第7章+波动学基础

合集下载

大学物理练习册习题及答案6--波动学基础

大学物理练习册习题及答案6--波动学基础

⼤学物理练习册习题及答案6--波动学基础习题及参考答案第五章波动学基础参考答案思考题5-1把⼀根⼗分长的绳⼦拉成⽔平,⽤⼿握其⼀端,维持拉⼒恒定,使绳端在垂直于绳⼦的⽅向上作简谐振动,则(A )振动频率越⾼,波长越长;(B )振动频率越低,波长越长;(C )振动频率越⾼,波速越⼤;(D )振动频率越低,波速越⼤。

5-2在下⾯⼏种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的;(B )波源振动的速度与波速相同;(C )在波传播⽅向上的任⼆质点振动位相总是⽐波源的位相滞后;(D )在波传播⽅向上的任⼀质点的振动位相总是⽐波源的位相超前 5-3⼀平⾯简谐波沿ox 正⽅向传播,波动⽅程为010cos 2242t x y ππ??=-+ ?. (SI)该波在t =0.5s 时刻的波形图是()5-4图⽰为⼀沿x 轴正向传播的平⾯简谐波在t =0时刻的波形,若振动以余弦函数表⽰,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0(m)(A )(m)(m)(B )(C )(D )思考题5-3图思考题5-4图(B )0点的初位相为φ0=-π/2 (C )2点的初位相为φ2=0 (D )3点的初位相为φ3=05-5⼀平⾯简谐波沿x 轴负⽅向传播。

已知x=b 处质点的振动⽅程为[]0cos y A t ωφ=+,波速为u ,则振动⽅程为()(A)()0cos y A t b x ωφ??=+++??(B)(){}0cos y A t b x ωφ??=-++??(C)(){}0cos y A t x b ωφ??=+-+?? (D)(){}0cos y A t b x u ωφ??=+-+?? 5-6⼀平⾯简谐波,波速u =5m?s -1,t =3s 时刻的波形曲线如图所⽰,则0x =处的振动⽅程为()(A )211210cos 22y t ππ-??=?- (SI) (B )()2210cos y t ππ-=?+ (SI) (C )211210cos 22y t ππ-??=?+ (SI) (D )23210cos 2y t ππ-?=-(SI) 5-7⼀平⾯简谐波沿x 轴正⽅向传播,t =0的波形曲线如图所⽰,则P 处质点的振动在t =0时刻的旋转⽮量图是()5-8当⼀平⾯简谐机械波在弹性媒质中传播时,下述各结论⼀哪个是正确的?(A )媒质质元的振动动能增⼤时,其弹性势能减少,总机械能守恒;(B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任⼀时刻都相同,但两者的数值不相等;(D )媒质质元在其平衡位置处弹性势能最⼤。

3.1.7波动声学基础 - 简正波声场计算及波形预报仿真程序说明文档

3.1.7波动声学基础 - 简正波声场计算及波形预报仿真程序说明文档

简正波声场计算及波形预报简介本算例根据简正波理论计算水下声场(同时仿真了绝对软海底和绝对硬海底两种情况),并对时域波形进行预报,本算例对应水声学原理第三章3.2节的部分内容。

1.1基本理论根据柱坐标系下的波动方程:()22021p r 4r r r s p k r r zp A πδ∂∂∂⎛⎫++=-- ⎪∂∂∂⎝⎭ 利用分离变数法,并代入边界条件,求得理想边界条件下声场声压的解析解为:(2)002(,)sin()sin()()zn zn n np r z jk z k z H r H πξ=-∑其中绝对硬海底条件下简正波的本征值为:1()1,2,3,2zn k n n Hπ=-=绝对软海底条件下本征值为:1,2,3zn k n n Hπ==其中n ξ=,H 为波导深度。

上述得到的声场实际上是稳态场,也即声场声压的频域解,为此将信道考虑成一个二端网络,计算某一空间位置不同频率的声场结果,得到的结果即为信道的传输函数,再利用卷积定理与傅立叶变换(逆变换)即可预报声压的时域波形。

1.2数值仿真仿真参数:发射信号频率25Hz ;水中声速1500m/s ;波导深度200m ;声源深度100m ;声场预报水平最大距离10000m 。

1.2.1简正波声场计算仿真结果:图1 10km 范围内绝对硬海底情况下声场的空间分布Range/md B /m图2 绝对硬海底情况下深度30m 处的传播衰减图3 10km 范围内绝对软海底情况下声场的空间分布Range/md B /m图4 绝对软海底情况下深度30m 处的传播衰减1.2.2波形预报在时域波形预报程序中调整上下限频率参数时频带选择不宜过宽,一则增大运算量,二则简正波阶数较多在时域上不易区分;同时接收距离应尽量远些,使得各阶简正波在时域上可以尽量分开。

情况1:发射信号时域波形如图5所示,其频谱如图6所示。

时间/s声压幅度/P a图5 发射信号时域波形(为加了汉宁窗的正弦信号)频率/Hz幅度图6 发射信号频谱-4时间/s声压幅度/P a图7 时域波形预报(计算两阶简正波的情况)-4时间/s声压幅度/P a图8 时域波形预报(计算三阶简正波的情况)情况2:发送CW 脉冲信号的情况:时间/s声压幅度/P a图9发射信号时域波形频率/Hz幅度图10 发送信号频谱-3时间/s声压幅度/P a图11 时域波形预报1.3结论(1)从声场的空间分布伪彩图中可以看到简正波的干涉图样,形成该现象的原因为不同阶的简正波相干叠加的结果。

第7章 波动学基础

第7章 波动学基础

(痛阈)
强到失去听 觉只有痛觉
听觉 强度范围甚宽,实用上需要以更方便的单位来表示。
声强级
人对声强的主观感觉即响度,用声强级数表示。 单位:分贝 (dB)
贝(B)
10
分贝(dB)
常用分贝(dB)为单位 1贝(B) =10分贝(dB), 好比 1米(m) =10分米(dm) 。
闻阈 正常呼吸 悄悄话 室内正常谈话 大声喊叫 重型卡车 电动切草机 摇滚乐 痛阈 伤害人体
平面波(波面为平面的波)
波线(波射线) 球面波(波面为球面的波)
波的传播方向。在各向同性媒质中, 波线恒与波面垂直。
正向波 反向波
正向波 反向波
若给定某点 P 的
,波函数变为 P 点处质点的
P点的
距原点为
处质点振动的初相
若给定 ,波动方程表示所给定的 时刻波线上各振动质 点相对各自平衡点的位置分布,即该时刻的
观察者测得的频率
观察者每秒接收到的整波数,即观察者测得的频率为
观察者测得的频率是波源的振动频率的
如果波源静止观察者背离波源运动,观察者测得的频率为
倍。
3. 观察者静止,波源(相对于媒质)向观察者运动。
先看一个普通现象
一列等间距的小石子,等时先后落入水中,
(点击鼠标) 它们所激起的水波的 波阵面分布是一系列偏心圆。
来自同一波源的入射波传播到带有小孔的屏时,通过小孔时,在 小孔的另一侧都产生以小孔作为点波源的前进波,可将其抽象为从 小孔处发出的一种次波或子波,其频率与入射波频率相同,在叠加区 域有相同的振动方向,且相位差恒定,它们是相干波.可以产生干涉.
A

