第四章应力与应变关系本构方程
《弹塑性力学》第四章 应力应变关系(本构方程)共42页文档

应变能增量A 中有体积分和面积分,利用
柯西公式和散度定理将面积分换成体积分。
17.04.2020
8
§4-1 应变能、应变能密度与弹性材料的 本构关系
A V fiu id V s F iu id S U VW d V
SF i uidSS(ij ui)njdS V(jiui),j dV
17.04.2020
19
§4-2 线弹性体的本构关系
2.2 具有一个弹性对称面的材料
若物体内各点都有这样一 x3 个平面,对此平面对称方
向其弹性性质相同,则称
此平面为弹性对称面,垂
直弹性对称面的方向称为
弹性主轴。
x1
弹性主轴
x2
17.04.2020
20
§4-2 线弹性体的本构关系
如取弹性对称面为x1 —x2
{}=[c]{}
T 11 22 33 23 31 12
T 11 22 33 23 31 12
17.04.2020
16
§4-2 线弹性体的本构关系
2.1 各向异性材料
{}=[c]{}
C11 C12
C C21 C22
C61 C62
C16
C26
C66
17.04.2020
17.04.2020
3
§4-1 应变能、应变能密度与弹性材料的 本构关系
外力做实功 A: A=U 物体的应变能U
U VWdV
W:应变能密度——单位体积的应变能。
17.04.2020
4
§4-1 应变能、应变能密度与弹性材料的 本构关系
1.2 应变能密度W与材料的i
第四章 应力应变关系(本构方程)
本章讨论弹性力学的第三个基本规律。 应力、应变之关系,这是变形体力学研究问题 基础之一。在前面第二、三章分别讨论了变形 体的平衡规律和几何规律(包括协调条件)。
材料力学 第四章 本构关系

W t
ijij
(9)
其中 ij 为应变张量对时间的变化率,称为应变率张量。
§4-1 热力学定律与应变能
令初始状态的应变能W=0,则
W Wdt d t
ij (t )
t0
ij (t0 ) ij ij
(10)
W
ij
ij
(11)
此式给出了弹性物质的应力-应变关系,称之为格林公式。
§4-2 各向异性材料的本构关系
y C12 x C22 y C23 z
具有这种应力-应变关系的 材料称为正交各向异性弹
z C13 x C23 y C33 z
性材料,这时独立的弹性 常数只有9个。
yz C44 yz zx C55 zx
xy C66 xy
(17)
§4-3 具有弹性对称面的弹性材料的本构关系
x ' y, y ' x, z ' z
由应力分量和应变分量之间的坐标变换得 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy
§4-3 具有弹性对称面的弹性材料的本构关系
(四)完全弹性对称与各向同性材料
其中kk xx yy zz , 和 称为拉梅系数。
(20)称为各向同性线性弹性介质的广义胡克定律。 各向同性线性弹性材料只有2个独立的弹性常数; 伴随正应变只有正应力,同时伴随切应变也只有切 应力。 由(20)可得
第四章 本构关系
静力学问题和运动学问题是通过物体的材 料性质联系起来的。力学量(应力,应力 速率等)和运动学量(应变,应变速率等) 之间的关系式称之为本构关系或本构方程。 本章仅讨论不考虑热效应的线弹性本构关 系——广义胡克定律。
第4章 塑性应力应变关系(本构方程)

强化材料卸载:
f ( ij ) 0,
f df d ij 0 ij
4.3 增量理论
在塑性变形时,全量应变和加载历史有关,要建立普遍的全量应变与应力 之间的关系是很困难的,所以主要研究应力和应变增量或应变速率之间的关系 。这种关系叫做增量理论,其中包括:密席斯方程、塑性流动方程和劳斯方程 。前两者适用于理想刚塑性材料,后者适用于弹塑性材料。
x
y 4G2 x y
2
2
2 2 6 xy 4G 2 xy 6
2 2 2 2 2 2 xy yz xz 等式左边为: x y y z z x 6
1 等效应力为:
1 i 2 1
2 2 2 yz xz x y y z z x 6 xy 2 2 2
则等效应变与弹性应变强度关系为: 当 =0.5 时
3 i = 2(1 )
i
弹性应力应变关系特点: 1.应力与应变成线性关系 2.弹性变形是可逆的,应力应变关系单值对 应 3.弹性变形时,应力球张量使物体产生体积 变化;物体形状的改变只是由应力偏张量引 起的。 4.应力主轴与应变2G
同理可得:
y m
1 - E 1 - E
x
z m z
m
1 y y 2G
1 z z 2G
m
x
1 x 2G
1 y y 2G 1 z z 2G
d
2 2 2 x d y d y d z d z d x 6 d xy d yz d xz 2 2 2
材料力学中的应力与应变关系

