(1) 数据包络分析法(DEA)概述
数据包络分析法概述
数据包络分析法概述数据包络分析法(Data Envelopment Analysis, DEA)是一种评价相对效率的方法,可以对多个输入与输出指标进行综合评估,通常用于评估单位、企业或组织的效率水平。
DEA被广泛应用于经济学、管理学、行政学、工程管理等多个领域。
DEA最早由Cooper、Seiford和Tone于1978年提出,旨在评估多个决策单元的效率水平,即根据输入与输出的关系,评估每个决策单元的相对效率水平。
其核心思想是寻找一种有效的方式,将一个Efficiency Score(相对效率评分)赋予每个决策单元。
在数据包络分析中,输入和输出指标是关键要素。
输入指标是指用于在决策过程中消耗的资源,而输出指标是指预期的产出或结果。
一般来说,输入越小,输出越大,效率就越高。
DEA的基本步骤如下:1.确定输入和输出指标:首先,需要明确评估对象和评估的不同方面。
然后,根据评估目的和数据可用性,选择适当的输入和输出指标,并确保它们能够真实、准确地反映决策单元的效能。
2. 构建评估模型:根据选择的输入和输出指标,建立数据包络模型。
最常见的模型是CCR模型(Charnes-Cooper-Rhodes model)和BCC模型(Banker-Charnes-Cooper model),它们都使用线性规划的方法来测量相对效率。
3.优化决策单元的效率得分:通过求解线性规划的问题,确定每个决策单元的效率得分。
这个得分表明相对于其他决策单元,一个决策单元在给定的输入与输出下的效率水平。
4.空间解释和内部效率分析:通过解释得分和计算效率间隔,可以评估决策单元与最有效率单元之间的差距。
这可以帮助分析员确定决策单元的潜力和优化方向。
5.敏感性分析和改进建议:DEA方法提供了适应性较强的结果,可以在受到噪声和误差的影响下进行灵活的判断。
敏感性分析可以测试结果对参数变化的敏感性,并提供改进建议。
DEA的优势在于可以综合考虑多个输入输出之间的关系,并且不需要关于效用函数或生产函数的任何假设。
数据包络分析概述
数据包络分析概述数据包络分析(Data Envelopment Analysis,DEA)是一种运筹学工具,用于评估相对效率和效果的方法。
它是由美国科学家Charnes、Cooper和Rhodes在20世纪70年代初期提出的,被广泛应用于评估不同单位(如企业、组织、机构等)的绩效。
数据包络分析的核心思想是利用线性规划方法,将输入和输出数据转化为数学模型,通过计算得出各个单位的相对效率。
相对效率是单位输出与输入的比值,表示单位在给定的输入资源下所能获得的最大产出。
相对效率值越高,表示单位的绩效越好。
相对于传统的相对比较法,数据包络分析的优点主要有以下几点:1.能够充分利用多个指标进行评估。
数据包络分析可以同时考虑多个输入和输出指标,通过最大化单位产出与输入的比值,综合评估单位在不同方面的绩效。
2.不依赖于具体的单位尺度。
数据包络分析通过相对效率的计算,能够比较不同规模的单位之间的绩效差异,不受单位规模的限制。
3.客观公正,不需要主观判断。
相对于主观评估方法,数据包络分析是一种客观的评估方法,不会受到个人偏好或主观判断的影响。
4.可以进行有效的优化分析。
数据包络分析不仅能够计算单位的相对效率,还可以通过优化模型找出资源利用率最高的单位,为绩效改进提供依据。
然而,数据包络分析也存在一些限制和挑战。
首先,数据包络分析的计算结果高度依赖于输入和输出指标的选取。
不同的指标选择可能导致不同的结果。
其次,数据包络分析假设各个单位的生产技术相同,忽略了技术差异的影响。
最后,数据包络分析对于数据的准确性和完整性要求较高,如果数据质量不佳或缺失,可能会影响评估结果的准确性。
综上所述,数据包络分析是一种用于评估相对效率和效果的方法。
它通过构建评估模型,计算单位的相对效率,并通过优化模型进行进一步分析。
数据包络分析在实际应用中具有广泛的应用领域,可以帮助决策者了解单位的现状和潜力,提供改进绩效的战略建议。
然而,数据包络分析也有一些限制和挑战,需要慎重使用和解释评估结果。
DEA数据包络分析法
DEA数据包络分析法DEA数据包络分析法(Data Envelopment Analysis,DEA)是一种用于评估组织或单位绩效的方法。
它是一种非参数的效率评价方法,不需要任何先验假设或函数形式的假设。
DEA通过比较多个输入和输出变量来确定一个单位的相对效率,即单位在给定的资源限制下能够产生的最佳输出水平。
DEA方法可以用来评估各种类型的单位,包括公司、医院、学校等。
DEA方法的基本思想是将单位的输入和输出量转化为数值来进行比较。
每个单位可以被看作是一个生产过程,输入变量是生产这个过程所需要的资源,输出变量是生产过程所产生的结果。
DEA方法可以帮助管理者找到哪些单位在利用资源方面效率最高,哪些单位在利用资源方面存在浪费,从而指导管理者进行资源配置和决策。
DEA方法的核心是构建生产可能性集(Production Possibility Set,PPS)。
PPS是指所有可能的输入和输出组合,构成一个封闭的边界,这个封闭的边界被称为数据包络(Data Envelopment)。
在这个边界上的单位都被认为是有效率的,而在这个边界内的单位被认为是无效率的。
DEA方法有很多优点。
首先,DEA方法不需要事先制定有效率的标准,而是通过比较各个单位之间的相对效率来确定哪些单位是最有效率的。
这样避免了主观性带来的偏差。
其次,DEA方法可以同时考虑多个输入和输出变量,考虑了生产中的多维度特性。
第三,DEA方法可以识别出生产过程中的浪费,帮助管理者改进资源配置和管理方式。
DEA方法也存在一些局限性。
首先,DEA方法只能提供相对效率的评价结果,而不是绝对效率。
这意味着DEA方法无法提供单位具体的效率水平,只能比较单位之间的相对效率。
其次,DEA方法对输入输出数据的准确性要求很高,数据的质量直接影响了评价结果的准确性。
第三,DEA方法对于数据包络的选择比较敏感,不同的数据包络选择可能导致不同的评价结果。
在实际应用中,DEA方法广泛应用于各种类型的单位绩效评估。
数据包络分析DEA
