﹣x)],据此求出y与x之间的函数关系式即可.(3)首先求出小王购买A、B两种品牌文具套装分别为多少套,然后设A品牌文具套装的售价为z元,则B品牌文具套装的售价为z+5元,所以125z+875(z+5)≥20000+8×1000,据此求出A品牌的文具套装每套定价不低于多少元时才不亏本即可.解:(1)设小王够买A品牌文具x套,够买B品牌文具y套,根据题意,得:,解得,答:小王够买A品牌文具600套,够买B品牌文具400套.(2)y=500+0.8[20x+25(1000﹣x)]=500+0.8(25000﹣5x)=500+20000﹣4x=﹣4x+20500,∴y与x之间的函数关系式是:y=﹣4x+20500.(3)根据题意,得:﹣4x+20500=20000,解得:x=125,∴小王够买A品牌文具套装为125套、够买B品牌文具套装为875套,设A品牌文具套装的售价为z元,则B品牌文具套装的售价为(z+5)元,由题意得:125z+875(z+5)≥20000+8×1000,解得:z≥23.625,答:A品牌的文具套装每套定价不低于24元时才不亏本.25.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是(5,3),(3,5);(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是+,+,2.【分析】(1)利用准矩形的定义和勾股定理计算,再根据准矩形的特点和整点的特点求出即可;(2)先利用正方形的性质判断出△ABE≌△BCF,即可;(3)分三种情况分别计算,用到梯形面积公式,对角线面积公式,对角线互相垂直的四边形的面积计算方法.解:(1)①∵∠ABC=90°,∴BD=AC===,故答案为,②∵A(0,3),B(5,0),∴AB==,设点P(m,n),O(0,0),∴OP==,∵m,n都为整数,∴点P(3,5)或(5,3);故答案为P(3,5)或(5,3);(2)∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴∠EBF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(3),,∵∠ABC=90°,∠BAC=60°,AB=2,∴BC=2,AC=4,准矩形ABCD中,BD=AC=4,①当AC=AD时,如图1,作DE⊥AB,∴AE=BE=AB=1,∴DE===,∴S准矩形ABCD=S△ADE+S梯形BCDE=DE×AE+(BC+DE)×BE=×+(2+)×1=+;②当AC=CD时,如图2,作DF⊥BC,∴BD=CD,∴BF=CF=BC=,∴DF===,∴S准矩形ABCD=S△DCF+S梯形ABFD=FC×DF+(AB+DF)×BF=××+(2+)×=+;③当AD=CD,如图3,连接AC中点和D并延长交BC于M,连接AM,连接BG,过B作BH⊥DG,在Rt△ABC中,AC=2AB=4,∴BD=AC=4,∴AG=AC=2,∵AB=2,∴AB=AG,∵∠BAC=60°,∴∠ABG=60°,∴∠CBG=30°在Rt△BHG中,BG=2,∠BGH=30°,∴BH=1,在Rt△BHM中,BH=1,∠CBH=30°,∴BM=,HM=,∴CM=,在Rt△DHB中,BH=1,BD=4,∴DH=,∴DM=DH﹣MH=﹣,∴S准矩形ABCD=S△ABM+S四边形AMCD,=BM×AB+AC×DM=××2+×4×(﹣)=2;故答案为+,+,2.26.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C.(1)填空:b=1,c=4,点C的坐标为(﹣2,0);(2)如图1,若点P是第一象限抛物线上一动点,连接OP交直线AB于点Q,设点P 的横坐标为m,设=y,求y与m的函数关系式,并求出的最大值;(3)如图2,若点P是抛物线上一动点,当∠PBA+∠CBO=45°时,求点P的坐标.【分析】(1)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=0便可得C点坐标;(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到=,设点P坐标为(m,﹣m2+m+4),Q点坐标(n,﹣n+4),表示出ED、OD等长度,即可得y与m、n之间的关系,再次利用,即可求解;(3)∠OBA=∠OBP+∠PBA=45°,∠PBA+∠CBO=45°,则∠OBP=∠CBO,进而求解.解:(1)∵直线y=﹣x+4与x轴交于点A,与y轴交于点B.∴A(4,0),B(0,4).又∵抛物线过B(0,4),∴c=4.把A(4,0)代入y=﹣x2+bx+4得,0=﹣×42+4b+4,解得,b=1.∴抛物线解析式为,y=﹣x2+x+4.令﹣x2+x+4=0,解得,x=﹣2或x=4.∴C(﹣2,0);故答案为:1;4;(﹣2,0);(2)如图1,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.设P(m,﹣m2+m+4),Q(n,﹣n+4),则PE=﹣m2+m+4,QD=﹣n+4.又∵==y.∴n=.又∵,即,把n═代入上式并整理得:4y=﹣m2+2m.∴y=﹣m2+m.∵﹣<0,故y有最大值,当m=2时,y max=.即PQ与OQ的比值的最大值为;(3)如图2,∵∠OBA=∠OBP+∠PBA=45°,∠PBA+∠CBO=45°,∴∠OBP=∠CBO,此时PB过点(2,0).设直线PB解析式为,y=kx+4.把点(2,0)代入上式得,0=2k+4.解得,k=﹣2,∴直线PB解析式为,y=﹣2x+4.令﹣2x+4=﹣x2+x+4,整理得,x2﹣3x=0.解得,x=0(舍去)或x=6.当x=6时,﹣2x+4=﹣2×6+4=﹣8∴P(6,﹣8).。
2020农村初中数学教师进城考试模拟试卷及答案(三套)
2020农村初中数学教师进城考试模拟试卷(一)一、选择题1、 下列命题不正确的是 (5分) A.有理数对于乘法运算封闭 B.有理数可以比较大小 C.有理数集是实数集的子集 D.有理数集是有界集正确答案:D .有理数集是有界集2、 设a,b 为非零向量,下列命题正确的是 (5分) A.a×b 垂直于a B.a×b 平行于a C.a ∙b 平行于a D.a ∙b 垂直于a正确答案:A .垂直于3、 设f (x )为[a,b]上的连续函数,则下列命题不正确的是 (5分) A.f (x )在[a,b]上有最大值 B.f (x )在[a,b]上一致连续 C..f (x )在[a,b]上可积 D..f (x )在[a,b]上可导正确答案:D .在上可导无穷解的个数是,则线性方程组的秩均为与若矩阵.2.1.0.2.4D C B A v dy cx by ax v dc ba d cb a ⎩⎨⎧=+=+⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛μμ正确答案:B .15、 边长为4的正方体木块,各面均涂成红色,将其锯成64个边长为1的小正方体,并将它们搅匀混在一起,随机抽取一个小正方体,恰有两面为红色的概率是 (5分) A.3⁄8 B.1⁄8 C.9⁄16 D.3⁄16正确答案:A.6、在空间直角坐标系中,双曲柱面x2-y2=1与平面2x-y-2=0的交为(5分)A.椭圆B.两条平行线C.抛物线D. 双曲线正确答案:B.两条平行直线7、下面不属于“尺规作图三大问题”的是(5分)A.三等分任意角B.作一个立方体使之体积等于已知立方体体积的二倍C.作一个正方形使之面积等于已知圆的面积D.作一个正方形使之面积等于已知正方形面积的二倍正确答案:D.作一个正方形使之面积等于已知正方形面积的二倍8、下列函数不属于初中数学课程内容的是(5分)A.一次函数B.二次函数C.指数函数D.反比例函数正确答案:C.指数函数二、简答题9、若ad-bc≠0,求逆矩阵(7分)正确答案:【答案】10、求二次曲面过点(1,2,5)的切平面的法向量(7分)正确答案:【答案】11、设acosx+bsinx是R到R的函数,V={acosx+bsinx∣a,b∈R}是函数集合,对fV,令fDf'=即D将一个函数变成它的导函数,证明D是V到V上既单又满的映射。
2020年中考数学第三次模拟考试及答案(A3考试版含答题卡)
数学试题 第1页(共12页) 数学试题 第2页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2020年中考数学第三次模拟考试数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列所给图形是中心对称图形但不是轴对称图形的是A .B .C .D .2.有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .a >﹣4B .bd >0C .|a |>|b |D .b +c >03.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为 A .0.13×105 B .1.3×104 C .1.3×105D .13×1034.已知关于x 的方程mx +3=4的解为x =1,则直线y =(m ﹣2)x ﹣3一定不经过的象限是 A .第一象限 B .第二象限 C .第三象限D .第四象限5.如图,已知AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分∠BEF ,若∠1=48°,则∠2的度数是A .64°B .65°C .66°D .67°6.抛物线y =–x 2+bx +c 上部分点的横坐标x 、纵坐标y 的对应值如下表所示:x … –2 –1 0 1 2 … y…4664…从上表可知,下列说法错误的是A .抛物线与x 轴的一个交点坐标为(–2,0)B .抛物线与y 轴的交点坐标为(0,6)C .抛物线的对称轴是直线x =0D .抛物线在对称轴左侧部分是上升的7.某校羽毛球队有若干名队员,任意两名队员之间进行一场友谊赛,共进行了36场比赛.如果全队有x 名队员,根据题意下列方程正确的是 A .(1)36x x -=B .(1)36x x +=C .(1)362x x -= D .(1)362x x += 8.如图,在△ABC 中,AB =AC ,AD ,BE 是△ABC 的两条中线,P 是AD 上的一个动点,则下列线段的长等于CP +EP 最小值的是A .ACB .ADC .BED .BC数学试题第3页(共12页)数学试题第4页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………9.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为A.13B.5C.22D.410.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm 的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.因式分解:x3﹣4xy2=______.12.关于x的不等式组10x ax->⎧⎨->⎩的整数解共有3个,则a的取值范围是_____.13.二次函数y=ax2﹣12ax+36a﹣5的图象在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,则a的值为_____.14.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=23+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为________.三、(本大题共2小题,每小题8分,满分16分)15.计算:08(2019)4sin45|2|︒+--+-.16.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)18.如图,认真观察下面这些算式,并结合你发现的规律,完成下列问题:①32﹣12=(3+1)(3﹣1)=8=8×1,②52﹣32=(5+3)(5﹣3)=16=8×2,③72﹣52=(7+5)(7﹣5)=24=8×3,④92﹣72=(9+7)(9﹣7)=32=8×4.…(1)请写出:算式⑤______________;数学试题 第5页(共12页) 数学试题 第6页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________算式⑥______________;(2)上述算式的规律可以用文字概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n ﹣1和2m +1(n 为整数),请说明这个规律是成立的;(3)你认为“两个连续偶数的平方差能被8整除”这个说法是否也成立呢?请说明理由. 五、(本大题共2小题,每小题10分,满分20分)19.如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B 处时,发现灯塔C 在它的东北方向,轮船继续向北航行,30分钟后到达A 处,此时发现灯塔C 在它的北偏东75°方向上,求此时轮船与灯塔C 的距离.(结果保留根号)20.如图,AB 是⊙O 的直径,点P 在AB 的延长线上,弦CE 交AB 于点D .连接OE 、AC ,且∠P =∠E ,∠POE =2∠CAB . (1)求证:CE ⊥AB ; (2)求证:PC 是⊙O 的切线;(3)若BD =2OD ,PB =9,求⊙O 的半径及tan ∠P 的值.六、(本题满分12分)21.如图,点D 、E 分别在△ABC 的边AC 、AB 上,延长DE 、CB 交于点F ,且AE •AB =AD •AC .(1)求证:∠FEB =∠C ;(2)连接AF ,若FB CDAB FD,求证:EF •AB =AC •FB .七、(本题满分12分)22.