材料力学中的应力与应变关系材料力学是研究材料在受力作用下的力学行为和性能的学科,应力与应变关系是其中的核心内容之一。
本文将讨论材料力学中的应力与应变的概念及其数学表示,以及应力与应变之间的线性关系与非线性关系。
一、应力的概念及表示应力是指材料单位面积上的内部力,常用符号σ表示。
根据受力情况的不同,可以分为正应力、切应力和体积应力。
正应力是指与作用力方向垂直的内部力,常用符号σ表示;切应力是指与作用力方向平行的内部力,常用符号τ表示;体积应力是指作用在体积内的内部力,常用符号p表示。
正应力的数学表示为σ = F/A,其中F为作用力的大小,A为受力面积。
切应力的数学表示为τ = F/A,其中F为切力的大小,A为受力面积。
体积应力的数学表示为p = F/V,其中F为体积力的大小,V为受力体积。
二、应变的概念及表示应变是指材料在受力作用下产生的形变程度,常用符号ε表示。
根据变形方式的不同,可以分为线性应变和体积应变。
线性应变是指在受力作用下,材料产生的长度或角度发生变化,常用符号ε表示;体积应变是指在受力作用下,材料产生的体积发生变化,常用符号η表示。
线性应变的数学表示为ε = ΔL/L0,其中ΔL为长度变化量,L0为原始长度。
体积应变的数学表示为η = ΔV/V0,其中ΔV为体积变化量,V0为原始体积。
三、应力与应变的线性关系在一定范围内,应力与应变之间可以表现为线性关系。
根据胡克定律(Hooke's Law),线性弹性材料的应力与应变之间满足σ = Eε,其中E为弹性模量。
弹性模量是材料刚度的度量,表示材料单位应力产生的单位应变。
常见的弹性模量有杨氏模量、剪切模量和泊松比。
杨氏模量的数学表示为E = σ/ε,其中σ为应力,ε为线性应变。
剪切模量的数学表示为G = τ/γ,其中τ为切应力,γ为切应变。
泊松比的数学表示为ν = -εv/εh,其中εv为垂直方向的线性应变,εh为水平方向的线性应变。
4.应力应变关系

Levy-von Mises 增量理论 Prandtl-Reuss 全量理论
Stress-strain relations
4.2.1 Levy-Mises 增量理论
该理论认为应变增量与相应的偏应力分量成正比
2
(d x d y ) ( x y ) d (d y dz )2 ( y z )2 d2 (d z d x )2 ( z x )2 d2
2 2 2
9 2 2 2 2 2 2 2 d x y y z z x 6 xy yz zx 2
(4-6)
从方程式 (4-3),(4-4)中得,应力可以用应变表示:
ij 2G ij ij
式中,
(4-7)
1 1 2
E
x y z
1 [( x y )2 ( y z )2 ( z x )2 6( xy 2 yz 2 zx 2 )] 2 ( x y ) 2 4G 2 ( x y ) 2
1 2 2 2 ( x y ) 2 ( y z ) 2 ( z x ) 2 6( xy yz zx ) 2
2 2 2
Байду номын сангаас
6d yz 6 yz d2 2 2 6d zx 6 zx d2 2 2 6d zx 6 zx d2
(4-15)
平衡方程式:
x yx 0 y x xy y 0 y x
(4-16)
弹塑性力学第四章