算法优化
并行计算
针对大规模数据的DEA分析,可以采用并行计算技术, 以提高计算效率。通过将数据分成若干个子集,并行计 算可以同时处理多个子集,显著缩短计算时间。
智能优化算法
将智能优化算法应用于DEA模型的求解过程,可以找到 更优的解。例如,遗传算法、粒子群算法等智能优化算 法可以用于求解DEA模型,以获得更准确的分析结果。
05
DEA实践案例
案例一:某制造企业的DEA分析
总结词
提高生产效率
详细描述
某制造企业通过DEA分析,评估了各生产车间的效率 ,找出了瓶颈环节,并针对性地优化了生产流程,提 高了整体生产效率。
案例二:某金融机构的DEA分析
总结词
优化资源配置
详细描述
某金融机构利用DEA分析,对各业务部门进行了效率 评估,根据评估结果调整了资源分配,使得资源能够更 加合理地配置到高效率部门,提高了整体业绩。
数据包络分析(DEA
目 录
• DEA概述 • DEA模型 • DEA的优缺点 • DEA的改进方向 • DEA实践案例
01
DEA概述
DEA定义
总结词
数据包络分析(DEA)是一种非参数的线性规划方法,用于评估一组决策单元(DMU)的相对效率。
详细描述
DEA使用数学规划模型,通过输入和输出数据,对一组决策单元进行相对效率评估。它不需要预先设 定函数形式,能够处理多输入和多输出的情况,并且可以对每个决策单元进行效率评分。
规模收益与技术效率
总结词
规模收益与技术效率是DEA分析中重要的概 念。
详细描述
规模收益指的是随着投入的增加,产出的增 加比例。技术效率则是指在给定投入下,实 际产出与最优产出之间的比率。在DEA分析 中,技术效率可以进一步分解为配置效率和 纯技术效率。
数据包络分析法资料
数据包络分析法资料数据包络分析法(Data Envelopment Analysis,DEA)是一种评估决策单元相对效率的方法。
它是根据多个输入和输出指标来评估一个决策单元在同类决策单元中的效率水平,并找出效率低下的决策单元所存在的问题和改进的方向。
数据包络分析法是一种非参数的线性规划方法,它不依赖于任何特定的函数形式和假设,而是根据数据中的观测值进行计算。
该方法的核心思想是将决策单元的输入指标与输出指标之间的关系建模为一个线性规划问题,通过最优化模型求解得到各个决策单元的效率评分。
1.高度灵活性:数据包络分析法不需要事先对数据进行任何假设,可以对包括输入、输出指标在内的任意数量和类型的数据进行分析。
2.可比较性:数据包络分析法可以通过对数据进行标准化处理,将不同尺度、不同数量级的指标进行比较,得到相对的效率评分。
3.效率评估与效率改进一体化:数据包络分析法能够建立有效的效率评估模型,并根据评估结果提出改进建议,帮助决策者提高决策单元的效率水平。
4.非参数特性:数据包络分析法不需要对数据的概率分布进行假设,可以适用于各种类型的数据。
1.确定输入和输出指标:根据问题的需求和决策单元的性质,选择合适的输入和输出指标。
输入指标表示决策单元所消耗的资源,输出指标表示决策单元所产生的结果。
2.构建数据包络模型:根据选定的指标,建立决策单元的效率评估模型。
该模型是一个线性规划模型,目标是最大化输出指标,约束条件是输入指标不超过给定值。
3.求解模型并评估效率:对每个决策单元进行模型求解,得到其效率评分。
效率评分是以相对效率的形式表示,取值范围为0到1,1表示具有最高效率。
4.确定效率改进方向:根据效率评分和模型求解结果,确定效率低下的决策单元所存在的问题和改进的方向。
可以通过对输入和输出指标进行灵活调整,以提高决策单元的效率。
5.效率前沿分析:根据求解模型的结果,得到效率前沿曲线,该曲线反映了决策单元的效率分布情况,在效率前沿曲线上的决策单元是无法在给定的输入和输出指标下再提高效率的。
数据包络分析DEA
数据包络分析DEA数据包络分析(Data Envelopment Analysis,DEA)是一种用来衡量决策单元(decision-making unit,DMU)效率的定量方法。
DEA是由Charnes、Cooper和Rhodes于1978年提出的,该方法主要用于评价相对效率,即将一个或多个输入变量转换为一个或多个输出变量的能力。
它可以在多个指标和多个决策单元之间进行效率比较。
DEA的基本概念是通过线性规划来求解每个决策单元的效率得分。
具体来说,通过找到每个DMU的最佳投入组合和输出组合来计算得分,使得该DMU的得分最大化同时满足其他DMU的得分小于等于1、DEA是一种基于相对效率评估的方法,不需要假设预先设定的效率标准,可以避免传统经验评估方法中存在的主观偏差。
DEA的应用范围非常广泛,包括政府、企业、银行、学校等各个领域。
它可以评估和比较不同DMU之间的相对效率,并为找到效率改进的潜力提供指导。
DEA还可以用于评估决策单元的技术效率和规模效率。
技术效率表示在给定的投入下,决策单元能够获得的最大输出水平。
规模效率反映了决策单元是否在最优规模下运营。
DEA的优点在于它能够考虑多个输入和输出因素,并将各个因素的权重纳入计算中。
它不需要对输入和输出进行单一的加权求和,而是通过优化模型来获得最佳权重。
此外,DEA的计算过程较为简单直观,可以提供DMU的效率得分及其组成部分的详细信息。
这些信息可以帮助决策者确定效率改进的方向,并制定相应的策略。
当然,DEA也有一些限制。
首先,DEA是一种非参数方法,对输入和输出数据的精确度要求较高。
缺乏精确度的数据可能会导致评估结果不准确。
其次,DEA只能评估相对效率,而无法提供绝对效率的标准。
最后,DEA在处理多个输入输出时可能会存在规模失效的问题,即DMU的规模过大或过小时可能导致评估结果偏差。
总的来说,DEA是一种有效的工具,用于评估和比较决策单元的效率。
它可以帮助决策者确定效率改进的方向,并提供有关决策单元效率的详细信息。
data_envelopment_analysis_(dea)model_概述说明
data envelopment analysis (dea)model 概述说明1. 引言1.1 概述数据包络分析(Data Envelopment Analysis,简称DEA)是一种常用的效率评估方法,可以应用于不同领域的决策问题中。
