中考模拟试题(五)(附答案)
中考数学模拟试题五
中考数学模拟试题五一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.|-5|的相反数是()A.5 B.-5 C.-15D.153.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.114.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这个数用科学记数法表示为()A.0.156×10-5B.0.156×105C.1.56×10-6D.1.56×1065.若不等式组恰有两个整数解,则m的取值范围是()A.-1≤m<0 B.-1<m≤0 C.-1≤m≤0 D.-1<m<06.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是()A.2 B.4 C.8 D.167.如图,在△ABC中,AB=AC=5,BC=8,⊙O经过B、C两点,且AO=4,则⊙O的半径长是()A.17或65B.4或65C.4或17D.4或17或658.银泰购物中心一月份的营业额为400万元,第一季度营业总额为1600万元,若平均每月增长率为x,则可列方程为()A.400(1+x)2=1600 B.400[1+(1+x)+(1+x)2]=1600C.400+400x+400x2=1600 D.400(1+x+2x)=16009.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .+3(100﹣x )=100B .﹣3(100﹣x )=100C .3x +=100D .3x ﹣=100 10.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD=2.其中正确的结论有( B ) A.4个 B .3个 C .2个 D .1个二、填空题(本大题共6小题,每小题3分,满分18分.)11.分解因式:20-5a 2= .12.如图,在△ABC 中,D 为AC 边上的点,∠DBC=∠A ,BC =6,AC =3,则CD 的长为 _________ .13.已知:平面直角坐标系xOy 中,圆心在x 轴上的⊙M 与y轴交于点D (0,4)、点H ,过H 作⊙O 的切线交x 轴于点A ,若点M (-3,0),则sin ∠HAO 的值为 .14.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 5 .15.如图,已知正方形ABCD 的边长为2,将正方形ABCD 沿直线EF 折叠,则图中折成的4个阴影三角形的周长之和为 .16.如图,在等边△ABC 中,AB=4,点P 是BC 边上的动点,点P 关于直线AB ,AC 的对称第10题图F E DB CA点分别为M ,N ,则线段MN 长的取值范围是 6≤MN ≤4 .三、解答下列各题(共72分)17、(5分)计算:21()3-20170+|2-23|-tan60°18. (6分)如右图,矩形ABCD ,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE 于F .(1)猜想:AD 与CF 的大小关系;(2)请证明上面的结论.19.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,随州市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D 粽的人数?(4)若有外型完全相同的A 、B 、C 、D粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率?20.(7分)已知:如图,一次函数y=x+b的图象与反比例函数y=kx(k<0)的图象交于A、B两点,A点坐标为(1,m),连接OB,过点B作BC⊥x轴,垂足为点C,且△BOC的面积为32.(1)求k的值;(2)求这个一次函数的解析式.21.(7分)如图,中国海监船在钓鱼岛附近海域沿正西方向航行执行巡航任务,在A处望见钓鱼岛在南偏西45°方向,海监船航行到B处时望见钓鱼岛在南偏45°方向,又航行了15分钟到达C处,望见钓鱼岛在南偏60°方向,若海监船的速度为36海里/小时,求中国海监船在此次航行过程中离钓鱼岛的最近距离为多少海里?(3≈1.732,结果精确到0.1海里).22.(8分) 如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使CD=BC,连接AD与CM交于点E,若⊙O的半径为2,ED=1,求AC的长.23.(9分)实验中学九年级学生小凡、小文和小宇到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小凡:如果以9元/千克的价格销售,那么每天可售出350千克.小文:如果每千克的利润为2元,那么每天可售出300千克.小宇:如果以11元/千克的价格销售,那么每天可获取利润750元.物价部门规定:该水果的加价不得超过进价的45﹪.【利润=(销售价-进价)×销售量】(1)请根据他们的对话填写下表:(3分)销售单价x(元/kg)9 10 11销售量y(kg)(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3分)(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3分)24.(10分)如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N是分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由.(2)求△AMN面积的最小值;(3)求点P到直线CD距离的最大值;25. (12分)如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M,使|MA-MC|的值最大?若存在,请求出点M的坐标;若不存在,请说明理由.答案:21.22.(1)证明:连接OC.∵AB为⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.∵CM是⊙O的切线,∴OC⊥CM.∴∠ACM+∠ACO=90°.∵CO=AO,∴∠BAC=∠ACO.∴∠ACM=∠ABC.(2)解:∵BC=CD,OB=OA,∴OC∥AD.又∵OC⊥CE,∴CE⊥AD,∵∠ACD=∠ACB=90°,∴∠AEC=∠ACD.∴△ADC∽△ACE.∴.∵⊙O的半径为2,∴AD=4.∴.∴AC=2.24.解:(1)如图1中,∵ABCD是菱形,∠ABC=60°,∴△ABC为等边三角形在△AMB和△ANC中,AB=AC∠B=∠ACN=60°BM=NC∴△AMB≌△ANC∴AM=AN,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN为等边三角形,当AM⊥BC时,△AMN的边长最小,面积最小,=•(2)2=3此时AM=MN=AN=2,S△AMN(2)如图2中,当AM⊥BC时,点P到CD距离最大.作PE⊥CD于E.理由:由(1)可知△AMN是等边三角形,当AM⊥BC时,△AMN的边长最小,此时PA长最小,PC的长最大,点P到直线CD距离的最大,∵BM=MC=2,∠CMP=30°,∠MPC=90°,∴PC=MC=1,在Rt △PCE 中,∵∠CPE=30°,PC=1,∴EC=PC=, ∴PE==.∴点P 到直线CD 距离的最大值为; 25.解:(1)∵抛物线y =x 2+bx +c 过点A (3,0),B (1,0),∴, 解得,∴抛物线的解析式为y =x 2-4x +3.(2)令x =0,则y =3,∴点C (0,3),又∵点A (3,0),∴直线AC 的解析式为y = -x +3,设点P (x ,x 2-4x +3),∵PD ∥y 轴,且点D 在AC 上,∴点D (x ,-x +3),∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x =-(x-)2+, ∵a =-1<0,∴当x =时,线段PD 的长度有最大值,最大值为. (3)存在.由抛物线的对称性可知,对称轴垂直平分AB ,可得:MA =MB ,由三角形的三边关系,|MA -MC |<BC ,可得:当M 、B 、C 三点共线时,|MA -MC |最大,即为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),由B 、C 两点的坐标分别为(1,0)、(0,3), 则, ⎩⎨⎧=++=++01039c b c b ⎩⎨⎧==3-4c b 23492349⎩⎨⎧==+30b b k解得,∴直线BC 的解析式为y = -3x +3,∵抛物线y =x 2-4x +3的对称轴为直线x =2,∴当x =2时,y=-3×2+3=-3,∴点M (2,-3),即抛物线对称轴上存在点M (2,-3),使|MA -MC |最大.⎩⎨⎧==3-3b k。
2024年河北省邯郸市中考模拟语文试题(含答案)
2024年邯郸市中考语文模拟试题第二部分第三部分总分题号第一部分(一)(二)(三)(四)(五)得分注意事项:1.本试卷总分120分,考试时间120分钟。
2.答题前,考生务必将学校、班级、姓名、准考证号填写在试卷和答题卡相应位置上。
3.考生务必将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第一部分基础知识(共29分)1.阅读下面文字,回答下列问题。
(6分)一声枪响拉开了战争序慕,战争的硝烟弥漫在每一片土地,每一个角落,让人们无法呼吸,无法逃离。
残破的旗帜、断裂的枪支和四处散落的弹壳,一片狼藉。
昔日战友间亲密无间的情谊已化为灰烬,永远埋藏在这片悲剧的土地下。
但倔强的人,也许会碰壁,他们却从不轻易放弃,因为他们知道,挫折只是生命的一部分,而非终点。
脑海中一句句智慧的教讳,如同灯塔,指引他们在人生航程中不会迷失方向,翘首以盼的终是胜利。
(1)这段文字中有两个错别字,请找出来并加以改正。
①________应改为________②________应改为________(2)请给这段文字中加着重号的词语注音。
①灰烬________②翘首________(3)文段中的“挫”字,用部首检字法检索,应先查________部,再查________画,查到这个字读“cuò”。
2.依次填入下面横线处的词语,最恰当的一项是(3分)()(1)看着比赛的同学一个个都表演得绘声绘色、____________,我就不免紧张了起来。
(2)即使在寒冷的冬季,这家电厂仍然门庭若市,前来谈合作的客户____________。
(3)美术组的小艺术家们将生活中的废弃物改造成五花八门的艺术品,真是____________。
A.惟妙惟肖络绎不绝心灵手巧B.栩栩如生络绎不绝妙手偶得C.惟妙惟肖摩肩接踵妙手偶得D.栩栩如生摩肩接踵心灵手巧3.下列选项中没有语病的一项是(3分)()A.要深化对南极地区海冰融化现象和南极上空大气运动过程的认识,就必须扩大科学考察区域,提高科研观测精度和实验设计方法。
2020-2021学年辽宁省抚顺市中考数学模拟试卷(五)及答案解析
∴红球有9×5=45(个),
故选:A.
【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
8.如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为( )
A.7.5B.10C.15D.20
【考点】相似三角形的判定与性质.
9.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是( )
A. B. C. D.
【考点】动点问题的函数图象.
【专题】压轴题.
【分析】通过设出BE=x,FC=y,且△AEF为直角三角形,运用勾股定理得出y与x的关系,再判断出函数图象.
A. B. C. D.
10.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|PA﹣PB|的最大值是( )
A.4B.5C.6D.8
二、填空题:每小题3分,共24分.
11.不等式组 的整数解是.
12.计算:2×( ﹣1)0﹣12015+ 的值为.
13.函数 的自变量x的取值范围是.
【分析】根据主视图的定义,找到从正面看所得到的图形即可.
【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,
故选:C.
【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.
6.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:
辽宁省抚顺市中考数学模拟试卷(五)
一、选择题:每小题3分,共30分,在四个选项中只有一项是正确的.