A1
2
A2
2
2 A1 A2 cos (j20 当

《光学》课程教学电子教案 第0章 前言绪论(32P)

《光学》课程教学电子教案 第0章 前言绪论(32P)
高等教育出版社 高等教育电子音像出版社
绪论
目录
1. 光学的研究对象、地位和特点 2. 光的本性 3. 现代光学的主要标志 4. 光学的发展趋势——光子学的崛起 5. 光学课程的学习方法
绪论
1. 光学的研究对象、地位和特点
光是一种重要的自然现象 光学是物理学的一个重要分支 光学学科是一门应用性极强的基础学科
第8章激光基础第0章第1章第2章第3章第4章绪论光波光线与光子光学成像的几何学原理光的干涉与相干性光的衍射与变换第5章第6章光学成像的波动学原理光的双折射与光调制第7章光的吸收色散及散射目录光学教案简介绪论光学教案赵建林编著普通高等教育十五国家级规划教材高等教育出版社高等教育出版社高等教育电子音像出版社目录1
光学 教案
简介
致谢
本教案中给出的所有插图仅供用于课堂教学参考。其中绝大多数 插图中系作者自己制作,个别图片取自网络共享文献,在此向原作者表 示感谢。
在本电子教案的编写和出版过程中,高等教育出版社胡凯飞、庞 永江、王文颖、郭亚嫘等编辑付出了辛勤的努力,西北工业大学教务处 为作者提供了精神和经费上的重要支持,西北工业大学教材建设委员会 的诸位专家对提出了许多宝贵的建设性修改意见。此外,作者的研究生 徐宏来曾协助作者编制教案的PPT版初稿,谢嘉宁、曲伟娟、陆红强、 王军等曾协助制作了部分仿真实验图片。作者在此一并表示衷心感谢。
(8) 量子论的提出
普朗克(M. Planck)的黑体辐射公式 爱因斯坦的光电效应方程 “光子(photon)”概念的提出
(9) 光的本性的再认识
激光与新效应 光是一种特殊的客体,具有波粒二象性
绪论
3. 现代光学的主要标志
传统光学的研究对象:
以望远镜、显微镜、光谱仪、干涉仪、照相机等为代表的各种光学仪 器及其在精密测量、光谱分析以及成像等方面的应用

大学物理_波动学基础

大学物理_波动学基础
绳的微振动横波
a T a Y

T:绳的张力
杆的纵向微振动波
杆的横向微振动波 声音在空气中传播 真空中的电磁波
Y:杨氏弹性模量
a G

G:切变弹性摸量 B:体变模量
a
B
a
0 0 0真空介电常数,0真空磁导率
1
《大学物理》课件
介质的几种典型模量
(1).杨氏模量 若在截面为S,长为l的细棒两端加上大小相等、方向相反 的轴向拉力F,使棒伸长l,实验证明:在弹性限度内,正应 力F/S与线性应变l/l成正比,即
y Acos( t
l
u
)
《大学物理》课件
例题2-4 波沿x轴正向传播,A=10cm, =7rad/s; 当t=1s时, ya=0, a<0, yb=5cm,b>0 。设>10cm, 求该波 的波动方程。 y x ) o ] (t 解 y Acos[ u u
o
3.波长 — 一个周期内波动传播的距离。
u

T

4.平面简谐波—波面为平面,媒质中各质点 都作同频率的简谐振动形成的波动。本章主要讨 论这种波。
《大学物理》课件
1 1 例题2-1 已知: y 0.5cos ( t x )(SI), 2 2 求:(1)波的传播方向,A、T、、u,原点 的初相; (2) x=2m处质点的振动方程,及t=1s时质点 的速度和加速度。 (3)x1=1m和x2=2m两点的相差。
· ·· · · · · t · · · ·· · ·
u t 平面波
球面波
惠更斯原理的不足:不能求出波的强度分布; 不能解释后退波问题等。
《大学物理》课件
§5.2 平面简谐行波的波动方程 !

高等教育出版社第7章_机械设计基础第五版机械运转速度波动的调节

高等教育出版社第7章_机械设计基础第五版机械运转速度波动的调节

解:
(1)M ' 为常数
M ' 为一水平直线
一运动循环内驱动力所做的功为 2M ' ,应等于 一个运动循环内阻力矩所做的功,则
2M ' 100 2 400

4
2
M ' 200 N
(2)求最大盈亏功 Amax
讲解各区间的盈功或亏功,并做能量指示图
由能量指示图可知,ad区间出现最大盈亏功, 其绝对值为:



机械运转速度波动的调节
教学目标:
1、掌握机械产生周期性速度波动的原因及调节 ;
2、理解飞轮调速基本原理及飞轮设计近似方法。
教学重点和难点:
周期性速度波动的原因及调节 ;飞轮调速 的基本原理。
讲授方法: 多媒体课件教学
§7-1 机械运转 速度波动调节的目的和方法
机械运转时所受的外力包括: 驱动力和阻力
a
b
依次可以算出其他几个区间的输入与输出功差。 分别得到亏功,机器动能减小,标注负号;或得到盈 功,机器动能增加,标注正号。 盈亏功等于机器动能的增减量,设 Ea 为主轴角位 臵 a 时机器的动能,则机器在其他几个角位臵时的 动能可表示为:
Eb Ea Aab Ec Eb Abc Ea ' Ea Ee Aea'
确定原动机额定功率时只需要考虑它的平均功率,
而不必考虑高峰负荷所需的瞬时最大功率。
安装飞轮不仅可以避免机械运转速度发 生过大的波动,而且可以选择功率较小 的原动机。
二、非周期性速度波动
随机的、不规则的、没有一定周期的速度波动 称为非周期性速度波动。 非周期性速度波动不能依靠飞轮进行调节, 只能采用特殊的装臵—调速器使输入功与输出功 趋于平衡。以避免因动能增加使机械运转速度过 高超越极限转速而导致机械损坏,或者因动能减 小使机械运转速度不断下降直至停车。

07机械设计基础第七章机械运转速度波动的调节

07机械设计基础第七章机械运转速度波动的调节

第一节 速度波动调节的目的和方法
周期性速度波动的调节方法
在机械中加上一个转动惯量很大的回转件——飞轮
飞轮的动能变化
E

1 2
J( 2
- 02 )
显然动能变化相同时,飞轮的转动惯量越大,速度波动越小。
第一节 速度波动调节的目的和方法
三、非周期性速度波动
机械的运转速度变化是非周期性的,完全随机的,不能依靠飞轮对其进行速 度波动的调节。
第二节 飞轮设计的近似方法
Ea Eo Aoa Eo M [S1] Eb Ea Aab Ea M [S2 ] Ec Eb Abc Eb M [S3 ] Ed Ec Acd Ec M [S4 ] Eo Ed Ado Ed M [S5 ]
Amax

Emax
Emin

1 2
J (m2ax

2 min
)