该方法通过对输入和输出变量进行分析和比较,来评估各个决策单元(如公司、机构或个人等)的相对效率和优劣程度。
DEA模型以线性规划为基础,通过构建有效前沿来衡量各个决策单元在给定输入产出下的相对效率,并提供改善不高效决策单元的参考建议。
由于其能够同时考虑多个输入和输出变量,并克服了传统评价方法中刻板印象的缺点,因此在许多实际应用中得到广泛使用。
1.2 文章结构本文主要围绕DEA模型展开论述,并分为五个部分。
引言部分主要介绍文章概述、结构和目的。
接下来是数据包络分析模型概述,包括该模型的定义、背景以及应用领域。
然后,我们将重点介绍DEA模型的要点一,包括输入输出变量选择方法、效率评估方法以及模型解释和结果分析。
紧接着是DEA模型的要点二,包括线性规划模型与非线性规划模型对比、超效率与相对效率分析方法以及DEA模型的优缺点与局限性。
最后,在结论部分对文章的主要内容进行总结,并展望DEA模型在未来的应用前景。
1.3 目的本文旨在全面概述数据包络分析(DEA)模型的基本原理、应用领域以及相关要点。
通过阐明该模型在多个方面的优势和局限性,读者可以更好地理解和运用DEA模型进行效率评估,并为决策提供科学参考。
另外,本文也将讨论DEA模型在未来的发展前景,为相关研究和实践提供指导。
2. 数据包络分析模型概述:2.1 定义和背景:数据包络分析(Data Envelopment Analysis, DEA)是一种非参数效率评价方法,其目的是通过比较多个决策单元(如企业、组织或个人)的输入与输出之间的关系来评估它们的相对效率。
该方法最早由Cooper等人在1978年提出,并得到了广泛应用。
(完整版)数据包络分析法DEA总结
DEA(Data Envelopment Analysis)数据包络分析目录一、DEA的起源与发展(参考网络等相关文献) (2)二、基本概念 (2)1.决策单元(Decision Making Unit,DMU) (2)2.生产可能集(Production Possibility Set,PPS) (3)3.生产前沿面(Production Frontier) (3)4.效率(Efficiency) (4)三、模型 (5)R模型 (5)2.BBC模型 (5)3.FG模型 (5)4.ST模型 (5)5.加性模型(additive model,简称ADD) (5)6.基于松弛变量的模型(Slacks-based Measure,简称SBM) (5)7.其他模型 (5)四、指标选取 (6)五、DEA的步骤(参考于网络) (6)六、优缺点(参考一篇博客) (7)七、非期望产出 (7)1.非期望产出的处理方法: (8)2.非期望产出的性质: (8)八、DEA几个注意点 (9)九、DEA相关文献的总结 (9)1.能源环境效率 (9)2.碳减排与经济增长 (10)3.关于工业、制造业、产业的DEA (10)4.关于企业的DEA (11)5.其他 (12)一、DEA的起源与发展(参考网络等相关文献)数据包络分析(DEA)是一种常用的效率评估的方法,用以评价一组具有多个投入、多个产出的决策单元(Decision Making Units,DMUs)之间的相对效率。
1978年,A.Chames(查恩斯),W.Cooper(库伯)和E.Rhodes(罗兹)提出了第一个DEA模型,这个模型被命名为CCR模型。
该模型在评价多投入多产出DMU的规模有效性和技术有效性方面十分有效。
1985年,A.Chames,W.Cooper,B.Golany(格拉尼),L.Seiford(赛福德)和J.Stutz(斯图茨)给出另一个模型,称为C2GS2模型,这一模型用来研究生产部门间的“技术有效性”。
数据包络分析法
数据包络分析法数据包络分析法(Data Envelopment Analysis,DEA)是一种用于衡量相对效率的多变量线性规划模型。
它通过评估决策单元(包括企业、组织等)的输入和输出来确定其综合效率,并进行效率排名和效率改进。
DEA模型是一种非参数方法,它不依赖于任何事先假设的技术效率分析方法,因此广泛应用于经济学、管理学和运营研究等领域。
DEA模型的基本思想是通过比较各个决策单元之间的输入和输出,找到最佳的决策单元作为参考,然后计算其他决策单元相对于参考单元的效率。
在DEA模型中,一个决策单元被视为效率的,如果它能够以与其他决策单元相同或更少的输入产生与其他决策单元相同或更多的输出。
换句话说,DEA模型可以帮助识别相对高效的决策单元,并确定其优化潜力。
DEA模型的核心是构建一个线性规划问题,以确定各个决策单元的效率得分。
在该模型中,决策单元的输入和输出被表示为一个矩阵,通常称为数据包络。
输入矩阵包含各个决策单元的输入变量,输出矩阵包含各个决策单元的输出变量。
通过线性规划问题,可以计算每个决策单元的效率得分,并根据得分进行排名。
DEA模型可以分为两种类型:CCR模型和BCC模型。
CCR模型是最早提出的一种DEA模型,它假设决策单元之间的技术效率是相同的。
而BCC模型更加灵活,它允许决策单元之间的技术效率不同,通过引入凸壳约束来捕捉这种差异。
CCR模型和BCC模型可以根据具体问题的需求选择使用。
在实际应用中,DEA模型可以用于评估企业、组织或其他决策单元的效率,并为其提供改进策略和决策依据。
DEA模型还可以在竞争环境中确定最佳实践,提供参考标准和目标设置。
此外,DEA模型还具有一些扩展和改进的方法,如动态DEA模型和组合DEA模型等,用于处理更复杂的问题。
然而,DEA模型也存在一些局限性。
首先,它仅适用于相对效率的评估,无法提供绝对效率的度量。
其次,DEA模型对输入和输出的选择和权重敏感,可能会导致不稳定的结果。
DEA简介-数据包络分析
举例来说,譬如在评价某高校各个学院的时候, 输入可以是学院的全年的资金,教职员工的总人 数,教学用占用教室的总次数,各类职称的教师 人数等等;输出可以是培养博士研究生、硕士研 究生、大学生本科生的人数,学生的质量,教师 的教学工作量,学校的科研成果(数量与质量)等 等.
根据输入数据和输出数据来评价决策单元 的优劣,即所谓评价部门(或单位)间的 相对有效性.