2020年北京市中考化学模拟试卷(五)
2020年北京市中考化学模拟试卷(五)一、选择题(共12小题,每小题1分,满分12分)1.(1分)据统计,2020年1月至2月,北京优良天数比例为76.7%,同比上升5.5个百分点。
空气中可供给呼吸的气体是()A.氮气B.氧气C.二氧化碳D.氢气2.(1分)氧气(O2)、二氧化碳(CO2)、双氧水(H2O2)等都是我们熟悉的物质,三种物质中都含有()A.氧分子B.氧离子C.氧气D.氧元素3.(1分)每种植物都有适宜自己生长的酸碱性环境。
下表为四种作物适宜生长的pH范围:作物水稻茶树玉米马铃薯pH 6.0~7.0 5.0~5.57.0~8.0 4.8~5.5某土壤浸出液显碱性,该土壤适宜种植的作物是()A.水稻B.茶树C.马铃薯D.玉米4.(1分)下列物质具有挥发性的是()A.氯化钠B.浓盐酸C.石灰石D.氢氧化钠5.(1分)下列实验操作不正确的是()A.点燃酒精灯B.测定溶液的pHC.读取液体体积D.熄灭酒精灯6.(1分)下列化学用语与含义相符的是()A.2N﹣﹣2个氮元素B.FeO﹣﹣氧化铁C.2NO3﹣﹣﹣2个硝酸根离子D.表示硫原子7.(1分)下列物质的用途体现物质化学性质的是()A.活性炭有吸附性﹣﹣用于除去冰箱异味B.氢气密度小﹣﹣填充探空气球C.CO具有还原性﹣﹣冶炼金属D.干冰有制冷作用﹣﹣人工降雨8.(1分)下列叙述不正确的是()A.铁是地壳中含量最多的金属B.实验室需要配制10%的氯化钠溶液,用量筒量取溶剂时,仰视读数会导致所配溶液的溶质质量分数偏小C.氢气在空气中燃烧产生淡蓝色火焰D.氢氧化钠对皮肤有强烈的腐蚀作用9.(1分)下列物质与其化学式对应不正确的是()A.氧化钙CaO B.碳酸钠Na2CO3C.过氧化氢H2O D.碳酸氢钠NaHCO310.(1分)根据如图实验,判断下列说法错误的是()A.X烧杯溶液的颜色会变红B.HCl分子在运动C.浓盐酸具有挥发性D.Y烧杯内溶液的颜色会发生改变11.(1分)25℃时,探究某固体物质的溶解性,实验记录如下表。
中考英语模拟试题(5)
中考模拟试卷考生须知:1、本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、答题前,必须在答题卡和答题卷的密封区内涂、填写校名、姓名和准考证号.3、必须在答题卷的对应答题位置答题,写在其它地方无效。
1至60小题在答题卡上涂黑作答.其它所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4、做听力时,先将答案划在试卷上。
录音内容结束后,你将由一分钟的时间将试卷上的答案转涂到答题卡上.5、考试结束后,试卷、答题卡和答题卷一并上交.1.听力部分(25分)一、听短对话,回答问题 (共5小题,计5分)听下面5段对话。
每段对话后有一个小题。
从题中所给的A、B、C三个选项中选出最佳选项,并标在试题的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1 .What will Lily do tomorrow?A . Drive to work. B. Visit her uncle C. Come here.2. What made Tom worried?A. Bad health.B. His English.C. Too much homework.3. What’s the girl’s brother doing?A .Drawing B. Writing C. ding4. How does the girl want to go to school?A .On foot. B. By bike. C. By bus.5. What’s the man’s sister?A. A policewoman. B .A doctor C. A singer.二、听较长对话,回答问题 (共6小题,计l2分)听下面两段较长对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话前,你有时间阅读各小题,每小题5秒钟;听完后,各小题给出5秒钟的作答时间。
中考数学模拟试卷(5)(含解析)(2021年整理)
湖南省益阳市2017年中考数学模拟试卷(5)(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省益阳市2017年中考数学模拟试卷(5)(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省益阳市2017年中考数学模拟试卷(5)(含解析)的全部内容。
2017年湖南省益阳市中考数学模拟试卷(5)一、选择题(本大题共8小题,每小题5分,共40分)1.在﹣3,0,﹣2,四个数中,最小的数是()A.﹣3 B.0 C.﹣2D.2.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2AC B.CD=3AC C.CD=4BD D.不能确定3.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数10018022080750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数D.方差4.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是( )A.﹣B.2﹣C.4﹣D.﹣25.若不等式组的解集是x<2,则a的取值范围是( )A.a<2 B.a≤2 C.a≥2 D.无法确定6.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有( )①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个7.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )A.1个B.2个C.3个D.4个8.我们将1×2×3×…×n记作n!(读作n的阶乘),如:2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是( )A.0 B.1 C.1008 D.2016二、填空题(本大题共6小题,每小题5分,共30分)9.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是.10.对于实数x,规定(x n)′=nx n﹣1,若(x2)′=﹣2,则x= .11.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m= .12.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为.13.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.14.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P 作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.三、解答题(本大题共3小题,每小题8分,共24分)15.先化简,再求值:,其中x=6tan30°﹣2.16.已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.17.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.四、解答题(本大题共3小题,每小题10分,共30分)18.据某市2016年国民经济和社会发展统计公报显示,2016年该市新开工的住房有商品房.廉租房、经济适用房和公共租赁房四种类型,老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2016年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2017年新开工廉租房建设的套数比2016年增长10%,那么2017年新开工廉租房有多少套?19.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?20.如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系,已知当第12分钟时,材料温度是14℃.(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?五、解答题(本题满分12分)21.如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN 是等边三角形.(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.六、解答题(本题满分14分)22.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.2017年湖南省益阳市中考数学模拟试卷(5)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分)1.在﹣3,0,﹣2,四个数中,最小的数是()A.﹣3 B.0 C.﹣2D.【考点】实数大小比较.【分析】先确定2与3的大小关系,再比较﹣2与﹣3的大小,因为这四个数中,正数大于0,0大于负数.【解答】解:∵2=,3=,∵,∴2<3,∴﹣2>﹣3,∴﹣3<0,∴最小的数是﹣3,故选A.2.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2AC B.CD=3AC C.CD=4BD D.不能确定【考点】比较线段的长短.【分析】由AB=CD,可得,AC=BD,又BC=2AC,所以,BC=2BD,所以,CD=3AC;【解答】解:∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC;故选B.3.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数10018022080750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数D.方差【考点】统计量的选择.【分析】根据平均数、中位数、众数及方差的有关知识判断即可.【解答】解:喜欢红色的学生最多,是这组数据的众数,故选C.4.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.2﹣C.4﹣D.﹣2【考点】实数与数轴.【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【解答】解:∵表示2,的对应点分别为C,B,∴CB=﹣2,∵点C是AB的中点,则设点A的坐标是x,则x=4﹣,∴点A表示的数是4﹣.故选C.5.若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定【考点】解一元一次不等式组.【分析】解出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.【解答】解:由(1)得:x<2由(2)得:x<a因为不等式组的解集是x<2∴a≥2故选:C.6.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC 绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有( )①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】根据旋转的性质得出∠ABF=∠C,求出∠ABC=∠C=30°,即可判断①;根据三角形外角性质求出∠ADC=∠BAE,根据相似三角形的判定即可判断②;求出∠EAC大于30°,而∠DAE=30°,即可判断③;求出△AFD是直角三角形,但是不能推出是等腰三角形,即可判断④.【解答】解:∵在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴△AEC≌△AFB,∴∠ABF=∠C=30°,∴∠FBD=30°+30°=60°,∴①正确;∵∠ABC=∠DAE=30°,∴∠ABC+∠BAD=∠DAE+∠BAD,即∠ADC=∠BAE,∵∠ABC=∠C,∴△ABE∽△DCA,∴②正确;∵∠C=∠ABC=∠DAE=30°,∠BAC=120°,∴∠BAD+∠EAC=120°﹣∠DAE=90°,∴∠ABC+∠BAD<90°,∴∠ADC<90°,∴∠DAC>60°,∴∠EAC>30°,即∠DAE≠∠EAC,∴③错误;∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴AF=AE,∠EAC=∠BAF,∵∠BAC=120°,∠DAE=30°,∴∠BAD+∠EAC=90°,∴∠DAB+∠BAF=90°,即△AFD是直角三角形,∵在△DAE中,∠ADE=∠BAC+∠BAD,∠AED=∠C+∠EAC,∠ABC=∠C,但是根据已知不能推出∠BAD=∠EAC,∴∠ADE和∠AED不相等,∴AD和AE不相等,即△AFD是直角三角形,但是不一定是等腰三角形,∴④错误;故选B.7.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )A.1个B.2个C.3个D.4个【考点】二次函数的性质.【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故选:B.8.我们将1×2×3×…×n记作n!(读作n的阶乘),如:2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是()A.0 B.1 C.1008 D.2016【考点】规律型:数字的变化类;有理数的除法.【分析】由(n+1)!=1×2×3×…×n×(n+1)=(n+1)×n!=n×n!+n!知,可将原式两边都加上1!+2!+3!+…+2016!,即可得S=2017!﹣1,从而得出答案.【解答】解:∵(n+1)!=1×2×3×…×n×(n+1)=(n+1)×n!=n×n!+n!,∴S+1!+2!+3!+…+2016!=1×1!+2×2!+3×3!+…+2016×2016!+1!+2!+3!+…+2016!,即S+1!+2!+3!+…+2016!=1!+2!+3!+…+2017!,则S=2017!﹣1,∴==2016!…1,故选:B.二、填空题(本大题共6小题,每小题5分,共30分)9.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是36 .【考点】有理数的混合运算.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=12+28﹣4=40﹣4=36,故答案为:3610.对于实数x,规定(x n)′=nx n﹣1,若(x2)′=﹣2,则x= ﹣1 .【考点】解一元一次方程.【分析】根据规定,得:当n=2时,则(x2)′=2x,解方程即可.【解答】解:根据题意得:2x=﹣2,x=﹣1.故答案为:﹣1.11.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m= 25或16 .【考点】等腰三角形的性质;一元二次方程的解;根的判别式.【分析】讨论:根据等腰三角形性质当AB=BC=8,把x=8代入方程可得到m=16,此时方程另一根为2,满足三角形三边关系;当AB=AC,根据根与系数得关系得AB+AC=10,所以AB=AC=5,所以m=5×5=25.【解答】解:当AB=BC=8,把x=8代入方程得64﹣80+m=0,解得m=16,此时方程为x2﹣10x+16=0,解得x1=8,x2=2;当AB=AC,则AB+AC=10,所以AB=AC=5,则m=5×5=25.故答案为:25或16.12.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为(3,﹣1).【考点】菱形的性质;坐标与图形性质.【分析】首先连接AB交OC于点D,由菱形OACB中,点C的坐标是(6,0),点A的纵坐标是1,即可求得点B的坐标.