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x (1≤x <90)天的函数图象如图所示(销售利润=(售价–成本)×销量). (1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?八、(本题满分14分)23.如图(1)在正方形ABCD 中,点E 是CD 边上一动点,连接AE ,作BF ⊥AE ,垂足为G 交AD 于F .(1)求证:AF =DE ;(2)连接DG ,若DG 平分∠EGF ,如图(2),求证:点E 是CD 中点; (3)在(2)的条件下,连接CG ,如图(3),求证:CG =CD .数学试题 第7页(共12页) 数学试题 第8页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………2020年中考数学第三次模拟考试数学·参考答案1 2 3 4 5 6 7 8 9 10 DCBACCCCAA11.x (x +2y )(x ﹣2y ) 12.32a -≤<- 13.54 14.2343+或6 15.【解析】原式=22+1﹣4×22+2, =22+1﹣22+2, =3.16.【解析】设该兴趣小组男生有x 人,女生有y 人,依题意得:2(1)13(1)5y x x y =--⎧⎪⎨=-⎪⎩, 解得:1221x y =⎧⎨=⎩.答:该兴趣小组男生有12人,女生有21人. 17.【解析】(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;(3)三角形的形状为等腰直角三角形,OB =OA 1=224117+=,A 1B =2253+=34, 即OB 2+OA 12=A 1B 2,所以三角形的形状为等腰直角三角形.18.【解析】(1)112﹣92=(11+9)(11﹣9)=40=8×5,132﹣112=(13+11)(13﹣11)=48=8×6,(2)(2n +1)2﹣(2n ﹣1)2=(2n +1+2n ﹣1)(2n +1﹣2n +1)=2×4n =8n , ∵n 为整数,∴两个连续奇数的平方差能被8整除; 故答案为40=8×5;48=8×6; (3)不成立;举反例,如42﹣22=(4+2)(4﹣2)=12, ∵12不是8的倍数, ∴这个说法不成立;19.【解析】过点A 作AD ⊥BC 于点D .由题意,AB =3060×40=20(海里). ∵∠PAC =∠B +∠C ,∴∠C =∠PAC ﹣∠B =75°﹣45°=30°. 在Rt △ABD 中,sin B =AD AB, ∴AD =AB •sin B =20×22(海里). 在Rt △ACD 中,∵∠C =30°, ∴AC =2AD 2(海里).答:此时轮船与灯塔C 的距离为2海里.20.【解析】(1)证明:连接OC ,数学试题 第9页(共12页) 数学试题 第10页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________∴∠COB =2∠CAB , 又∠POE =2∠CA B . ∴∠COD =∠EOD , 又∵OC =OE ,∴∠ODC =∠ODE =90°, 即CE ⊥AB ;(2)证明:∵CE ⊥AB ,∠P =∠E , ∴∠P +∠PCD =∠E +∠PCD =90°, 又∠OCD =∠E ,∴∠OCD +∠PCD =∠PCO =90°, ∴PC 是⊙O 的切线;(3)解:设⊙O 的半径为r ,OD =x ,则BD =2x ,r =3x , ∵CD ⊥OP ,OC ⊥PC ,∴Rt △OCD ∽Rt △OPC ,∴OC 2=OD •OP ,即(3x )2=x •(3x +9),解得x =32,∴⊙O 的半径r =92, 同理可得PC 2=PD •PO =(PB +BD )•(PB +OB )=162, ∴PC 2,在Rt △OCP 中,tan ∠P =24OC PC =. 21.【解析】(1)∵AE •AB =AD •A C .∴AE ADAC AB=, 又∵∠A =∠A , ∴△AED ∽△ACB ,∴∠AED =∠C ,又∵∠AED =∠FEB , ∴∠FEB =∠C .(2)∵∠FEB =∠C ,∠EFB =∠CFD , ∴△EFB ∽△CFD , ∴∠FBE =∠FDC ,∵FB CDAD FD =, ∴FB ABCD FD=, ∴△FBA ∽△CDF , ∴∠FEB =∠C , ∴AF =AC , ∵∠FEB =∠C , ∴∠FEB =∠AFB , 又∵∠FBE =∠ABF , ∴△EFB ∽△FAB ,∴EF FBAF AB=, ∵AF =AC , ∴EF •AB =AC •FB .22.【解析】(1)当1≤x <50时,设y 1=kx +b ,将(1,41),(50,90)代入, 得k b 41,50k b 90,+=⎧⎨+=⎩解得k 1,b 40,=⎧⎨=⎩∴y 1=x +40,当50≤x <90时,y 1=90, 故y 1与x 的函数解析式为y 1=x 40(1x 50),90(50x 90);+≤<⎧⎨≤<⎩ 设y 2与x 的函数解析式为y 2=mx +n (1≤x <90), 将(50,100),(90,20)代入, 得50m n 100,90m n 20,+=⎧⎨+=⎩解得:m 2,n 200,=-⎧⎨=⎩数学试题第11页(共12页)数学试题第12页(共12页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………故y2与x的函数关系式为y2=–2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40–30)(–2x+200)=–2x2+180x+2000;当50≤x<90时,W=(90–30)(–2x+200)=–120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=–2x2+180x+2000=–2(x–45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=–120x+12000,∵–120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.23.【解析】(1)如图1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90°又∵BF⊥AE,∴∠AGB=90°∴∠1+∠2=90°,∴∠1=∠3在△BAF与△ADE中,∠1=∠3BA=AD∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD ∴△BAG≌△ADN(AAS)∴AG=DN,又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=12AD=12CD,即点E是CD的中点.(3)延长AE,BC交于点P,由(2)知DE=CD,∠ADE=∠ECP=90°,∠DEA=∠CEP,∴△ADE≌△PCE(ASA),∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=12BP=BC,∴CG=CD.12020年中考数学第三次模拟考试【安徽卷】数学·答题卡第Ⅰ卷(请用2B 铅笔填涂)第Ⅱ卷请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!二、填空题(每小题4分,共20分)11.____________________ 12.____________________13.____________________ 14.____________________三、(本大题共2小题,每小题8分,满分16分)15.一、选择题(每小题4分,共40分) 1.[ A ] [ B ] [ C ] [ D ] 2.[ A ] [ B ] [ C ] [ D ] 3.[ A ] [ B ] [ C ] [ D ] 4.[ A ] [ B ] [ C ] [ D ]5.[ A ] [ B ] [ C ] [ D ]6.[ A ] [ B ] [ C ] [ D ]7.[ A ] [ B ] [ C ] [ D ]8.[ A ] [ B ] [ C ] [ D ]9.[ A ] [ B ] [ C ] [ D ] 10.[ A ] [ B ] [ C ] [ D ]姓 名:__________________________ 准考证号:贴条形码区考生禁填: 缺考标记 违纪标记以上标志由监考人员用2B 铅笔填涂选择题填涂样例: 正确填涂错误填涂 [×] [√] [/]1.答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。
浙江省杭州市2020年初中毕业生学业考试仿真考试数学试题 三及参考答案
2020年初中毕业生学业考试仿真卷(三)数学(满分:120分考试时间:120分钟)一、选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列实数中,是无理数的是( D )A.227B.2-2C.5.15 D.cos45°[命题考向:本题考查特殊角的三角函数值,无理数的概念.]2.已知一粒大米的质量约为0.000 021 kg,0.000 021用科学记数法表示为( A ) A.2.1×10-5B.2.1×10-4C.0.21×10-5D.0.21×10-4[命题考向:本题考查用科学记数法表示数.]3.已知a=2 0182,b=2 017×2 019,则( B )A.a=b B.a>bC.a<b D.a≤b[命题考向:本题考查完全平方公式、平方差公式的运用.]4.下列图形“等腰三角形、平行四边形、五边形、十边形、圆”,其中一定既是轴对称图形又是中心对称图形的有( A )A.1个B.2个C.3个D.4个[命题考向:本题考查轴对称图形、中心对称图形的概念.]5.李华根据演讲比赛中九位评委所给的分数制作了如下表格:如果要去掉一个最高分和最低分,则表中数据一定不发生变化的是( A ) A.中位数B.众数C.方差D.平均数[命题考向:本题考查中位数、众数、方差、平均数的概念.]6.一个圆锥的母线长是底面半径的2倍,则侧面展开图扇形的圆心角是( D )A.60° B.90° C.120° D.180°[命题考向:本题考查圆锥的展开图,扇形的弧长公式.]7.在平面直角坐标系中,若有一点P(2,1)向上平移3个单位或向左平移4个单位,恰好都在直线y=kx+b上,则k的值为( C )A.12B.2 C.34D.43[命题考向:本题考查直角坐标系中,坐标的平移规律,用待定系数法求一次函数表达式.]8.如图,在△ABC中,∠C=30°,点D在BC上,AE平分∠BAD,∠ADB=∠B+90°,下列结论正确的是( D )A.EC=2AE B.AC=2AEC.EC=2AE D.AC=2AE(第8题图) (第8题答图)[命题考向:本题考查含30°角、45°角的直角三角形的三边关系.利用角平分线与三角形外角的性质作等角转换是解题的关键.解析:如答图,过点A作AF⊥BC,则∠AFC=∠AFB=90°,∵∠ADB=∠DAF+∠AFB,∠ADB=∠B+90°,∴∠DAF=∠B.∵∠B+∠BAF=90°,AE平分∠BAD,∴∠B+∠BAE=∠DAF+∠EAD,∴∠AEF=∠EAF=12×90°=45°,∴在Rt△AEF中,AE=2AF,在Rt△ACF中,∠C=30°,∴AC=2AF,∴AC=2AE.∴EC=EF+FC=22AE+32AC=2+62AE.故选D.]9.已知A ,B ,C 三点顺次在同一条直线上,甲、乙两人分别从A ,B 两点同时同向出发,历时7 min 同时到达C 点,乙的速度始终是60 m/min ,如图是甲、乙两人之间的距离y (m)与他们行走的时间x (min)之间的函数图象(其中FG ∥x 轴),则下列说法中正确的有( D )(第9题图)①甲的速度始终是95 m/min ; ②A ,C 两点之间的距离是420 m ; ③甲到达点B 需要 1419min ;④甲、乙两人行走 65 min ,145 min 和 235 min 时相距28 m.A .①②B .③C .①③④D .③④[命题考向:本题考查用一次函数分析、解决实际问题.根据一次函数的性质分析每一段函数图象所表示的实际意义是理解题意、解决问题的关键.解析: ①t =0时,甲乙相距70 m ,甲追乙,t =2时,甲追上乙,故(v 1-60)×2=70,则v 1=95 m/min ;3<t <4时,FG ∥x 轴,则v 2=60 m/min ;t =7时,甲乙同时到达C ,故95×3+60×1+v 3·3=60×7+70,则v 3=1453 m/min ,①不正确.②AC 两点之间的距离是60×7+70=490 m ,②不正确.③甲到达点B 需要70÷95=1419min ,③正确.④(95-60)t 1=70-28,解得t 1=65;(95-60)(t 2-2)=28,解得t 2=145;⎝⎛⎭⎪⎫60-1453(t 3-4)=35-28,解得t 3=235,④正确.故选D.]10.如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C ,D 与点A ,B 不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是( B )A.3 B.4 C.5 D.6(第10题图) (第10题答图)[命题考向:本题考查圆的基本性质.根据同斜边的两直角三角形确定四点共圆是解本题的关键.解析:如答图,连结OC,OM.∵AB=8,∴OC=4,∵M是CD的中点,∴OM⊥CD,∵CP⊥AB,∴△CPO,△CMO均为直角三角形,∴点C,P,O,M在以OC为直径的圆上,由PM为该圆上的弦,可知PM为该圆直径时最大,即l的最大值是4.] 二、填空题(每小题4分,共24分)11.因式分解:(x-y)2+2y(x-y)=__(x+y)(x-y)__.[命题考向:本题考查用提公因式法进行因式分解.]12.