Jm2
飞轮转动惯量 Amax用绝对值表示
J Amax
m2
第二节 飞轮设计的近似方法
由上式可知:
1)当Amax与ω 2m一定时 ,J-δ 是
一条等边双曲线。
J ∆J
当δ 很小时, δ ↓→ J↑↑
过分追求机械运转速度的平稳性,将使飞轮过于笨重。
2)当J与ω m一定时 , Amax-δ 成正比。即Amax越大,∆δ
机械运转速度越不均匀。
J

Amax
m2
δ
3) 由于J≠∞,而Amax和ω m又为有限值,故δ 不可能
为“0”,即使安装飞轮,机械总均转速越高,所需飞轮
的转动惯量越小。一般应将飞轮安装在高速轴上。
飞轮设计的基本问题:已知作用在主轴上的驱动力矩和阻力矩的变化规律,

高考物理 第七章 第三课时机械波的概念及图象解析

高考物理 第七章 第三课时机械波的概念及图象解析

第三课时机械波的概念及图象第一关:基础关展望高考基础知识一、机械波知识讲解1.机械波的产生(1)机械振动在介质中传播,形成机械波.(2)产生条件:①振源;②传播振动的介质.二者缺一不可.2.机械波的分类(1)横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).(2)纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.3.描述波的物理量(1)波长λ①定义:在波的传播方向上,两个相邻的,在振动过程中相对平衡位置的位移总是相等的质点之间的距离叫做波长.②理解:a.在横波中,两个相邻的波峰(或波谷)间的距离等于波长;在纵波中,两个相邻的密部(或疏部)间的距离等于波长.Δt时间内,向前传播的距离为Δx,则Δx=(n+Δn)λ,Δt=(n+Δn)T,其中n=0\,1\,2\,3…,0<Δn<1.(2)频率f波源的振动频率,即波的频率.因为介质中各质点做受迫振动,其振动是由波源的振动引起的,故各个质点的振动频率都等于波源振动频率,不随介质的不同而变化.当波从一种介质进入另一种介质时,波的频率不变.(3)波速v单位时间内某一波的波峰(或波谷)向前移动的距离,叫波速.波速由介质决定.同类波在同一种均匀介质中波速是一个定值,则.式中v为波的传播速率,即单位时间内振动在介质中传播的距离;T为振源的振动周期,常说成波的周期.活学活用1.在均匀介质中选取平衡位置在同一直线上的9个质点,相邻两质点的距离均为L,如图(a)所示,一列横波沿该直线向右传播,t=0时到达质点1,质点1开始向下运动,经过时间Δt 第一次出现如图(b)所示的波形,则该波()A.周期为Δt,波长为8LB.周期为Δt,波长为8LC.周期为Δt,波速为D.周期为Δt,波速为解析:由题图(b)可以判断波长为8L;图(b)中质点9振动方向向上,而质点1开始时向下振动,说明质点9后还有半个波长没有画出,即在Δt时间内传播了1.5个波长,Δt为1.5个周期,所以其周期为Δt,由波长\,周期\,波速之间的关系式v=可计算出波速为答案:BC二、波的图象知识讲解以介质中各质点的位置坐标为横坐标,某时刻各质点相对于平衡位置的位移为纵坐标画出的图象叫做波的图象.(1)波动图象的特点①横波的图象形状与波在传播过程中介质中各质点某时刻的分布相似,波形中的波峰即为图象中的位移正向最大值,波谷即为图象中位移负向的最大值,波形中通过平衡位置的质点在图象中也恰处于平衡位置.②波形图线是正弦或余弦曲线的波称为简谐波.简谐波是最简单的波.对于简谐波而言,各个质点振动的最大位移都相同.③波的图象的重复性:相隔时间为周期整数倍的两个时刻的波形相同.④波的传播方向的双向性:不指定波的传播方向时,图象中波可能向x轴正向或x轴负向传播.(2)简谐波图象的应用①从图象上直接读出波长和振幅.②可确定任一质点在该时刻的位移.③可确定任一质点在该时刻的加速度的方向.④若知道波速v的方向,可知各质点的运动方向,如图中,设波速向右,则1\,4质点沿-y 方向运动;2\,3质点沿+y方向运动.⑤若知道该时刻某质点的运动方向,可判断波的传播方向.如上图中,设质点4向上运动,则该波向左传播.⑥若已知波速v的大小,可求频率f或周期T:.⑦若已知f或T,可求v的大小:v=λf=.⑧若已知波速v的大小和方向,可画出在Δt前后的波形图,沿(或逆着)传播方向平移.活学活用2.如图所示,一列简谐横波沿x轴正方向传播,从波传到x=5 m的M点时开始计时,已知P点相继出现两个波峰的时间间隔为0.4 s,下面的说法中正确的是()A.这列波的波长是4 mB.这列波的传播速度是10 m/sC.质点Q(x=9 m)经过0.5 s才第一次到达波峰D.M点以后各质点开始振动时的方向都是向下的解析:从题图上可以看出波长为4 m,A正确.实际上\!相继出现两个波峰\"应理解为,出现第一个波峰与出现第二个波峰之间的时间间隔.因为在一个周期内质点完成一次全振动,而一次会振动应表现为\!相继出现两个波峰\",即T=0.4 s,则v=,代入数据可得波速为10 m/s,B正确.质点Q(x=9 m)经过0.4 s开始振动,而波是沿x轴正方向传播,即介质中的每一个质点都被它左侧的质点所带动,从波向前传播的波形图(如题图)可以看出0.4 s波传到Q 时,其左侧质点在它下方,所以Q点在0.5 s时处于波谷,再经过0.2 s即总共经过0.7 s才第一次到达波峰,C错误.M以后的每个质点都是重复M的振动情况,D正确.综上所述,答案为A\,B\,D.答案:ABD三、振动图象与波的图象的比较知识讲解活学活用3.一列简谐横波沿x轴负方向传播,下图中图甲是t=1 s时的波形图,图乙是波中某振动质点的位移随时间变化的振动图象(两图用同一时刻做起点),则图乙可能是图甲中哪个质点的振动图象()A.x=0处的质点B.x=1 m处的质点C.x=2 m处的质点D.x=3 m处的质点解析:由振动图象可知,t=1 s时,质点从平衡位置向y轴的负方向运动,因波的图象是表示t=1 s时的波的图象,正在平衡位置的点有x=0处\,x=2 m等处的质点,由于波沿x轴负方向传播,平移波形曲线,可知t=1 s后的时刻x=0处和x=4 m处的质点向y轴负方向运动,x=2 m处质点向y轴正方向运动.所以选A.答案:A第二关:技法关解读高考解题技法一、波的传播方向与质点振动方向的判断方法技法讲解已知质点振动速度方向可判断波的传播方向;相反地,已知波的传播方向和某时刻波的图象可判断介质质点的振动方向.方法一:上下坡法沿坡的传播速度的正方向看,\!上坡\"的点向下振动,\!下坡\"的点向上振动,简称\!上坡下,下坡上\".(见图1甲所示)方法二:同侧法在波的图象上的某一点,沿纵轴方向画出一个箭头表示质点振动方向,并设想在同一点沿x轴方向画个箭头表示波的传播方向,那么这两个箭头总是在曲线的同侧.(见图1乙所示)方法三:带动法(特殊点法)′,若P′在P上方,P′带动P向上运动,则P向上运动;若P′在下方,P′带动P向下运动,则P向下运动.