【解答】解:∵连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(6,0),点A的纵坐标是1,∴OC=6,BD=AD=1,∴OD=3,∴点B的坐标为:(3,﹣1).故答案为:(3,﹣1).13.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26 米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.【解答】解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.14.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是 2 .【考点】切线的性质.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.三、解答题(本大题共3小题,每小题8分,共24分)15.先化简,再求值:,其中x=6tan30°﹣2.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当x=6tan30°﹣2=2﹣2时,原式=.16.已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)设一次函数解析式为y=kx+b,将A(﹣3,﹣5),B(1,3)代入解得k、b可得解析式;(2)将x=﹣2代入一次函数解析式可判断结果.【解答】解:(1)设一次函数解析式为y=kx+b,将A(﹣3,﹣5),B(1,3)代入得,,解得,,∴一次函数解析式为:y=2x+1;(2)把x=﹣2代入y=2x+1,解得y=﹣3,∴点P(﹣2,1)不在一次函数图象上.17.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.【考点】作图—复杂作图;全等三角形的判定;平行四边形的性质.【分析】(1)作∠CBM=∠ADE,其中BM交CD于F;(2)根据平行四边形的性质可得∠A=∠C,AD=BC,由ASA可证△ADE≌△CBF.【解答】(1)解:如图所示.(2)证明:∵四边形ABCD是平行四边形∴∠A=∠C,AD=BC,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA).四、解答题(本大题共3小题,每小题10分,共30分)18.据某市2016年国民经济和社会发展统计公报显示,2016年该市新开工的住房有商品房.廉租房、经济适用房和公共租赁房四种类型,老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2016年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2017年新开工廉租房建设的套数比2016年增长10%,那么2017年新开工廉租房有多少套?【考点】概率公式;用样本估计总体;频数(率)分布直方图;扇形统计图.【分析】(1)根据扇形统计图中公租房所占比例以及条形图中公租房数量即可得出,新开工的住房总数,进而得出经济适用房的套数;(2)根据申请购买经济适用房共有950人符合购买条件,经济适用房总套数为475套,得出老王被摇中的概率即可;(3)根据2016年廉租房共有6250×8%=500套,得出500(1+10%)=550,即可得出答案.【解答】解:(1)根据题意得:住房总数为1500÷24%=6250(套),则经济适用房的数量为6250×7。
2019年新目标版英语中考模拟试题五(含听力材料和参考答案) (2)
2019年初中英语中考模拟试题(五)注意事项:1.本试卷分第Ⅰ(选择题)和第Ⅱ卷(非选择题)两部分,共10页,满分100分,考试时间100分钟。
答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号写在试卷和答题卡规定的位置。
考试结束后将本试卷和答题卡一并交回。
2.答题注意事项见答题卡,答在本试卷上不得分。
第I卷(选择题共55分)一、听力测试(共15小题,计15分)注意:听力测试分四部分,共20小题。
先将答案画在试卷上,听力考试结束后将所选答案转涂到答题卡上。
(一)听句子,选择与句子内容相对应的图片。
每个句子读两遍。
A B CD E F1. 2. 3. 4. 5. _________(二)听对话和问题,根据所听内容,选择最佳答案。
对话和问题都读两遍。
6. A. Bill. B. Kate. C. No one.7. A. She hates the party.B. She is interested in the party.C. She thinks the music and the light are too bad.8. A. Because they are good at telling jokes.B. Because they are honest and helpful.C. Because they are serious enough.9. A. Making noise. B. Keeping quiet. C. Eating too slowly.10. A. Carry the books herself.B. Help the man carry the books.C. Ask the man to help her carry the books.(三)听短文,根据短文内容断下列句子正误,正确的用“A”表示,不正确的用“B”表示。
短文读两遍,听短文前,你们有20秒钟的时间阅读下列句子。
泉州市南安市2019年中考数学模拟试卷(五)含答案解析
福建省泉州市南安市2019年中考数学模拟试卷(五)(解析版)一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a23.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.965.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<26.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A .,B .,﹣C .,﹣D .﹣,二、填空题:.8.16的算术平方根是______.9.计算:﹣=______.10.分解因式:4x 2﹣6x=______.11.如图,已知AB ∥ED ,∠B=58°,∠C=35°,则∠D 的度数为______度.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为______.13.方程组的解为______.14.如图,已知AB 是⊙O 的直径,OD ⊥AC ,OD=3,则弦BC 的长为______.15.一个扇形的半径为6cm ,弧长是4πcm ,这个扇形的面积是______cm 2.16.如图,菱形ABCD 中,点O 是对角线AC 、BD 的交点,已知AB=5,OB=3,则菱形ABCD 的面积是______.17.在平面直角坐标系中,点A (0,6),点B (t ,0)是x 轴正半轴上的点,连结AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .(1)点C 的坐标为______;(2)△ABC 的面积为______.(均用含t 的代数式表示)三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为______.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.2019年福建省泉州市南安市中考数学模拟试卷(五)参考答案与试题解析一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣【考点】倒数.【分析】根据倒数的定义:乘积是1的两数互为倒数,可得出答案.【解答】解:,故选:D.【点评】本题考查了倒数的知识,属于基础题,解答本题的关键是掌握倒数的定义.2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则化简求出答案.【解答】解:A、4a+5b无法计算,故此选项错误;B、(a3)5=a15,正确;C、a4•a2=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【点评】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算等知识,掌握运算法则是解题关键.3.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:A、圆柱主视图是矩形,俯视图是圆,故A选项错误;B、圆锥主视图是等腰三角形,俯视图是圆,故B选项错误;C、三棱柱主视图是矩形,俯视图是三角形,故C选项错误;D、长方体主视图和俯视图都为矩形,故D选项正确;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.96【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将这组数据按从小到大的顺序排列为:76,78,82,88,96,96,处于中间位置的两个数是82和88,那么由中位数的定义可知,这组数据的中位数是(82+88)÷2=85.故选B.【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<2【考点】不等式的解集.【分析】根据x的取值范围画出数轴即可得出不等式组的解集.【解答】解:如图所示:,故不等式组的解集是:x>2.故选:C.【点评】此题主要考查了不等式的解集,正确在数轴上表示出解集是解题关键.6.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°【考点】圆周角定理.【分析】由圆周角定理知,∠AOB=2∠C=68°.【解答】解:∵∠C=34°,∴∠AOB=2∠C=68°.故选D.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A.,B.,﹣C.,﹣D.﹣,【考点】二次函数图象与几何变换.【分析】确定出抛物线y=ax2+bx的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.【解答】解:如图,∵y=ax2+bx=x2+bx=(x+)2﹣,∴平移后抛物线的顶点坐标为(﹣,﹣),对称轴为直线x=﹣,当x=﹣时,y=,∴平移后阴影部分的面积等于如图三角形的面积,×(+)×(﹣)=.解得b=﹣,故选:C.【点评】本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.二、填空题:.8.16的算术平方根是4.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.9.计算:﹣=1.【考点】分式的加减法.【分析】原式利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==1.故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.分解因式:4x2﹣6x=2x(2x﹣3).【考点】因式分解-提公因式法.【分析】直接提取公因式法分解因式得出答案.【解答】解:原式=2x(2x﹣3).故答案为:2x(2x﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11.如图,已知AB∥ED,∠B=58°,∠C=35°,则∠D的度数为23度.【考点】平行线的性质;三角形的外角性质.【分析】要求∠D的度数,只需根据三角形的外角的性质求得该三角形的外角∠1的度数.显然根据平行线的性质就可解决.【解答】解:∵AB∥ED,∠B=58°,∠C=35°,∴∠1=∠B=58°.∵∠1=∠C+∠D,∴∠D=∠1﹣∠C=58°﹣35°=23°.故答案为:23.【点评】根据两直线平行同位角相等和三角形外角的性质解答.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为 2.67×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将26700用科学记数法表示为2.67×104.故答案为:2.67×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.方程组的解为.【考点】二元一次方程组的解.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:4x=4,解得:x=1,将x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.如图,已知AB是⊙O的直径,OD⊥AC,OD=3,则弦BC的长为6.【考点】圆周角定理;垂径定理.【分析】先根据圆周角定理求出∠C的度数,再由OD⊥AC,点O是直径AB的中点可得出OD是△ABC的中位线,根据中位线定理即可得出结论.【解答】解:∵AB是⊙O的直径,∴∠C=90°.∵OD⊥AC,∴OD∥BC.∵OD=3,点O是AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.故答案为:6.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.一个扇形的半径为6cm,弧长是4πcm,这个扇形的面积是12πcm2.【考点】扇形面积的计算;弧长的计算.【分析】直接根据扇形的面积公式即可得出结论.【解答】解:∵扇形的半径为6cm,弧长是4πcm,∴这个扇形的面积=×4π×6=12πcm2..故答案为:12π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.16.如图,菱形ABCD中,点O是对角线AC、BD的交点,已知AB=5,OB=3,则菱形ABCD的面积是24.【考点】菱形的性质.【分析】根据菱形的面积公式,求出菱形的对角线的长即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,OB=OD,∴∠AOB=90°,∵AB=5,OB=3,∴AO===4,∴AC=8,BD=6,=•AC•BD=×6×8=24.∴S菱形ABCD【点评】本题考查菱形的性质、菱形的面积公式、勾股定理等知识,解题的关键是记住菱形的面积公式,灵活应用菱形的性质解决问题,属于中考常考题型.17.在平面直角坐标系中,点A(0,6),点B(t,0)是x轴正半轴上的点,连结AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.(1)点C的坐标为(t+3,);(2)△ABC的面积为.(均用含t的代数式表示)【考点】坐标与图形变化-旋转;三角形的面积.【分析】(1)根据点A和点B的坐标可以求得点M的坐标,从而可以求得点C的坐标;(2)根据点A和点B的坐标可以求得AB的长,从而可以求得BM的长,进而求得△ABC 的面积.【解答】解:(1)∵点A(0,6),点B(t,0),点M是线段AB的中点,∴点M的坐标是(),又∵将线段MB绕着点B按顺时针方向旋转90°,得到线段BC,∴点C的坐标为:(t+3,),故答案为:(t+3,);(2)∵点A(0,6),点B(t,0),点M的坐标是(),∠ABC=90°,∴AB=,BM==,∴BC=,∴△ABC的面积是:,故答案为:.【点评】本题考查坐标与图形的变化﹣旋转,三角形的面积,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】利用零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=2×﹣1+3﹣﹣4=﹣1﹣.【点评】此题主要考查了零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质等知识,正确化简各数是解题关键.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.