DEA方法的特点:
Байду номын сангаас
适用于多输出-多输入的有效性综合评价问题,在处理多 输出-多输入的有效性评价方面具有绝对优势
DEA方法并不直接对数据进行综合,因此决策单元的最优 效率指标与投入指标值及产出指标值的量纲选取无关,应 用DEA方法建立模型前无须对数据进行无量纲化处理(当
然也可以)
无无须任何权重假设,而以决策单元输入输出的实际数据 求得最优权重,排除了很多主观因素,具有很强的客观性
其对偶规划为(DCCR),并引入松弛变 量为:
min t s.t. j x j x0 , j 1 t ( DC 2 R ) j y j y0 , j 1 0, j 1, 2, , t , j
min t s.t. j x j x0 s j 1 t 1 y y0 j j ( DC 2 R ) s j 1 j 0, j 1, , t , 0 s s
从创新型企业创新绩效影响因素中的研发 投入、自主产权、创新业绩、创新管理等 四个方面建立创新型企业创新绩效评价指 标体系。 文献中指标体系包括4 个一级指标和22个二 级指标,具体情况见表1。
数据包络分析法(DEA)概述
(1)数据包络分析法(DEA)概述数据包络分析(Data Envelopment Ana lysis,简称D EA)方法是运用数学工具评价经济系统生产前沿面有效性的非参数方法,它适应用于多投入多产出的多目标决策单元的绩效评价。
这种方法以相对效率为基础,根据多指标投入与多指标产出对相同类型的决策单元进行相对有效性评价。
应用该方法进行绩效评价的另一个特点是,它不需要以参数形式规定生产前沿函数,并且允许生产前沿函数可以因为单位的不同而不同,不需要弄清楚各个评价决策单元的输入与输出之间的关联方式,只需要最终用极值的方法,以相对效益这个变量作为总体上的衡量标准,以决策单元(DM U)各输入输出的权重向量为变量,从最有利于决策的角度进行评价,从而避免了人为因素确定各指标的权重而使得研究结果的客观性收到影响。
这种方法采用数学规划模型,对所有决策单元的输出都“一视同仁”。
这些输入输出的价值设定与虚拟系数有关,有利于找出那些决策单元相对效益偏低的原因。
该方法以经验数据为基础,逻辑上合理,故能够衡量个决策单元由一定量大投入产生预期的输出的能力,并且能够计算在非DEA有效的决策单元中,投入没有发挥作用的程度。
最为重要的是应用该方法还有可能进一步估计某个决策单元达到相对有效时,其产出应该增加多少,输入可以减少多少等。
( 2 ) 数据包络模型(又称为DEA模型)描述数据包络分析(DEA)由美国著名运筹学家A. Charnes等人在1978年以相对效率概念为基础发展起来的一种新的绩效评价方法。
这种方法是以决策单元(Decision Making Unit,简称DMU)的投入、产出指标的权重系数为变量,借助于数学规划模型将决策单元投影到DEA 生产前沿面上,通过比较决策单元偏离DEA生产前沿面的程度来对被评价决策单元的相对有效性进行综合绩效评价。
其基本思路是:通过对投入产出数据的综合分析,得出每个DMU综合相对效率的数量指标,确定各DMU是否为DEA有效。
数据包络分析(DEA)
3
未来展望
随着大数据和人工智能技术的不断发展,DEA将 与这些技术结合,进一步提高评估效率和准确性。
02 DEA的基本原理
线性规划模型
线性规划模型是数据包络分析 (DEA)的基础,用于描述决策 单元(DMU)在多输入和多输出
条件下的最优配置。
DEA模型通过构建输入和输 出的权重,使得决策单元的 效率最大化,同时满足一系
列约束条件。
线性规划模型能够处理多输入 和多输出的情况,并且可以比 较不同决策单元之间的效率水
平。
决策单元与输入/输出指标
01 02 03 04
决策单元(DMU)是DEA分析的基本单位,通常代表一个组织、企业或 项目。
输入指标反映决策单元在生产过程中所投入的资源,如人力、物力、 财力等。
输出指标反映决策单元在生产过程中的产出或效益,如产量、销售额 、利润等。
决策单元的数量
无法处理多阶段或多过程生产
DEA方法的准确性在很大程度上取决于决策 单元(DMU)的数量,过少可能导致结果不 准确。
DEA方法主要适用于单阶段或多阶段生产 系统,对于多过程生产系统可能无法准确 评估。
DEA的未来发展方向
考虑不确定性
将不确定性因素纳入DEA模型中,以 提高评估的稳健性和准确性。
政策制定
政府可以利用DEA评估公共部门的效率,制定更有效的政策,优化 公共资源的配置。
DEA的历史与发展
1 2
起源
DEA由美国著名运筹学家Charnes和Cooper等 人于1978年提出,最初用于评估公共部门和营 利组织的效率。
发展
随着DEA理论的不断完善和应用领域的拓展, DEA逐渐被用于金融、医疗、教育等更多领域。
04 DEA的应用案例
数据包络分析法(DEA)概述
数据包络分析法(DEA)概述数据包络分析法(Data Envelopment Analysis,DEA)是一种用于评估决策单元(Decision Making Units,DMU)相对效率的数学方法。
它是由Charnes、Cooper和Rhodes于1978年提出的。
DEA的基本思想是通过比较各个DMU在多个输入和输出指标上的相对效率,找出相对有效的DMU,并为相对无效的DMU提供改进方案。
DEA的核心概念是效率。
在DEA中,效率是指在给定的输入条件下,一个DMU所能产生的最大输出。
如果一个DMU的产出等于其他DMU的产出,并且它的输入小于等于其他DMU的输入,则该DMU被认为是有效的。
而如果一个DMU的产出小于其他DMU的产出,并且它的输入等于其他DMU的输入,则该DMU被认为是无效的。
DEA的基本步骤包括建立评估模型、选择评估指标、确定权重、计算相对效率和最优化模型等。
首先,建立评估模型。
评估模型是一个线性规划模型,用于描述DMU的输入和输出之间的关系。
在建立模型时,需要确定输入和输出指标,并通过数学公式将DMU的输入和输出指标与权重进行关联。
接下来,选择评估指标。
评估指标是用来衡量DMU在各个方面的效率的指标。
它可以包括经济指标、财务指标、生产指标等。
选择评估指标时,需要考虑指标的可衡量性、可比性和权重的确定性。
然后,确定权重。