方法四:微平移法将波形沿波的传播方向做微小移动(如图2乙中虚线),由于质点仅在y方向上振动,所以A′\,B′\,C′\,D′即为质点运动后的位置,故该时刻A\,B沿y轴正方向运动,C\,D沿y轴负方向运动.典例剖析例1简谐横波在某时刻的波形图象如图所示,由此图可知()A.若质点a向下运动,则波是从左向右传播的B.若质点b向上运动,则波是从左向右传播的C.若波从右向左传播,则质点c向下运动D.若波从右向左传播,则质点d向上运用解析:机械波是机械振动在介质中的传播,解答此题可采用\!特殊点法\"和\!波形移动法\".用“特殊点法”来分析:假设此波从左向右传播,顺着传播方向看去,可知a\,b两质点向上,c\,d两质点向下振动;假设此波从右向左传播,同理可知a\,b两质点向下振动,c\,d两质点向上振动,所以B\,D正确.用\!波形移动法\"来分析:设这列波是从左向右传播的,则在相邻的一小段时间内,这列波的形状向右平移一小段距离,如图虚线所示.因此所有的质点从原来在实线的位置沿y轴方向运动到虚线的位置,即质点a向上运动,质点b也向上运动,由此可知选项A\,B中B是正确的.类似地可以判定选项D是正确的.答案:BD二、已知波速v和波形,画出再经Δt时间波形图的方法技法讲解(1)平移法:先算出经Δt时间波传播的距离Δx=v\5Δt,再把波形沿波的传播方向平移Δx即可.因为波动图象的重复性,若已知波长λ,则波形平移n个λΔx=nλ+x时,可采取去整nλ留零x的方法,只需平移x即可.(2)特殊点法:在波形上找两特殊点,如过平衡位置的点和与它相邻的峰(谷)点,先确定这两点的振动方向,再看Δt=nT+t.由于经nT波形不变,所以也采取去整nT留零t的方法,分别作出两特殊点经t后的位置,然后按正弦规律画出新波形图.如果是由t时刻的波形来确定(t-Δt)时刻的波形,用平移法时应向速度的反方向平移,用特殊点法时应按确定的振动方向向反方向振动.典例剖析例2如图所示为一列沿x轴向右传播的简谐横波在某时刻的波动图象.已知此波的传播速度大小v=2 m/s,试画出该时刻5 s前和5 s后的波动图象.解析:方法一:(特殊点振动法)因为v=2 m/s,从图得λ=8 m,所以T= =4 s.又因为此波向右传播,故平衡位置坐标2 m\,6 m的两个特殊质点的初始振动方向分别为沿y轴的正向与沿y 轴的负向.经过5 s(1.25T),这两个质点分别位于正向最大位移与负向最大位移,由此便得出5 s后的波形如图实线所示.同理可得,5 s前的波动图象如图中虚线所示.方法二:(波形平移法)因为波速v=2 m/s,所以由Δx=vΔt,可得Δx=10 m,注意到去整后为,故将整个波形向右平移,即为5 s前的波动图象.第三关:训练关笑对高考随堂训练1.关于波长,下列说法正确的是()A.沿着波的传播方向,两个任意时刻,对平衡位置位移都相等的质点间的距离叫波长B.在一个周期内,振动在介质中传播的距离等于一个波长C.在横波的传播过程中,沿着波的传播方向两个相邻的波峰间的距离等于一个波长D.波长大小与介质中的波速和波频率有关解析:沿着波的传播方向,任意时刻,对平衡位置位移都相等的两个相邻的质点间的距离叫波长,A错.由v=λf知λ=v/f=v\5T,B正确.在横波的波形曲线中一个完整的正弦(余弦)曲线在x轴截取的距离是一个波长,C正确.由v=λf知λ=,D正确.答案:BCD2一列波在介质中向某一方向传播,如图为此波在某一时刻的波形图,并且此时振动还只发生在M、N之间,已知此波的周期为T,Q质点速度方向在波形图中是向下的,下面说法中正确的是()A.波源是M,由波源起振开始计时,P点已经振动时间TB.波源是N,由波源起振开始计时,P点已经振动时间TC.波源是N,由波源起振开始计时,P点已经振动时间D.波源是M,由波源起振开始计时,P点已经振动时间解析:因为此时Q质点向下振动,且此时Q质点右方邻近质点在Q点下方,说明波向左传播,所以N是波源,振动从N点传播到M点,经过一个周期;又P、N间水平距离为3λ/4,故P质点已振动了.答案:C3.4 m/s,从此时起,图中所标的P质点比Q质点先回到自己的平衡位置.那么下列说法中正确的是()A这列波一定沿x轴正向传播B这列波的周期是0.5sC从此时起0.25s末P质点的速度和加速度都沿y轴正向D.从此时起0.25 s末Q质点的速度和加速度都沿y轴负向解析:由于P比Q先回到平衡位置,故此时P向y轴负方向运动,Q向y轴正方向运动,波应向x轴负方向传播,故A错误;由T=λ/v,可得T=0.5 s,所以B项正确;从此时刻经0.25 s(即半个周期后),P质点一定会运动至现在的对称位置,并与现在振动情况恰好相反,故C项正确;同理可知此时Q点的加速度应沿y轴正向,所以D项错误.答案:BC4.一列简谐横波,在t=0时波形如图所示,P、Q两点的坐标分别为(-1,0),(-7,0),波的传播方向由右向左,已知t=0.7 s时,P点第二次出现波峰,则()①t=0.9s时,Q点第一次出现波峰②t=1.2s时,Q点第一次出现波峰③振源的起振方向一定向上④质点Q位于波峰时,质点P位于波谷A①③④B②③C②④D②解析:由于t=0.7 s时,P点出现第二次波峰,所以v传= m/s=10 m/s由图可知λ=4 m,则T= s=0.4 s∴t=0.9 s时第一个波峰传播距离x=vt=10×0.9 m=9 m,故波峰由2 m传播到-7 m的Q 点,因而①选项正确,②选项错误.由于波从右向左传播,故各质点的起振方向都和该时刻1质点振动方向相同,向上起振,因而③选项正确.又因SPQ=[-1-(-7)]=6 m=×3=×3,所以P、Q质点为反相质点,所以P、Q两质点,任一时刻对平衡位置位移总是大小相等方向相反,故④项正确.答案:A5.一列在竖直方向振动的简谐横波,波长为λ,沿正x方向传播.某一时刻,在振动位移向上且大小等于振幅一半的各点中,任取相邻的两点P1\,P2,已知P1的x坐标小于P2的x坐标.则()A.若,则P1向下运动,P2向上运动B.若,则P1向上运动,P2向下运动C.若,则P1向上运动,P2向下运动D.若,则P1向下运动,P2向上运动解析:本题解题关键是依据题意正确作出图示,然后借助图示分析求解,按图示可判断选项A、C正确.答案:AC1.如图所示为两个波源S1和S2在水面产生的两列波叠加后的干涉图样,由图可推知下列说法正确的是()A.两波源振动频率一定相同B.两波源振动频率可能不相同C.两列水波的波长相等D.两列水波的波长可能不相等解析:两列波产生干涉图样的条件是波的频率必须相同,故A项正确;在同种介质中,各种水波的传播速度相同,根据波长\,波速和频率的关系可知,两列水波的波长一定相同,C项正确.答案:AC2.一列简谐横波沿x轴传播,周期为T.t=0时刻的波形如图所示.此时平衡位置位于x=3 m处的质点正在向上运动,若a、b两质点平衡位置的坐标分别为x a=2.5 m,x b=5.5 m,则()A.当a质点处在波峰时,b质点恰在波谷B.t=T/4时,a质点正在向y轴负方向运动C.t=3T/4时,b质点正在向y轴负方向运动D.