x
y
)
2019/7/26
36
§4-3 各向同性材料弹性常数
yz
2(1 )
E
yz
xy
2(1
E
)
xy
zx
2(1
E
)
zx
采用指标
符号表示:
ij
1 E
(1 ) ij
ij kk
ij
E
1
ij
1 2
ij kk
2G
0 0 0
2G
0
0
0
2G 0 0 0
2G 0
0
对
称
2G 0
2G
2019/7/26
31
§4-3 各向同性材料弹性常数
3.1 本构关系用、G表示
采用指标符号表示:
ij 2Gij ij kk 2Gij iⅠj
2019/7/26
16
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 减少为66=36个独立系数,用矩阵 表示本构关系
{}=[c]{}
11
22
33
23
31
T 12
11
22
33
23
31
T 12
x3 弹性主轴
材料主轴,并取另一坐标
系x’i ,且x’1 = x1,x’2=x2,
x2
x’3=-x3。在两个坐标下,
弹塑性力学第四章弹性本构关系资料

产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.
第四章应力与应变关系

(4-3a)
广义虎克定律
在小变形条件下,应变分量都是微量,(a)式在应变 为零附近做Taylor展开后,忽略2阶以上的微量,例如
对 , 可x 得:
x (f1)0(f1x)0x (f1y)0y (f1z)0z
( f1
yz
)0yz
(f1zx)0zx
(f1xy)0xy
广义虎克定律 展开系数表示函数在其对应变分量一阶导数在应变分 量等于零时的值,而 实( f 1 际) 0 上代表初应力,由于无初应 力假设 等于( f 1零) 0 。 其它分量类推,那么在小变形情况下应力与应变关系 式简化为:
3 t 2 3
和 称 为拉梅(Lame)弹性常数,简称拉梅常数
各向同性体的广义虎克定律
(三)最后通过坐标变换,进一步建立任意正交坐标系应 力与应变关系
在各向同性弹性体中,设 o为x y任z 意正交坐标系,它
的三个轴与坐标系 应O力12主3 轴的方向余弦分别为 、 (l1 ',m1和',n1 ') (l2,',m因2 ',n为2 ')1,(2l3,',m33 ',轴n3是') 主轴,主轴方向的 剪应变和剪应力等于零。 根据转轴时应力分量变换公式得
系O123各轴的方向余弦,知:
l1 n3 cos180 1 m2 cos0 1 l2 l3 m1 m3 n1 n2 cos90 0
各向同性体的广义虎克定律
因此新坐标轴也指向应变主轴方向,剪应变也应该等
于零,且因各向同性时,弹性系数C41,C42和C43应
该不随方向面改变,故取 x, y分, z别为1′,2′和3′轴,同
上式作为虎克定律在复杂受力情况下的一个推广, 因此称为广义虎克定律。式中系数Cm n(m ,n1,是2, ,6) 物质弹性性质的表征,由均匀性假设可知这些弹性性 质与点的位置无关,称为弹性常数。上式也可以写成 矩阵形式
第4章 弹塑性本构方程

典型的本构关系模型
4-3-1 双曲线(邓肯-张)模型
它属于数学模型的范畴。即它以数学 上的双曲线来模拟土等材料的应力应 变关系曲线并以此进行应力和应变分 析的。由于这种模型是由邓肯和张两 人所提出,所以也叫邓肯-张模型,有 时简称D C模型。
a b
4-3-2 Drucker-Prager模型(D-P模型)
在F点之前,试件处于均匀应变 状态,到达F点后,试件开始出现 颈缩现象。如果再继续加载则变形 将主要集中于颈缩区进行,F点对应 的应力是材料强化阶段的最大应力, 称为强度极限,用 b 表示。
判定物体中某一点是否由弹性状态 转变到塑性状态,必然要满足一定 的条件(或判据),这一条件就称 为屈服条件。在分析物体的塑性变 形时,材料的屈服条件是非常重要 的关系式。
第4章 弹塑性本构方程
§4-1 典型金属材料
曲线分析
大量实验证明,应力和应变之间的 关系是相辅相成的,有应力就会有 应变,而有应变就会有应力。
对于每一种具体的固体材料,在一 定的条件下,应力和应变之间有着 确定的关系,这种关系反映了材料 客观固有的特性。下面以典型的金 属材料低碳钢轴向拉伸试验所得的 应力应变曲线为例来说明。
§4-5 世界上最常用岩土本构模型及土 本构模型剖析
◆
世界上最常用的土本构模型
1.概述 土作为天然地质材料在组成及构 造上呈现出高度的各向异性、非 均质性、非连续性和随机性,在 力学性能上表现出强烈的非线性、 非弹性和粘滞性,土的本构模型 就是反映这些力学性态的数学表 达式。
一般认为,一个合理的土的本构 模型应该具备理论上的严格性、 参数上的易确定性和计算机实现 的可能性。自Roscoe等创建剑桥 模型至今,各国学者已发展数百 个土的本构模型。
我所认识的应力与应变关系