已知m是方程x2-3x-7=0的一个根,则2m2-6m+1=__15__.[命题考向:本题考查方程根的定义及整体代入法的运用.]13.若方程组⎩⎨⎧ax-2y=1,2x+by=5的解是⎩⎨⎧x=1,y=a,则b=__-3__.[命题考向:本题考查解二元一次方程组.]14.某班准备同时在A,B两地开展数学活动,每位同学抽签确定去其中一个地方,则甲、乙、丙三位同学中恰好有两位同学抽到去B地的概率是__38__.[命题考向:本题考查用列举法计算事件发生的概率.]15.在面积为12的▱ABCD中,过点A作直线BC的垂线交BC于点E,过点A作直线CD的垂线交CD于点F,若AB=4,BC=6,则CE+CF的值为.[命题考向:本题考查平行四边形的性质,勾股定理.在未给定图形时,须考虑符合条件的多种情况.]16.二次函数y =ax 2+bx +c 的图象过点(3,1),(6,-5),若当3≤x ≤6时,y 随着x 的增大而减小,则实数a 的取值范围是__0<a ≤23或-23≤a <0__.[命题考向:本题考查二次函数的图象和性质.在二次项系数a (a ≠0)不确定时,须分a >0(图象开口向上)和a <0(图象开口向下)两种情况讨论.解析: 将点(3,1),(6,-5)代入表达式,得b =-9a -2.当3≤x ≤6时,y 随x 的增大而减小,结合图象得两种情况: ①开口向下且对称轴在x =3的左边,则⎩⎨⎧a <0,-b 2a≤3,解得-23≤a <0; ②开口向上且对称轴在x =6的右边,则⎩⎨⎧a >0,-b 2a≥6,解得0<a ≤23. 故a 的取值范围是-23≤a <0或0<a ≤23.]三、解答题(本大题有7个小题,共66分)17.(本题6分)先化简,再求值:⎝ ⎛⎭⎪⎫a -2ab -b 2a ÷a -b a ,其中a =sin60°,b =tan60°.[命题考向:本题考查代数式的化简求值,特殊角的三角函数值.] 解:⎝⎛⎭⎪⎫a -2ab -b 2a ÷a -b a =a 2-2ab +b 2a ·a a -b =a -b ,∵a =sin60°=32,b =tan60°=3,∴原式=-32. 18.(本题8分)如图,每个小方格都是边长为1个单位的小正方形,B ,C ,D 三点都是格点.(1)找出格点A,连结AB,AD使得四边形ABCD为菱形;(2)画出菱形ABCD绕点A逆时针旋转90°后的菱形AB1C1D1,并求菱形ABCD在旋转的过程中扫过的面积.(第18题图)[命题考向:本题考查菱形的性质,图形的旋转变换及扇形的面积.]解:(1)略;(2)画图略.S=8π+8.19.(本题8分)为提高初中生的身体素质,教育行政部门规定:初中生每天参加户外活动的平均时间应不少于 1 h.为了解学生参加户外活动的情况,某区教育行政部门对部分学生参加户外活动的时间进行了抽样调查,并将调查结果绘制成下列两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)这次抽样共调查了__500__名学生,并补全条形统计图;(2)计算扇形统计图中表示户外活动时间为0.5 h的扇形圆心角度数;(3)本次调查中学生参加户外活动的平均时间是否符合要求?(请写出判断过程)(第19题图)[命题考向:本题考查利用条形、扇形统计图分析数据,计算平均数并根据结果作出判断.]解:(1)500,图略;(2)72°;(3)平均值为1.2 h ,符合.20.(本题10分)已知:如图,△ABC 中,AB =AC ,AD ,CD 分别是△ABC 两个外角的平分线. (1)求证:AC =AD ;(2)若∠B =60°,求证:四边形ABCD 是菱形.(第20题图)[命题考向:本题考查等腰三角形的性质,角平分线的性质及菱形的判定.] 证明:(1)∵AB =AC , ∴∠B =∠BCA ,∴∠FAC =∠B +∠BCA =2∠B , ∵AD 平分∠FAC ,∴∠FAD =∠B , ∴AD ∥BC ,∴∠D =∠DCE , ∵CD 平分∠ACE ,∴∠ACD =∠DCE , ∴∠D =∠ACD ,∴AC =AD .(2)∵∠B =60°,∴∠ACB =60°,∠FAC =∠ACE =120°, ∴∠DCE =∠B =60°,∴DC ∥AB , ∵AD ∥BC ,∴四边形ABCD 为平行四边形, 又由(1)知AC =AD ,∴AB =AD , ∴四边形ABCD 是菱形.21.(本题10分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点G 是AD ︵上一点,连结AG ,CG .(1)在不添加辅助线的前提下找出图中与∠AGC 相等的角,并说明理由; (2)求证:当AB ∥DG 时,△ACG 与△ACE 相似; (3)若OE =BE ,求∠AGC 的度数.(第21题图) 备用图[命题考向:本题考查圆的基本性质,相似三角形的判定,等边三角形的判定与性质.](第21题答图①)解:(1)∠ACE=∠AGC.理由如下:如答图①,连结AD.∵AB是直径,AB⊥CD,∴EC=ED,∴AD=AC,∴∠ACE=∠ADC,∵∠AGC=∠ADC,∴∠ACE=∠AGC.(2)证明:如答图②,∵DG∥AB,∴∠AEC=∠CDG=90°,∴CG是直径,∴∠CAG=90°,∵∠CAG=∠AEC=90°,∠AGC=∠ACE,∴△ACG∽△EAC.(第21题答图②)(第21题答图③)(3)如答图③,连结OC ,BC .∵OE =EB ,CE ⊥OB ,∴CO =CB =OB , ∴△OBC 是等边三角形,∴∠B =60°, ∴∠AGC =∠B =60°.22.(本题12分)若二次函数的表达式为y =(x -m )(x -1),(1≤m ≤2). (1)当x 分别取-1,0,1时对应的函数值为y 1,y 2,y 3,请比较y 1,y 2,y 3的大小关系;(2)对于任意m ,当x >k 时,y 随x 的增大而增大,求k 的最小整数值; (3)若函数过(a ,b )点和(a +6,b )点,求b 的取值范围. [命题考向:本题考查二次函数的性质.] 解:(1)y 1>y 2>y 3; (2)k 的最小整数值为2; (3)354≤b ≤9.23.(本题12分)一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们称该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,AF =1,连结CE ,CF ,求证:EF 为四边形AECF 的相似对角线;(2)在四边形ABCD 中,AC =6,AB =3,∠BAD =120°,AC 平分∠BAD ,且AC 是四边形ABCD 的相似对角线,求BD 的长;(3)如图2,在矩形ABCD 中,AB =6,BC =4,点E 是线段AB (不取端点A ,B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案)(第23题图)[命题考向:本题考查正方形、矩形的性质,相似三角形的判定与性质.符合条件的图形不唯一,须考虑多种情况.]解:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∵AE=DE=2,AF=1,∴AFDE=AECD=12,∵∠A=∠D=90°,∴△AEF∽△DCE,∴∠AEF=∠DCE,EFCE=AFDE=12,∵∠DCE+∠CED=90°,∴∠AEF+∠CED=90°,∴∠FEC=∠A=90°,∵AFAE=EFEC=12,∴△AEF∽△ECF,∴EF为四边形AECF的相似对角线.(2)∵AC是四边形ABCD的相似对角线,∴有两种情形:①如答图①,△ACB≌△ACD时,∵AB=AD=3,BC=CD,∴AC垂直平分DB,在Rt△AOB中,∵AB=3,∠ABO=30°,∴BO=AB·cos 30°=332,∴BD=2OB=3 3.(第23题答图①) (第23题答图②)②如答图②,当△ACD ∽△ABC 时,可得AC 2=AB ·AD ,∴6=3AD ,∴AD =2,在Rt△ADH 中,∵∠HAD =60°,AD =2,∴AH =12AD =1,DH =3AH =3, 在Rt△BDH 中,BD =BH 2+DH 2=42+(3)2=19.(3)①如答图③,当△AEF 和△CEF 关于EF 对称时,EF 是四边形AECF 的相似对角线,设AE =EC =x ,在Rt△BCE 中,∵EC 2=BE 2+BC 2,∴x 2=(6-x )2+42,解得x =133, ∴此时BE =AB -AE =6-133=53.(第23题答图③) ( 第23题答图④)②如答图④,取AD 中点F ,连结CF ,将△CFD 沿CF 翻折得到△CFD ′,延长CD ′交AB 于E ,易证EF 是四边形AECF 的相似对角线.由△AEF ∽△DFC ,得到AE DF =AF DC, ∴AE 2=26,∴AE =23, ∴BE =AB -AE =163. ③如答图⑤,取AB 的中点E ,连结CE ,作EF ⊥CE 交AD 于F ,延长CB 交FE 的延长线于M ,则易证EF 是四边形AECF 的相似对角线.此时BE =3.(第23题答图⑤)综上所述,满足条件的BE 的值为53或163或3. 17。
2020年中考数学模拟试卷及答案(共三套)
2020年中考数学模拟试卷及答案(共三套)中考数学模拟试卷及答案(一)[满分:120分考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列四个图形中,是轴对称图形但不是中心对称图形的有( )图M2-12.下列运算正确的是( )A.(x-y)2=x2-y2 B.x2·x4=x6C.(-3)2=-3 D.(2x2)3=6x63.下列二次根式中,与3是同类二次根式的是( )A.13B.18C.24D.0.34.据统计,2013年河南省旅游业总收入达到约3875.5亿元,若将3875.5亿用科学记数法表示为3.8755×10n,则n等于( )A.10 B.11C.12 D.13图M2-25.如图M2-2,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( )A.34B.43C.35D.456.把8a 3-8a 2+2a 进行因式分解,结果正确的是( ) A .2a(4a 2-4a +1) B .8a 2(a -1) C .2a(2a -1)2 D .2a(2a +1)27.不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x -2>3(x +1)的解集表示在数轴上,正确的是()图M2-3图M2-48.已知菱形OABC 在平面直角坐标系的位置如图M2-4所示,顶点A(5,0),OB =4 5,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( ) A .(0,0) B .(1,12) C .(65,35) D .(107,57)9.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是( )A .5,5,32B .5,5,10C .6,5.5,116D .5,5,5310.已知下列命题:①若||a =-a ,则a≤0;②若a>||b ,则a 2>b 2;③两个位似图形一定是相似图形;④平行四边形的对边相等.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个11.若x =-3是关于x 的一元二次方程x 2+2ax +a 2=0的一个根,则a 的值为( ) A .4 B .-3 C .3 D .-4图M2-512.二次函数y =ax 2+bx +c 的图象如图M2-5所示,对称轴是直线x =-1,有以下结论:①abc>0;②4ac<b 2;③2a+b =0;④a-b +c>2.其中正确的结论的个数是( )A .1B .2C .3D .4二、填空题(每小题3分,共24分) 13.计算:2cos45°-()π+10+14+⎝ ⎛⎭⎪⎫12-1=________. 14.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别.现从袋中取走若干个白球,并放入相同数量的红球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是58,则取走的白球为________个.15.化简:(a 2a -3+93-a )÷a +3a=________.16.如图M2-6,△ABC 内接于⊙O,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,则AB =________.图M2-617.在一条笔直的公路上有A ,B ,C 三地,C 地位于A ,B 两地之间,甲,乙两车分别从A ,B 两地出发,沿这条公路匀速行驶至C 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图M2-7表示,当甲车出发________h 时,两车相距350 km.图M2-718.若关于x 的分式方程x +m x -2+2m2-x=3的解为正实数,则实数m 的取值范围是________.19.如图M2-8,点A 在双曲线y =5x 上,点B 在双曲线y =8x 上,且AB ∥x 轴,则△OAB的面积等于________.图M2-820.如图M2-9,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE 、BO ,若∠COB=60°,FO =FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE ︰S △BCM =2︰3.其中所有正确的结论的序号是________.图M2-9三、解答题(共60分)21.