在某一时刻,a、b两质点的位移和速度可能相同解析:a、b两质点平衡位置之间的距离为Δx=x b-x a=3 m=λ,所以,当a质点处在波峰时,b质点恰在平衡位置,A错;由图象可知波沿x轴负方向传播,将波沿x轴负方向分别平移波长和波长,可知B错、C正确;只有平衡位置间的距离为波长整数倍的两质点位移和速度才分别相同,故D错.答案:C3.一列简谐横波沿x轴正方向传播,振幅为A.t=0时,平衡位置在x=0处的质元位于y=0处,且向y轴负方向运动;此时,平衡位置在x=0.15 m()A.0.60 mB.0.20 mC.0.12 mD.0.086 m解析:由题意知,其波形如下图.所以,,(n=0,1,2……),当n=0时,λ=0.6 m,A对;当n=1,λ=0.12 m,C对,故选A、C.答案:AC4.一列简谐横波沿直线由a向b传播,相距10.5 m的a、b两处的质点振动图象如图中a、b所示,则()A.该波的振幅可能是20 cmB.该波的波长可能是8.4 mC.该波的波速可能是10.5 m/sD.该波由a传播到b可能历时7 s解析:由振动图象可知T=4 s,振幅A=10 cm,且a、b距离相差(n+0.75)λ,a、b的振动时间相差(n+0.75)T,又10.5=(n+0.75)λ,则λ=10.5/(n+0.75),v=λ/T=10.5/(4n+3),因而D对.(n取0,1,2,3……)答案:D5.一列简谐横波沿直线传播,该直线上的a、b两点相距4.42 m()A.此时波的频率一定是10 HzB.此列波的波长一定是0.1 mC.此列波的传播速度可能是34 m/sD.a点一定比b点距波源近解析:由振动曲线知T=0.1 s,故f=→b,则Δt1=0.1k+0.→a,则Δt2=0.1k+0.1·Δt1=s ab 和v2·Δt2=s ab,取k=0,1,2……可知C正确,B、D错.答案:AC6.某地区地震波中的横波和纵波传播速率分别约为4 km/s和9 km/s.一种简易地震仪由竖直弹簧振子P和水平弹簧振子H组成(下图),在一次地震中,震源在地震仪下方,观察到两振子相差5 s开始振动,则()A.P先开始振动,震源距地震仪约36 kmB.P先开始振动,震源距地震仪约25 kmC.H先开始振动,震源距地震仪约36 kmD.H先开始振动,震源距地震仪约25 km解析:由两种波的传播速率可知,纵波先传到地震仪,设所需时间为t,则横波传到地震仪的时间为t+5.由位移关系可得4(t+5)=9t,t=4 s,距离l=vt=36 km,故A正确.答案:A7.某质点在y方向做简谐运动,平衡位置在坐标原点O处,其振幅为0.05 m,振动周期为0.4 s,振动在介质中沿x轴正方向传播,传播速度为1 m/s.当它由平衡位置O开始向上振动,经过0.2 s后立即停止振动,由此振动在介质中形成一个脉冲波.那么,在停止振动后经过0.2 s的波形可能是图中的()解析:在O处,质点开始向上振动,经0.2 s时,O处质点向下振动,且波向右传播半个波长,x=0.2 m的质点将要振动.此时停止振动,波形不变,在0.2 s内又向右传播半个波长,故B正确.答案:B8.如图所示,两列简谐横波分别沿x轴正方向和负方向传播,两波源分子位于x=-2、10-1m 和x=12×10-1m处,两列波的波速均为v=0.4 m/s,两波源的振幅均为A=2 cm.图示为t=0时刻两列波的图象(传播方向如图),此刻处于平衡位置x=0.2 m和0.8 m的P、Q两质点刚开始振动.质点M的平衡位置处于x=0.5 m()A.质点P、Q都首先沿y轴正方向运动B.t=0.75 s时刻,质点P、Q都运动到M点C.t=1 s时刻,质点M的位移为+4 cmD.t=1 s时刻,质点M的位移为-4 cm解析:根据波动与振动方向间的关系可知,此时P、Q两质点均向y轴负方向运动,选项A错误.再经过t=0.75 s,两列波都传播Δx=vt=0.3 m,恰好都传播到M点,但P、Q两质点并未随波迁移,选项B错误.t=1 s时,两列波都传播Δx=vt=0.4 m,两列波的波谷同时传播到M点,根据波的叠加原理,质点M的位移为-4 cm,选项C错误,选项D正确.答案:D9..质点 N的振幅是________m,振动周期为________s,图乙表示质点_______(从质点K、L、M、 N中选填)的振动图象.该波的波速为 ______m/s.解析:由图甲可知,振幅为0.8 mλ=vT可得,答案:0.8 4 L 0.510.如图所示,一列沿x轴正方向传播的简谐横波,波速大小为0.6 m/s,P点的横坐标为96 cm.从图中状态开始计时,问:(1)经过多长时间,P质点开始振动?振动时方向如何?(2)经过多长时间,P质点第一次到达波峰?解析:(1)开始计时时,这列波的最前端的质点坐标是24 cm,据波的传播方向可知这一质点沿y轴负方向运动,因此在波前进方向的每一个质点,开始振动的方向都是沿y轴负方向,故P点开始振动时的方向是沿y轴负方向,故P质点开始振动的时间是(2)质点P第一次到达波峰,即初始时刻这列波的波峰传到P点,因此所用的时间是t′=s=1.5 s.答案:(1)1.2 sy轴负方向(2)1.5 s11.有两列简谐横波a、b在同一媒质中沿x轴正方向传播,波速均为v=2.5 m/s.在t=0时,两列波的波峰正好在x=2.5 m处重合,如图所示:(1)求两列波的周期T a和T b.(2)求t=0时,两列波的波峰重合处的所有位置.解析:(1)从图中可以看出两列波的波长分别为λa=2.5 m,λb=4.0 m,因此它们的周期分别为=1.6 s.(2)两列波波长的最小公倍数为s=20 mt=0时,两列波的波峰重合处的所有位置为±20k)m,k=0,1,2,3,……答案:(1)1 s1±20k)m,k=0,1,2,3,…12.一列横波在x轴上传播,t1=0和t2=0.005 s时的波形,如图所示的实线和虚线.(1)设周期大于(t2-t1),求波速.(2)设周期小于(t2-t1),并且波速为6000 m/s.求波的传播方向.解析:当波传播时间小于周期时,波沿传播方向前进的距离小于一个波长,当波传播的时间大于周期时,波沿传播方向前进的距离大于波长.这时从波形的变化上看出的传播距离加上n 个波长才是波实际传播的距离.(1)因Δt=(t2-t1)<T,所以波传播的距离可以直接由图读出.若波沿+x方向传播,则在0.005 s内传播了2 m,故波速为v= s=400 m/s,若波沿-x方向传播,则在0.005 s内传播了6 m,故波速为v= =1200 m/s.(2)因(t2-t1)>T,所以波传播的距离大于一个波长,在0.005 s内传播的距离为Δx=vt=6000×0.005 m=30 m,,即Δx=3λ+λ.因此,可得波的传播方向沿x轴的负方向.答案:(1)若波沿x轴正向,v=400 m/s若波沿x轴负向,v=1200 m/s(2)沿x轴负向。