我所认识的应力与应变关系经过分析,我们已经得知弹塑性问题中有15个未知量,9个方程,因此它是一个超静定问题,为了求解这一问题必须引入应力应变,它们之间一定存在必然的联系,这种联系就是我们所了解的应力应变关系。
应力应变关系即所谓的本构关系,是物质力学特性的反映,通常用本构方程来描述。
影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零,六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。
图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=,初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。
如果在进入塑性阶段卸载后再加载,例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。
此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。
若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。
图1-1、应力应变关系图从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。
第四章应力与应变关系本构方程

x
x
E
y
E
z
E
y
y
E
x
E
z
E
z
z
E
y
E
x
E
xy
xy
G
yz
yz
G
zx
zx
G
常数关系:
E (1 )(1 2 )
E G 2(1 )
本构方程:
x
x
Ex
xy y
Ey
xz z
Ez
y
y
Ey
yx x
Ex
yz z
Ez
z
z
Ez
zy y
Ey
zx x
Ex
xy
xy
Gxy
yz
yz
Gyz
zx
zx
Gzx
4-4 层向同性体的本构方程
层向同性材料,弹性常数有5个
C11 C12 C13 C23 C55 C66
C44
1 2
第四章 应力与应变关系 本构方程
4―1 4-2 4-3 4-4 4-5
广义虎克定律 应变能、应变能与弹性常数的关系 正交各向异性体的本构方程 层向同性体的本构方程 各向同性体的本构方程
4―1 广义虎克定律
一、单向虎克定律
E
二、广义虎克定律的一般形式
广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个。
四弹性常数之间的关系36个常数就变为21个常数对于完全的各向异性弹性体有21个弹性常数对于具有一个弹性对称面的各向异性材料具有13个弹性常数对于正交各向异性材料弹性常数有9个对于层向同性材料弹性常数有5个对于各向同性材料弹性常数有2个43正交各向异性体的本构方程对于正交各向异性材料弹性常数有9个本构方程
我所认识的应力与应变的关系

我所认识的应力与应变的关系机械与动力工程学院我所认识的本构关系可以从三个不同的受力条件下进行分析,第一是在弹性变形下的应力与应变的关系,第二是在屈服条件下的应力与应变的关系,第三是在塑性条件下的应力与应变的关系,而对应力与应变的关系的研究也可以归结为对本构关系的研究。
首先,弹塑性力学分别从静力学和几何学的角度出发,导出了平衡方程的和几何方程,这些方程均与物体的材料性质(物理性质)无关,因而适用于任何连续介质。
但仅仅依靠平衡方程和几何方程来解决实际中的工程问题是不够的。
由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的联系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的关系,所以平衡方程与几何方程式两类完全相互独立的方程,他们之间还缺乏必要的联系。
对于所求解的问题来讲,因为您未知量的数目多于任何一类方程的个数,所以无法利用这两类方程求的全部未知量。
平衡方程:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂222222000t w Z z y x t v Y z y x t u X z y x z zy zx yz y yx xz xy x ρσττρτστρττσ (1) 几何方程:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=x w z u z w z v y w y v y u x v x u zx z yz y xy x γεγεγε (2) 为了求解具体的力学问题,还必须引进一些关系式,这些关系式即所谓的本构关系。
本构关系反映可变形体材料的固有特此那个,故也称为物理关系,它实际上是一组联系力学参数和运动学参数的方程式,即所谓的本构方程。
本构方程实际上就是一组反映可变形体材料应力和应变之间关系的方程。
在单向应力状态下,理想弹性材料的应力和应变之间的关系极其简单。
第四章 应力和应变的关系

