三极管放大电路实验

合集下载

三极管10倍放大电路实验报告

三极管10倍放大电路实验报告

三极管放大电路实验报告一、实验目的:掌握三极管的工作模式,三极管输入输出特性曲线,静态工作点,以及常用的放大电路分析,估算(计算/图解)二、准备工具材料:工具材料:面包板,面包线,电阻若干,三极管NPN C1815 PNP A1015 ,电容若干仪器仪表:万用表,双踪显示示波器,函数信号发生器,开关稳压电源三、电路功能要求:①.电源为12V单电源②.输入信号正弦波1KHz 峰值:50mV③.电压放大倍数Au=10;④.波形不失真,误差+-10%,不考虑频率响应范围四、电路设计(NPN共发射极分压偏置放大电路):根据资料:三极管C1815 参数: 硅管,b值为200----400 UCE=0.7设计:计算静态工作点:IB,IC,UCE Q点应工作在输出特性曲线的中央根据三极管输出特性曲线图,要使Q点在中央,数值IB在50—150uA范围数值UCE在6—8V范围;设Ub点电位为电源电压一半,即:UB=1/2VCC,IC=IE在b(50—150uA)mA范围,这里取IB为50uA,b为300,电压放大倍数为10,电路不带负载计算过程:理论值UE=UB--UBE=5.3V;IE=IC=IB*b;IE=IC=50uA*b=15mARE=UE/IE=5.3V/0.015A=353R;UB=(Rb1/Rb1+Rb2)*VCC=5;Rb1= Rb2=50KAu=10=-b(RL’/rBE)rBE=300+(1+b)*(26/IE)=821RRL’=RC//RLRC=(rBE/b)*Au=27.4R;UCE=VCC-IC(RC+RE)=6.294V五、实验过程:按照设计好的电路,在面包板上实验,输入正弦1KHz信号,峰值50mA 用示波器观察输入波形;给放大电路接上电源,用示波器观察输出波形,两路信号相比较,发现放大倍数没有10倍,理论值跟实际值有差别,调节电阻RC使得放大倍数为10倍,且不失真的情况下RC=50R 时,电压放大倍数刚好10倍,温度变化时,对放大电路的影响比较小,说明分压偏置放大是可靠的测试频率响应范围,在不失真,放大倍数不改变的情况下为500Hz-------500KHz六、实际电路图:直流通路交流通路计算实际参数:UB=(Rb1/Rb1+Rb2)*VCC=5;IB=((UB-UBE)/RE)/b=31uaIC=b*IB=12.28MAUCE=VCC-IC*(RC+RE)=12-4.912=7VrBE=300+(1+b)*(26/IE)=1112Rri=Rb1//Rb2//Rbe=Rbe=1112Rro=RL’=RC//RL=50R;Au=-b(RL’/rBE)=-395*(RC/rBE)=17.7;七、测量计算参数:八、实验心得与结果:通过实验,对三极管的放大电路加深印象,提高动手能力;通过写实验报告,整理了整个实验过程的方法,计算过程,在后续的时间回顾复习有很大的帮助;在实验过程中b下降,RC 需要增大,否则电压放大倍数变小以及UCE过大;RE决定着IB也决定着UCE,就是一个联动式的,各个电阻参数设计需要考虑很多,该电路可能存在很多不足,希望批评改正!谢谢大家!。