第1章 波动光学基础 1-2 光波的函数表述 物理光学课件

第1章   波动光学基础 1-2 光波的函数表述 物理光学课件


它可以通过把确定该考察面的空间约束条件代入光波场的三维复振幅分
布函数的普遍表达式而得到。

例:传播方向平行于xoz平面,且与z轴夹角为θ的平面波在z=0平面上的
波前函数.

①依题意写出复振幅分布函数(关键是写 k r )

②将z=0代入复振幅分布函数
• 注意:波前函数是任意空间面上的复振幅,但不是复振幅在这个面上的投影.
• 光是特定波段的电磁波
光的电磁波动 E, H 遵从Maxwell方程
• D ρ,
• B 0,

E B ,
Maxwell微分方程
t
H
J
D
t
• •
其中:
i
j
k
x y z
• 变化的磁场可以产生电场;变化的电场也可以产生磁场.
• 电磁波——交变电磁场的空间传播。
1 波动光学基础


复振幅分量与波前函数的区别在于:波前函数与复振幅函数的振幅相同,
但相位不同.
1 波动光学基础
1.2 光波的函数表述
1.2.4.波前与波面
• 2.相位共轭波前
• E~(r) E0 (r)eikr
所谓相位共轭光波,是指两列同频率的光波,它们
的复振幅之间是复数共轭的关系.
~ ikr
即若某一波的复振幅为 E(r ) E (r )e E在0 (信r)息光学中,经常遇到相位共轭光波的概念。所谓相位共轭光波,是指两列同频率的光波,它们的复振0 幅之间是复数共轭的关系,即若某一波的复振幅为
波动光学基础121maxwell电磁波动方程12光波的函数表述121maxwell电磁波动方程波动光学基础12光波的函数表述1099792121maxwell电磁波动方程波动光学基础12光波的函数表述121maxwell电磁波动方程波动光学基础12光波的函数表述coscos和分别为波的空间角频率和时间角频率又称圆频率

第1章 波动光学基础 1-2 光波的函数表述 物理光学课件

第1章   波动光学基础 1-2 光波的函数表述 物理光学课件
1 波动光学基础
第1章 波动光学基础
§1.1 光的波动性质 *§1.2 光波的函数表述 *§1.3 光的偏振态
§1.4 实际光波与理想光波 *§1.5 光在介质界面的反射与折射
1 波动光学基础
§1.2 光波的函数表述
1. Maxwell 电磁波动方程 2. 定态光波波函数 3.定态光波的时空周期性 4. 波前与波面

仅对线偏振光、或光矢量的直角分量,可以用标量
波函数表述:
E E 0c o skrt0
1 波动光学基础
1.2 光波的函数表述
作业二:
• 1.一束光波的电场矢量为
E ico 2 s11 05 c zt (V\m)
,请
确定光波的传播方向、振幅、频率、波长、磁场矢量的方向。
• 2.依据”波面就是等相位面”,证明:
1.2.3定态光波的时、空周期性


⑴ 一在维谐E 波 波E 函0 数r 及 e 其周i 期k x 性 r p t 0中
• •


k E x E 0 ,0k r y e0 xip k
①空间各点的初位相
z k rt 0 0
②空间一点的光场时间变化图
T
③同一时刻空间各点的光场分布图
1.2 光波的函数表述
1.2.2定态光波波函数
• 3. 定态光波的复振幅
⑴光波函数的复数表示
E R E E 0 e 0 r r c eo k x is r k p r t t 00
可直接简写为: E E 0 r e i k x r p t 0
00
• 介质中光速
C C rr n
• 介质折射率
n rr
• 对光学波段,近似有 r 1 ,故 n ε r

强基计划联考物理培训讲义

强基计划联考物理培训讲义

强基计划联考物理培训讲义第一章:力学基础知识1.1 标量和矢量物理量分为标量和矢量两种。

标量只有大小,没有方向,如时间、质量和温度等。

矢量则既有大小又有方向,如位移、速度和加速度等。

1.2 牛顿运动定律牛顿第一定律:物体静止时,如果受到的合外力为零,物体将保持静止;如果物体在运动,则保持匀速直线运动。

牛顿第二定律:物体所受的合外力等于其质量和加速度的乘积,即\[F=ma\]。

牛顿第三定律:任何两个物体之间的相互作用力都是大小相等、方向相反的。

即“作用力与反作用力相等,方向相反”。

1.3 动量和动量守恒定律动量是物体的运动状态,它等于物体的质量和速度的乘积。

动量守恒定律指的是,系统中的合外力为零时,系统的总动量不变。

1.4 动能和动能守恒定律动能是物体的运动能量,它等于物体的质量和速度的平方的乘积的一半。

动能守恒定律指的是,系统中的合外力为零时,系统的总动能不变。

第二章:静电学基础知识2.1 电荷和电场电荷是物质中固有的性质,它可以分为正电荷和负电荷。

电场是空间中的电场力作用域。

2.2 高斯定理高斯定理是静电学中非常重要的定理,它表示通过一个闭合曲面的电通量等于所围体电荷的代数和的1/ε0倍。

2.3 静电场与电势静电场是由电荷所产生的电场力。

电势则是电场中某一点的电势能在单位正电荷下的大小。

第三章:磁学基础知识3.1 磁场和磁感应强度磁场是由电流或者磁石所产生的作用力。

磁感应强度是磁场的一个重要参数,表示在磁场中单位长度上的力。

3.2 洛伦兹力和磁力定理洛伦兹力是电荷在磁场中受到的作用力,它等于电荷的速度和磁感应强度的乘积。

磁力定理则表示在磁场中,电流所受的作用力等于电流强度、导线长度和磁感应强度的乘积。

第四章:波动学基础知识4.1 机械波和电磁波机械波是由振动所产生的波动,它需要介质来传播。

电磁波则是由电场和磁场相互作用而产生的波动,它在真空中也可以传播。

4.2 声波和光波声波是一种机械波,是由物体的震动所产生的。

振动、波动学基础选择题及参考答案

振动、波动学基础选择题及参考答案

)振动学基础一、选择题:1、一质量为m 的物体挂在倔强系数为k 的轻弹簧下面,振动园频率为ω,若把此弹簧分割 为二等份,将物体m 挂在分割后的一根弹簧上,则振动园频率为: (A )ω2。