σ = c ε + c (ε + ε ) y 11 y 12 x z σ z = c11ε z + c12 (ε x + ε y )
σ x = c11ε x + c12 (ε y + ε z )
τ = c 44 γ xy xy τ =c γ 44 yz yz τ zx = c 44 γ zx
= c 44 γ
= c 44 γ
xy
yz
τ
zx
= c 44 γ
zx
第三节 各向同性体中的弹性常数 当绕Z轴转一角度 α 时,即 x y
m1 = sin α
z ( z ')
z
n1 = 0 n2 = 0 n3 = 1
x
x'
y'
α
y
x′
y′
l1 = cos α
α
l2 = − sin α m2 = cos α l3 = 0 m3 = 0
c41 = c42 = c43 = 0 c51 = c52 = c53 = 0 c61 = c62 = c63 = 0 只能证9个数为0
第三节 各向同性体中的弹性常数 (2)沿任意两个相反的方向,弹性关系相同。 如只改变z轴方向,w和z的方向改变,则
γ yz
∂w ∂v = + = −γ yz′ ∂y ∂z
弹塑性力学第四章 弹性本构关系

(4.36) (4.37) (4.38)
K称为体积弹性模量,简称体积模量。
因此
q
sm
K
,em
sm
3K
1 3 1 1 ex e x e m ( sx sm) sm sx E E 3K 2G
1 ey e y e m sy 2G
1 eij sij 2G
(4.40)
1 eij sij 2G 1 em sm 3K
(4.41)
用应变表示应力:
或:
各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
• 材料的应力与应变关系需通过实验确定的。 • 本构方程实际是应力与应变关系实验结果的数学 描述。 • 由于实验的局限性,通常由简单载荷实验获得应 力与应变关系结果,建立描述相应的数学模型, 再将数学模型用于复杂载荷情况的分析。(用一 定实验验证结果)
• 例如:材料单轴拉伸应力-应变z e m sz 2G
1 1 1 1 yz s yz exy e xy xy sxy eyz e yz 2G 2G 2G 2G
1 1 exz e xz xz sxz 2G 2G
整理以上六个式子,得 整理以上六个式子,得
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个 因此应力偏张量形式的广义虎克定律,即
物理方程:
s ij 3 1 3 e ij s ij s m ij s m ij E E 2G E
弹性力学第四章应力应变

当变形较小时,可展开成泰勒级数, 并略去二阶以上的小量。
f1 f1 f1 f1 f1 f1 xy x ( f1 )0 x y z yz xz z 0 x 0 xz 0 y 0 yz 0 xy 0
x C11 x C12 y C13 z C14 yz C15 xz C16 xy y C21 x C22 y C23 z C24 yz C25 xz C26 xy z C31 x C32 y C33 z C34 yz C35 xz C36 xy yz C41 x C42 y C43 z C44 yz C45 xz C46 xy
上式中 cmn(m,n=1,2…6)是弹性系数,共36个,对 于均匀材料它们为常数,称为弹性常数,与坐标无关。
上式即为广义胡克定律,可以看出应 力和应变之间是线性的。 可以证明各弹性常数之间存在关系式 cmn = c nm 。对于最一般的各向异性介质,弹 性常数也只有21个。
§4.2 弹性体变形过程中的功与能
yz C41 x C42 y C43 z C44 yz C45 xz C46 xy
xz C51 x C52 y C53 z C54 yz C55 xz C56 xy
(4-2)
xy C61 x C62 y C63 z C64 yz C65 xz C66 xy
0 0 0
f3 f3 f3 f3 f3 f3 z ( f3 )0 z yz x y xz xy z 0 x 0 xz 0 y 0 yz 0 xy 0
弹性力学 第四章应力和应变的关系