权重是用来衡量每个指标对DMU效率的贡献程度的系数。
在确定权重时,可以使用各种方法,如线性规划、Data Phillips 法、构造权重法等。
计算相对效率是DEA的核心内容之一、相对效率是通过比较每个DMU在评估指标上的绝对效率来计算的。
相对效率的计算是通过将一个DMU与其他DMU进行比较,得出一个相对效率的值。
最后,构建最优化模型。
最优化模型是通过将所有相对有效的DMU组成一个集合,并使用线性规划等方法,为相对无效的DMU提供改进方案。
DEA的优点在于它能够同时考虑多个输入和输出指标,能够在相对有效和相对无效的DMU间做出准确的区分,并且不需要预先设定权重。
数据包络分析DEA
数据包络分析DEA数据包络分析(Data Envelopment Analysis, DEA)是一种非参数的效率评价方法,用于评估一个单位(如公司、机构等)在多个输入和输出指标下的相对效率。
它是由美国经济学家Sherman和Charnes在1978年提出的,并在过去几十年里得到了广泛应用和发展。
DEA方法的基本思想是将各个单位看作是一个生产或投入过程,将输入和输出分别表示为向量,通过构建一个包络面来评估单位的效率。
包络面是一个用于衡量相对效率的边界,单位在包络面内表示其相对有效,而在包络面上或外表示其相对无效。
DEA方法的核心是建立一个线性规划模型,即包络模型。
在该模型中,首先要定义各个单位的输入和输出指标,并建立它们之间的关系。
然后,利用线性规划方法计算单位的相对效率和最优权重,得出单位的有效性评估结果。
DEA方法具有以下几个特点:1.非参数性:相比于传统的参数模型,DEA方法不需要提前对模型的具体函数形式进行假设,也不需要预设任何关于生产函数或投入产出关系的具体形式,因此更加灵活和适应不同情况下的评估需求。
2.相对效率评价:DEA方法不仅可以评估单位的绝对效率水平,还可以比较不同单位之间的相对效率差距。
通过对有效单位的分析,可以为相对无效单位提供参考和改进方向,从而提高整体效率。
3.多输入输出:DEA方法可以同时考虑多个输入和输出指标,充分利用了多指标评估的信息,更加全面地揭示了单位的效率。
4.联合效率评价:DEA方法可以对多个相关单位进行联合评估,比如对多个子公司或分支机构进行整体效率评估。
这有利于掌握单位间的协同效应和资源配置效果,并提出相应的管理建议。
DEA方法的应用范围非常广泛,几乎涵盖了所有需要评估效率的领域。
在商业领域,DEA方法可以用于评估公司的生产效率、经营绩效等;在金融领域,它可以用于评估银行或证券公司的投入产出效率、风险管理效能等;在公共管理领域,DEA方法可以应用于衡量政府部门或公共服务机构的效率,如医院、学校等。
数据包络分析法概述
数据包络分析法概述数据包络分析法(Data Envelopment Analysis,简称DEA)是一种评价单位绩效的方法,常用于评估生产效率、技术效率和经济效率等方面。
DEA可以帮助管理者了解单位的绩效优劣,并为提高效率提供有效的决策依据。
本文将对DEA的原理、方法以及应用进行详细阐述。
一、DEA的原理DEA的核心原理是通过比较多个决策单元(Decision Making Units,简称DMU)的输入和输出,评估各个DMU的绩效水平。
在DEA中,每个DMU都被看作是一个具有多个输入和输出的生产过程,通过比较不同DMU的输入和输出来判断其是否具有较高的效率水平。
DEA的基本思想是,对于一个具有相同输入和输出要求的生产过程,如果一些DMU在输入和输出上超过其他DMU,则认为该DMU效率更高。
二、DEA的方法DEA的方法主要包括输入导向DEA和输出导向DEA两种。
输入导向DEA假设生产过程的输入是可控制的,即生产者可以自主决定。
输出导向DEA则假设生产过程的输出是可控制的,即生产者可以根据自身目标设定输出水平。
选择使用输入导向DEA还是输出导向DEA取决于具体的应用背景和目的。
在DEA中,关键是要选定合适的权重,并通过确定效率前沿来评估绩效。
DEA使用线性规划方法评估每个DMU的效率得分,即在约束条件下求解最优化问题。
效率得分通常介于0和1之间,1表示最高效率。
三、DEA的应用领域DEA方法可以用于评价不同类型的单位,如生产线、公司、银行、医院、学校等。
下面以学校教育为例,说明DEA在实际应用中的方法和步骤:1.确定输入和输出指标:输入指标可以是教师数量、校舍面积等,输出指标可以是学生的学业成绩、通过率等。
根据具体的评价目标和需求,确定合适的指标。
2.收集数据:收集每所学校的输入和输出数据,建立数据集。
3.规范化数据:对数据进行规范化处理,使得不同指标之间具有可比性。
4.建立模型:根据规范化的数据,建立DEA模型,求解最优化问题,得到每所学校的效率得分。
DEA数据包络分析法
DEA数据包络分析法数据包络分析(Data Envelopment Analysis,简称DEA)是一种非参数的效率评价方法,用于评估多输入多输出的生产或经营单位的相对效率。
DEA的基本思想是通过比较相对于其他单位的效率来评估单位的效率水平,而不需要事先制定一个具体的效率标准。
DEA方法最早由Charnes、Cooper和Rhodes等人于1978年首次提出,经过几十年的发展,已经成为一种应用广泛、理论完善的评价方法。
DEA的应用领域十分广泛,包括生产效率评价、经济效益评价、银行效率评价、医院效率评价等等。
DEA方法在实际应用中有很多优点。
首先,DEA不需要事先制定具体的效率标准,而是通过对所有单位的比较来评估效率。
这使得DEA方法对于那些没有明确效率标准的领域非常有用,如公共部门和非营利组织。
其次,DEA方法具有较强的灵活性。
DEA可以同时考虑多个输入和输出指标,可以适应不同的评价对象和评价要求。
此外,DEA还可以对各个单位进行分类,从而得到有关单位分类的信息。
此外,DEA方法还具有与传统效率评价方法相比的一些优势。
DEA方法能够充分考虑决策单元之间的相互关系,而不是孤立地考虑各个决策单元的效率。
然而,DEA方法也存在一些局限性。
首先,DEA方法对于决策单元的输入输出数据要求较高,需要可靠的数据支持,否则评价结果可能存在误差。
此外,DEA方法只能评价相对效率,无法得到具体的效率值,因此在一些需要具体效率值的场景下不适用。