(8分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表图M2-10(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为s甲2=0.8、s乙2=0.4、s丙2=0.81)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能地传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)22.(8分)如图M2-11所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角为30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)图M2-1123.(10分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?24.(10分)如图M2-12,在△ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC 于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2 5,sin∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.图M2-1225.(12分)如图M2-13①,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图M2-13②,若点E、F分别是CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请给出判断并予以证明;(3)如图M2-13③,若点E、F分别是BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.图M2-1326.(12分)如图M2-14,在平面直角坐标系中,已知抛物线y =32x 2+bx +c 与x 轴交于A(-1,0),B(2,0)两点,与y 轴交于点C.(1)求该抛物线的解析式;(2)直线y =-x +n 与该抛物线在第四象限内交于点D ,与线段BC 交于点E ,与x 轴交于点F ,且BE =4EC.①求n 的值;②连接AC ,CD ,线段AC 与线段DF 交于点G ,△AGF 与△CGD 是否全等?请说明理由; (3)直线y =m(m>0)与该抛物线的交点为M ,N(点M 在点N 的左侧),点M 关于y 轴的对称点为点M′,点H 的坐标为(1,0).若四边形OM′NH 的面积为53.求点H 到OM′的距离d 的值.图M2-14参考答案1.B 2.B 3.A 4.B 5.D 6.C 7.A8.D [解析] 如图,连接AD ,交OB 于点P ,P 即为所求的使CP +DP 最短的点;连接CP ,AC ,AC 交OB 于点E ,过E 作EF⊥OA,垂足为F.∵点C 关于OB 的对称点是点A , ∴CP =AP ,∴CP +DP 的最小值即为AD 的长度; ∵四边形OABC 是菱形,OB =4 5, ∴OE =12OB =2 5,AC ⊥OB.又∵A(5,0), ∴在Rt △AEO 中,AE =OA 2-OE 2=52-(2 5)2=5; 易知Rt △OEF ∽Rt △OAE ,∴OE OA =EF AE, ∴EF =OE·AE OA =2 5×55=2,∴OF =OE 2-EF 2=(2 5)2-22=4. ∴E 点坐标为(4,2).设直线OE 的解析式为:y =kx ,将E(4,2)的坐标代入,得y =12x ,设直线AD 的解析式为:y =kx +b ,将A(5,0),D(0,1)的坐标代入,得y =-15x +1,⎩⎪⎨⎪⎧y =12x ,y =-15x +1,解得⎩⎪⎨⎪⎧x =107,y =57.∴点P 的坐标为⎝ ⎛⎭⎪⎫107,57.9.D 10.A 11.C12.C [解析] ①a<0,b<0,c>0,故正确,②Δ=b 2-4ac>0,故正确,③x =-1,即-b2a=-1,b =2a ,故错误.④当x =-1时,a -b +c>2.故正确.13.2+3214.715.a [解析] 先算小括号,再算除法.原式=(a 2a -3-9a -3)÷a +3a =a 2-9a -3÷a +3a =(a +3)·aa +3=a.故答案为a.16.39217.32[解析] 由题意,得AC =BC =240 km , 甲车的速度为240÷4=60(km/h),乙车的速度为240÷3=80(km/h). 设甲车出发x 小时甲、乙两车相距350 km ,由题意,得 60x +80(x -1)+350=240×2,解得x =32,即甲车出发32h 时,两车相距350 km.故答案为32.18.m<6且m≠219.32 [解析] 设点A 的坐标为(a ,5a ). ∵AB ∥x 轴, ∴点B 的纵坐标为5a.将y =5a 代入y =8x ,求得x =8a 5.∴AB =8a 5-a =3a 5.∴S △OAB =12·3a 5·5a =32.故答案为32.20.①③④21.[解析] (1)众数是一组数据中出现次数最多的数,观察表格可以知道甲运动员测试成绩的众数是7分.中位数是一组数据按从大到小或从小到大的顺序排列,最中间的一个或两个数的平均数,观察表格并将数据按从小到大排列得5,6,7,7,7,7,7,8,8,8,可以知道甲运动员测试成绩的中位数是7分.(2)经计算x 甲=7分,x 乙=7分,x 丙=6.3分,根据题意不难判断. (3)画出树状图,即可解决问题.解:(1)甲运动员测试成绩的众数和中位数都是7分.(2)选乙运动员更合适,理由:经计算x 甲=7分,x 乙=7分,x 丙=6.3分, ∵x 甲=x 乙>x 丙,s 丙2>s 甲2>s 乙2, ∴选乙运动员更合适. (3)画树状图如图所示.由树状图知共有8种等可能的结果,回到甲手中的结果有2种,故P(回到甲手中)=28=14. 22.解:过点D 作DM ⊥EC 于点M ,DN ⊥BC 于点N ,设BC =h ,在直角三角形DMA 中,∵AD =6,∠DAE =30°,∴DM =3,AM =3 3,则CN =3,BN =h -3.在直角三角形BDN 中,∵∠BDN =30°,∴DN =3BN =3(h -3);在直角三角形ABC 中,∵∠BAC =48°,∴AC =h tan48°,∵AM +AC =DN ,∴3 3+htan48°=3(h -3),解之得h≈13.答:大树的高度约为13米.23.解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x =10或x =190(舍去). 答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m 件,则第二次降价后售出该种商品(100-m)件,第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);第二次降价后的单件利润为:324-300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品23件.24.解:(1)证明:连接AN.∵AC是直径,∴∠ANC=90°.∵AB=AC,∴∠CAB=2∠CAN.∵∠CAB=2∠BCP,∴∠CAN=∠BCP.∵∠CAN+∠ACN=90°,∴∠BCP+∠ACN=90°,∴直线CP是⊙O的切线.(2)∵BC=2 5,∴CN= 5.过B点作BD⊥AC交AC于点D.∵sin∠BCP=sin∠CAN=5 5,∴AC=5.∴AN=2 5.∵AC·BD=BC·AN,∴5·BD=2 5·2 5.∴BD=4.故点B到AC的距离为4.(3)∵AB=AC=5,BD=4,∴AD=3.∴C △ADBC △ACP =AD AC =35=12C △ACP ,∴C △ACP =20.25.解:(1)相等 平行[解析] ∵四边形ABCD 是正方形, ∴∠ABC =∠BCD=90°,AB =BC =CD. ∵CE =BF ,∴△ECD ≌△FBC , ∴CF =DE ,∠DEC =∠BFC. ∴∠DEC +∠BCF=90°,∴FC ⊥DE. ∵EG ⊥DE ,EG =DE , ∴FC ∥GE ,GE =CF ,∴四边形GECF 是平行四边形, ∴GF ∥CE ,GF =CE. (2)成立.证明:∵四边形ABCD 是正方形, ∴∠ABC =∠BCD=90°,AB =BC =CD. ∵CE =BF ,∴△ECD≌△FBC, ∴CF =DE ,∠DEC =∠BFC . ∴∠DEC +∠BCF=90°,∴FC ⊥DE. ∵EG ⊥DE ,EG =DE , ∴FC ∥GE ,GE =CF ,∴四边形GECF 是平行四边形, ∴GF ∥CE ,GF =CE.(3)仍然成立. [解析] 证明方法同上.26.[解析] (1)由已知点的坐标,利用待定系数法求得抛物线的解析式为y =32x 2-32x -3;(2)①利用待定系数法求出直线BC 解析式为y =32x -3,求出E 点坐标,将E 点坐标代入直线解析式y =-x +n 中求出n =-2;②利用一次函数与二次函数解析式求出交点D 的坐标,再利用平行线的性质得角相等证明两个三角形全等;(3)先证明四边形OM′NH 是平行四边形,由面积公式,根据点M 、N 关于直线x =12对称,点M 与点M′关于y 轴对称,求解点M 、M′的坐标,最后由勾股定理和平行四边形面积公式求得d =5 4141.解:(1)∵抛物线y =32x 2+bx +c 与x 轴交于A(-1,0),B(2,0)两点,∴⎩⎪⎨⎪⎧32-b +c =0,6+2b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-3,∴该抛物线的解析式为y =32x 2-32x -3.(2)①过点E 作EE′⊥x 轴于点E′. ∴EE ′∥OC , ∴BE′OE′=BE CE , ∵BE =4CE , ∴BE ′=4OE′.设点E 坐标为(x ,y),OE ′=x ,BE ′=4x.∵点B 坐标为(2,0), ∴OB =2,∴x +4x =2,∴x =25.∵抛物线y =32x 2-32x -3与y 轴交于点C ,∴当x =0时,y =-3,即C(0,-3). 设直线BC 的解析式为y =kx +b 1. ∵B(2,0),C(0,-3),∴⎩⎪⎨⎪⎧2k +b 1=0,b 1=-3,解得⎩⎪⎨⎪⎧k =32,b 1=-3,∴直线BC 的解析式为y =32x -3.∵当x =25时,y =-125,∴E(25,-125).∵点E 在直线y =-x +n 上, ∴-25+n =-125,得n =-2.②全等;理由如下:∵直线EF 的解析式为y =-x -2, ∴当y =0时,x =-2,即F(-2,0),OF =2. ∵A(-1,0),∴OA =1,AF =1. 由⎩⎪⎨⎪⎧y =32x 2-32x -3,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-23,y 1=-43,和⎩⎪⎨⎪⎧x 2=1,y 2=-3.∵点D 在第四象限,∴D(1,-3). ∵点C(0,-3), ∴CD ∥x 轴,CD =1,∴∠AFG =∠CDG,∠FAG =∠DCG, 又∵CD=AF =1, ∴△AGF ≌△CGD. (3)∵-b 2a =12.∴该抛物线的对称轴是直线x =12.∵直线y =m 与该抛物线交于M 、N 两点, ∴点M 、N 关于直线x =12对称,设N(t ,m),则M(1-t ,m),∵点M 与点M′关于y 轴对称, ∴M ′(t -1,m), ∴点M′在直线y =m 上,∴M ′N ∥x 轴,M ′N =t -(t -1)=1, ∵H(1,0),∴OH =1, ∴OH =M′N,∴四边形OM′NH 是平行四边形, 设直线y =m 与y 轴交于点P ,∵S ▱OM ′NH =53,即OH·OP=OH·m=53,得m =53,∴当32x 2-32x -3=53时,解得x 1=-43,x 2=73,∴点M 的坐标为(-43,53),M ′(43,53),∴OP =53,PM ′=43,在Rt △OPM ′中,∠OPM ′=90°, ∴OM ′=OP 2+PM′2=413. ∵S ▱OM ′NH =53,∴OM ′·d =53,d =5 4141.中考数学模拟试卷及答案(二)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分) 1.-2的相反数是( ) A .- 2 B.22C. 2 D .-222.函数y =x -2x +3中自变量x 的取值范围是( )A .x ≠-3B .x≥2C .x >2D .x ≠03.统计显示,2016年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为( )A .11.4×104B .1.14×104C .1.14×105D .0.114×106 4.下列运算正确的是( ) A .a 2+a 3=a 5B .(-2a 2)3÷(a 2)2=-16a 4C .3a -1=13aD .(2 3a 2-3a)2÷3a 2=4a 2-4a +1图M1-15.如图M1-1,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB =8 cm ,CD =3 cm ,则圆O 的半径为( )A.256 cm B .5 cm C .4 cm D.196cm6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中摸出的2个球的颜色相同的概率是( )A.34B.15C.35D.257.方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m>52B .m ≤52且m≠2C .m ≥3D .m ≤3且m≠28.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A.32B.3 32C.32D .不能确定 9.