vI t
x
x
t
y
y
t
z
z
t
yz
yz
t
xz
xz
t
xy
xy
t
若固定x,y,z的值,则得在dt时间内vI 的增量为,即在上式两边乘以dt
dvI xd x yd y zd z yzd yz xz d xz xyd xy
由于内能密度 vI 是状态的单值函数,dvI 必须是全微分,因此
所以
v
1 2
(
x
x
y y
zz
xy xy
xz xz
zy zy )
张量表示
v
1 2
ij
ij
弹性体应变能 V v dV V
§4-3 各向异性弹性体
(一)极端各向异性弹性体
理论具有36个弹性常数
x c11 x c12 y c13 z c14 xy c15 yz c16 zx y c21 x c22 y c23 z c24 xy c25 yz c26 zx
的值,根据无初始应力假设,( f1)0为0。均匀材料,函数 f1
对应变的一阶偏导数为常数。这是因为对物体内各点来说,
承受相同的应力,必产生相同的应变;反之,物体内各点
有相同的应变,必承受同样的应力。
经过上面的处理后,小变形情况就可简化为
广义胡克定律
x C11 x C12 y C13 z C14 xy C15 yz C16 xz y C21 x C22 y C23 z C24 xy C25 yz C26 xz z C31 x C32 y C33 z C34 xy C35 yz C36 xz xy C41 x C42 y C43 z C44 xy C45 yz C46 xz yz C51 x C52 y C53 z C54 xy C55 yz C56 xz xz C61 x C62 y C63 z C64 xy C65 yz C66 xz
弹塑性力学-第4章_本构方程

第四章本构方程在前面的章节中,已经建立了变形体的平衡微分方程和几何方程,分别是从静力学方面和从几何学方面考察了变形体的受力和变形。
但是只有这些方程还不足以解决变形体内的应力和变形问题。
对于变形体,未知变量包括6个应力分量,6个应变分量和3个位移分量,一共有15个未知函数,而平衡方程和几何方程一共是9个,未知函数的个数多于方程数。
因此还必须研究物体的物理性质,即应力与应变之间的关系。
通常称这种关系为变形体的本构方程,或称为物性方程。
塑性本构包括三个方面:1、屈服条件,2、流动法则,3、硬化关系;其中屈服条件:判断何时达到屈服,流动法则:屈服后塑性应变增量的方向,也即各分量的比值,硬化规律:决定给定的应力增量引起的塑性应变增量大小。
以上构成塑性本构关系。
4.1弹性应变能函数变形固体的平衡问题不仅需要运动微分方程、应变—位移方程(即变形几何方程)还需要将应变分量和应力张量分量联系起来,方能给定物体的材料抵抗各种形式变形的规律。
该规律的理论解释需要对分子间力的本质有深入的认识,该分子力力图使固体粒子间保持—定的距离,也就是需要对固体中应力分量和应变分量有深入的认识。
这种作用机理在非常接近稳定状态的气体中己弄清楚,但对于弹性体情况,目前科学技术发展水平还不能解决这一难题。
如要通过实验探求物体内部的应力和应变的关系,则总是从一些量的测量来推理得到,在一般情况下,这些量并非应力或应变的分量(例如平均应变、体积压缩、物体表面一线元的伸长等等).因此,在现时应力与应变关系主要是通过直接实验建立。
然而该关系中的某些固有的一般特性可以在理沦上加以说朋,如能量守恒定律为应力-应变关系的理论研究提供了基础。
1.1应变能密度假设变形的过程是绝热的,也就是在变形过程中系统没有热的损失,而且假设物体中任意无穷小单元改变其体积和形状所消耗的功与其从未变形状态到最终变形状态的转换方式无关。
这个条件是弹性的另一种定义。
换句话说,就是假设物体粒子互相作用过程中的耗散(非保守)力的作用与保守力的作用相比是可以忽略的。
弹性力学第四章应力应变