三极管放大电路实验结论

三极管放大电路实验结论

三极管放大电路实验结论三极管放大电路实验结论在电子学中,三极管是一种重要的电子元件,常用于放大电路中。

三极管放大电路的实验是电子学教学中的基础实验之一。

通过该实验,我们可以深入了解三极管的工作原理以及其在放大电路中的应用。

本次实验中,我们使用了一种常见的三极管放大电路——共射极放大电路。

该电路由三极管、输入电阻、输出电阻、耦合电容等元件组成。

实验中,我们通过改变输入信号的幅度和频率,观察输出信号的变化,从而得出以下结论。

首先,三极管放大电路具有放大功能。

当输入信号的幅度较小时,输出信号的幅度也较小,但是随着输入信号幅度的增大,输出信号的幅度也随之增大,呈线性关系。

这表明三极管放大电路能够将输入信号放大到更大的幅度,实现信号的放大功能。

其次,三极管放大电路具有频率选择性。

在实验中,我们改变了输入信号的频率,观察到输出信号的变化。

当输入信号的频率较低时,输出信号的幅度较大;而当输入信号的频率超过一定范围时,输出信号的幅度会显著减小。

这说明三极管放大电路对于不同频率的输入信号有不同的放大效果,具有一定的频率选择性。

此外,三极管放大电路还具有非线性失真现象。

在实验中,我们观察到当输入信号的幅度较大时,输出信号会出现失真现象,即输出信号的波形发生畸变。

这是由于三极管工作在非线性区域时,引起了非线性失真。

因此,在实际应用中,我们需要注意控制输入信号的幅度,避免出现过大的失真。

此外,在本次实验中我们还发现了一些其他现象。

例如,当输入信号的幅度较小时,输出信号存在一定的噪声;而当输入信号的频率较高时,输出信号存在一定的畸变。

这些现象可能与实验条件、元件参数等因素有关,需要进一步研究和分析。

综上所述,通过本次三极管放大电路实验,我们深入了解了三极管的工作原理以及其在放大电路中的应用。

我们得出了三极管放大电路具有放大功能、频率选择性和非线性失真等特点的结论。

这些结论对于我们理解和应用三极管放大电路具有重要意义,并为进一步研究和应用提供了基础。

实验三三极管放大电路设计

实验三三极管放大电路设计

实验三三极管放大电路设计一、实验目的1.了解三极管的基本工作原理和放大特性。

2.掌握三极管放大电路的设计和调整方法。

二、实验原理三极管放大电路是以三极管为核心元件的放大电路,通过适当的偏置和负反馈,可以实现对输入信号的放大。

三极管放大电路通常由输入端、输出端和三极管组成。

1.BJT三极管BJT三极管的主要结构有NPN型和PNP型两种。

在NPN型三极管中,由两个不掺杂的P型半导体夹着一个高掺杂的N型半导体构成,形成了PN结。

三极管的三个引脚分别为发射极(Emitter),基极(Base)和集电极(Collector)。

在基极与发射极之间加正向偏置电压Ube,使得PN结处于正向偏置状态。

当基极处于正向电压Ube时,使得发射极与集电极间形成一个电流通道。

此时,如果在集电极与发射极间设置一个负电压Uce,集电极的载流子会被集电区的电场吸引,形成集电电流Ic,从而实现了三极管放大器的放大作用。

三极管放大电路分为共发射、共基和共集三种基本结构。

常用的放大电路有共发射放大电路、共射放大电路和共源放大电路。

以下以共发射放大电路为例进行设计。

共发射放大电路的输入端是基极,输出端是集电极。

设计时需要注意以下几个方面:(1)确定输入和输出电阻:输入电阻是指输入端的电压变化引起的输入电流变化的比值,输出电阻是指输出端的电压变化引起的输出电流变化的比值。

一般来说,输入电阻越大越好,输出电阻越小越好。

(2)确定直流工作点:直流工作点是指三极管在放大器工作状态下的工作点。

选择合适的直流工作点,可以使输出信号对输入信号变化进行放大,同时尽量避免饱和和截至现象。

(3)选取合适的偏置电路:偏置电路用于确保三极管正常工作,在选择时需要保证偏置点稳定、温度稳定和电源稳压等。

三、实验步骤1.搭建共发射放大电路,具体电路如下图所示。

其中,三极管型号为2N39042.调节R1、R2和Re使得三极管的基极电压为0.6V左右,可以通过电压表测量。

三极管共射放大电路实验

三极管共射放大电路实验

三极管共射放大电路实验一. 实验目的和要求1.学习共射放大电路的设计方法。

2.掌握放大电路静态工作点的测量与调整方法。

3.学习放大电路性能指标的测试方法。

4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法。

5.进一步熟悉示波器、函数信号发生器、交流毫伏表的使用。

二. 实验内容和原理1. 静态工作点的调整和测量2. 测量电压放大倍数3. 测量最大不失真输出电压4. 测量输入电阻和输出电阻5. 测量上限频率和下限频率6. 研究静态工作点对输出波形的影响放大器最佳静态工作点:要使放大器不失真地放大,必须选择合适的静态工作点。

初选静态工作点时,可以选取直流负载线的中点,即 VCE =1/2×VC 或 IC =1/2×ICS(ICS 为集电极饱和电流,ICS ≈VCC/Rc) 这样便可获得较大输出动态范围。

当放大器输出端接有负载R L 时,因交流负载线比直流负载线要陡,所以放大器动态范围要变小,如前图所示。

当发射极接有电阻时,也会使信号动态范围变小。

要得到最佳静态工作点,还要通过调试来确定,一般用调节偏置电阻的方法来调整静态工作点。

实验名称: 三极管共射极放大电路 姓名: 学号: 三. 主要仪器设备示波器、信号发生器、晶体管毫伏表 共射电路实验板四.操作方法和实验步骤1. 静态工作点的调整和测量P.2准备工作:(1) 对照电路原理图,仔细检查电路的完整性和焊接质量。

(2) 开启直流稳压电源,将直流稳压电源的输出调整到12V ,并用万用表检测输出电压。

确认后,先关闭直流稳压电源。

(3) 将电路板的工作电源端与12V 直流稳压电源接通。

然后,开启直流稳压电源。

此时,放大电路、处于工作状态。

静态工作点的调整:调节电位器,使Q 点满足要求(I CQ =1.5mA)。

·直接测电流不方便,一般采用电压测量法来换算电流。

·测电压时,要充分考虑到万用表直流电压档内阻对被测电路的影响 。

三极管放大实验报告

三极管放大实验报告

(一)、实验目的1.对晶体三极管进行实物识别,了解它们的命名方法和主要技术指标;2.学习放大电路动态参数(电压放大倍数等)的测量方法;3.调节电路相关参数,用示波器观测输出波形,对饱和失真失真的情况进行研究;4.通过实验进一步熟悉三极管的使用方法及放大电路的研究方法。

(二)、实验原理一、三极管1. 三极管基本知识三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。

三极管的分类方式很多,按照材料可分为硅管和锗管;按照结构可分为NPN和PNP;按照功能可分为开关管、功率管、达林顿管、光敏管等;按照功率可分为小功率管、中功率管和大功率管;按照工作频率可分为低频管、高频管和超频管;按照安装方式可分为插件三极管和贴片三极管。

三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,根据排列方式的不同可将三极管分为PNP和NPN两种。

从三个区引出相应的电极,分别为基极b发射极e和集电极c。

发射区和基区之间的PN 结叫发射结,集电区和基区之间的PN结叫集电极。

基区很薄,而发射区较厚,杂质浓度大。

两种不同类型三极管的表示方式如图1所示,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。

发射极箭头指向也是PN结在正向电压下的导通方向。

图1 不同类型三极管表示方式2.三极管放大原理(1)发射区向基区发射电子电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。