下列命题中,原命题与逆命题均为真命题的个数是( ) ①若a =b ,则a 2=b 2; ②若x >0,则|x|=x ;③一组对边平行且对角线相等的四边形是矩形; ④一组对边平行且不相等的四边形是梯形. A .1个 B .2个 C .3个 D .4个10.如图M1-2,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,将Rt △ABC 绕点B 旋转90°至△DBE 的位置,连接EC 交BD 于F ,则CF∶FE 的值是( )图M1-2A .3∶4B .3∶5C .4∶3D .5∶311.定义新运算,a*b =a(1-b),若a 、b 是方程x 2-x +14m =0(m<0)的两根,则b*b-a*a 的值为( )A .0B .1C .2D .与m 有关方程图M1-312.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图M1-3所示,点M 在y =a x 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD⊥y 轴于点D ,交y =2x 的图象于点B ,当点M 在y =ax的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3二、填空题(每小题3分,共24分) 13.计算:8-312+2=________.14.不等式组⎩⎪⎨⎪⎧x -1≤2-2x ,2x 3>x -12的解集为________.图M1-415.如图M1-4,OP 为∠AOB 的平分线,PC ⊥OB 于点C ,且PC =3,点P 到OA 的距离为________.16.小亮应聘小记者,进行了三项素质测试,测试成绩分别是:采访写作90分,计算机输入85分,创意设计70分,若将采访写作、计算机输入、创意设计三项成绩按5∶2∶3的比例来计算平均成绩,则小亮的平均成绩是________分.图M1-517.如图M1-5,Rt △A ′BC ′是由Rt △ABC 绕B 点顺时针旋转而成的,且点A ,B ,C ′在同一条直线上,在Rt △ABC 中,若∠C=90°,BC =2,AB =4,则斜边AB 旋转到A′B 所扫过的扇形面积为________.18.化简x x 2+2x +1÷(1-1x +1)=________.19.如图M1-6,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值为________.M1-6M1-720.如图M1-7,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中所有正确结论的序号是________.三、解答题(共60分)21.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分).A组:75≤x<80;B组:80≤x <85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100,并绘制如图M1-8两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有________名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是________,E组人数占参赛选手的百分比是________;(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.图M1-822.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度.如图M1-9,老师测得升旗台前斜坡FC 的坡比为i FC =1∶10(即EF∶CE=1∶10),学生小明站在离升旗台水平距离为35 m(即CE =35 m)处的C 点,测得旗杆顶端B 的仰角为α,已知tan α=37,升旗台高AF =1 m ,小明身高CD =1.6 m ,请帮小明计算出旗杆AB 的高度.图M1-923.(10分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车按规定满载,并且只装一种水果).下表为装运甲、乙、丙三种水果的重量及利润.(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),设装运甲种水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?24.(10分)如图M1-10,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O 与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.图M1-1025.(12分)提出问题:(1)如图M1-11①,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.类比探究:(2)如图②,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA 上.若EF⊥HG于点O.探究线段EF与HG的数量关系,并说明理由.综合运用:(3)在(2)问条件下,HF∥GE,如图③所示,已知BE=EC=2,OE=2OF,求图中阴影部分的面积.图M1-1126.(12分)如图M1-12,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA 的度数.图M1-12参考答案1.C 2.B 3.C 4.D 5.A 6.D 7.B [解析] 因为方程有两个实数根, 所以⎩⎪⎨⎪⎧m -2≠0,(-3-m )2-4×14(m -2)≥0, 解得m≤52且m≠2.故选B.8.B [解析] 如图,△ABC 是等边三角形,AB =3,点P 是△ABC 内任意一点,过点P 分别向三边AB ,BC ,CA 作垂线,垂足依次为D ,E ,F ,过点A 作AH⊥BC 于H.则BH =32,AH =AB 2-BH 2=3 32.连接PA ,PB ,PC ,则S △PAB +S △PBC +S △PCA =S △ABC . ∴12AB·PD+12BC·PE+12CA ·PF =12BC·AH. ∴PD +PE +PF =AH =3 32.故选B.9.A 10.A11.A [解析] b*b -a*a =b(1-b)-a(1-a)=b -b 2-a +a 2,因为a ,b 为方程x 2-x +14m =0的两根,所以a 2-a +14m =0,化简得a 2-a =-14m ,同理b 2-b =-14m ,代入上式得原式=-(b 2-b)+a 2-a =14m +(-14m)=0.12.D 13.32 2 14.-3<x≤115.3 [解析] 如图,过P 作PD⊥OA 于D ,∵OP 为∠AOB 的平分线,PC ⊥OB , ∴PD =PC , ∵PC =3,∴PD =3.故答案为3. 16.83 17.16π318.1x +1 19.320.①②③④ [解析] ∵∠G=∠C=∠FAD=90°, ∴∠CAD =∠AFG. ∵AD =AF , ∴△FGA ≌△ACD. ∴AC =FG , ①正确.∵FG =AC =BC ,FG ∥BC ,∠C =90°, ∴四边形CBFG 为矩形, ∴S △FAB =12FB·FG=12S 四边形CBFG ,②正确.∵CA =CB ,∠C =∠CBF=90°, ∴∠ABC =∠ABF=45°, 故③正确.∵∠FQE =∠DQB=∠ADC,∠E =∠C=90°, ∴△ACD ∽△FEQ ,∴AC ∶AD =FE∶FQ, ∴AD ·FE =AD 2=FQ·AC, ④正确.21.[解析] (1)由A 组或D 组对应频数和百分比可求选手总数为40,进而求出B 组频数;(2)C 组对应的圆心角=1240×360°,E 组人数占参赛选手的百分比是640×100%;(3)用列表或画树状图表示出所有可能的结果,注意选取不放回.解:(1)40,补全频数分布直方图如图;(2)108°,15%;(3)两名男生分别用A 1、A 2表示,两名女生分别用B 1、B 2表示.根据题意可画出如下树状图:或列表如下:综上可知,所有可能出现的结果有12种,这些结果出现的可能性相等,选中一名男生和一名女生的结果有8种.∴选中一名男生和一名女生的概率是812=23.22.解:∵i FC =1∶10,CE =35 m , EF =3510=3.5(m).过点D 作BE 的垂线交BE 于点G.在Rt △BGD 中 ,∵tan α=37,DG =CE =35 m ,∴BG =15 m.又∵CD=1.6 m ,CD =EG , ∴FG =3.5-1.6=1.9(m). 又∵AF=1 m ,∴AB =BG -AF -FG =15-1-1.9=12.1(m).23.解:(1)设装运乙、丙两种水果的汽车分别为x 辆,y 辆,由题意得⎩⎪⎨⎪⎧x +y =8,2x +3y =22,∴⎩⎪⎨⎪⎧x =2,y =6.答:装运乙种水果有2辆车,装运丙种水果有6辆车. (备注:也可列一元一次方程)(2)设装运乙、丙两种水果的车分别为a 辆,b 辆,由题意得⎩⎪⎨⎪⎧m +a +b =20,4m +2a +3b =72,∴⎩⎪⎨⎪⎧a =m -12,b =32-2m.(3)设总利润为w 千元,w =4×5m+2×7(m-12)+4×3(32-2m) =10m +216,∵⎩⎪⎨⎪⎧m≥1,m -12≥1,32-2m≥1, ∴13≤m ≤15.5. ∵m 为正整数, ∴m =13,14,15.在w =10m +216中,w 随m 的增大而增大, 当m =15时,w 最大=366千元.答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元.24.解:(1)证明:连接OD. ∵BC 与⊙O 相切于点D ,∴OD ⊥BC.又∵∠C=90°,∴OD ∥AC ,∴∠CAD =∠ODA. ∵OA =OD ,∴∠OAD =∠ODA, ∴∠CAD =∠BAD,∴AD 平分∠CAB. (2)①DF=DH.理由如下:∵FH 平分∠AFE,∴∠AFH =∠EFH, 又∠DFG=∠EAD=∠HAF, ∴∠DFG +∠GFH=∠HAF+∠HFA, 即∠DFH=∠DHF,∴DF =DH. ②设HG =x ,则DH =DF =1+x. ∵OH ⊥AD ,∴AD =2DH =2(1+x). ∵∠DFG =∠DAF,∠FDG =∠AD F , ∴△DFG ∽△DAF ,∴DFAD=DGDF,∴1+x2(1+x)=11+x,∴x=1.∴DF=2,AD=4.∵AF为直径,∴∠ADF=90°,∴AF=DF2+AD2=22+42=2 5,∴⊙的半径为 5.25.解:(1)证明:如图①,在正方形ABCD中,AD=AB,∠B=90°,∴∠1+∠3=90°,∵AE⊥DH,∴∠1+∠2=90°.∴∠2=∠3.∴△ADH≌△BAE(AAS).∴AE=DH.(2)相等,理由如下:如图②,过点D作DH′∥GH交AB于H′,过点A作AE′∥FE 交BC于E′,AE′分别交DH′,GH于点S,T,DH′交EF于点R.∴四边形ORST为平行四边形.又∵EF⊥HG,∴四边形ORST为矩形,∴∠RST=90°.由(1)可知,DH′=AE′.∵AF∥EE′,∴四边形AE′EF是平行四边形,∴EF=AE′.同理,HG=DH′,∴EF=GH.(3)如图③,延长FH,CB交于点P,过点F作FQ⊥BC于点Q.∵AD∥BC,∴∠AFH=∠P,∵HF ∥GE ,∴∠GEC =∠P, ∴∠AFH =∠GEC.又∵∠A=∠C=90°,∴△AFH ∽△CEG. ∴AF CE =HF EG =OF OE =OF 2OF =12. ∵BE =EC =2,∴AF =1, ∴BQ =AF =1,QE =1.设OF =x ,∴OE =2OF =2x ,∴EF =3x ,∴HG =EF =3x. ∵HF ∥GE ,∴OH OG =OF OE =12,∴OH =OF =x ,OG =OE =2x.在Rt △EFQ 中,∵QF 2+QE 2=EF 2, ∴42+12=(3x)2,解得x =173. ∴S 阴影=S △HOF +S △EOG =12x 2+12(2x)2=52x 2=52×(173)2=8518.26.解:(1)∵该抛物线过点C(0,2), ∴可设该抛物线的解析式为y =ax 2+bx +2, 将A(-1,0),B(4,0)代入,得⎩⎪⎨⎪⎧a -b +2=0,16a +4b +2=0,解得⎩⎪⎨⎪⎧a =-12,b =32.∴该抛物线的解析式为y =-12x 2+32x +2.(2)存在.由图可知,以A ,B 为直角顶点的△ABE 不存在,所以△ABE 只可能是以点E 为直角顶点的三角形.在Rt △BOC 中,OC =2,OB =4, ∴BC =22+42=2 5.在Rt △BOC 中,设BC 边上的高为h , 则12BC×h=12×2×4, ∴h =455.∵△BEA ∽△COB ,设E 点坐标为(x ,y),∴AB BC =|y|45 5,∴y =±2,当y =-2时,不合题意舍去, ∴E 点坐标为(0,2),(3,2).(3)如图,连接AC ,作DE⊥x 轴于点E ,作BF⊥AD 于点F ,∴∠BED =∠BFD=∠AFB=90°. 设BC 的解析式为y =kx +b ,由图像,得⎩⎪⎨⎪⎧2=b ,0=4k +b ,∴⎩⎪⎨⎪⎧k =-12,b =2.∴y BC =-12x +2.由BC∥AD,设AD 的解析式为y =-12x +n ,由图象,得0=-12×(-1)+n ,∴n =-12,y AD =-12x -12,∴-12x 2+32x +2=-12x -12,解得:x 1=-1,x 2=5. ∴D(-1,0)与A 重合,舍去, ∴D(5,-3).∵DE ⊥x 轴,∴DE =3,OE =5. 由勾股定理,得BD =10. ∵A(-1,0),B(4,0),C(0,2), ∴OA =1,OB =4,OC =2, ∴AB =5.