总之,DEA方法是一种应用广泛、理论完善的效率评价方法。
它不需要事先制定具体的效率标准,能够全面考虑决策单元之间的相互关系,具有较强的灵活性和可适应性。
然而,DEA方法也有一些局限性,需要可靠的数据支持,并且只能评价相对效率。
在实际应用中,需要根据具体情况选择合适的效率评价方法,以充分发挥其优势。
数据包络分析法DEA总结
数据包络分析法DEA总结数据包络分析法(Data Envelopment Analysis,DEA)是一种用于评估组织绩效的管理工具。
它的出现主要是为了解决传统评估方法在多个输入和输出因素存在的情况下的不足。
DEA通过构建线性规划模型来评估组织的效率水平,并确定其对应的相对效率。
DEA的基本思想是通过建立输入与输出之间的效率边界,来确定各个组织在效率边界上的效率水平。
具体而言,DEA通过比较各个组织所使用的输入和实现的输出,来确定其输入与输出之间的关系。
在DEA模型中,通过比较不同组织之间的相对效率,可以找到效率边界上的最优组织,并将其他组织的效率相对于最优组织进行评估。
DEA的核心是确定组织的技术效率,即组织在已有技术条件下获取最大产出的能力。
为了确定技术效率,DEA首先建立起输入与输出之间的线性关系,并根据线性规划模型计算每个组织的效率得分。
具体而言,DEA 利用线性规划模型来解决组织效率评估的两个核心问题:输入优化问题和输出最大化问题。
输入优化问题是指在给定输出的条件下,如何选择恰当的输入使得组织的效率最大化。
在DEA中,通过构建线性规划模型,可以确定每个组织的输入权重,从而实现输入优化。
输出最大化问题是指在给定输入的条件下,如何选择恰当的输出使得组织的效率最大化。
在DEA中,通过构建线性规划模型,可以确定每个组织的输出权重,从而实现输出最大化。
DEA的优点主要有以下几个方面。
首先,DEA能够考虑多个输入和输出因素,避免了单指标评价的单一性。
其次,DEA不需要明确建立效用函数和生产函数,能够更加有效地进行绩效评估。
此外,DEA能够对相对有效的组织进行排序和评估,使得评估结果更加科学和客观。
然而,DEA也存在一些不足之处。
首先,DEA只能评估相对效率,无法确定绝对效率的水平。
其次,DEA所得到的评估结果受到输入输出数据的选择和排列顺序的影响,可能会导致评估结果的不稳定性。
此外,DEA 对于输入和输出的权重设定非常敏感,不同的权重选择可能会导致不同的评估结果。
数据包络分析法(DEA模型)
一、 数据包络分析法数据包络分析是一种基于线性规划的用于评价同类型组织(或项目)工作绩效相对有效性的特殊工具手段.这类组织例如学校、医院、银行的分支机构、超市的各个营业部等,各自具有相同(或相近)的投入和相同的产出。
衡量这类组织之间的绩效高低,通常采用投入产出比这个指标,当各自的投入产出均可折算成同一单位计量时,容易计算出各自的投入产出比并按其大小进行绩效排序。
但当被衡量的同类型组织有多项投入和多项产出,且不能折算成统一单位时,就无法算出投入产出比的数值.例如,大部分机构的运营单位有多种投入要素,如员工规模、工资数目、运作时间和广告投入,同时也有多种产出要素,如利润、市场份额和成长率。
在这些情况下,很难让经理或董事会知道,当输入量转换为输出量时,哪个运营单位效率高,哪个单位效率低。
1。
1数据包络分析法的主要思想一个经济系统或者一个生产过程可以看成一个单元在一定可能范围内,通过投入一定数量的生产要素并产出一定数量的“产品”的活动。
虽然这些活动的具体内容各不相同,但其目的都是尽可能地使这一活动取得最大的“效益”。
由于从“投入”到“产出”需要经过一系列决策才能实现,或者说,由于“产出”是决策的结果,所以这样的单元被称为“决策单元”(Decision Making Units,DMU )。
可以认为每个DMU 都代表一定的经济含义,它的基本特点是具有一定的输入和输出,并且在将输入转换成输出的过程中,努力实现自身的决策目标.1。
2数据包络分析法的基本模型我们主要介绍DEA 中最基本的一个模型——2C R 模型。
设有n 个决策单元( j = 1,2,…,n ),每个决策单元有相同的 m 项投入(输入),输入向量为()120,1,2,,,,,Tjjjmjj nx xxx=>=每个决策单元有相同的 s 项产出(输出),输出向量为()120,1,2,,,,,Tjjjsjj nyy y y=>=即每个决策单元有m 种类型的“输入”及s 种类型的“输出”。
数据包络分析法(DEA)概述
数据包络分析法(DEA)概述DEA方法最早由美国学者C. A. Knox Lovell和Michael J. Farrell于1978年提出,被广泛应用于评估生产效率、技术效率、经济效率等方面。
它不仅适用于工业、农业和服务业等各个领域,还可以评估政府、医疗、教育等公共部门的效率。
DEA方法的核心思想是将决策单位看作一个生产转换系统,通过测量输入与输出之间的关系,来评估单位的效率水平。
该方法旨在帮助决策者确定哪些单位在一些资源限制下能够最大程度地实现目标,以及如何通过重新分配资源来改善效率。
在DEA方法中,输入和输出是决策单位的关键因素。
输入指用于生产过程中消耗的资源,如劳动力、资本、原材料等;输出指生产过程中创造的产品或服务,如产量、销售额、利润等。
通过对决策单位的输入和输出进行定量测量,可以得到一个效率评价指标。
DEA方法的基本步骤如下:1.确定决策单位:决策单位通常是一些组织、企业、部门或个体,其在生产过程中有明确的输入和输出。
2.确定输入和输出:根据研究目的确定输入和输出指标,并对其进行量化。
3.构建评价模型:根据输入和输出指标构建一个数学模型,以反映各个决策单位的关系。
4.进行相对效率评估:将所有决策单位放在一个评价模型中进行比较,计算各个单位的相对效率。
5.寻找最优单位:找到相对效率最高的单位,即最优单位,作为参考标准。
6.划分效率等级:根据相对效率值,将各个单位划分为有效和无效两个等级,以便进一步分析。
DEA方法的优势在于可以考虑多个输入和输出指标,并能够通过比较不同单位的相对效率来寻找最佳实践。
此外,DEA方法还可以提供权重分配、效率提升和资源调整等方面的建议,帮助决策者制定更有效的决策方案。
然而,DEA方法也存在一些局限性。