(C )ω2。

(C )2ω。

(D )22ω。

2、一质点沿x 轴作简谐振动,振动方程为))(32cos(1042SI t x ππ+⨯=-,从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为: (A )s )8/1(。

(B )s )4/1(。

(C )s )2/1(。

(D )s )3/1(。

(E )s )6/1(。

3 (A )s 62.2。

(B )s 40.2。

(C )s 20.2。

(D )s 00.2。

4、已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒,则此简谐振动方程为:(A )cm t x )3232cos(2ππ+=。

(B )cm t x )3232cos(2ππ-=。

(C )cm t x 3234cos(2ππ+=。

(D )cm t x 3234cos(2ππ-=。

(E )cm t x )434cos(2ππ-=。

5、一弹簧振子作简谐振动,总能量为1E ,如果简谐振动动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量1E 变为:(A )4/1E 。

(B )2/1E 。

(C )12E 。

(D )14E 。

6、一物体作简谐振动,振动方程为)2/cos(πω+=t A x 。

则该物体在0=t 时刻的动能与8/T t =(T 为周期)时刻的动能之比为:(A )4:1。

(B )2:1。

(C )1:1。

(D )1:2。

(E )1:4。

7、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取作坐标原点。

若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为: (A )s 1。

第7章、波浪理论

第7章、波浪理论

这8个过程完结以后,我们才能说这个周期已经 结束,将进入另一个周期,新的周期仍然遵循上 述的模式。以上是艾略特波浪理论的最核心的内 容,也是艾略特作为波浪理论奠基人所作出的最 为突出的贡献。
• 2、道氏理论
艾略特深受道氏理论的影响,它创立的波浪理论 中的大部分理论是与道氏理论相吻合的。不过, 艾略特不仅找到了股价变动的三个趋势,而且还 找到了这些趋势发生的时间和位置,这是波浪理 论较之于道氏理论更为优越的地方。道氏理论必 须等到新的趋势确认以后才能发出行动的信号, 而波浪理论
2.调整浪的变化型态
(1)锯齿形(曲折形) 这种形态也叫作“之 字型调整”。 它是 一个三浪模式,其中 B浪不能回调到A浪 的75%之上。C浪将 在A浪之下形成一个 新低。
(2)平台形(平缓形)
具体又分、扩散的 和收缩的三种。
在常规的平坦型 调整中,每一浪的长 度是相同的。
经历过一次五浪 的推动模式之后,市 场进入浪A。
7.1 波浪理论的思想基础 7.2 波浪理论的主要内容 7.3 波浪理论的实际运用
7.1 波浪理论的思想基础
7.1.1 形成过程: 1、波浪理论是所有技术分析方法中最为神奇 的。用波浪理论得出的一些结论和预测,在 开始时总是被认为很荒唐,但过后都不可思 议地被事实所证实。从技术的角度讲,波浪 理论还不容易掌握,敢说自己能很熟练地应
7.2.5 –1 比率分析
• 1、回落(或反弹)的比率
一个调整的回落幅度是前面波浪的费波纳奇 百分比:一般是61.8%或38.2%。
实际操作与绘制两个点的黄金分割线一致。
• 2、推动浪长度之间的倍数关系:
(1)若第3浪延长,则第1浪和第5浪趋向等 长或成0.618的倍率关系。
(2)第5浪(/延长时)的长度是第1浪到第 3浪的长度的0.618或0.382(/ 1.618 )倍。

波动学基本

波动学基本

ππ
π
y1
=
A cos(200π
t
−16 ×
2

2
)
=
A cos( 200π
t

) 2
同理,
y2
=
A cos( 200π
t

20 ×
π 2

π 2
)
=
A cos(200π
t

π) 2
4
自治区精品课程—大学物理学
黄新民、张晋鲁主编《普通物理学》习题解答
初相位分别为:t=0
时, φ1 0
=
−π 2
,φ20

f
(2)
∵平面简谐波的波动方程为: y
=
Acos ω(t −
x )
c
∴绳子上各质点的振动速度为: ν = ∂y = − Aω sin ω(t − x)
∂t
c
绳子上各质点的振动加速度为: a = ∂ 2 y = − Aω 2 cosω(t − x )
∂t 2
c
∴绳子上各质点振动时的最大速度为 vmax = Aω =0.5π=1.57(m/s)
当取波源为原点并且该波沿+X 方向传播时,波动方程为
y
=
0.1cos(4π
t
π −
x)
5
(2) 沿波传播方向距离波源为λ/2 处的振动方程为:
y = 0.1cos(4π t − π ⋅ λ ) = −0.1cos(4π t) 52
(3) 距离波源分别为 λ , λ , 3λ 和λ的各点的振动方程为: 42 4
B

CC
∵ c = λf ,∴ λ = CT = B ⋅ 2π = 2π . CB C

大学_大学物理教程上册(范仰才著)课后答案

大学_大学物理教程上册(范仰才著)课后答案

大学物理教程上册(范仰才著)课后答案大学物理教程上册(范仰才著)内容提要绪论第一篇力学第1章质点运动学1.1 参考系和坐标系质点1.2 质点运动的描述1.3 自然坐标系中的速度和加速度1.4 不同参考系中速度和加速度的变换关系思考题习题第2章质点动力学2.1 牛顿运动定律2.2 惯性系与非惯性系2.3 力的空间积累效应2.4 保守力的功势能机械能守恒定律2.5 力的时间积累效应动量守恒定律__2.6 质心质心运动定理阅读材料(1)混沌及其特征思考题习题第3章刚体的定轴转动3.1 刚体及刚体定轴转动的描述3.2 刚体定轴转动定律3.3 定轴转动的功和能3.4 角动量定理和角动量守恒定律__3.5 进动阅读材料(2)对称性与守恒律思考题习题第二篇热学第4章气体动理论4.1 平衡态态参量理想气体物态方程 4.2 理想气体的压强公式4.3 理想气体的`温度公式4.4 能量按自由度均分理想气体的内能 4.5 麦克斯韦速率分布律__4.6 玻耳兹曼分布律4.7 分子的平均碰撞频率和平均自由程__4.8 气体内的输运过程__4.9 范德瓦尔斯方程真实气体阅读材料(3)低温与超导思考题习题第5章热力学基础5.1 准静态过程功热量和内能5.2 热力学第一定律及其在理想气体等值过程的应用 5.3 绝热过程多方过程5.4 循环过程卡诺循环5.5 热力学第二定律5.6 热力学第二定律的统计意义熵阅读材料(4)热学熵与信息熵思考题习题第三篇振动和波动第6章振动学基础6.1 简谐振动的运动学旋转矢量表示法6.2 简谐振动的动力学特征6.3 简谐振动的能量6.4 简谐振动的合成6.5 阻尼振动受迫振动共振思考题习题第7章波动学基础7.1 机械波的形成和传播7.2 平简谐波的波函数7.3 波的能量声波大学物理教程上册(范仰才著)目录《21世纪高等学校规划教材:大学物理教程(上)》可作为本科院校理工科各专业的大学物理教材,也可作为各类普通高等学校非物理类专业、各类成人高校物理课程的教材或教学参考书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察者测得的频率
分别讨论下述四种情况观察者所测得的
1. 波源和观察者均相对于媒质静止。
本章内容
Contents chapter 7
第一节
basic concept of mechanical wave
振动的传播过程称为波动。
产生机械波的必要条件:
波源带动弹性媒质中与其相邻的质点发生振动,振动相继 传播到后面各相邻质点,其振动时间和相位依次落后。
波动现象是媒质中各质点运动状态的集体表现,各质点 仍在其各自平衡位置附近作振动。
j10
2p
r2
l
r1
)