在Rt △AOC ,Rt △BOC 中,由勾股定理,得AC =5,BC =2 5, ∴AC 2=5,BC 2=20,AB 2=25, ∴AB 2=AC 2+BC 2, ∴△ACB 是直角三角形, ∴∠ACB =90°. ∵BC ∥AD ,∴∠CAF +∠ACB=180°, ∴∠CAF =90°.∴∠CAF =∠ACB=∠AFB=90°,∴四边形ACBF 是矩形, ∴AC =BF =5,在Rt △BFD 中,由勾股定理,得DF =5, ∴DF =BF , ∴∠ADB =45°.中考数学模拟试卷及答案(三)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分) 1.下列各实数中最小的是( ) A .- 2 B .-12 C .0 D .|-1| 2.下列等式一定成立的是( ) A .a 2·a 5=a 10 B.a +b =a + b C .(-a 3)4=a 12 D.a 2=a 3.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 4.3tan30°的值等于( ) A. 3 B .3 3 C.33 D.325.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A.13B.16C.518D.566.将下列多项式分解,结果中不含有因式a +1的是( ) A .a 2-1 B .a 2+aC .a 2+a -2D .(a +2)2-2(a +2)+17.正六边形的边心距为3,则该正六边形的边长是( ) A. 3 B .2 C .3 D .2 38.在平面直角坐标系中,将△AOB 绕原点O 顺时针旋转180°后得到△A 1OB 1,若点B 的坐标为(2,1),则点B 的对应点B 1的坐标为( )A .(1,2)B .(2,-1)C .(-2,1)D .(-2,-1) 9.化简a 2-b 2ab -ab -b 2ab -a 2等于( ) A.b a B.a b C .-b a D .-a b10.如图M3-1,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:图M3-1①DE BC =12;②S △DOE S △COB=12;③AD AB =OE OB;④S △ODE S △ADE=13. 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 11.已知下列命题: ①若a>0,b>0,则a +b>0; ②若a≠b,则a 2≠b 2;③角平分线上的点到角两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个 D .4个12.如图M3-2是二次函数y =ax 2+bx +c 图象的一部分,图象过点A(-3,0),对称轴为直线x =-1,给出四个结论:①c >0;②若点B(-32,y 1),C(-52,y 2)为函数图象上的两点,则y 1<y 2;③2a -b =0; ④4ac -b 24a<0.其中,正确结论的个数是( )图M3-2A .1B .2C .3D .4二、填空题(每小题3分,共24分)13.计算:(-5)0+12cos30°-(13)-1=________.14.已知一组数据:3,3,4,7,8,则它的方差为________.15.如图M3-3,OP 平分∠AOB,∠AOP =15°,PC ∥OA ,PD ⊥OA 于点D ,PC =4,则PD =________.图M3-316.如图M3-4,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是________图M3-417.如图M3-5,直线y =x +b 与直线y =kx +6交于点P(3,5),则关于x 的不等式x +b>kx +6的解集是________.图M3-518.若关于x 的一元二次方程x 2+(2k +1)x +k 2+1=0有两个不等实根x 1,x 2满足x 1+x 2=-x 1·x 2,则k =________.19.如图M3-6,在平面直角坐标系中,矩形ABCD 的边AB∶BC=3∶2,点A(3,0),B(0,6)分别在x 轴,y 轴上,反比例函数y =kx (x >0)的图象经过点D ,且与边BC 交于点E ,则点E 的坐标为________.图M3-620.如图M3-7,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ,②∠DAF =15°,③AC 垂直平分EF ,④BE +DF =EF ,⑤S △CEF =2S △ABE .其中正确结论有________.三、解答题(共60分)21.(8分)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到下面频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24 ℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.图M3-822.(8分)如图M3-9,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度.(结果保留根号)23.(10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m 2),种草所需费用y 1(元)与x(m 2)的函数关系式为y 1=⎩⎪⎨⎪⎧k 1x (0≤x<600),k 2x +b (600≤x≤1000),其图象如图M3-10所示;栽花所需费用y 2(元)与x(m 2)的函数关系式为y 2=-0.01x 2-20x +30000(0≤x≤1000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1000 m 2空地的绿化总费用为W(元),请写出W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700 m 2,栽花部分的面积不少于100 m 2,请求出绿化总费用W 的最小值.图M3-1024.(10分)如图M3-11,在Rt △ABC 中,∠ABC =90°,以CB 为半径作⊙C,交AC于点D ,交AC 的延长线于点E ,连接BD ,BE.(1)求证:△ABD∽△AEB; (2)当AB BC =43时,求tanE ;(3)在(2)的条件下,作∠BAC 的平分线,与BE 交于点F ,若AF =2,求⊙C 的半径.图M3-1125.(12分)如图M3-12,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,BC =10 cm ,AD =8 cm ,点P 从点B 出发,在线段BC 上以每秒3 cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2 cm 的速度沿DA 方向匀速平移,分别交AB ,AC ,AD 于点E ,F ,H.当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t(t>0)秒.(1)当t =2时,连接DE ,DF ,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的△PEF 的面积存在最大值,当△PEF 的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使△PEF 为直角三角形?若存在,请求出此时t 的值,若不存在,请说明理由.图M3-1226.(12分)如图M3-13,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.图M3-13参考答案1.A 2.C 3.C 4.A 5.A6.C [解析] A :原式=(a +1)(a -1),不符合题意; B :原式=a(a +1),不符合题意; C :原式=(a +2)(a -1),符合题意; D :原式=(a +2-1)2=(a +1)2,不符合题意. 故选C. 7.B8.D [解析] ∵△A 1OB 1是将△AOB 绕原点O 顺时针旋转180°后得到的图形, ∴点B 和点B 1关于原点对称, ∵点B 的坐标为(2,1), ∴点B 1的坐标为(-2,-1). 故选D.9.B 10.C 11.B 12.B 13.114.4.4 [解析] 这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为:15[(3-5)2+(3-5)2+(4-5)2+(7-5)2+(8-5)2]=4.4.15.216.3π [解析] ∵△ABC 是等边三角形, ∴∠C =60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是120π·32360=3π,故答案为:3π. 17.x>3 18.219.(2,7) [解析] 过点D 作DF⊥x 轴于点F ,则∠AOB=∠DFA=90°, ∴∠OAB +∠ABO=90°, ∵四边形ABCD 是矩形, ∴∠BAD =90°,AD =BC , ∴∠OAB +∠DAF=90°, ∴∠ABO =∠DA F , ∴△AOB ∽△DFA ,∴OA ∶DF =OB∶AF=AB∶AD,∵AB ∶BC =3∶2,点A(3,0),B(0,6), ∴AB ∶AD =3∶2,OA =3,OB =6, ∴DF =2,AF =4, ∴OF =OA +AF =7, ∴点D 的坐标为(7,2),∴反比例函数的解析式为y =14x .①点C 的坐标为(4,8),设直线BC 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧b =6,4k +b =8,。
初中数学教材教法试题及答案
初中数学教材教法试题及答案一、选择题(每题5分,共80分)1. 设一个正整数的个位数字等于十位数字的一半,其个位与十位之和为9,求这个正整数。
A) 15B) 24C) 36D) 48答案:C) 362. 已知一个四位数,个位数是2,十位数是奇数,百位数比千位数大2,且千位数与百位数之和为9,求该四位数。
A) 2305B) 2325C) 2345D) 2365答案:B) 23253. 先求两个数的和,然后再以这个和为被减数,减去其中一个数,所得的差就是另一个数,这两个数依次是9和A) 6B) 7C) 8D) 10答案:B) 74. 一根长为5cm的铅笔从高3cm的桌面上掉下,落地后断成了两段,其中一段比另一段长1cm,求断成的两段各有多长。
A) 2cm,3cmB) 1cm,4cmC) 2.5cm,2.5cmD) 3cm,2cm答案:D) 3cm,2cm5. 有一个数,它的最小的质因数是2,最大的质因数是9,这个数是A) 36B) 45C) 72D) 81答案:D) 816. 若将一个偶数的平方开根号后再四舍五入,得到的值肯定是A) 整数B) 小数C) 无理数D) 负数答案:A) 整数7. 已知两个数的差是10,当将这个差放在这两个数之间时,较大的这一个数要是较小的这一个数的2倍,则这两个数依次是19和A) 9B) 20C) 29D) 30答案:D) 308. 有这样一个数:它除以3余2,除以4余1,除以5余4,其中能被90整除的最小正整数是A) 254B) 265C) 267D) 279答案:C) 267二、填空题(每题10分,共40分)1. 将8,-8,3,-3四个数排列,能使得两边之和相等的排列为(-3,8,-8,3)。
2. 一个不含零的三位整数,各位之和为18,个位数与十位数之差为6,则这个数是342。
3. 当两个数互为倒数时,它们的乘积等于1;当两个数互为倒数时,它们累加起来等于0。
4. 100cm等于1m,即100cm=1m。
2020年浙江省初中模拟考试数学试卷(3)及答案