【考点】整式的混合运算—化简求值.【分析】根单项式乘以多项式、平方差公式对所求式子化简,然后将a=﹣3代入即可解答本题.【解答】解:a(a﹣2)﹣(a+3)(a﹣3)=a2﹣2a﹣a2+9=﹣2a+9,当a=﹣3时,原式=﹣2×(﹣3)+9=15.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.【考点】旋转的性质;平行四边形的判定.【分析】(1)由于△ABD、△ABC都是等腰三角形,易求得∠BAD=∠ACB=∠B,由旋转的性质可得到∠BAD=∠CAE,通过等量代换,即可证得所求的两条线段所在直线的内错角相等,由此得证.(2)由旋转的性质易知:AD=AE=BD,且已证得AE∥BD,根据一组对边平行且相等的四边形是平行四边形,即可判定四边形ABDE是平行四边形.【解答】(1)证明:由旋转性质得∠BAD=∠CAE,∵AD=BD,∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA;∴∠CAE=∠DCA,∴AE∥BC.(2)解:四边形ABDE是平行四边形,理由如下:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.【点评】此题主要考查了旋转的性质以及平行四边形的判定和性质,难度不大.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.【考点】列表法与树状图法;等腰三角形的判定与性质;概率公式.【分析】(1)由概率公式容易得出结果;(2)画出树状图,所有等可能结果共有12种,其中能构成等腰三角形有8种,即可求出概率.【解答】解:(1)P(取出的小球上的数字为5)=;(2)画出树状图如下所有等可能结果共有12种,其中能构成等腰三角形有8种,∴P(能构成等腰三角形)==.【点评】本题考查的是用列表法或画树状图法求概率、概率公式、等腰三角形的判定与性质.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】过C点作CD⊥AB于D,根据三角形外角的性质得出∠CBD=∠CAB+∠ACB,故可得出∠ACB=30°,BC=AB=10.在Rt△BCD中根据sin60°=即可得出CD的长.【解答】解:过C点作CD⊥AB于D,∵∠CBD=∠CAB+∠ACB,∴∠ACB=30°,∴∠ACB=∠CAB,∴BC=AB=10.在Rt△BCD中,sin60°=,∴CD=10×=5(m).因此C点离地面的高度为5m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.【考点】一次函数的应用.【分析】(1)根据x=0时,甲距离B地30千米,由此即可解决问题.(2)根据相遇时间=即可解决.(3)分三个时间段求出时间即可,①是相遇前,则15x+30x=30﹣3,②是相遇后,则15x+30x=30+3,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,分别解方程即可.【解答】解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示甲、乙两人出发小时后相遇,此时距离B地20千米;(3)设x小时甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=,②若是相遇后,则15x+30x=30+3,解得x=,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,解得x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.【点评】本题考查一次函数的应用、相遇问题等知识,理解题意是解题的关键,考虑问题要全面,不能漏解,属于中考常考题型.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为(x﹣a)2+(y﹣b)2=r2.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan ∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.【考点】圆的综合题.【分析】(1)问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;(2)综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.【解答】解:(1)问题拓展:设A(x,y)为⊙P上任意一点,∵P(a,b),半径为r,∴AP2=(x﹣a)2+(y﹣b)2=r2.故答案为(x﹣a)2+(y﹣b)2=r2;(2)综合应用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB(SAS),∴∠POB=∠PAB.∵⊙P与x轴相切于原点O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切线;②存在到四点O,P,A,B距离都相等的点Q.当点Q在线段BP中点时,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此时点Q到四点O,P,A,B距离都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P点坐标为(0,6),∴OP=6,OB=OP=8.过点Q作QH⊥OB于H,如图3,则有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=8﹣4=4,∴点Q的坐标为(4,3),∴OQ==5,∴以Q为圆心,以OQ为半径的⊙Q的方程:(x﹣4)2+(y﹣3)2=25.【点评】此题考查了圆的综合、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质、勾股定理、切线的判定与性质、直角三角形斜边上的中线等于斜边的一半、三角函数的定义等知识,正确应用相关定理是解题关键.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【考点】二次函数综合题.【分析】(1)利用tan∠ABC=3,得出C但坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF=(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c=0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.【点评】此题主要考查了二次函数综合以及待定系数法求二次函数解析式和直角三角形中线的性质等知识,用AD表示出△PEF的周长是解题关键.。
2020中考历史模拟试卷试题五附带参考答案
2020中考历史模拟试卷试题五附带参考答案在寻求真理的长河中,唯有学习,不断地学习,勤奋地学习,有创造性地学习,才能越重⼭跨峻岭。
下⾯给⼤家带来⼀些关于2020中考历史模拟试卷试题五附带参考答案,希望对⼤家有所帮助。
试卷试题⼀、单项选择题(本⼤题共30⼩题,每⼩题2分,共60分)1.孙中⼭说:“中华开国五千年,神州轩辕⾃古传。
创制指南针,平定蚩尤乱。
世界⽂明,唯有我先。
”其中“平定蚩尤乱”的地点是( )A.涿⿅B.牧野C.长平D.阪泉2.从地⽅⾏政组织来看,中国历史学家吕思勉先⽣把古代中国划分为“部落时代”、“封建时代”、“郡县时代”这三个先后相继的时代。
其中与“封建时代”相对应的朝代是A.西周B.秦朝C.西汉D.宋代3.他是尊崇儒家的,但他的好⼤喜功、迷信神仙等,⼜⽆不与儒家思想相背驰:他有时表现得异常果敢,如痛惩匈奴,却⼜时时提防别⼈的暗算。
他⼀⽣兴⾼采烈的致⼒于开边事业,最后却⼜在痛悔中结束。
他是( )A.秦始皇B.秦⼆世C.汉⾼祖D.汉武帝4.“丝路商贸活动可谓奇货可点、令⼈眼花缭乱,从外奴、艺⼈、歌舞伎到家畜、野兽,从⽪⽑植物、⾹料到⾦银珠宝矿⽯⾦属,从器具⽛⾓到武器书籍乐器⼏乎应有尽有,⽽外来⼯艺、宗教、风俗等的随商进⼊更是不胜枚举。
”材料说明古代“丝绸之路”( )A.更重要的作⽤是加强了思想⽂化的传播与沟通B.商贸活动内容的不断丰富促使商⼈改变了初衷C.商贸活动承载了风俗习惯,所以推动⽂化相互融合D.商贸活动加快民族融合,到元朝新的民族回族形成5.⼀位历史学家说,秦始皇的残酷⽆道达到离奇的境界;可是他统⼀中国的⼯作,⽤长远的眼光设计,⼜⽤精到的⼿腕完成。
以下史实能⽀持后⼀种观点的是()①实⾏郡县制 ②建造阿房宫 ③统⼀度量衡 ④修建骊⼭陵A.①②B.①③C.②③D.②④6.中华民族是具有⾮凡创造⼒的民族,我们创造了伟⼤的中华⽂明。
下列有关中华⽂明成就的表述,正确的是( )①我国是世界上最早发明纸的国家②《兰亭序》是祖冲之的代表作品③北宋时指南针开始应⽤于航海业④《本草纲⽬》是世界医药学重要⽂献A.①②③B.①②④C.①③④D.②③④7.古代中印⽂化交流史上最杰出的使者是( )A.⽞奘B.鉴真C.阿倍仲⿇吕D.马可˙波罗8.就历史发展阶段⽽⾔,辽、宋、夏、⾦、元时期的主要特征是( )A.繁荣与开放的社会B.国家分裂的时代C.经济重⼼南移D.民族政权并⽴的时代9.海洋历来是各国争夺的对象,为“开拓万⾥波涛”⽇本联合舰队和清朝北洋舰队相遇黄海并发⽣激战,此役中,为国捐躯的清朝将领是( )A.林则徐B.左宗棠C.邓世昌D.李鸿章10.“巨额赔款为前所未有,给⼴⼤民众带来沉重的负担。
2022中考-初中地理结业水平模拟(五)(含答案)
2022年初中地理结业水平测试模拟(五)注意事项:1.本试题分选择题和综合题两部分。
选择题有25小题,共50分;综合题有5大题,共50分;总分共100分。
考试时间为70分钟。
2.答卷前,考生务必将自己的姓名、准考证号、考试科目填写在答题卡规定的位置上。
考试结束,试题纸和答题卡一并收回。
3.选择题每小题选出答案后,请用2B铅笔涂在答题卡的相应位置,综合题答案必须写在答题卡各题目指定区域内的相应位置。
一、选择题(下列各题的4个选项中,只有1项是符合题意的。
每小题2分,共50分)2020年11月24日04时30分,我国长征五号运载火箭在文昌航天基地成功发射了嫦娥五号探测器,并且将“嫦娥五号”顺利地送入轨道,开启我国首次地外天体采样返回之旅。
结合地球公转示意图,完成1~3题。
1. 长征五号发射嫦娥五号探测器当日,地球运行在A.①-②之间 B.②-③之间 C.③-④之间 D.④-①之间2. 该日,德州的昼夜长短情况是注:图中阴影部分为夜,空白部分为昼3.“嫦娥五号”成功发射期间,德州可能出现的地理现象是A.北海清波浮画舫,香山红叶染霜天 B.黄梅时节家家雨,青草池塘处处蛙C.燕山雪花大如席,纷纷吹落轩辕台 D.清明时节雨纷纷,路上行人欲断魂瑞典因在面临新冠疫情大流行时拒绝在全国范围内实施禁闭,而受到过严厉批评。
世界卫生组织称赞这个国家在不关闭经济的情况下,成为控制病毒的“典范”。
读下图及材料,完成4~6题。
4.下列关于瑞典位置的叙述,正确的是A.位于西半球B.有北极圈穿过C.西临太平洋D.均位于高纬度5.根据瑞典境内河流的分布,下列说法错误的是A.河流短小B.全部都是外流河C.水能资源丰富D.冬季河流不结冰6.吕勒奥是瑞典著名的钢铁工业中心,发展钢铁工业的有利自然条件中,错误的是A.离铁矿产地近,原料充足B.有充足的能源供应,靠近水电站C.有河流流经,水源充足D.欧洲经济发达,消费市场广阔2020年非洲东部地区遭遇了近70年来最严重的一场蝗灾,肯尼亚、埃塞俄比亚、索马里等多个国家和地区深受其害。
广西2024年中考语文模拟试题及答案5
广西省2024年中考语文模拟试题及答案2023年5月31日,北京科技周圆满落幕。
在科技周期间,系列科普活动备受同学们关注。
为了营造“爱科学、讲科学、学科学、用科学”的氛围,班级准备开展“致敬科技追梦者”主题实践活动。
请你参与,并完成相关任务。
[活动一:聆听科技工作者的心声]在中华民族伟大复兴的征程上,涌现了一代又一代的杰出科技工作者。
面对千军重负,他们没有忧心忡忡,始终心系祖国和人民,无私奉献,在极端困难的条件下呵护了我国科学技术的成长发展,凭借严谨的科学态度,创造了举世瞩目的科技成就。
放眼未来,科学探索永无止境,科学家精神也应薪火相传。
青年科技工作者以科学家精神为引领,追寻先辈足迹,抵力奋进,定能不断攀登科学高峰!1.有同学对加粗字的读音和画线词语的字形有疑问。
下列判断错误的一项是()A.“忡”应读为“zhōng”B.“嘱”应读为“zhǔ”C.“千军重负”应写为“千钧重负”D.“抵力”应写为“砥砺”2.“薪火相传”原意是前一根柴刚烧完,后一根柴已经烧着,火永远不熄。
结合文段内容,你认为“薪火相传”在这里的意思是。
3.下面是一位同学写的一副对联,他不能确定横线处应填入的词语。
你认为在上下联横线处填入词语,最恰当的一项是()上联:①____勇创科学奇迹下联:赴汤蹈火共谋民族②____A.①忠心耿耿②兴旺B.①呕心沥血②复兴C.①呕心沥血②兴旺D.①忠心耿耿②复兴[活动二:走进中国科学技术馆]中国科学技术馆是我国唯一的国家级综合性科技馆,是实施科技兴国战略[甲]人才强国战略和创新驱动发展战略,提高全民科学素质的大型科普基础设施。
中国科技馆在奥林匹克公园发展壮大,在安华桥畔萌芽成长,秉持“体验科学、启迪创新、服务大众、促进和谐”的理念,保持“至臻至谨、同创同心”的精神内核,形成了独特的科普魅力[乙]在这里,可以感受科学原理的美妙,惊叹技术应用的巨变;探秘精巧机器的神奇,体会世间生命的多彩;领略前哲探究的历程,放飞科技创新的梦想……4.[甲][乙]两处标点符号使用正确的一项是()A.[甲]、[乙],B.[甲],[乙],C.[甲]、[乙]。
2020年北京师大附中中考数学模拟试卷(五) (解析版)
2020年北京师大附中中考数学模拟试卷(五)一、选择题(共8小题).1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为()A.5.8×1010B.5.8×1011C.58×109D.0.58×1011 2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念3.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥4.若实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a<﹣5B.b+d<0C.|a|﹣c<0D.c5.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于()A.45°B.60°C.72°D.90°6.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒7.如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A.B.C.D.8.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下例说法中错误的项()A.图1显示每天现有确诊数的增加量=累计确诊增加量﹣治愈人数增加量﹣死亡人数增加量B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半C.图2显示意大利当前的治愈率高于西班牙D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率二、填空题(每题5分,满分40分,将答案填在答题纸上)9.若代数式的值为0,则实数x的值为.10.若a﹣b=2,则代数式(﹣b)•=.11.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若,AC=3,则DC=.12.比较大小:1(填“>”、“<”或“=”).13.举例说明命题“若>,则b>a.”是假命题,a=,b=.14.如图所示的网格是正方形网格,则∠ABC+∠ACB=.(点A,B,C是网格线交点).15.