首先,它仅限于评估决策单位之间的相对效率,无法提供绝对效率的衡量。
其次,DEA方法对输入和输出的量化和选择具有较高的主观性,过于依赖决策者的判断。
最后,DEA方法在处理环境不确定性和数据噪声方面较为困难。
DEA数据包络分析解读
DEA数据包络分析解读数据包络分析(DEA)是一种多变量效率评估方法,旨在评估决策单元(如公司、企业等)的相对效率。
它是一种非参数方法,不需要事先假设数据的具体分布。
在DEA中,每个决策单元由多个输入和输出变量组成。
输入变量是用来产出输出变量的资源或要素,而输出变量则是决策单元实现的结果或产出。
一个高效的决策单元应该能够在相同或更少的资源下得到更多的产出,或者在相同的产出下使用更少的资源。
DEA的目标是通过构建一个参考集来评估每个决策单元的相对效率。
参考集是一个由最有效的决策单元组成的集合,这些决策单元在给定的输入和输出变量条件下被认为是最优的。
通过与参考集进行比较,可以确定每个决策单元的相对效率。
DEA使用一种线性规划模型来实现相对效率的评估。
该模型的目标是最大化一个线性函数,该函数分别测量每个决策单元的效率,并且满足一组约束条件。
这些约束条件确保每个决策单元的输入和输出与参考集中的最优决策单元相比是可行的。
DEA的结果输出包括两个主要的效率指标:技术效率和规模效率。
技术效率衡量了每个决策单元在给定资源约束条件下实现的最大产出程度。
规模效率衡量了每个决策单元在给定规模下的资源利用程度。
通过DEA分析,决策者可以了解其组织相对于其他组织的效率水平,从而可以找到优化资源配置和改进绩效的机会。
此外,DEA还可以用于比较不同部门或不同地区之间的效率差异,并为实施绩效评估和绩效提升计划提供决策支持。
总之,DEA是一种简单但有效的多变量效率评估方法。
它可以帮助决策者识别和改进组织的相对效率,为资源配置和绩效改进提供指导和决策支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)数据包络分析法(DEA)概述数据包络分析(Data Envelopment Ana lysis,简称D EA)方法是运用数学工具评价经济系统生产前沿面有效性的非参数方法,它适应用于多投入多产出的多目标决策单元的绩效评价。
这种方法以相对效率为基础,根据多指标投入与多指标产出对相同类型的决策单元进行相对有效性评价。
应用该方法进行绩效评价的另一个特点是,它不需要以参数形式规定生产前沿函数,并且允许生产前沿函数可以因为单位的不同而不同,不需要弄清楚各个评价决策单元的输入与输出之间的关联方式,只需要最终用极值的方法,以相对效益这个变量作为总体上的衡量标准,以决策单元(DM U)各输入输出的权重向量为变量,从最有利于决策的角度进行评价,从而避免了人为因素确定各指标的权重而使得研究结果的客观性收到影响。
这种方法采用数学规划模型,对所有决策单元的输出都“一视同仁”。
这些输入输出的价值设定与虚拟系数有关,有利于找出那些决策单元相对效益偏低的原因。
该方法以经验数据为基础,逻辑上合理,故能够衡量个决策单元由一定量大投入产生预期的输出的能力,并且能够计算在非DEA有效的决策单元中,投入没有发挥作用的程度。
最为重要的是应用该方法还有可能进一步估计某个决策单元达到相对有效时,其产出应该增加多少,输入可以减少多少等。
1978年由著名的运筹学家查恩斯(A.Charnes),库伯(W.W.Cooper)和罗兹(E.Rhodes)首先提出数据包络分析(Data Envelopment Analysis,简称DEA)的方法,DEA有效性的评价是对已有决策单元绩效的比较评价,属于相对评价,它常常被用来评价部门间的相对有效性(又称之为DEA有效)。
他们的第一个数学模型被命名为CCR模型,又称为模型。
从生产函数角度看,这一模型是用来研究具有多项输入、特别是具有多项输出的“生产部门”时衡量其“规模有效”和“技术有效”较为方便而且是卓有成效的一种方法和手段。
自从该方法提出以来,就广泛应用于各个行业的有效性评价上。
此后,得到不断的完善,并且在实践中的应用也越来越广泛。
例如1984年R.D.Banker,A.Charnes和W.W.Cooper给出了一个被称为BCC的模型,又称之为BC2模型。
另外,于1985年Charnes,Cooper 和 B.Golany, L.Seiford, J.Stutz给出了另一个模型,称为CCGSS模型,又称之为C2GS2模型,这两个模型是用来研究生产部门之间的“技术有效”相对效率。
下面将介绍这两个优化模型。
( 2 ) 数据包络模型(又称为DEA模型)描述数据包络分析(DEA)由美国著名运筹学家A. Charnes等人在1978年以相对效率概念为基础发展起来的一种新的绩效评价方法。
这种方法是以决策单元(Decision Making Unit,简称DMU)的投入、产出指标的权重系数为变量,借助于数学规划模型将决策单元投影到DEA 生产前沿面上,通过比较决策单元偏离DEA生产前沿面的程度来对被评价决策单元的相对有效性进行综合绩效评价。
其基本思路是:通过对投入产出数据的综合分析,得出每个DMU综合相对效率的数量指标,确定各DMU是否为DEA有效。
下面我们先描述DEA模型。
假设有n个待评价的对象(又称之为n个决策单元DMU ),每个决策单元都有m种类型的投入及s种类型的产出,它们所对应的权重向量分别记为: ,。
这n 个决策单元中第j个的投入和产出量用向量分别记作:,,其中:为第j个决策单元对第i种类型输入的投入总量,为第j 个决策单元对第r种类型输出的产出总量,且,;为第i 种输入指标的权重系数,为第r种产出指标的权重系数,且,。
则每个决策单元DMU投入与产出比的相对效率评价指数如下:通过适当选取权重向量V和U的值,使对每个j,均满足。
现对某第个决策单元进行绩效评价,则以第个决策单元的效率指数为目标,以所有的待评的决策单元的效率指数为约束,第个决策单元简记为,故可以得到一般的DEA优化模型如下:上面的模型是分式规划规划问题模型,为了方便计算,通过适当的变换,我们可以将其化为一个等价的线性规划数学模型,并且引进阿基米德穷小量(在实数范围内表示的是大于0但小于任意正数的量),构成了具有非阿基米德无穷小量的的模型。