同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。

三极管两级放大电路实验

三极管两级放大电路实验

三极管两级放大电路实验一、实验目的(1)掌握多级放大电路性能指标的测量及与单级指标之间的关系。

(2)熟悉共集电极电路的特点和作为输出级的作用。

(3)掌握多级放大电路的设计方法。

二、实验原理(1)实验电路。

实验电路如图2.10所示。

第一级为共射放大电路,后级是共集放大电路,级间采用直接耦合,因此要注意前后级静态工作点互相影响的情况。

静态点调试时,可根据具体情况做适当调整。

共集电路的特点是增益近似为1,输入电阻高,而输出电阻低,其应用非常广泛,可用作电路的输入级、输出级、中间级。

本电路中作为输出级,可增强放大电路的带负载能力。

(2)性能指标。

①电压增益Av。

两级放大电路的总增益为共射和共集电路增益的乘积。

电压增益为式中,R12为后级共集放大电路的输入电阻,有②输入电阻Ri.两级放大电路的输入电阻一般取决于第一级。

输入电阻为如果第一级为共集放大电路,则输人电阻还与第二级有关。

③输出电阻R.两级放大电路输出电阻一般取决于最后一级。

如果末级为共集放大电路,则输出电阻还与倒数第二级有关。

两级放大电路的输出电阻为三、实验设备与器件直流电源、数字万用表、数字示波器、低频波形发生器。

四、实验内容(1)测量静态工作点。

测量前后级的静态电流Icq。

若静态工作点不合适,可适当调整R1、R2或Re1。

(2)测量交流性能指标。

参照单管共射电路的测量方法,波形发生器输出1kHz、20mVpp正弦信号,接入放大器输入端vi,用示波器记录两级放大电路的输入和输出波形,测出电路的总增益、输入电阻和输出电阻。

(3)观察共集电路的作用。

拆除共集放大电路的T2和Re2,将后级负载RL和耦合电容C2接到前级T1集电极,测量前级放大器的增益。

比较单级放大和两级放大的增益,分析共集电路的作用。

五、实验步骤、数据记录及结论。

三极管共射放大电路实验[文摘]

三极管共射放大电路实验[文摘]

三极管共射放大电路实验[文摘]三极管是现代电力电子技术和电器技术中应用广泛的一种电子元件。

其中一种常见的三极管放大电路为共射放大电路,具有输入电阻小、输出电阻大、电压放大倍数大的特点,常用于电子放大器。

本实验采用BC547 NPN型晶体管,组成单段共射放大电路,通过实验测量分析来掌握共射放大电路的基本性能。

实验步骤:1. 利用万用表检查晶体管管脚类型,标出其发射极、晶体管基极和集电极,同时注意焊接正确。

2. 将电路连接如图所示,其中电压源UCC为6V,电阻值RC、RB、RE分别为1KΩ、22KΩ、470Ω。

接上耳机,即可开始实验。

3. 分别测量输入电压Vin和输出电压Vout,在输入电压从0到0.5V上升的过程中,记录下对应的Vout值,并在示波器上绘制Vin-Vout关系曲线。

4. 测量晶体管的直流电流,包括IE、IC、IB。

5. 确定晶体管放大倍数,即Vout/Vin。

6. 测量输出电阻值。

7. 通过理论计算和实验结果比较,分析晶体管放大电路的性能特点。

实验结果分析:根据实验结果,我们可以得出以下结论:1. Vin-Vout关系曲线的斜率为放大倍数,该电路放大倍数约为100倍。

2. 电路输出电阻值为102.5Ω,符合共射放大电路的特点。

3. 通过测量晶体管的直流电流,可以发现IE=IC+IB,符合晶体管放大电路的基本原理。

4. 通过计算和比较实验结果,我们可以发现,晶体管放大电路具有输入电阻小、输出电阻大、电压放大倍数大的优点,可以满足电路放大的需求。

总之,本实验通过实际操作和测量,成功地展示了共射放大电路的基本特点和性能,为学习和应用三极管放大电路提供了实用经验和基础。

三极管放大电路设计

三极管放大电路设计
武汉理工大学
开放性实验报告
(A类/B类)
项目名称:三极管放大电路设计
实验室名称:创新实验室
学生姓名:
创新实验项目报告书
实验名称
单管共射放大电路设计
日期
2011.11.26
姓名
X X
专业
电子信息工程
一、实验目的(详细指明输入输出)
1、在信号源Vpp≤1V的情况下输出幅值≥10Vpp.
2、增益≥20dB.
2)在频率小于10Hz情况,放大倍数衰减很明显,比如在6Hz情况下,输出只有8.13V,因此我们可以把耦合电容和旁路电容换得更大一些,如耦合换成470uF,旁路换成4700uF,这样可能会得到较大的改善
3)在高频区时,放大倍数同样衰减很明显,比如在2MHz情况需啊,输出也只有8.08V,这是因为器件存在极间电容和引线电容,同样的,我认为,改变静态工作点Ic,使三极管频率特性达到最佳,可以改善高频时的衰减情况
a)按照电路原理图焊接电路板,焊接电路时注意电解电容的正负极。
b)对电路板进行调试,并进行改进。
在输入Vpp=1V时,输出波形明显失真,此时,降低输入信号使Vpp=800mV.
四、实验结果(详细列出实验数据、结论分析)
1.在直流电源为15V的情况,测得静态工作点为:
VB=2.19,VE=1.44,VC=9.2,VCE=7.75
2.在输入信号VPP=800mV情况测得不同频率下空载时的输出信号
频率(Hz)
6
10
1K
1M
2M
输出Vpp
8.13
10.2
11.5
10.2
8.08
3.实验现象:在调试频率时,发现在低频和高频时,信号衰减很厉害,而且会出现截止失真的迹象,但是在中频区,信号输出Vpp=11.5,无失真.