数学课上,王老师让同学们对给定的正方形ABCD,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:甲同学:A(0,1),B(0,0),C(1,0),D(1,1);乙同学:A(0,0),B(0,﹣1),C(﹣1,﹣1),D(1,0);丙同学:A(0,3),B(0,0),C(3,0),D(3,3);丁同学:A(1,1),B(1,﹣2),C(4,﹣2),D(4,1);上述四名同学表示的结果中,四个点的坐标都表示正确的同学是.16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.甲乙丙丁商品顾客人数100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率为.(2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买(填“乙”、“丙”、“丁”)商品的可能性最大.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:+()﹣1﹣2cos45°﹣|2﹣3|.18.解不等式组,并求该不等式组的非负整数解.19.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式.20.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面直角坐标系xOy中,抛物线G:y=mx2+2mx+m﹣1(m≠0)与y轴交于点C,抛物线G的顶点为D,直线:y=mx+m﹣1(m≠0).(1)当m=1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.(2)随着m取值的变化,判断点C,D是否都在直线上并说明理由.(3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.23.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P 在射线CM上,连接PA,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠PAC的度数;②直接写出PA、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为()A.5.8×1010B.5.8×1011C.58×109D.0.58×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将580 0000 0000用科学记数法表示应为5.8×1010.故选:A.2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念【分析】根据中心对称图形的概念求解.解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选:C.3.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选:C.4.若实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a<﹣5B.b+d<0C.|a|﹣c<0D.c【分析】根据各点在数轴上的位置、加减法符号法则、实数的算术平方根,对各个选择支作出判断.解:由数轴知:﹣5<a<﹣4,a<b<0<d,|b|<|d|,|a|>|c|∵﹣5<a<﹣4,所以选项A错误;∵b<0<d且|b|<|d|,所以b+d>0,故选项B错误;∵a<0<c且|a|>|c|,所以|a|﹣c>0.故选项C错误;∵0<c<1,,所以c<.故选:D.5.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于()A.45°B.60°C.72°D.90°【分析】根据正多边形的内角和定义(n﹣2)×180°列方程求出多边形的边数,再根据正多边形内角和为360°、且每个外角相等求解可得.解:多边形内角和(n﹣2)×180°=720°,∴n=6.则正多边形的一个外角=,故选:B.6.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒【分析】根据图象,可以写出白昼时长不足11小时的节气,然后即可解答本题.解:由图可得,白昼时长不足11小时的节气是立春、立秋、冬至、大寒,故选:D.7.如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A.B.C.D.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得,点P在AB的垂直平分线上,进而得出结论.解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:C.8.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下例说法中错误的项()A.图1显示每天现有确诊数的增加量=累计确诊增加量﹣治愈人数增加量﹣死亡人数增加量B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半C.图2显示意大利当前的治愈率高于西班牙D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率【分析】根据所给图表和折线图针对每个选项进行分析即可.解:A、图1显示每天现有确诊数的增加量=累计确诊增加量﹣治愈人数增加量﹣死亡人数增加量,故原题说法正确;B、图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半,故原题说法正确;C、图2显示西班牙当前的治愈率高于意大利,故原题说法错误;D、图3显示大约从3月16日开始海外的病死率开始高于中国的病死率,故原题说法正确;故选:C.二、填空题(每题5分,满分40分,将答案填在答题纸上)9.若代数式的值为0,则实数x的值为x=1.【分析】分式的值为零,分子等于零.解:依题意得:,所以x﹣1=0,解得x=1.故答案是:x=1.10.若a﹣b=2,则代数式(﹣b)•=.【分析】根据分式的减法和乘法可以化简题目中的式子,然后将a﹣b的值代入化简后的式子即可解答本题.解:(﹣b)•===,当a﹣b=2时,原式==,故答案为:.11.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若,AC=3,则DC=2.【分析】由DE∥AB可得出△DEC∽△ABC,根据相似三角形的性质可得出=()2=,再结合AC=3即可求出DC的长度.解:∵DE∥AB,∴△DEC∽△ABC,∴=()2=,∴=.又∵AC=3,∴DC=2.故答案为:2.12.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.13.举例说明命题“若>,则b>a.”是假命题,a=1答案不唯一,b=﹣2.【分析】通过实例说明命题不成立即可.解:当a=1,b=﹣2时,>,得出a>b,故答案为:答案不唯一,1,﹣2.14.如图所示的网格是正方形网格,则∠ABC+∠ACB=45°.(点A,B,C是网格线交点).【分析】延长BA交格点于D,连接CD,根据勾股定理得到AD2=CD2=1+22=5,AC2=12+32=10,求得AD2+CD2=AC2,于是得到∠ADC=90°,根据三角形外角的性质即可得到结论.解:延长BA交格点于D,连接CD,则AD2=CD2=1+22=5,AC2=12+32=10,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠DAC=∠ABC+∠ACB=45°.故答案为:45°.15.数学课上,王老师让同学们对给定的正方形ABCD,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:甲同学:A(0,1),B(0,0),C(1,0),D(1,1);乙同学:A(0,0),B(0,﹣1),C(﹣1,﹣1),D(1,0);丙同学:A(0,3),B(0,0),C(3,0),D(3,3);丁同学:A(1,1),B(1,﹣2),C(4,﹣2),D(4,1);上述四名同学表示的结果中,四个点的坐标都表示正确的同学是甲,丙,丁.【分析】正确画图,根据四个同学的原点确定平面直角坐标系,根据各点的坐标确定正方形的边长,可得结论.解:甲同学:如图1,易知点B为原点,则AB=BC=CD=AD=1,故甲同学所标的四个点的坐标正确;乙同学:如图2,易知点A为原点,则AB=BC=CD=AD=1,则A(0,0),B(0,﹣1),C(1,﹣1),D(1,0),故乙同学所标C点的坐标错误;丙同学:如图1,易知点B为原点,则AB=BC=CD=AD=3,故丙同学所标的四个点的坐标正确;丁同学:如图3,易知AB=BC=CD=AD=3,故丁同学所标的四个点的坐标正确;上述四名同学表示的结果都正确的是:甲,丙,丁;故答案为:甲,丙,丁.16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.商品甲乙丙丁顾客人数100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率为0.2.(2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买丙(填“乙”、“丙”、“丁”)商品的可能性最大.【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.故答案为:0.2;丙.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:+()﹣1﹣2cos45°﹣|2﹣3|.【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.解:+()﹣1﹣2cos45°﹣|2﹣3|=3+5﹣2×﹣(3﹣2)=3+5﹣﹣3+2=4+2.18.解不等式组,并求该不等式组的非负整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3(x+2)≥x+4,得:x≥﹣1,解不等式<1,得:x<3,∴原不等式解集为﹣1≤x<3,∴原不等式的非负整数解为0,1,2.19.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式.【分析】(1)分类讨论:当m=0时,方程变形为一元一次方程,有一个解;当m≠0时,先计算判别式的值得到△=(3m﹣1)2,根据非负数的性质得△≥0,则根据判别式的意义得到方程总有两个实数解,然后综合两种情况得到不论m为任何实数,此方程总有实数根;(2)先解方程得到x1=﹣,x2=﹣3,根据抛物线与x轴的两交点问题得到交点坐标为(﹣,0),(﹣3,0),再根据正数的整除性易得m=1,从而得到抛物线解析式.【解答】(1)证明:当m=0时,方程变形为x+3=0,解得x=﹣3;当m≠0时,△=(3m+1)2﹣4m•3=(3m﹣1)2,∵(3m﹣1)2≥0,即△≥0,∴m≠0时,方程总有两个实数解,∴不论m为任何实数,此方程总有实数根;(2)解:根据题意得m≠0,mx2+(3m+1)x+3=0.(mx+1)(x+3)=0,解得x1=﹣,x2=﹣3,则抛物线y=mx2+(3m+1)x+3与x轴的两交点坐标为(﹣,0),(﹣3,0),而m为正整数,﹣也为整数,所以m=1,所以抛物线解析式为y=x2+4x+3.20.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.【分析】(1)直接利用矩形的性质结合全等三角形的判定与性质得出BE=CF,进而得出答案;(2)利用勾股定理的逆定理得出∠EDF=90°,进而得出•ED•DF=EF•CD,求出答案即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠B=∠DCF=90°,∵∠BAE=∠CDF,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴BE=CF,∴BC=EF,∵BC=AD,∴EF=AD,又∵EF∥AD,∴四边形AEFD是平行四边形;(2)解:由(1)知:EF=AD=5,在△EFD中,∵DF=3,DE=4,EF=5,∴DE2+DF2=EF2,∴∠EDF=90°,∴•ED•DF=EF•CD,∴CD=.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值;合理;故答案为:①②.22.在平面直角坐标系xOy中,抛物线G:y=mx2+2mx+m﹣1(m≠0)与y轴交于点C,抛物线G的顶点为D,直线:y=mx+m﹣1(m≠0).(1)当m=1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.(2)随着m取值的变化,判断点C,D是否都在直线上并说明理由.(3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.【分析】(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y =x,求出直线被抛物线G截得的线段,再画出两个函数的图象即可;(2)先求出C、D两点的坐标,再代入直线的解析式进行检验即可;(3)先联立直线与抛物线的解析式,求出它们的交点坐标,再根据这两个交点之间的距离不小于2列出不等式,求解即可.解:(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y=x,直线被抛物线G截得的线段长为,画出的两个函数的图象如图所示:(2)无论m取何值,点C,D都在直线上.理由如下:∵抛物线G:y=mx2+2mx+m﹣1(m≠0)与y轴交于点C,∴点C的坐标为C(0,m﹣1),∵y=mx2+2mx+m﹣1=m(x+1)2﹣1,∴抛物线G的顶点D的坐标为(﹣1,﹣1),对于直线:y=mx+m﹣1(m≠0),当x=0时,y=m﹣1,当x=﹣1时,y=m×(﹣1)+m﹣1=﹣1,∴无论m取何值,点C,D都在直线上;(3)解方程组,得,或,∴直线与抛物线G的交点为(0,m﹣1),(﹣1,﹣1).∵直线被抛物线G截得的线段长不小于2,∴≥2,∴1+m2≥4,m2≥3,∴m≤﹣或m≥,∴m的取值范围是m≤﹣或m≥.23.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P 在射线CM上,连接PA,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠PAC的度数;②直接写出PA、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.【分析】(1)如图1,作辅助线,构建等边三角形,证明△ADC为等边三角形.根据等边三角形三线合一可得∠PAC=∠PAD=30°;②作辅助线,证明△PCD'≌△PCQ,可得PA=PQ;(2)存在,如图2,作辅助线,构建全等三角形,证明△PAD≌△PQC(SAS).可得结论.解:(1)①如图1,在CM上取点D,使得CD=CA,连接AD,∵∠ACM=60°,∴△ADC为等边三角形.∴∠DAC=60°.∵C为AB的中点,Q为BC的中点,∴AC=BC=2BQ.∵BQ=CP,∴AC=BC=CD=2CP.∴AP平分∠DAC.∴∠PAC=∠PAD=30°.②如下图,将△APD绕点A顺时针旋转60°得△AD'C,连接CD',∴∠ACD'=∠ADP=60°,AP=AD',∠PAD'=60°,CD'=PD,∴△APD'是等边三角形,∴PD'=AP,∵k=1,∴BQ=CP,∵CD=AC=BC,∴PD=CQ=CD',∵∠PCQ=180°﹣∠ACP=120°,∠PCD'=∠ACP+∠ACD'=120°,∴∠PCD'=∠PCQ,∴△PCD'≌△PCQ(SAS),∴PD'=PQ,∴PA=PQ;(2)存在,使得②中的结论成立.证明:过点P作PC的垂线交AC于点D.∵∠ACM=45°,∴∠PDC=∠PCD=45°.∴PC=PD,∠PDA=∠PCQ=135°.∵,,∴CD=BQ.∵AC=BC,∴AD=CQ.∴△PAD≌△PQC(SAS).∴PA=PQ.。
2021中考英语综合模拟试题含答案(五)
中考英语综合模拟试题含答案(五)第Ⅰ卷(选择题共70分)一、听力选择(共25小题,计25分)(一)录音中有5个句子,每个句子听两遍,然后在每小题A、B、C三个选项中,选出与所听句子意思相同或相近的答案。