弹性力学问题的求解方法
解析法
通过数学手段,将弹性力学问题转化为数学方程,如微分方程或积 分方程,然后求解这些方程得到弹性体的应力和应变。
数值法
对于一些难以解析求解的弹性力学问题,可以采用数值方法进行求 解,如有限元法、有限差分法等。
实验法
通过实验手段测量弹性体的应力和应变,如拉伸、压缩、弯曲等实验。
本构方程描述了物体内部的应力与应变之间的关系,是材料力学性质的表现。
本构方程的数学表达式因材料而异,对于线性弹性材料,本构方程为:$sigma_{ij} = lambda epsilon_{kk} + 2mu epsilon_{ij}$,其中$lambda$和$mu$分别为拉梅 常数。
04
弹性力学问题解法
01
材料性能评估
利用弹性力学理论,可以对材料的性能进行评估,包括材料的弹性模量、
泊松比、剪切模量等参数,为材料的加工和应用提供依据。
02
材料结构设计
通过弹性力学理论,可以对材料进行结构设计,通过调整材料的微观结
构和组分,优化材料的性能,提高材料的承载能力和稳定性。
03
材料失效分析
弹性力学还可以用于材料失效分析,通过分析材料的应力分布和应变状
分类
单位
根据不同的分类标准,应变可以 分为多种类型,如线应变、角应 变、剪应变等。
应变的单位是单位长度上的变形 量,常用的单位有百分数、弧度 等。
应变状态
01
02
03
单轴应变
当物体受到单向拉伸或压 缩时,只在某一方向上发 生形变,其他方向上保持 不变。
多轴应变
当物体受到多方向上的作 用力时,会在多个方向上 发生形变,形变情况比较 复杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(C11
C22 )
x C11 x C12 y C13 z
y C12 x C11 y C13 z
z C13 x C13 y C33 z
xy
1 2
(C11
C12 ) xy
yz C55 yz
zx C55 zx
如:层向垂直Z轴,则:
x
x
E
y
E
z
E
y
y
E
x
因应变能是应变分量的单值连续函数,全微分形式
U 0
U 0
x
x
U 0
y
y
U 0
z
z
U 0
xy
xy
U 0
yz
yz
U 0
zx
zx
则得:
四、弹性常数之间的关系
Cmn Cnm
36个常数就变为21个常数 1. 对于完全的各向异性弹性体,有21个弹性常数 2. 对于具有一个弹性对称面的各向异性材料,具有13个弹
x
x
E
y
E
z
E
y
y
E
x
E
z
E
z
z
E
y
E
x
E
xy
xy
G
yz
yz
G
zx
zx
G
常数关系:
E (1 )(1 2 )
E G 2(1 )
zzdxdydz
xy xydxdydz 2. 剪应力作的功: yzyzdxdydz
zx zxdxdydz
则,单元体积上内力的功:
A x x y y z z xy xy yz yz zx zx
三、格林公式
U0 A xx y y zz xy xy yzyz zx zx
第四章 应力与应变关系 本构方程
4―1 4-2 4-3 4-4 4-5
广义虎克定律 应变能、应变能与弹性常数的关系 正交各向异性体的本构方程 层向同性体的本构方程 各向同性体的本构方程
4―1 广义虎克定律
一、单向虎克定律
E
二、广义虎克定律的一般形式
广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个。
4-2 应变能、应变能与弹性常数的关系
一、弹性体的变形能原理
外力在变形过程中作功,弹性体内部的能量也要相应 的发生变化 外力在变形过程中作功,全部转化为变形能(无热能损失)
UA
单位体积的变形能,即应变能
U0 U0 ( x , y , z , xy , yz , zx )
二、弹性体内力的功
xxdxdydz 1. 正应力作的功: y ydxdydz
本构方程:
x
x
Ex
xy y
Ey
xz z
Ez
y
y
Ey
yx x
Ex
yz z
Ez
z
z
Ez
zy y
Ey
zx x
Ex
xy
xy
Gxy
yz
yz
Gyz
zx
zx
Gzx
4-4 层向同性体的本构方程
层向同性材料,弹性常数有5个
C11 C12 C13 C23 C55 C66
C44
1 2
性常数 3. 对于正交各向异性材料,弹性常数有9个 4. 对于层向同性材料,弹性常数有5个 5. 对于各向同性材料,弹性常数有2个
Cmn Cnm
4-3 正交各向异性体的本构方程
对于正交各向异性材料,弹性常数有9个
C15 C16 C25 C26 C35 C36 C45 C46 0 C14 C24 C34 C65 0
E
z
E
z
z
E
y
E
x
E
xy
2(1 E
) xy
ห้องสมุดไป่ตู้
yz
yz
G
zx
zx
G
4-5 各向同性体的本构方程
各向同性材料,弹性常数有2个
C12 C13 C44 C55
x 2x y 2 y z 2z xy xy yz yz zx zx
C11 C33 2