(完整版)三极管共射放大电路(模电实验)

(完整版)三极管共射放大电路(模电实验)

(完整版)三极管共射放⼤电路(模电实验)实验报告课程名称:模拟电⼦技术基础实验指导⽼师:张伟成绩:__________________ 实验名称:三极管共射极放⼤电路实验类型:直接测量型同组学⽣姓名:__________ ⼀、实验⽬的和要求(必填)⼆、实验内容和原理(必填)三、主要仪器设备(必填)四、操作⽅法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、⼼得⼀.实验⽬的和要求1、学习基本放⼤器的参数选取⽅法、安装与调试技术;2、掌握放⼤器静态⼯作点的测量与调整⽅法,了解在不同偏置条件下静态⼯作点对放⼤器性能的影响;3、学习放⼤器的电压放⼤倍数、输⼊电阻、输出电阻及频率特性等指标的测试⽅法;4、了解静态⼯作点与输出波形失真的关系,掌握最⼤不失真输出电压的测量⽅法;5、进⼀步熟悉⽰波器、函数信号发⽣器、交流毫伏表的使⽤。

⼆.实验内容和原理1、静态⼯作点的调整和测量2、电压放⼤倍数的测量3、输⼊电阻和输出电阻的测量4、观察静态⼯作点对输出波形的影响5、放⼤电路上限频率fH 、下限频率fL 的测量三极管共射极放⼤电路原理图:三、主要仪器设备1、稳压电源2、信号发⽣器3、晶体管毫伏表4、⽰波器5、放⼤电路板专业:电⽓⾃动化姓名:郑志豪学号:3110101577 ⽇期:2012/12/12 地点:东3-211 B5四、操作⽅法和实验步骤1. 静态⼯作点的调整和测量1)按所设计的放⼤器的元件参数焊接电路,根据电路原理图仔细检查电路的完整性和焊接质量。

2)开启直流稳压电源,将直流稳压电源的输出调整到12V,并⽤万⽤表检测输出电压,确认后,关闭直流稳压电源。

3)将放⼤器电路板的⼯作电源端与12V直流稳压电源接通。

然后,开启直流稳压电源。

此时,放⼤器处于⼯作状态。

4)调节电位器RP,使电路满⾜设计要求(ICQ=1.5mA)。

为⽅便起见,测量ICQ时,⼀般采⽤测量电阻Rc两端的压降URc,然后根据ICQ =URc/Rc计算出ICQ 。

三极管放大电路输入输出阻抗的测量-实验报告

三极管放大电路输入输出阻抗的测量-实验报告

三极管放大电路输入输出阻抗的测量一、实验目的在学习了三极管放大电路后,通过实验进一步熟悉放大器电路的内部结构及放大原理,实验中测量放大电路输入输出阻,以及影响输入输出阻抗的因素二、实验原理单级阻容耦合放大器的电路如图1所示图1其主要性能指标有电压放大倍数A V,输入电阻R i,输出电阻R o及通频带B W,本实验主要内容是输入阻抗R i 和输出阻抗R o的测量。

对于任一个四端网络,在信号输入端输入电压与输入电流之比,称为输入阻抗,在输出端,输出电压与输出电流之比为输出阻抗(理想放大器的输出阻抗应为0).1、输入阻抗的测量放大器的输入阻抗定义为:实验测量输入阻抗的电路如图2所示图2在放大器的输入端串联一只阻值已知的电阻Rs,输入信号的幅度到达放大器的输入端会被减小。

用电表分别测出Rs两端的对地电压Us和Ui,两者差值即Rs上的电压降Us-Ui,则流过输入端的电流:所以输入阻抗2、输出阻抗的测量测量输出阻抗的电路如图3所示图3放大器的输出端可视作有源二端网络,把它看做一个交流信号的电源,输出阻抗也就是其内阻,所以测量原理与测量电源内阻类似用电压表分别测出不接负载R L时的空载电压U0和外接负载R L后的输出电压U0’,则输出阻抗R0的表达式为:三、实验内容1、实验器材放大器模拟实验箱、DA-16型晶体管毫伏表、示波器、信号源、导线等2、实验步骤1、如图连接电路。

Rs恒定,改变Ic,分别测量Us和Ui,计算输入阻抗2、Ic恒定,改变Rc,分别测量U0与U0’,计算输出阻抗3、分析影响输入阻抗和输出阻抗的因素四、实验结果及分析1、输入阻抗的测量:Rs恒定,改变Ic(电路参数:R=100kΩ, V b恒定5mV, f u=1kHz正弦波)分析:可发现输入阻抗Ri2、输出阻抗的测量Ic恒定,改变Rc(电路参数: I c=1mA或2mA,R=100kΩ, U0恒定6.2V,f u=1kHz正弦波,负载R L=1kΩ)分析:可发现输出阻抗Ro会随Rc、Rc、Rc的变化对于Ro的影响更大。