1.A.Chinese is as useful as math.B.Chinese is more useful than math.C.Chinese is not so useful as math.2.A.David and Bob don't finish their homework. B.David and Bob have finished their homework.C.David has to finish his homework, so does Bob.3.A.The train will leave the station in half an hour.B.The train will get to the station in thirty minutes.C.The train has been at the station for half an hour.4.A.The cat's ears are black. B.The cat's legs are black. C.The cat is black and white.5.A.B.C.(二)录音中有5个句子,每个句子听两遍,然后在每小题A、B、C三个选项中,选出能回答每个句子的正确答案。
6.A.You're welcome.B.Sorry to hear that.C.That's fine.7.A.No problem.B.Yes, do it, please.C.What can I do for you?8.A.Yes, I think so.B.No, thanks.C.OK,here you are.9.A.Yes, please.B.Have a good time.C.That's very kind of you.10.A.Yes, and it's going to be colder. B.Really? Do you think so? How do you know?C.No, itwon't.(三)录音中有五段对话和5个问题,听对话和问题两遍后,从每小题A、B、C三个选项中,选出能正确回答录音中每个问题的答案。
2020年中考英语模拟试题(五)(含答案)
2020年中考英语模拟试题(五)(时间:100分钟分值:110分)一、选择填空(本题共15小题,3AA、B.C.D四个选项中,选出可以填人空白处的最佳选项。
每小题1分,满分15分)1. Xuzhou lies the northwest of Jiangsu Province.A. toB. inC. ofD. with2.--Hello! May I speak to Daniel, please?--Sorry, I'm afraid you've got the wrong . There is no Daniel here.A. nameB. wayC. numberD. place3. Look! The primary school has _____ a sign, saying. Greet your child with a smile, not a mobile.A. put intoB. put offC. put onD. put up4. -- Would you like to go shopping with me, Alice?-- I'd love to, you don't want to go alone.A. ifB. beforeC. unlessD. until5.- -Do you know who paper in history?-- Cai Lun, a person in the East Han dynasty.A. discoveredB. boughtC. foundD. invented6. I to Beijing three times last year.A. have goneB. will goC. wentD. goes7. The hand-made toy is the best present I have ever got for my birthday.A. whatB. thatC. whenD. who8.--Where is the old piano in your room?--I had it moved away, because it takes up too much_______.A. moneyB. timeC. spaceD. effort9. Tom recommended me four new movies, but was to my taste.A. allB. bothC. neitherD. none10.-- Will Helen come to our party tonight?-- . She is busy working on her report.A. I hope soB. I'm afraid notC. I believe soD. Better not11. -- Did you like the bus journey to the centre of the town?-- Not a bit. It was reallyA. uncomfortableB. importantC. excitingD. amazing12. Could you please speak a little louder? I hear you very well.A. can'tB. mustn'tC. shouldn'tD. needn't13. Don't be angry with Tom. , he is new here and knows little about our work.A. In allB. Above allC. First of allD. After all14. --Could you tell me if you will join us in the picnic this weekend?-- I'd like to, I'll ask my parents first.A. andB. butC. orD. so15. -- It's my turn to give a speech. I feel nervous.-- . We are all behind you.A. Take it easy 'B. Not at allC. Thank youD. With pleasure二、完形填空(本题共15小题,根据短文内容,从各题所给的A、B、C、D四个选项中选出最佳选项。
04-05年下学期九年级中考模拟试题英语(五)(附答案)
中考模拟试题(五)听力部分Ⅰ.情景反应(6分)从A、B、C、D四个选项中,选出能正确应答你所听到句子的那一个。
1.A.Hello,see you tomorrow.B.Hello!Goodbye!C.Hello,I’m Jim Green.D.Thanks a lot.2.A.That’s all right.Thank you.B.I’m afraid I can’t.C.What beautiful flowers!Thank you.D.I agree with you.3.A.Oh,that’s very nice of you.B.Congratulations!C.With pleasure.D.Oh,I’m glad to hear that.4.A.By bus.B.Quite well.C.Reading a book.D.On Saturday and Sunday.5.A.She’s much better now.B.She’s a pupil.C.She’s seven years old.D.She’s watching TV.6.A.Not at all.B.I’m sorry to hear that.C.It doesn’t matter.D.Why not?Let’s go.Ⅱ.单句理解(6分)从A、B、C、D四个选项中,选出与你所听到的句子意义相同或相近的那一个。
共6个句子,每个句子听两遍。
7.A.I heard of my friend yesterday.B.I met my friend yesterday.C.I taught my friend yesterday.D.I got a letter from my friend yesterday.8.A.I’m busy,but I’ll go to see the film with you.B.I’m free now,I’ll go to see the film with you.C.I’ll go to see the film with you if I have time.D.I’m too busy to go to the cinema with you.9.A.Mary has never been to London.B.Mary has lived in London for ten years.C.Mary came here from London ten years ago.D.Mary came to London in 1980.10.A.You’re too old,so you can’t learn.B.You’re old enough to learn.C.It’s never too late for you to learn.D.You never learn because you’re too old.11.A.Man can live if there is no air.B.Man cannot live if there is no air.C.Man can’t live if there is hardly any air.D.Man can live if there is a lot of air.12.A.Jack doesn’t know this word.His friends don’t know,either.B.Jack doesn’t know this word,but his friends know.C.Jack knows this word,but his friends don’t.D.Both Jack and his friends don’t know this word.Ⅲ.对话理解(8分)听对话,从A、B、C、D四个选项中,选出能正确回答下列问题或完成句子的那一个。
抚顺市新抚区中考数学模拟试题(五)含答案解析
辽宁省抚顺市新抚区中考数学模拟试卷(五)一、选择题(共10小题,每小题3分,满分30分)1.﹣3的倒数是()A.3 B.C.﹣3 D.﹣2.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.3.下列事件中,是确定性事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中10环C.明天会下雨D.度量三角形的内角和,结果是360°4.如图,AB∥CD,CE交AB于点F,若∠E=20°,∠C=45°,则∠A的度数为()A.15° B.25° C.35° D.45°5.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.B.C.D.16.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根7.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>28.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,529.如图,在△ABC中,D,E分别是边AB,BC上的点,且DE∥AC,若S△BDE=4,S△CDE=16,则△ACD的面积为()A.64 B.72 C.80 D.9610.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个二、填空题11.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为.12.计算: = .13.有一箱子装有3张分别标示1、5、8的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数能被3整除的概率是.14.如图有6个质地均匀和大小相同的球,每个球只标有一个数字,现将标有3,4,5,的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.小明和小海分别从甲、乙两箱中各摸一球,则小海所摸球上的数字比小明所摸球上数字大的概率为.15.一个正方形和两个等边三角形的位置如图所示,若∠1=40°,则∠2+∠3= .16.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是.17.如图,若双曲线y=与斜边长为5的等腰直角△AOB的两个直角边OA,AB分别相交于C,D两点,OC=2BD,则k的值为.18.古希腊人常用小石子在沙滩上摆成各种形状来研究数.称图中的数1,5,12,22…为五边形数,则第6个五边形数是.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:(﹣)÷,其中x是不等式组的整数解.20.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)扇形图中∠α的度数是,并把条形统计图补充完整;(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有人;该市九年级学生体育平均成绩约为分.四、21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?22.如图,AB为⊙O的直径,BC、AD是⊙O的切线,过O点作EC⊥OD,EC交BC于C,交直线AD于E.(1)求证:CD是⊙O的切线;(2)若AE=1,AD=3,求阴影部分的面积.五、(本题12分)23.如图,在小山的西侧A处有一热气球,以25米/分钟的速度沿着与垂直方向所成夹角为15°的方向升空,40分钟后到达B处,这时热气球上的人发现,在A处的正东方向有一处着火点C,在B 处测得着火点C的俯角为30°,求热气球升空点A与着火点C的距离.(结果保留根号)六、(本题12分)24.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?七、(本题12分)25.如图,△ABC与△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,连接BE,将BE绕点B顺时针旋转90°,得BF,连接AD,BD,AF(1)如图①,D、E分别在AC,BC边上,求证:四边形ADBF为平行四边形;(2)△DEC绕点C逆时针旋转,其它条件不变,如图②,(1)的结论是否成立?说明理由.(3)在图①中,将△DEC绕点C逆时针旋转一周,其它条件不变,问:旋转角为多少度时.四边形ADBF为菱形?直接写出旋转角的度数.八、(本题14分)26.如图,抛物线y=ax2+bx﹣4经过A(﹣3,0)、B(2,0)两点,与y轴的交点为C,连接AC、BC,D为线段AB上的动点,DE∥BC交AC于E,A关于DE的对称点为F,连接DF、EF.(1)求抛物线的解析式;(2)EF与抛物线交于点G,且EG:FG=3:2,求点D的坐标;(3)设△DEF与△AOC重叠部分的面积为S,BD=t,直接写出S与t的函数关系式.辽宁省抚顺市新抚区中考数学模拟试卷(五)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣3的倒数是()A.3 B.C.﹣3 D.﹣【分析】根据倒数的定义即若两个数的乘积是1,我们就称这两个数互为倒数,即可得出答案.【解答】解:﹣3的倒数是﹣.故选D.【点评】此题考查了倒数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有四列,从左到右分别是1,2,2,1个正方形.【解答】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,2,1个正方形.