它的对偶线性规划问题模型如下:其中:,,均为对偶变量,m维单位向量,s维单位向量,和均松弛变量,,。
模型是假定生产技术是固定规模报酬的。
后来,Banker,Chames and C ooper又对模型进行推广,他们把固定规模报酬假设改为非递增规模报,则在上述的DEA模型的基础上需增加一个约束条件:。
在此假设下非递增规模报酬时的技术效率为。
如果我们把固定规模报酬假设改为可变规模报酬(variableReturns to Scale,简记VRS),则DEA模型中的上述约束条件应改为:。
从而得到的如下新的DEA模型:线性规划模型在可变规模报酬(V RS)条件下求得的相对效率称为纯技术效率,在CRS假设条件下得到的相对效率称为技术效率,又称为总体效率,它是规模效率与纯技术效率的乘积。
因此,可以根据C2R模型(4-3)和V RS模型(4-4)来确定规模效率。
模型(4-3)表明,当第j0个决策单元产出Y0保持不变的情况下,应尽量保证投入量X0按照同一比例减少。
假设上述规划问题模型(4-3)求得最优解为,则有,若,且,则称被评价决策单元相对于其它决策单元而言DEA 有效,此时该决策单元既满足技术有效又满足规模有效;若,但不同时等于零向量,则称被评价决策单元为弱DEA有效,这时该被评价的决策单元不是同时技术有效和规模有效,此时需要应用V RS模型(4-4)进一步进行计算;如果,则称此被评价的决策单元为非DEA有效。
值得注意的是,V RS模型(4-4)是在对C2R模型(4-3)计算的基础上进行的分析,用以确定是否为纯技术有效。
由于总体效率表现为规模效率和纯技术效率之积,根据上述的分析并通过模型(4-3)和(4-4)容易求得规模效率值。
另外,对于非DEA有效的决策单元,需要通过进一步的分析讨论并求出被评价的决策单元DMU在DEA相对于有效面上的投影(即新决策单元),则新决策单元相对于原来的决策单元而言是DEA有效的。
设为第j0个决策单元对应于在DEA的相对有效面上的投影,则它们之间的转换关系可以表示为如下公式:根据上述公式(4-5),可以求得各个非DEA有效的决策单元相对于某有效决策而言,在保持其产出量不变的情况下,可以计算出对各项指标的投入量进行相应的的调整量。
并且可以对相应的财务绩效上存在不足的决策单元相对于DEA有效的决策单元而言给出针对性的管理建议。
(3)DEA方法的应用自从数据包络法提出至今,其应用范围日渐广泛。
例如它被广泛应用于学校、医院、铁路、银行等公共服务部门的运行效率的评估实证研究。
DEA作一种新的效率评估方法,与以前的传统方法相比有很多优点。
首先,DEA方法可以用于对具有多投入、多产出的多个决策单元的生产(或经营)绩效性进行评价,而且应用时可以避免像传统方法那样因为各指标量纲的不同而寻求权重因素所带来的诸多困难,其评价结果相对而言比较客观;其次,DEA模型中投入、产出指标的权重可以建立数学规划模型,然后根据实际的数据而产生,而不是事先给定投入与产出的权重权重系数,因此它不受人为主观因素的影响,可避免在权重的分配时评价者的主观意愿对评价结果的造成人为的影响;另外,数据包络法是一种典型的非参数估计方法,应用该方法评价时无须设定评价函数的具体形式,投入产出采用隐函数的形式表示,不同决策单元的评价函数其参数可以变动,针对各个决策单元都将通过数学规划模型的手段给出最优的投入产出函数,从而利用计算简化。
数据包络法评价的是决策单元的相对有效性,其生产前沿面可以看成是最优决策单元的投入与产出所组成的一个包络面,如果对应被评价的决策单元在该生产前面上,则称之为DEA有效,否则,称之为非DEA有效。
DEA方法主要用来研究决策单元的多输入多输出的相对有效的绩效评价的有用方法,因此使用这一方法时也存在一些缺陷。
首先,它衡量的生产函数边界是确定的,因而它无法分随机因素和测量误差的影响;其次,该方法的绩效效率评价容易受到极值的影响,而且决策单元的效率值对投入、产出指标的选择比较敏感,这就使得如何准确地选取投入、产出指标成为有效使用DEA方法的关键;另外,由于被评价的决策单元都是从最有利于自己的角度分别求取权重,这就导致了这些权重随着决策单元的不同而可能不同。
从而使得每个决策单元的特性缺乏有效的可比性;最后,根据DEA评价方法的特点就是只能判断各个决策单元是否DEA有效,而将所有决策单元分为有效和非有效两大类,因而使用该方法进行决策单元的绩效评价时,可能出现大量甚至全部的决策单元为有效的情形,因此传统的DEA方法不能对被评价的决策单元进行排序。
4.3.2主成分分析法(1) 主成分分析法介绍主成分分析法又称之为主分量分析法,它是将多个变量通过线性变换以选出少数个重要变量(或称之为指标)的一种多元统计分析方法。
在实际应用中,它常常是将原来诸多具有一定相关性的指标重新组成一组新的相互无关的综合指标来代替原来众多指标以达到降维的一种方法。
在实际问题的研究中,为了更为全面分析问题,常常提出很多与此有关的指标(或称为变量),因为这些指标都在不同程度上反映这个研究问题的某些信息,然而,应用统计分析方法研究具有多个变量的问题时,变量个数太多往往会增加问题的复杂性。
因此最希望于指标数较少而包含的信息量较多。
一般情况下,各个变量之间都有一定的相关性,如果两个变量之间有一定的相关关系时,可以认为这两个变量反映所研究问题的信息有一定的重叠。
主成分分析法是对原来提出的所有指标,建立尽可能少的新指标,使得这些新的指标之间互不相关,并且这些新指标所反映的信息尽可能保持原有的信息,信息的大小通常用方差来衡量。
通常认为主成分分析法是一种对原始信息进行压缩的一种方法。
通过该方法可以将原来相关的若干指标,变换成综合的不相关的少数指标。
(2) 主成分分析法基本思路设X1,X2,…,X P表示以x1,x2,…,x p为样本观测值的随机变量,如果能找到c1,c2,…,c p,使得但上述公式必须加上某种限制,否则权值可选择无穷大而没有意义,通常规定:由于解c1,c2,…,c p是p维空间的一个单位向量,它代表一个“方向”,称为主成分方向。
通常情况下,一个主成分不足以代表原来的p个变量的信息。
因此需要找出第二个甚至更多的主成分,原则上,第二个主成分不应该再包含第一个主成分的信息,其它的也依次类推,统计学上的意义就是让这两个主成分的协方差为零,几何上的解释就是这两个主成分的方向正交。