三极管10倍放大电路实验报告

三极管10倍放大电路实验报告

三极管放大电路实验报告一、实验目的:掌握三极管的工作模式,三极管输入输出特性曲线,静态工作点,以及常用的放大电路分析,估算(计算/图解)二、准备工具材料:工具材料:面包板,面包线,电阻若干,三极管NPN C1815 PNP A1015 ,电容若干仪器仪表:万用表,双踪显示示波器,函数信号发生器,开关稳压电源三、电路功能要求:①.电源为12V单电源②.输入信号正弦波1KHz 峰值:50mV③.电压放大倍数Au=10;④.波形不失真,误差+-10%,不考虑频率响应范围四、电路设计(NPN共发射极分压偏置放大电路):根据资料:三极管C1815 参数: 硅管,b值为200----400 UCE=0.7设计:计算静态工作点:IB,IC,UCE Q点应工作在输出特性曲线的中央根据三极管输出特性曲线图,要使Q点在中央,数值IB在50—150uA范围数值UCE在6—8V范围;设Ub点电位为电源电压一半,即:UB=1/2VCC,IC=IE在b(50—150uA)mA范围,这里取IB为50uA,b为300,电压放大倍数为10,电路不带负载计算过程:理论值UE=UB--UBE=5.3V;IE=IC=IB*b;IE=IC=50uA*b=15mARE=UE/IE=5.3V/0.015A=353R;UB=(Rb1/Rb1+Rb2)*VCC=5;Rb1= Rb2=50KAu=10=-b(RL’/rBE)rBE=300+(1+b)*(26/IE)=821RRL’=RC//RLRC=(rBE/b)*Au=27.4R;UCE=VCC-IC(RC+RE)=6.294V五、实验过程:按照设计好的电路,在面包板上实验,输入正弦1KHz信号,峰值50mA 用示波器观察输入波形;给放大电路接上电源,用示波器观察输出波形,两路信号相比较,发现放大倍数没有10倍,理论值跟实际值有差别,调节电阻RC使得放大倍数为10倍,且不失真的情况下RC=50R 时,电压放大倍数刚好10倍,温度变化时,对放大电路的影响比较小,说明分压偏置放大是可靠的测试频率响应范围,在不失真,放大倍数不改变的情况下为500Hz-------500KHz六、实际电路图:直流通路交流通路计算实际参数:UB=(Rb1/Rb1+Rb2)*VCC=5;IB=((UB-UBE)/RE)/b=31uaIC=b*IB=12.28MAUCE=VCC-IC*(RC+RE)=12-4.912=7VrBE=300+(1+b)*(26/IE)=1112Rri=Rb1//Rb2//Rbe=Rbe=1112Rro=RL’=RC//RL=50R;Au=-b(RL’/rBE)=-395*(RC/rBE)=17.7;七、测量计算参数:八、实验心得与结果:通过实验,对三极管的放大电路加深印象,提高动手能力;通过写实验报告,整理了整个实验过程的方法,计算过程,在后续的时间回顾复习有很大的帮助;在实验过程中b下降,RC 需要增大,否则电压放大倍数变小以及UCE过大;RE决定着IB也决定着UCE,就是一个联动式的,各个电阻参数设计需要考虑很多,该电路可能存在很多不足,希望批评改正!谢谢大家!。

三极管放大电路实验报告

三极管放大电路实验报告

三极管放大电路实验报告三极管放大电路实验报告引言在现代电子技术中,三极管放大电路是最常见的一种放大电路。

它具有放大信号、增加电流和功率的功能,广泛应用于收音机、电视、音响等电子设备中。

本实验旨在通过搭建三极管放大电路并进行实际测量,探究三极管的工作原理和放大特性。

实验材料与方法本实验所用材料包括:三极管、电阻、电容、信号发生器、示波器等。

首先,按照电路图搭建三极管放大电路,其中包括三极管的基极、发射极和集电极,以及相应的电阻和电容。

接下来,将信号发生器的输出端与放大电路的输入端相连,将示波器的输入端与放大电路的输出端相连。

最后,调节信号发生器的频率和幅度,通过示波器观察和测量输出信号的变化。

实验结果与分析在实验过程中,我们首先调节信号发生器的频率和幅度,使其输出一个稳定的正弦波信号。

然后,通过示波器观察到放大电路输出信号的波形。

实验中,我们分别改变三极管的工作状态,即改变基极电流和集电极电流,观察输出信号的变化。

当三极管处于截止状态时,即基极电流为零时,输出信号几乎为零。

这是因为在截止状态下,三极管无法放大输入信号,输出电流几乎为零。

当三极管处于饱和状态时,即基极电流较大时,输出信号会有明显的放大。

这是因为在饱和状态下,三极管可以将输入信号放大到较大的幅度,输出电流也相应增加。

通过调节三极管的工作状态,我们可以得到不同的放大倍数。

实验中,我们发现当基极电流较小时,输出信号的幅度较小,放大倍数较低;而当基极电流较大时,输出信号的幅度较大,放大倍数较高。

这说明三极管的放大特性与工作状态密切相关。

此外,我们还观察到三极管放大电路的频率响应特性。

当信号发生器输出的频率较低时,输出信号的波形较为完整;而当频率较高时,输出信号的波形变得扭曲。

这是因为三极管放大电路在高频时会出现截止现象,无法正常放大信号。

实验总结通过本次实验,我们深入了解了三极管放大电路的工作原理和特性。

三极管作为一种重要的电子元件,在现代电子技术中发挥着重要作用。

实验三三极管放大电路实验

实验三三极管放大电路实验

实验三三极管放大电路实验一、实验目的1.学习测量和调整放大器的静态工作点;2.学习测量电压放大倍数;3.了解共射极放大器的参数变化对静态工作点、放大倍数及输出波形的影响。

二、实验与原理电路图单管交流放大实验电路如图6-1所示。

图6-1 三极管放大电路实验电路图1.由三极管组成的放大电路为了获得最大不失真输出信号,必须合理设置静态工作点。

如果静态工作点太高或太低,或输入信号过大,都会使输出波形产生非线性失真。

对于小信号放大器,工作点都选择在交流负载线的中点附近,一般采用改变偏置电阻R B的方法来调节静态工作点。

2.电压放大倍数A u是指放大电路正常(即不失真)工作时对输入信号的放大能力,即A u=U o/U i,式中,Uo、Ui为输出和输入电压的有效值,可以用晶体管毫伏表测量。