故选:A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.下列事件中,是确定性事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中10环C.明天会下雨D.度量三角形的内角和,结果是360°【分析】直接利用随机事件的定义以及确定事件的定义分析得出答案.【解答】解:A、买一张电影票,座位号是奇数,是随机事件,故此选项错误;B、射击运动员射击一次,命中10环,是随机事件,故此选项错误;C、明天会下雨,是随机事件,故此选项错误;D、度量三角形的内角和,结果是360°,是不可能事件,故是确定事件,故此选项正确.故选:D.【点评】此题主要考查了随机事件的定义以及确定事件的定义,正确把握相关定义是解题关键.4.如图,AB∥CD,CE交AB于点F,若∠E=20°,∠C=45°,则∠A的度数为()A.15° B.25° C.35° D.45°【分析】先根据平行线的性质求出∠EFB,再根据三角形外角性质求出∠A=∠EFB﹣∠E,代入求出即可.【解答】解:∵AB∥CD,∠C=45°,∴∠EFB=∠C=45°,∵∠E=20°,∴∠A=∠EFB﹣∠E=25°,故选B.【点评】本题考查了三角形的外角性质,平行线的性质的应用,解此题的关键是求出∠EFB的度数,注意:两直线平行,同位角相等.5.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.B.C.D.1【分析】先在图中找出∠ABC所在的直角三角形,再根据三角函数的定义即可求出tan∠ABC的值.【解答】解:如图,在直角△ABD中,AD=3,BD=4,则tan∠ABC==.故选B.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.6.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根【分析】求出b2﹣4ac的值,再进行判断即可.【解答】解:x2﹣3x﹣5=0,△=b2﹣4ac=(﹣3)2﹣4×1×(﹣5)=29>0,所以方程有两个不相等的实数根,故选A.【点评】本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c 为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.7.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>2【分析】先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x 都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.【解答】解:把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),所以当x>1时,2x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.8.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,52【分析】找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.【解答】解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选:D.【点评】此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.9.如图,在△ABC中,D,E分别是边AB,BC上的点,且DE∥AC,若S△BDE=4,S△CDE=16,则△ACD的面积为()A.64 B.72 C.80 D.96【分析】由S△BDE=4,S△CDE=16,得到S△BDE:S△CDE=1:4,根据等高的三角形的面积的比等于底边的比求出=,然后求出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC 的面积,然后求出△ACD的面积.【解答】解:∵S△BDE=4,S△CDE=16,∴S△BDE:S△CDE=1:4,∵△BDE和△CDE的点D到BC的距离相等,∴=,∴=,∵DE∥AC,∴△DBE∽△ABC,∴S△DBE:S△ABC=1:25,∴S△ACD=80.故选C.【点评】本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.10.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题11.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为 3.4×10﹣10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.计算: = 4 .【分析】根据负整数指数幂等于正整数指数幂的倒数进行解答即可.【解答】解: ==4.故答案为:4.【点评】本题考查的是负整数指数幂的运算,熟知其运算性质是解答此题的关键,即负整数指数幂:a﹣p=(a≠0,p为正整数).13.有一箱子装有3张分别标示1、5、8的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数能被3整除的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的二位数能被3整除的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,组成的二位数能被3整除的有4种情况,∴组成的二位数能被3整除的概率是: =.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.如图有6个质地均匀和大小相同的球,每个球只标有一个数字,现将标有3,4,5,的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.小明和小海分别从甲、乙两箱中各摸一球,则小海所摸球上的数字比小明所摸球上数字大的概率为.【分析】利用列表的方法列举出所有等可能的结果,再找出小海所摸球上的数字比小明所摸球上的数字大的情况数目,两者的比值即为发生得概率.【解答】解:列举摸球的所有可能结果:4 5 6小海小明3 (3,4)(3,5)(3,6)4 (4,4)(4,5)(4,6)5 (5,4)(5,5)(5,6)从上表可知,一共有九种可能,其中小海所摸球上的数字比小明所摸球上数字大有6种,因此小海所摸球上的数字比小明所摸球上数字大的概率=,故答案为:.【点评】此题考查了利用画树状图及列表格的方法求事件发生的概率,利用了数形结合的思想.通过画树状图或列表法将复杂的概率问题化繁为简,化难为易,因为这种方法可以直观的把所有可能的结果一一罗列出来,方便于计算.15.一个正方形和两个等边三角形的位置如图所示,若∠1=40°,则∠2+∠3= 110°.【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠1=40°,∴∠2+∠3=150°﹣40°=110°.故答案为:110°.【点评】本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.16.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是2.【分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.【解答】解:作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=3,∴AC=AE,由勾股定理得,BE==2,设AC=AE=x,由勾股定理得,x2+62=(x+2)2,解得,x=2,故答案为:2.【点评】本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.如图,若双曲线y=与斜边长为5的等腰直角△AOB的两个直角边OA,AB分别相交于C,D两点,OC=2BD,则k的值为 4 .【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BD=x,则OC=2x,分别表示出点C、点D的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.【解答】解:如图,过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设BD=x,则OC=2x,∵Rt△OCE为等腰直角三角形,∴∠COE=45°,∴OE=CE=OC=x,∴则点C坐标为(x, x),同理在等腰Rt△BDF中,BD=x,∴BF=DF=BD=x,∴OF=OB﹣BF=5﹣x则点D的坐标为(5﹣x, x),将点C的坐标代入反比例函数解析式可得:k=2x2,将点D的坐标代入反比例函数解析式可得:k=x﹣x2,∴2x2=x﹣x2,解得:x1=,x2=0(舍去),∴k=2x2=4,故答案为:4.【点评】本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.18.古希腊人常用小石子在沙滩上摆成各种形状来研究数.称图中的数1,5,12,22…为五边形数,则第6个五边形数是51 .【分析】计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.【解答】解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第5个五边形数是22+13=35,第6个五边形数是35+16=51.故答案为:51.【点评】本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:(﹣)÷,其中x是不等式组的整数解.【分析】先把括号内通分,再把除法运算化为乘法运算后约分得到=,接着解不等式组得到整数解,然后根据分式有意义的条件得到x的值,最后把x的值代入计算即可.要使原分式有意义,x只能取0,当x=0时,原式==﹣1.【解答】解:原式=•=•=,解不等式组得﹣2≤x≤1,它的整数解为﹣2,﹣1,0,1,要使原分式有意义,x只能取0,当x=0时,原式==﹣1.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是400 ;(2)扇形图中∠α的度数是108°,并把条形统计图补充完整;(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有900 人;该市九年级学生体育平均成绩约为75.5 分.【分析】(1)根据B级的人数和百分比求出学生人数;(2)求出A级的百分比,360°乘百分比即为∠α的度数,根据各等级人数之和等于总人数求出C 等级人数,补全条形图;(3)根据样本中D等级所占比例乘以总人数9000可得,运用加权平均数的求法即可求出九年级学生体育平均成绩.【解答】解:(1)本次抽样测试的学生人数是:160÷40%=400,故答案为:400;(2)扇形图中∠α的度数是:×360°=108°,C等级人数为:400﹣120﹣160﹣40=80(人),补全条形图如图:故答案为:108°;(3)测试等级为D的约有×9000=900(人),学生体育平均成绩约为:90×+75×+65×+55×=75.5(分),故答案为:900,75.5.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.四、21.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?【分析】(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据利润4000元和3500元列出方程组,然后求解即可;(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【解答】解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.【点评】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.22.如图,AB为⊙O的直径,BC、AD是⊙O的切线,过O点作EC⊥OD,EC交BC于C,交直线AD于E.(1)求证:CD是⊙O的切线;(2)若AE=1,AD=3,求阴影部分的面积.【分析】(1)首先作OH⊥CD,垂足为H,由BC、AD是⊙O的切线,易证得△BOC≌△AOE(ASA),继而可得OD是CE的垂直平分线,则可判定DC=DE,即可得OD平分∠CDE,则可得OH=OA,证得CD 是⊙O的切线;(2)首先证得△AOE∽△ADO,然后由相似三角形的对应边成比例,求得OA的长,然后利用三角函数的性质,求得∠DOA的度数,继而求得答案.【解答】(1)证明:作OH⊥CD,垂足为H,∵BC、AD是⊙O的切线,∴∠CBO=∠OAE=90°,在△BOC和△AOE中,,∴△BOC≌△AOE(ASA),∴OC=OE,又∵EC⊥OD,∴DE=DC,∴∠ODC=∠ODE,∴OH=OA,∴CD是⊙O的切线;(2)∵∠E+∠AOE=90°,∠DOA+∠AOE=90°,∴∠E=∠DOA,又∵∠OAE=∠ODA=90°,∴△AOE∽△ADO,∴=,∴OA2=EA•AD=1×3=3,∵OA>0,∴OA=,∴tanE==,∴∠DOA=∠E=60°,∵DA=DH,∠OAD=∠OHD=90°,∴∠DOH=∠DOA=60°,∴S阴影部分=×3×+×3×﹣=3﹣π.【点评】此题考查了切线的判定与性质、全等三角形的判定与性质、线段垂直平分线的性质、角平分线的性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.五、(本题12分)23.如图,在小山的西侧A处有一热气球,以25米/分钟的速度沿着与垂直方向所成夹角为15°的方向升空,40分钟后到达B处,这时热气球上的人发现,在A处的正东方向有一处着火点C,在B 处测得着火点C的俯角为30°,求热气球升空点A与着火点C的距离.(结果保留根号)【分析】在RT△ABD中求出AD,再在RT△ADC中求出AC即可解决问题.【解答】解:作AD⊥BC垂足为D,AB=40×25=1000,∵BE∥AC,∴∠C=∠EBC=30°,∠ABD=90°﹣30°﹣15°=45°,在Rt△ABD中,sin∠ABD=,AD=ABsin∠ABD=1000×sin45°=1000×=500,AC=2AD=1000,答:热气球升空点A与着火点C的距离是1000米.【点评】本题考查解直角三角形的应用、俯角俯角、三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住三角函数的定义,以及特殊三角形的边角关系,属于中考常考题型.六、(本题12分)24.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答】解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.【点评】此题主要考查了二次函数的应用,根据题意得出y与x的函数关系是解题关键.七、(本题12分)25.如图,△ABC与△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,连接BE,将BE绕点B顺时针旋转90°,得BF,连接AD,BD,AF(1)如图①,D、E分别在AC,BC边上,求证:四边形ADBF为平行四边形;(2)△DEC绕点C逆时针旋转,其它条件不变,如图②,(1)的结论是否成立?说明理由.(3)在图①中,将△DEC绕点C逆时针旋转一周,其它条件不变,问:旋转角为多少度时.四边形ADBF为菱形?直接写出旋转角的度数.【分析】(1)先根据△ABC与△DEC均为等腰直角三角形,以及旋转的性质,得出AD=BF,AD∥BF,进而得到四边形ADBF为平行四边形;(2)先延长BE交AD于G,交AC于O,根据△ABC与△DEC均为等腰直角三角形,判定△ACD≌△BCE (SAS),得出AD=BE,∠CAD=∠CBE,再根据“8字形”得出∠AGE=90°,判定AD∥BF,即可得出四边形ADBF为平行四边形;(3)分两种情况讨论:当旋转角∠BCE=135°时,当旋转角为315°时,分别判定△ACD≌△BCD,得到AD=BD,再根据四边形ADBF为平行四边形,得出四边形ADBF为菱形.【解答】解:(1)如图1,∵△ABC与△DEC均为等腰直角三角形,∴AC﹣DC=BC﹣EC,∴AD=BE,∵将BE绕点B顺时针旋转90°得BF,∴BE=BF,∴AD=BF,又∵∠ACB=90°,∠CBF=90°,∴∠C+∠CBF=180°,∴AD∥BF,∴四边形ADBF为平行四边形;(2)如图2,(1)中的结论仍成立.理由:延长BE交AD于G,交AC于O,∵△ABC与△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,∴DC=EC,AC=BC,∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,。