2020年浙江省初中模拟考试3九年级 数学试题卷(满分150分,考试用时120分钟)一、选择题:(本大题共10小题,每小题4分,满分40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不不给分)1.41-的倒数是( ) A .4 B .41- C .41 D .4-2.在下列运算中,计算正确的是 ( )A .326a a a ⋅=B .824a a a ÷=C .236()a a =D . 224+a a a = 3.在实数2,722,0.101001,π,0,4中,无理数的个数是( ) A .0个 B .1个 C .2个 D .3个4.如图所示的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是( )5.函数x y -=2的自变量的取值范围是( ) A .0≥x B .2≠x C .2<x D .2≤x6.有一组数据3,4,2,1,9,4,则下列说法正确的是( )A .众数和平均数都是4B .中位数和平均数都是4C .极差是8,中位数是3.5D .众数和中位数都是47.如图,等腰直角△ABC 的直角边长为3,P 为斜边BC 上一点,且BP =1,D 为AC 上一点,且∠APD =45°,则CD 的长为( )A .35B .3132-C .3123-D .53 8.在平面直角坐标系中,已知直线343+-=x y 与x 轴、y 轴分别交于A 、B 两点,点C (0,n )A B C D (第4题图)是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A .(0,43)B .(0,34) C .(0,3) D .(0,4) 9.如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A .21B .43C .23D .54 10.如图,一块含30°角的直角三角板,它的斜边AB =8cm ,里面空心△DEF 的各边与△ABC 的对应边平行,且各对应边的距离都是1cm ,那么△DEF 的周长是( )A .5cmB .6cmC .(63)cm -D .(33)cm +二.填空题(共6小题,每小题5分,计30分)11.因式分解:x x x 4423++=___________________.12.袋子中装有3个红球,5个黄球,1个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是________________.13.分式方程12421=-+-xx 的解是_________________.14.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC =50°,则∠ADC =_________.15.如图,A 、B 是双曲线)0(>=k xk y 上的点,A ,B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若6=AOC S △,则k =_______________.16.已知在直角坐标系中,A (0,2),F (—3,0),D 为x 轴上一动点,过点F 作直线AD 的垂线FB ,交y 轴于B ,点C (2,25)为定点,在点D 移动的过程中,如果以A ,B ,C ,D 为顶点的四边形是梯形,则点D 的坐标为______________________.三、解答题:(本题共8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.计算:821)14.3(45sin 2)31(02+-+︒--π.18.如图,已知平行四边形ABCD 中,点E 为BC 边的中点,延长DE AB ,相交于点F .求证:CD BF =.19.如图,为了测量某建筑物CD 的高度,先在地面上用测角仪自A 处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m ,此时自B 处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m ,请你计算出该建筑物的高度.(取3=1.732,结果精确到1m )20.初中生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的 1 2 3 E D C F B A 第18题。
2020初中数学教师职称考试模拟试卷及答案(三套)
2020初中数学教师职称考试模拟试卷(一)一、选择题(本题有5小题,每小题2分,共10分)1.下列图形中,轴对称图形有……………………………………………………………………〖〗A.1个B.2个C.3个D.4个2.如果小明、小华、小颖各写一个0、1、2、3、4、5、6、7、8、9中的数,则其中有两个数相同的概率是………………………………………………………………〖〗A.大于0.5B.0.7C.0.3D.0.283南平与福州相距280km,甲车在南平,乙车在福州,两车同时出发,相向而行,在Ay/km地相遇,两车交换货物后,均需按原路返回出发地.280如果两车交换货物后,甲车立即按原路回到南平,设每车在行驶过程中速度保持不变,两车间的距140离y(km)与时间t(时)的函数关系如图,则甲、乙两车的速度分别为…………………………〖〗012345x/时A.70、70B.60、80C.70、80D.条件不足,不能求4.在备战足球赛的训练中,一队员在距离球门12米处的远射,正好射中了2.4米高的球门横梁.若足球运行的路线是抛物2线y=ax+bx+c(如图),则下列结论:11①a<-;②-<a<0;③a-b+c>0;④0<b<-12a.6060其中正确的结论是…………………………………………………………………〖〗A.①③B.①④C.②③D.②④5.已知一次函数y=kx+b,当自变量x的取值在-2≤x≤6时,相应的函数值y的取值是-11≤y≤9,则此函数的表达式是……………………………………………〖〗A.y=2.5x-6B.y=-2.5x+4C.y=2.5x-6或y =-2.5x+4D.以上都不对初中数学(共10页)第1页二、填空题(本题有5小题,共12分)E6.如图,已知五边形ABCDE,分别以五边形的顶点AD为圆心作单位圆,且互不相交.则图中阴影部分C的面积为.B7.在直角坐标系中,将△ABO第一次变换成△ABO,第二次变换成△ABO,第三次1122变换成△ABO,已知A(1,3)、A(2,3)、A(4,3)、A(8,3)、B(2,0)、33123B(4,0)、B(8,0)、B(16,0).按上述变换的规律再将△ABO变换成△ABO,1233344则点A、B的坐标分别为A(,)、B (,).4444y y8.已知=(x-a)(b-x)-1,且,若α,β是方程=0的根(α<β),则实数a,a bb,α,β的大小关系是9.一群鸽子放飞回来,如果每只笼里飞进4只,还有19只在天空飞翔;如果每只笼里飞进6只,还有一只笼里不到6只鸽子.则有鸽子只,有笼只.10.在下列的横线上填数,使这列数具有某种规律.3,5,7,,,.小颖在第一格填上11;则第二格填上,其规律是;小刚在第一格填上17;则第三格填上,其规律是.三、解答题(本题有5个小题,共28分)11.(6分)画图题(1)如图所示,在正方体的侧面内有一动点,到直线的ABCD ABCDABABPP1111111距离与到直线的距离相等.在侧面上,请你大致画出动点所在的曲线.ABPBC1初中数学(共10页)第2页(2)如图,有一棵大树AB和一棵小树CD,在大树的左侧还有一盏高悬的路灯EF(EF>AB),灯杆、大树、小树的底部在一条直线上.在这盏灯的照射下,大树的影子一定长吗?请画图说明.BDAC12.(4分)请用框图或结构图或其它合适的方法描述平行四边形,矩形,菱形,正方形之间的关系。
2020年中学教师资格《初中数学》试题及答案(卷三)
2020年中学教师资格《初中数学》试题及答案(卷三)1.答案:A。
有理数与无理数的和2.答案:B。
3.答案B。
4.答案:C。
若|A|=0,则一定有|B|=05.答案:B。
6.答案:C,X=2,y=-27.答案:A由一般到特殊的推理8.答案:D。
知识技能,问题解决,数学创新,情感态度五、案例分析题(本大题1小题,20分)16.参考答案:第一问:教学过程,应体现以学生为主体,教师是组织者,引导者,合作者。
甲老师的教学,在落实课标这一理念的过程中缺乏对实际情况的应激应变,以及其在引导学生思考时的问题目的性不强。
其原因如下: 他在教学过程中,组织学生进行小组讨论,这体现了教师的组织者角色,但是讨论的问题即为例题,该题目对于学生学习有一定的困难,需要教师有一定的引导给出铺垫问题,如对最短路线的探讨,何为最短路线,蚂蚁爬过的路径如何进行计算等等。
学生有了一定的思考方向之后再进行讨论便不会出现学生思考方向出现误差的情况。
这是该教师身为组织者和引导者做的不足之处。
而且当对于学生讨论的结论与自己预设的不同时,该教师也意识到学生进入了思维误区,终止了学生的思考,但是其终止之后并没有设计教学问题引导学生走出思维误区只是一味的批评学生的错误思路,导致出现第二次的终止讨论。
这是该教师身为合作者和引导者做的不足之处。
乙老师的教学,在落实课标这一理念的过程中其引导者的作用得到了充分的体现,但是学生主体地位的体现有些缺失,教师的合作者以及组织者的角色落实不到位。
原因如下:在教学过程中,能够引导学生对问题进行分析,突破知识的重点难点这体现了教师的引导者角色。
但是讲解的过于详细,没有体现以学生为主体,限制了学生的思维。
同时,在学生讨论的过程中,没有做好明确分组,也没有进行巡视指导参与到学生的讨论当中去,缺少教师的组织与合作。
第二问:甲老师不对之一:讨论的问题即为例题,该题目对于学生学习有一定的困难,需要教师有一定的引导给出铺垫问题,如对最短路线的探讨,何为最短路线,蚂蚁爬过的路径如何进行计算等等。
2020年人教版初中数学模拟试题(共8套)(含答案)
初中毕业生学业(升学)考试数学科试题特别提示:1.本卷为数学试题单,共26个题,满分150分,共6页。
考试时间120分钟。
2.考试采用闭卷形式,用笔在特制答题卡上答题,不能在本题单上作答。
3.答题时请仔细阅读答题卡上的注意事项,并根据本题单各题的编号在答题卡上找到答题的对应位置,用规定的笔进行填涂和书写。
一、选择题(本大题10个小题,每小题3分,共30分)1. 2019的相反数是( )A. -2019B. 2019C. -20191 D. 201912. 中国陆地面积约为9600 000 km 2,将数字9600 000用科学记数法表示为( )A. 96 ×105B. 9.6×106C. 9.6×107D. 0.96×1083. 如图,该立体图形的俯视图是( )A. B. C. D.4. 下列运算中,计算正确的是( )A. (a 2b )3=a 5b 3B. (3a 2)3 =27a 6C. a6÷a2=a3D. (a+b)2=a2+b25. 在平面直角坐标系中,点P (-3,m2+1)关于原点对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=350,则∠2的度数是()A. 350,B. 450,C. 550,D. 650,7.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF的是()A. ∠A=∠DB. AC=DFC. AB=EDD. BF=EC8.如图,半径为3的⊙A经过原点O和点C (1 , 2 ),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()第6题图第7题图A.31B. 22C.322 D. 429.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于21CD 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE .则下列说法错误的是( )A. ∠ABC =600,B. S △ABE =2 S △ADEC. 若AB =4,则B E =74D. sin ∠CBE =1421 10. 如图,已知二次函数y =ax 2+bx +c 的图象与x 轴分别交于A 、B 两点,与y 轴交于C 点,OA =OC 则由抛物线的特征写出如下结论:① abc >0; ② 4ac -b 2>0;③ a -b +c >0; ④ ac +b +1=0.二、填空题(本大题共8个小题,每小题4分,共32分) 11. 函数y =2-x 自变量x 的取值范围为___________. 12. 若实数a 、b 满足|a +1|+2-b =0,则a +b =___________.第8题图第9题图第10题图13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2,扇形的圆心角θ=1200,则该圆锥母线l 的长为___________.14. 某生态示范园计划种植一批蜂糖李,原计划总产量达36万千克,为了满足市场需求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均亩产量为x 万千克,则改良后平均每亩产量为1.5 x 万千克,根据题意列方程为___________.15. 如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=x k 1(x >0)及y 2=xk2(x >0)的图象分别交于A 、B 两点,连接OA 、OB ,已知△OAB 的面积为4,则k 1-k 2=___________.16. 已知一组数据x 1 ,x 2 ,x 3, …, x n 的方差为2,则另一组数据3x 1 ,3x 2 ,3x 3, …, 3x n 的方差为__________.17. 如图,在Rt △ABC 中,∠BAC =900,且BA =3, AC =4,点D 是斜边BC 上的一个动点,过点D 分别作DM ⊥AB 于点M, DN ⊥AC 于点N ,连接MN,则线段MN 的最小值为__________.18. 如图,将从1开始的自然数按下规律排列,例如位于第3行、第4行的数是12,则位于第45行、第7列的数是__________.第13题图第15题图第17题图三、解答题(本大题共8个小题,满分88分,解答应写出必要的文字说明或演算步骤)19.(本题8分)计算:(-2)-1-9+cos 600+(20182019-)0+82019×(-0.125)2019.20.(本题10分)先化简(1+32-x )÷96122+--x x x ,再从不等式组⎩⎨⎧+<<-42342x x x 的整数解中选一个合适的x 的值代入求值.21.(本题10分)安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千元)与每千元降价x (元)(0<x <20)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?第18题图第21题图22. (本题10分) 阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Nplcr ,1550-1617年), 纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若x a =N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N,比如指数式24=16可以转化为对数式4=log 216,对数式2=log 525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a (M •N )=log a M + log a N (a >0, a ≠1, M >0, N >0), 理由如下: 设log a M =m , log a N =n ,则M =a m , N =a n ,∴ M •N =a m •a n =a m +n ,由对数的定义得 m +n =log a (M •N ) 又∵m +n =log a M + log a N∴log a (M •N )=log a M + log a N 根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式__________;(2)求证:log a NM=log a M - log a N (a >0, a ≠1, M >0, N >0),(3)拓展运用:计算log 69 + log 68 -log 62=_________.23.