j20
j10
2p
r2
l
r1

j20
j10
2p
r2
l
r1
( 0,1,2, ) 时 合成振动的振幅最大
( 0,1,2, ) 时 合成振动的振幅最小
A
A12 A22
2 A1 A2 cos (j20
j10
2p
r2
l
r1
)
若 j20 j10 即两分振动具有相同的初相位

取决于两波源到P点的路程差
反射波
入射波
波疏媒质 波密媒质 驻波
反射波
当观察者与波源之间有相对运动时,观察者所测得的频 率不同于波源频率的现象,称为多普勒效应。
以机械波为例,
在静止媒质中:
波源的振动频率(恒定) 波在媒质中的传播速率(取决于媒质的性质,与波源运动无关)
设观察者和波源在同一直线上运动 观察者相对于媒质的运动速率 波源相对于媒质的运动速率
波节体积元不动,动能
其它各质点同时到达最大位移时
波腹及其它质点的动能 波节处形变最大 势能 最大
其它各质点同时通过平衡位置时
波腹附近各点速度最大 最大 波节及其它点无形变
驻波的能量不作定向传播,其能量 转移过程是动能与势能的相互转移以 及波腹与波节之间的能量转移。
入射波
波密媒质 波疏媒质 驻波
得 驻波函数
驻波函数
振幅分布因子
它的绝对值表示位于坐标 x 处的振动质点的 振幅。即描述振幅沿 X 轴的分布规律。
波波 腹节
谐振动因子
驻波中各质点均以同一 频率 作简谐振动。
波腹处振幅最大 波节处振幅最小
同一时刻, 相邻两波节之间的各质点
的振动相位相同; 波节两侧的各质点的振动
相位相反。
驻波不是振动相位的 传播过程,驻波的波形 不发生定向传播。
, 称为波程差

2p
r2
l
r1

( 0,1,2, ) 时
则合成振动 的振幅最大

2p
r2
l
r1

( 0,1,2,
则合成振动 的振幅最小
)时
波程差为零或为波长的整数倍时,
波程差为半波长的奇数倍时,
各质点的振幅最大,干涉相长。
各质点的振幅最小,干涉相消。

第七节
standing wave
波 腹 max
波在向前传播的过程中遇到障碍物(或障碍物中的缝隙)时,波线发生弯曲
并绕过障碍物(或障碍物中的缝隙)的现象称为波的衍射(或绕射) 。 衍射现象可用惠更斯原理的子波包络面概念定性解释。 衍射现象是否显著取决于波长与障碍物(或障碍物中的缝隙)的线度之比。 衍射现象是波动传播过程中的特征之一。
第六节
wave interference
波传播方向
波速
波长 周期 频率 波速
振动状态完全相同的相邻两质点之间的距离。
波形移过一个波长所需的时间。
周期的倒数。
, 取决于波源振动频率。
单位时间内振动状态(振动相位)的传播速度, 又称相速。机械波速取决于弹性媒质的物理性质。

波面 波前
振动相位相同的点连成的面。 最前面的波面。
波前 波面 波线
波 节
min 0
正向行波
反向行波
驻波的形成
正向波 负向波
在同一坐标系 XOY 中
正向波 负向波
驻波
点击鼠标,观察 在一个周期T 中 不同时刻各波的 波形图。
每点击一次,
时间步进
ttt====t7353=TTTT0T///824884
合成驻波
正向波 由
负向波
为简明起见, 设
并用
改写原式得
注意到三角函数关系
平面波(波面为平面的波) 球面波(波面为球面的波)
波线(波射线) 波的传播方向。在各向同性媒质中, 波线恒与波面垂直。
第二节
wave fucntion of simple hamonic plane wave
正向波 反向波
正向波 反向波


若给定某点 P 的
,波函数变为 P 点处质点的
P点的
距原点为 处质点振动的初相
若给定
,波动方程表示所给定的 时刻波线上各振动质
点相对各自平衡点的位置分布,即该时刻的
t1 时刻的






第三节
the energy of wave
动画
波传播方向
波速
7 -7
行波的能量
现象: 若将一软绳(弹性媒质)划分为多个小单元(体积元)
在波动中,各体积元产生不同程度的 弹性形变,
质点的振动方向与波的传播方向垂直
抖动一下,产生一个脉冲横波
质点振动方向 波的传播方向
软绳
质点振动方向
波的传播方向
连续抖动,产生连续横波
软绳
质点的振动方向与波的传播方向平行
质点振动方向
软弹簧
波的传播方向
抽送一下,产生一个脉冲纵波
质点振动方向
软弹簧
连续抽送,产生连续纵波
波的传播方向
在机械波中,横波只能在固体中出现;纵波可在气体、液体和固体中出现。空气 中的声波是纵波。液体表面的波动情况较复杂,不是单纯的纵波或横波。


形变最小
振速 最小
具有 弹性势能
时刻波形
未起振的体积元
形变最大 抖
动Leabharlann 振速 最大各体积元以变化的振动速率 上下振动,具有振动动能

能量密度
能流密度
单位:( W·m – 2 )


第五节
Huygens principle
媒质中波动传到的各点,都可以看作能够发射 子波的新波源,在这以后的任意时刻,这些子波 的包络面就是该时刻的波面。
来自同一波源的入射波传播到带有小孔的屏时,通过小孔时,在 小孔的另一侧都产生以小孔作为点波源的前进波,可将其抽象为从 小孔处发出的一种次波或子波,其频率与入射波频率相同,在叠加区 域有相同的振动方向,且相位差恒定,它们是相干波.可以产生干涉.
A
A12 A22
2 A1 A2 cos (j20
过程分解
波的干涉是在特定条件下波叠加所产生的现象。
若有两个波源
振动 频率相同 振动 方向相同 振动 相位差恒定
它们发出的波列在媒质中相遇叠加时,叠加区域中各质点所参与的 两个振动具有各自的恒定相位差,某些质点的振动始终加强,某些质 点的振动始终减弱或完全相消。这种现象称为波的干涉。
能产生干涉现象的波称为相干波 其波源称为相干波源
相关文档
最新文档