三、仪器设备1.直流稳压电源2.晶体管毫伏表3.万用表4.信号发生器5.示波器四、实验内容与步骤1.先将直流稳压电源得输出调至+12V(以万用表测量的值为准),然后关掉电源。

用导线将电源输出接到实验电路板上,并按图6-1接好实验电路(R C=2kΩ),检查无误后接通电源。

2.三极管放大电路的静态研究(1)调节R w使放大器的集电极电位U E =2V左右,然后分别测出U B、U C,再计算出U BE、U CE、I C的大小(已知β=90)。

(2)左右调节R w,分别观察表格6-1中各量的变化趋势,并记录。

表6-13.三极管放大电路的动态研究(1)重新调节静态工作点U E =2V左右。

(2)使信号发生器输出1kHz、10mV的正弦波信号,接到放大器的输入端,将放大器的输出(R L=∞)信号接至示波器上观察输出波形,若不失真,测出u i和u o的大小,计算出电压放大倍数,并与估算值相比较。

(3)在输出波形不失真的情况下,按表6-2中给定的条件,测量并记录输出电压u o,计算电压放大倍数。

与预习结果相比较。

表6-2*4.调出放大器的最大输出幅度:在上述条件下,接上2kΩ负载电阻,调节R B使不失真时的输出电压最大(这里是指在Q点可调的情况下,电路所能达到的最大不失真输出幅度)。

1000倍增益三极管2N3904放大电路设计报告

1000倍增益三极管2N3904放大电路设计报告

=
1000倍增益三极管放大电路设计报告
一、实验目的
初步了解设计三极管放大电路。

二、实验内容
实现使用2N3904与2N3906三极管对输入模拟信号放大1000倍。

三、实验原理
2N3904为小功率管。

根据经验,取静态工作点IB = 5uA,IC = 2mA,VCE = 15V。

本实验使用两级阻容耦合射极偏置电路。

图1 .1三极管2N3904射极偏置电路
图1 .2三极管2N3906射极偏置电路
四、实验步骤
4.1使用multisim14进行仿真如图
图4.1 2N3904静态工作点
图4.2 2N3904放大电路波形仿真无误
图4.3 2N3904放大电路实物图
图4.4 2N3906静态工作点
图4.5 2N3964放大电路波形仿真无误
图4.6 2N3906放大电路实物图
五、实验器材:2N3904、2N3906、万用板、电烙铁、信号发生器、直流电源、示波器等。

六、实验结果及分析
本次实验使用4-15mV进行测试,误差均小于3%。

图4.7 放大电路工作图4mV-4V
图4.8 放大电路工作图6mV-6V
图4.9 放大电路工作图8mV-8V
图4.10 放大电路工作图10mV-10V
图4.10 放大电路工作图12mV-12V
图4.10 放大电路工作图15mV-15V
六、心得体会
在网络的协助下,成功搭建了这个三极管放大电路,明白了学好理论知识的必要性和独立学习、付诸实践的重要性。

三极管放大电路实验

三极管放大电路实验

东南大学电工电子实验中心实验报告课程名称:电路与电子线路实验II第一次实验实验名称:三极管放大电路院(系):吴健雄专业:信息姓名:学号:实验室: 金智楼502 实验组别: 6 同组人员:实验时间: 2013 年 4月 9 日评定成绩:审阅教师:一、实验目的及要求1、实验目的●通过对单级晶体管低频电压放大电路的工程估算、安装和调试,掌握放大器的主要性能指标及其测试方法;●掌握双踪示波器、函数发生器、交流毫伏表、直流稳压电源的使用方法。

2、实验要求⏹测量静态工作点主要性能参数:ICQ集电极静态工作电流、VCEQ 晶体管压降;⏹测量主要动态性能参数:AV电压增益、Ri输入电阻、Ro输出电阻;⏹利用扫频仪观察电路的幅频特性与相频特性。

二、实验原理●放大电路的基本组成半导体器件R L 输入信号源输出负载直流电源和相应的偏置电路●静态工作点的设置集电极静态工作电流:I CQ=V RC/R C静态工作点对电路输出失真的影响:●截止失真Vo波形的顶部被压缩,说明Q点偏低,应增大基极偏流IBQ,即增大ICQ。

●饱和失真Vo波形的底部被削波,说明Q点偏高,应减小IBQ ,即减小ICQ 。

●偏置电路的选择●用换算法测量输入电阻 Ri 和输出电阻Ro其中,vo’和vo分别为vs不变的情况下断开和接入负载RL时的输出电压。

●放大电路的频率响应三、电路设计及仿真1、实验电路图实验的电路图上图所示,三极管选用9013NPN型晶体管。

Rs为采样电阻RL为负载电阻R1为上偏置电阻R2为下偏置电阻Rc为集电极电阻RE为发射极电阻C1为输入耦合电容C2为输出耦合电容CE为旁路电容调节RW使静态工作点位于交流负载线的中点(VCEQ=6V),加大输入信号的幅度,使得输出波形同时出现正、反向失真,稍微减小输入信号幅度,使失真刚好消失,读出此时的输出电压峰峰值vop-p,再用万用表的DCV档测量此时RE两端的静态电压,计算出ICQ。

2、实验仿真图根据设计的实验电路图在Multisim上画出如下仿真电路图:四、电路测试结果1、实际实验电路图根据设计与仿真的电路搭建的实际电路如下图所示:2、实验数据及结果(1)静态工作点已知:Rc=3K测得:Vcc=12.08VV CEQ=6.00VV CR=4.56V求得:集电极静态工作电流I CQ=V RC/Rc=1.52mA(2)动态性能:a.已知:Rs=1K测得:Vs=40mVVi=12.2mV求得:输入电阻Ri=Vi×Rs/( Vs- Vi)=0.45Kb.已知:R L=3K测得:Vo=1.01VVo’=1.35V求得:输出电阻Ro=(Vo’/Vo - 1) ×RL=2.5Kc.求得:电压增益Av= Vo/ Vi=82.8≈83(3)观察输入、输出曲线将输入、输出两端分别接入示波器,利用AC耦合观察正弦曲线,如下图所示:可以看出输入、输出端的电压存在着相位差,但都为正弦曲线分布且没有失真现象产生,利用示波器也可测得输入电压与输出电压。