(本题12分)近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A .非常了解;B .比较了解C .基本了解;D .不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度百分比A . 非常了解 5%B . 比较了解 15%C . 基本了解 45%D . 不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生共有_________,n =_________; (2)扇形统计图中D 部分扇形所对应的圆心角是________度; (3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球对雾霾天气了解程度的统计对雾霾天气了解程度的扇形统计对雾霾天气了解程度的条形统计BDA 5%C 45%图1 表1上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.24.(本题12分)(1)如图①,在四边形ABCD 中,AB ∥CD ,点E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC 得到AB =FC ,从而把AB,AD,DC 转化在一个三角形中即可判断.AB , AD , DC 之间的等量关系________________________;(2)问题探究:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.25. (本题12分)如图,在△ABC 中,AB =AC,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DH ⊥AC 于点H .(1)判断DH 与⊙O 的位置关系,并说明理由;(2)求证:点H 为CE 的中点; (3)若BC =10,cosC =55,求AE 的长.26. (本题14分)如图,抛物线y =21x 2+bx+c 与直线y =21x+3分别相交于A, B 两点,且此抛物线与x 轴的一个交点为C ,连接AC , BC . 已知A (0,3),C (-3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使|MB -MC |的值最大,并求出这个最大值; (3)点P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点P 的坐标;若还在存在,请说明理由.第26题图第25题图2019年贵州省安顺市中考数学评分意见及评分意见初中毕业生学业(升学)考试是义务教育阶段的终结性考试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020初中数学教材教法考试模拟试卷(一)一、填空(每小题5分,共20分)1、初中数学内容的四大领域是数与代数、空间与图形、统计与概率、实践与综合运用。
2、有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。
3、《义务教育数学课程标准》的基本理念指出:数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
4、初中数学教学内容的八个核心概念是数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。
二、简述下列各题(每小题10分,共20分)5、谈谈你对数学课程总体目标与具体目标关系的认识。
答:《标准》关于目标的叙述明确表明:数学课程的目标不只是让学生获得必要的数学知识、技能与数学思想方法。
它还应当包括促进学生思维能力、思维水平方面,用数学解决问题能力方面,情感与态度方面的发展。
目标突出了学生的发展和社会的需要。
为此总体目标被细化为四个方面的具体目标:知识与技能、数学思考、解决问题、情感与态度。
所以,作为实现课程目标的主要途径,数学课堂教学活动应当将这“四个方面”同时作为我们的教学目标,而不是仅仅关注其中的一个或几个方面,如知识与技能、解决问题等,或是将其中的某一目标(例如情感与态度)作为实现其它目标过程中的一个“副产品”。
另一方面,四个目标是在丰富多彩的数学活动中实现的。
其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,而知识与技能的学习必须有利于其它目标的实现。
这里包含两层意思:一是“数学思考、解决问题、情感与态度”目标的实现是通过数学知识的学习来完成的,不需要也不可能为它设置专门课程;二是学什么样的知识技能,应当首先考虑到是否有利于其它三方面的目标的实现。
6、你对“基础知识和基本技能”是怎样理解的?答:基础知识和基本技能不是一陈不变的,随着社会的进步,特别是科学技术的飞速发展,一些以前被看重的“基础知识”和“基本技能”已不再成为今天数学学习的重点,如大数目的数值计算、复杂的代数运算技巧和一些图形性质的证明技巧等。
相反,一些以前未受关注的知识、技能或数学思想方法却应当成为学生必须掌握的“基础知识”和“基本技能”。
如使用计算器处理数据的技能,有关统计图表的知识,获取与处理统计数据并根据所得结果作出推断的技能,对变化过程中变量之间变化规律的把握与运用的意识等,是必须掌握的基础知识与基本技能。
三、教学设计和教材解读(每小题10分,共20分)7、写出教学设计的一般步骤,并写出课题“探索等腰三角形的性质”一课的教学目标。
答:教材分析,学习任务分析,学生起点能力分析,教学目标,教学模式及教学方法,教学活动过程(包括教学环节、老师活动、学生活动、活动说明),教学后记。
探索等腰三角形的性质的教学目标:知识与技能目标:学生通过实验探索发现等腰三角形的性质,掌握应用性质进行基本推理的技能。
能应用等腰三角形的性质解决实际问题,进而获得初步分析、概括的能力。
过程与方法目标:学生在通过折纸实验等探索等腰三角形的性质和证明的活动过程中,进一步经历观察、实验、归纳、推理、交流等活动,体验数学证明的必要性,培养学生数学说理的习惯,发展几何直觉与合情推理的能力。
情感与态度目标:通过等腰三角形“三线合一”的构图特点,体会几何图形的和谐美。
体会在学习中和同学合作的重要性,并在数学学习活动中获得成功的体验,树立良好的自信心。
8、解读七年级上册第二章“有理数及其运算”一章的教学要求和教学建议。
答:本章主要内容是有理数的概念、运算以及用有理数解决问题,这些都是非常重要的基础知识。
对于这样比较传统的内容,从处理上有下面一些不同:1.强调对运算意义的理解①对于负数引入和相关运算法则、运算规律的获得,强调学生的自主探索。
本章的设计思路和特点②重视在现实背景中对运算的意义理解和运算的应用。
对于运算首先要回答运算的意义是什么,或者说为什么要进行运算。
为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身的意义理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。
2.关注对学生运算技能的培养、笔算难度和速度的要求有所降低①因为繁难的计算可以使用计算器等其他计算工具,因此按照《标准》,降低了对运算难度和速度的要求,而关注学生通过笔算加强对于算理的理解并获得一定的运算技能。
如有理数的加减乘除混合运算,仅要求以三步为主。
②对于运算的工具,鼓励使用计算器进行有关繁难的计算和近似计算。
③对于运算的结果,在重视原有的精确计算的基础上,加强了估算。
3.鼓励算法多样化“算法多样化”的想法主要是鼓励学生用自己的方法解题,其本质是鼓励学生独立思考,拓展学生探索、思考和尝试的空间,所以它首先是对学生个性化学习的尊重,因为每个学生都有自己独特的认知基础和思维方式;其次,多样化的算法是一种重要的课程资源,有利于学生之间的数学交流;另外从学生的算法中教师还可以看出学生的认知方式以及思维的不同发展水平,便于因材施教。
“算法多样化”并不要求每个学生能够用所有方法解决同一问题,算法多样化应是对学生群体的要求,而不是对学生个体的要求,即对某一个学生而言,方法可能只有一种,但对众多学生而言,方法就呈现出多样化,同时通过反馈交流,让学生体验、学习别人的思维活动成果,掌握适合自己的一种或几种算法。
所以,在教学中应让学生独立去解题,自己找出解决问题的方法,对学生选择的方法不要急于评判优劣,而应相信通过互相交流,学生完全能够自主选择适合自己的方法。
如在学习二元一次方程组时,因为受前面学习的影响,有些学生还是习惯于用一元一次方程去求解实际问题,出现这样的现象是很正常的,教师切不可对那些学生训斥,而应让他们自己比较后作出选择。
但教学处理中要注意两点:一是交流的必要性和充分性,学生自主地探索运算方法后,必须进行比较充分的交流。
学生应学习澄清自己的思路,并运用自己的语言表达思维过程,还应学习倾听他人的方法,从而进行反思,最终选择并逐步掌握适合自己的方法;二是防止“过度”多样化。
每一种方法的提出应是经过学生自己经过了思考,并且确实是解决问题的有效策略,这些方法在数学上必然具有一定的价值,代表了学生对数学不同程度的理解而不能因为追求多样化人为造成许多方法。
四、初中数学教材教法和中考类数学试题(每小题10分,共20分)9、有理数运算中去括号是学生易错的地方,你在教学中如何突破这一难点。
答:有理数运算中去括号是学生易错的地方。
作为教师,我们在面对学生犯错的时候,如何减少学生在有理数运算中去括号的错误,应该是有理数教学的一项重要任务。
例如:(—6)×(—4)—(—32)÷(—8)—3。
如果我们在备课时认真分析,预测学生在计算中去括号可能会出现的问题有哪些?为什么会出现这些问题?如何避免这些问题?在教学过程中,通过一两个典型的例题,让学生暴露错误,师生共同分析出错的原因,学生就能从反面经验教训,迅速从错误中走出来,从而增强辨别错误的能力,同时提高了分析问题和解决问题的能力。
因此,要想少出错,教学中教师就应该一积极主动的态度对待错误和失败,备课时可适当从学生去括号易错的思路去构思,课堂上应加强去括号典型例习题的分析,让学生充分暴露错误的思维过程,使学生在纠正错误的过程中掌握正确的思维方法。
10、我们知道,经过原点的抛物线的解析式可以是y1?ax2?bx(a?0)(1)对于这样的抛物线:当顶点坐标为(1,1)时,a?__________;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是___________(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,?,An在直线y=x上,横坐标依次为1,2,?,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,?,Bn,以线段AnBn为边2020初中数学教材教法考试模拟试卷(二)初中数学教材教法考试试题参考解析一.填空题(1~4题每空1分,5~14题每题3分,共51分)1、《数学课程标准》将义务教育阶段的数学课程划分、、、四大板快.参考答案:数与代数、图形与几何、统计和概率和实践与综合运用等四个领域;2.突出重点的行之有效的常用方式方法有:(1).;(2).;(3).;(4).;(5).;(6)..参考材料:1.时间安排充分将最佳时间用于重点内容的教学;2.透彻讲解重点内容;3.加强口头强调;4.注重板书提示;5.强化实践应用.……3.突破教学难点的行之有效的常用方式方法有:(1).;(2).;.;.;.(4).;(5)..参考材料:一.“引导——发现”模式这种模式是数学新课程教学中应用较为广泛的一种教学模式,在教学活动中,教师不是将现成的知识灌输给学生,而是通过精心设置的一个个问题链,激发学生的求知欲,使学生在老师的引导与合作下,通过自主探索、合作交流、发现问题、解决问题.这种模式的教学目标是:学习发现问题的方法,培养、提高创造性思维能力.“引导——发现”模式的教学结构是:创设情境——提出问题——探究猜测——推理验证——得到结论。
(例:探索三角形全等的条件)二.“活动——参与”模式这种模式通过教师的引导,学生自主参与数学实践活动,在活动中通过动手探索,参与实践,密切数学与生活实际的联系,掌握数学知识的发生、形成过程和数学建模方法,形成用数学的意识。
在数学教学中,数学活动内容是丰富多彩的,部分数学活动既可在课内进行又可以在课外进行,像问题解决、数学游戏、数学实验。
一般来说,课外活动更重视培养兴趣、提高自学能力和实际操作能力,学习内容受课本的约束也很少.“活动——参与”模式主要有以下几种形式:①数学调查;②数学实验;③测量活动;④模型制作;⑤数学游戏;⑥问题解决.这种模式的教学目标是:积极培养学生的主动参与意识,增进师生、同伴之间的情感交流,提高实际操作能力,形成用数学的意识.该模式一般的教学结构是:创设问题情境——实践活动——合作交流——总结.(例:用正多边形拼地板)三.“讨论——交流”模式这种模式有利于学生积极思维,有助于学生合作学习,因此也是数学新课程教学中常用的一种模式。
这一模式的教学目标是:养成积极思维的习惯,培养批判性思维的能力,培养数学交流的能力和协作能力。
它的特点是,对学习内容通过问题串形式开展讨论,学生积极思考,充分发表自己的意见和看法。
通过讨论,交流思想,探究结论,掌握知识和技能。