模拟电路实验——三极管放大电路

模拟电路实验——三极管放大电路

模拟实验三三极管及其放大电路一.实验目的1.对晶体三极管(3DG6、9013)、场效应管(3DJ6G)进行实物识别,了解它们的命名方法和主要技术指标。

2.学习用数字万用表、模拟万用表对三极管进行测试的方法。

3.用图3-10提供的电路,对三极管的β值进行测试。

4.学习共射、共集电极(*)、共基极放大电路静态工作点的测量与调整,以及参数选取方法,研究静态工作点对放大电路动态性能的影响。

5.学习放大电路动态参数(电压放大倍数、输入电阻、输出电阻、最大不失真输出电压)的测量方法。

6. 调节CE电路相关参数,用示波器观测输出波形,对饱和失真和截止失真的情况进行研究。

7.用Multisim软件完成对共射极、共集电极、共基极放大电路性能的分析,学习放大电路静态工作点的测试及调整方法,观察测定电路参数变化对放大电路的静态工作点、电压放大倍数及输出电压波形的影响。

加深对共射极、共集电极、共基极基本放大电路放大特性的理解。

二.知识要点1.半导体三极管半导体三极管是组成放大电路的核心器件,是集成电路的组成元件,在电路中主要用于电流放大、开关控制或与其他元器件组成特殊电路等。

半导体三极管的种类较多,按制造材料不同有硅管、锗管、砷化镓管、磷化镓管等;按极性不同有NPN 型和PNP型;按工作频率不同有低频管、高频管及超高频管等;按用途不同有普通管、高频管、开关管、复合管等。

其功耗大于1W的属于大功率管,小于1W的属于小功率管。

半导体三极管的参数主要有电流放大倍数β、极间反向电流I CEO、极限参数(如最高工作电压V CEM、集电极最大工作电流I CM、最高结温T jM、集电极最大功耗P CM)以及频率特性参数等。

有关三极管命名、类型以及参数等可查阅相关器件手册。

下面给出几种常用三极管的参数举例如表3-01所示:表3-01 几种常用三极管的参数2.半导体三极管的识别与检测半导体三极管的类型有NPN型和PNP型两种。

可根据管子外壳标注的型号来判别是NPN型,还是PNP 型。

模拟电子电路实验一三极管的放大特性实验报告

模拟电子电路实验一三极管的放大特性实验报告

模拟电子电路实验一三极管的放大特性实验报告实验一:三极管的放大特性一、实验目的:1.了解三极管的结构和工作原理;2.掌握三极管的基本参数和特性指标;3.理解三极管的放大功能和放大倍数的测量方法。

二、实验器材和材料:1.示波器2.信号源3.三极管4.变阻器5.接线板6.电阻7.万用表8.多功能电源三、实验原理:三极管是一种具有放大功能的电子器件,它由三个控制端,基极(B)、发射极(E)和集电极(C)构成。

三极管有两种工作状态:放大状态和截止状态。

1.放大状态:当输入信号较小时,三极管处于放大状态。

此时,基极和发射极之间的电流(IE)大于0,集电极和发射极之间的电流(IC)也大于0。

增加基极电流(IB)会放大集电极电流(IC)。

2.截止状态:当输入信号较大时,三极管处于截止状态。

此时,基极和发射极之间的电流(IE)小于0,集电极和发射极之间的电流(IC)小于0。

四、实验步骤:1.按照电路图连接实验电路,三极管的发射极接地,三极管的集电极通过电阻RL连接到正电源。

2.调节信号源的幅度和频率,将信号源的负极连接到示波器的接地端,将信号源的正极通过电阻R1连接到三极管的基极,调节变阻器的电阻值,使得示波器屏幕上的正弦波幅度适中。

3.测量基极电流(IB),发射极电流(IE)和集电极电流(IC)的数值,记录下来。

4.将电阻RL的数值改变,重复步骤3,记录下不同RL下的IB、IE和IC的数值。

五、实验结果:记录各组IB、IE和IC的数值,绘制IB,IE和IC随RL变化的曲线图。

根据图像可以得到三极管的放大倍数。

六、实验讨论:根据实验数据和曲线图,可以发现随着RL增加,IB和IE基本保持不变,IC呈现线性增长的趋势。

通过计算得出三极管的放大倍数,进一步验证了三极管的放大功能。

七、实验总结:通过本次实验,我们深入了解了三极管的结构和工作原理,掌握了三极管的基本参数和特性指标的测量方法。

实验结果验证了三极管的放大功能,并且通过计算得出了三极管的放大倍数。

三极管放大电路设计

三极管放大电路设计

实验名称 三极管放大电路设计日期 姓名专业一、实验目的(详细指明输入输出)1、深入研究三极管单级放大器的工作原理,学会选取相应参数的元件设计并制作电路 。

2、掌握三极管单级放大器的静态工作点的调试方法,探讨三极管单级放大器的输入输出变化后的频率响应 ,学会用示波器等工具测量相关参数。

3、设计出能够实现不失真稳定的放大, 满足3dB 带宽10Hz~1MHz ,增益≥20dB ,输出幅值≥10Vpp ,采用单电源供电的三极管放大电路。

二、实验原理(详细写出理论计算、理论电路分析过程)实验电路如下图所示,三极管s8050的β=252.由于IB 非常小,所以在计算时可认为其近似等于0 基极电压:VBQ = Rb2/(Rb1+Rb2)*VCC射极电压:VEQ = VBQ-VBE ;射极电流:IEQ = VE/Re集电极电流:ICQ ≈ IEQ ;集电极电压:VCQ = VCC-ICQ*Rc 基极电流:IBQ = IE/(1+β) 电路放大倍数:Au = RC/Re因为实验要求:输出幅值≥10Vpp ,3dB 带宽10Hz~1MHz ,所以本实验中假定Vce =8V ,Ie=15mA, 则Rc+Re=466Ω为了满足增益≥20dB ,则取Re=36Ω,Rc=430Ω。

则B 点电位为1.3V ,取RB2=2.4K Ω,RB1=24K Ω。

该电路利用电阻R b1、R b2的分压固定基极电位VBQ 。

如果满足条件I1>>IB ,当温度升高时,ICQ ↑→VEQ ↑→VBE ↓→IBQ ↓→ICQ ↓,结果抑制了ICQ 的变化,从而获得稳定的静态工作点。

由于有电容器的存在,该电路受频率的影响。

电容的容量越大,频率较低时电容的阻抗越小。

22uF 22uF V i R e 36ΩR c 430ΩRb2 2.4k Ω R b1 24k Ω V 0 +18VIN OUT三、实验过程(记录实验流程,提炼关键步骤)a)通过查阅资料,选定s8050三极管进行放大电路设计,利用multisim仿真软件进行仿真设计,并进行参数修改,设计电路图如图所示:b)按照电路原理图焊接电路板。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

到“保持输入信号幅度不变” 。实验中应该注意 监视输 出
波形和输入电压幅值。
a
16
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
思考题(三极管放大电路)
实验四
①若将示波器的通道“耦合” 分别设置于“交流”和“直流”位置来观察集电极 电压VC的波形,将有何区别?
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
电路电子实验B(三极管放大电路)
a
1
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
实验仪器设备
a
4
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
实验板介绍
a
5
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
4.观察输入、输出波形的相位差;
5.测量放大器的输入电阻和输出电阻;
6.测量放大器的通频带,并绘出其对数幅频特性曲线。(绘制曲线起码要
有七个测量点)。
7.测量放大器的线性范围。
a
6
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
实验任务与步骤
1.测量并调整放大器的静态工作点,使ICQ = 2 mA; 详细步骤举例 2.在空载和带载情况下,测量电压放大倍数,此时输入信号Vipp = 40 mV,
f = 1kHz,输出波形不能失真;
3 .研究失真情况
①研究输入信号幅值大小,对输出波形失真的影响;
②研究工作点的变化对输出波形失真的影响;
×
实验目的 仪器设备
电路电子实验B(三极管放大电路)
实验板介绍
实验任务及步骤 思考题 注意事项 预习报告分析与实验报告要求 下次实验安排
a
2
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
实验目的
1.学习并掌握检查、调整、测量电路工作状态的实验方法; 2.学习并掌握测量放大电路电压放大倍数的实验方法。定
×
输入输出相位的测量(三极管放大电路)
采用光标手动模式测量时间
两光标分别测量输入波形和输 出波形的波峰,得出它们的时 间差Δt,则相位差φ与Δt和周期 T之间的关系是:
t 360
T
a
12
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
性了解工作点对放大器输出波形的影响; 3 .学习并掌握放大电路输入、输出电阻的测量方法; 4.学习放大电路频率特性的测定方法; 5.进一步练习示波器,低频信号发生器和直流稳压电源的
使用方法。
a
3
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
实验注意事项(三极管放大电路)
1. 放大器静态工作点ICQ = 2 mA的测量应该采用间接法; 2. 测量电压放大倍数等交流参数,应该在输出波形不失真
的情况下进行;
3. 输入,输出电阻测量时,不能直接用定义来测,原因
是没有测量交流信号电流的电流表;
4. 在测频率特性时,除要做到输出波形不失真外,还要做

rO UO/
UO
a
14
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
频率特性的测量(三极管放大电路)
Av Av 0.7Av
a
15
f
fL
fH
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
静态工作点的测量(三极管放大电路)
a
7
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
空载放大倍数的测量(三极管放大电路)
a
8
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
失真的测量(三极管放大电路)
不失真波形
增大Ui
提升Q
降低Q
a
9
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
失真的测量(三极管放大电路)
饱和失真波形
增大Ui
恢复Q
降低Q
a
10
实验 三极管放大电路
×
目录(L)
×
输入电阻的测量(三极管放大电路)
ri =
Ui Us - Ui
R
测Us
a
13
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
输出电阻的测量(三极管放大电路)
ro =
Uo ′- Uo Uo
RLห้องสมุดไป่ตู้
测Uo′


Ui
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
×
失真的测量(三极管放大电路)
截止失真波形
增大Ui
提升Q
恢复Q
a
11
实验 三极管放大电路
×
目录(L)
实验目的(P) 仪器设备(I) 实验板图(F) 任务步骤(T) 思考题(E) 报告要求(D) 下次内容(N)
时的频率即为fL(或fH)?
②分析图5-3中输出波形是什么类型的失真?是什么原因造成的?如何解决?
(a)
(b)
(c)
实验五
①本实验在测量输入,输出电阻时,能否直接用定义来测,为什么?
②在测频率特性时,如何做到“保持输入信号幅度不变”?
实验六
①为何在实际测量fL(或fH)时,只要测量输出电压,找出VOL=0.707VOM (或VOH =VOM)
相关文档
最新文档