广东省韶关市中考数学模拟试卷(5)含答案解析
广东省韶关市中考数学模拟试卷(5)一、选择题(每题3分,共30分)1.比0大的数是()A.﹣1 B.C.0 D.12.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5 C.(2a)3=6a 3D.a6+a3=a94.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数B.频数分布C.中位数D.方差5.如果分式有意义,则x的取值范围是()A.全体实数B.x=1 C.x≠1 D.x=06.用3个相同的立方块搭成的几何体如图所示,则它的俯视图是()A.B. C.D.7.在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A.B.C.D.8.已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a<9.函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C.D.10.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3二、填空题(每题4分,共24分)11.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为.12.分解因式:x3﹣xy2=.13.如图AB∥CD,CE交AB于点A,AD⊥AC于点A,若∠1=48°,则∠2=度.14.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A'B'C',则Rt△A'B'C'的斜边A'B'上的中线C'D的长度为.15.分式方程=1的解是x=.16.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第2个矩形的面积为,第n个矩形的面积为.三、解答题(一)(每题6分,共18分)17.计算:﹣|﹣3|﹣()﹣1+2cos45°.18.如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.19.五一期间,小红到美丽的世界地质公园湖光岩参加社会实践活动,在景点P 处测得景点B位于南偏东45°方向;然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果精确到0.1米)四、解答题(二)(每题7分,共21分)20.“3•15”前夕,为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共瓶;(2)请你在答题卡上补全两幅统计图;(3)求图1中“甲”品牌所对应的扇形圆心角的度数;(4)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料有多少瓶?21.现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A 公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.22.如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)五、解答题(三)(每题9分,共27分)23.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求经过点C的反比例函数的(2)若直线AB上的点C在第一象限,且S△BOC解析式.24.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE 交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.25.在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,点O是AB边上动点,以O为圆心,OB为半径的⊙O与边BC的另一交点为D,过点D作AB的垂线,交⊙O于点E,联结BE、AE(1)当AE∥BC(如图(1))时,求⊙O的半径长;(2)设BO=x,AE=y,求y关于x的函数关系式,并写出定义域;(3)若以A为圆心的⊙A与⊙O有公共点D、E,当⊙A恰好也过点C时,求DE 的长.广东省韶关市中考数学模拟试卷(5)参考答案与试题解析一、选择题(每题3分,共30分)1.比0大的数是()A.﹣1 B.C.0 D.1【考点】有理数大小比较.【分析】比0的大的数一定是正数,结合选项即可得出答案.【解答】解:4个选项中只有D选项大于0.故选D.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既是轴对称图形,又是中心对称图形,故本选项正确;B、不是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,又是中心对称图形,故本选项错误.故选A.3.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5 C.(2a)3=6a 3D.a6+a3=a9【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】直接利用合并同类项法则以及结合幂的乘方与积的乘方法则,分别化简求出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、a2•a3=a5,正确,符合题意;C、(2a)3=8a 3,故此选项不合题意;D、a6+a3,无法计算,故此选项不合题意;故选:B.4.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数B.频数分布C.中位数D.方差【考点】方差.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生了5次短跑训练成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选D.5.如果分式有意义,则x的取值范围是()A.全体实数B.x=1 C.x≠1 D.x=0【考点】分式有意义的条件.【分析】分式有意义,分母x﹣1≠0,据此可以求得x的取值范围.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故选C.6.用3个相同的立方块搭成的几何体如图所示,则它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看左边一个正方形右边一个正方形,故D正确;故选:D.7.在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A.B.C.D.【考点】概率公式.【分析】根据摸出一个球是绿球的概率是,得出蓝球的个数,进而得出小球总数,即可得出随机摸出一个球是蓝球的概率.【解答】解:∵在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,随机摸出一个球是绿球的概率是,设蓝球x个,∴=,解得:x=9,∴随机摸出一个球是蓝球的概率是:.故选:D.8.已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a<【考点】解一元一次不等式组;点的坐标.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点P(1﹣2a,a+3)在第二象限,得.解得a>,故选B.9.函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先把一次函数化为y=ax﹣a,再分情况进行讨论,a>0时;a<0时,分别讨论出两函数所在象限,即可选出答案.【解答】解:y=a(x﹣1)=ax﹣a,当a>0时,反比例函数在第一、三象限,一次函数在第一、三、四象限,当a<0时,反比例函数在第二、四象限,一次函数在第一、二、四象限,故选:A.10.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3【考点】圆内接四边形的性质;坐标与图形性质;含30度角的直角三角形.【分析】先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.【解答】解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵AB是⊙C的直径,∴∠AOB=90°,∴∠ABO=90°﹣∠BAO=90°﹣60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长==3.故选:C.二、填空题(每题4分,共24分)11.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为 5.25×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.12.分解因式:x3﹣xy2=x(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).13.如图AB∥CD,CE交AB于点A,AD⊥AC于点A,若∠1=48°,则∠2=42度.【考点】平行线的性质.【分析】先根据平行线的性质求出∠C的度数,再由直角三角形的性质即可得出∠2的度数.【解答】解:∵AB∥CD,∠1=48°,∴∠C=∠1=48°,∵AD⊥AC,∴∠CAD=90°,∴∠2=90°﹣∠C=90°﹣48°=42°.故答案为;42.14.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A'B'C',则Rt△A'B'C'的斜边A'B'上的中线C'D的长度为8.【考点】旋转的性质.【分析】根据旋转的性质得到A′B′=AB=16,然后根据直角三角形斜边上的中线性质求解即可.【解答】解:∵Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,∴A′B′=AB=16,∵C′D为Rt△A′B′C′的斜边A′B′上的中线,∴C′D=A′B′=8.故答案为:8.15.分式方程=1的解是x=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=x+1,解得:x=,经检验x=是分式方程的解,故答案为:16.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第2个矩形的面积为,第n个矩形的面积为()2n﹣2.【考点】三角形中位线定理;菱形的性质;矩形的性质.【分析】易得第二个矩形的面积为()2,第三个矩形的面积为()4,依此类推,第n个矩形的面积为()2n﹣2.【解答】解:已知第一个矩形的面积为1;第二个矩形的面积为原来的()2×2﹣2=;第三个矩形的面积是()2×3﹣2=;…故第n个矩形的面积为:()2n﹣2.故答案为:;()2n﹣2.三、解答题(一)(每题6分,共18分)17.计算:﹣|﹣3|﹣()﹣1+2cos45°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用算术平方根的定义以及结合特殊角的三角函数值、绝对值的性质、负整数指数幂的性质分别化简求出答案.【解答】解:原式=2﹣3﹣2+2×=﹣﹣2+=﹣2.18.如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.【考点】作图—基本作图;等腰三角形的性质.【分析】(1)利用尺规作∠ABC的平分线BF交AC于D.(2)根据∠BDC=∠ABD+∠A,求出∠ABD以及∠A即可解决问题.【解答】解:(1)如图,∠ABC的平分线如图所示.(2)∵AB=AC,∴∠ABC=∠C=70°,∴∠A=180°﹣70°﹣70°=40°,∵BD平分∠ABC,∴∠ABD=∠ABC=35°,∴∠BDC=∠ABD+∠A=35°+40°=75°.19.五一期间,小红到美丽的世界地质公园湖光岩参加社会实践活动,在景点P 处测得景点B位于南偏东45°方向;然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果精确到0.1米)【考点】解直角三角形的应用﹣方向角问题.【分析】由已知作PC⊥AB于C,可得△ABP中∠A=60°∠B=45°且PA=100m,要求AB的长,可以先求出AC和BC的长.【解答】解:由题意可知:作PC⊥AB于C,∠ACP=∠BCP=90°,∠APC=30°,∠BPC=45°.在Rt△ACP中,∵∠ACP=90°,∠APC=30°,∴AC=AP=50,PC=AC=50.在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴BC=PC=50.∴AB=AC+BC=50+50≈50+50×1.732≈136.6(米).答:景点A与B之间的距离大约为136.6米.四、解答题(二)(每题7分,共21分)20.“3•15”前夕,为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共200瓶;(2)请你在答题卡上补全两幅统计图;(3)求图1中“甲”品牌所对应的扇形圆心角的度数;(4)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料有多少瓶?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据乙的瓶数40,所占比为20%,即可求出这四个品牌的总瓶数;(2)根据丁品牌饮料的瓶数70,总瓶数是200,即可求出丁所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以总瓶数,即可得出丙的瓶数,从而补全统计图;(3)根据甲所占的百分比,再乘以360°,即可得出答案;(4)用月销售量×(1﹣平均合格率)即可得到四个品牌的不合格饮料的瓶数.【解答】解:(1)四个品牌的总瓶数是:40÷20%=200(瓶);(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙的瓶数是:200×15%=30(瓶);如图:(3)甲所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:200000×(1﹣95%)=10000(瓶).答:这四个品牌的不合格饮料有10000瓶.故答案为:200.21.现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A 公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.【考点】分式方程的应用.【分析】设甲安装队每天安装x台空调,则乙安装队每天安装(x﹣2)台空调,根据乙队比甲队多用时间一天为等量关系建立方程求出其解即可.【解答】解:设甲安装队每天安装x台空调,则乙安装队每天安装(x﹣2)台空调,由题意,得,解得:x1=22,x2=﹣6.经检验,x1=22,x2=﹣6都是原方程的根,x=﹣6不符合题意,舍去.∴x=22,∴乙安装队每天安装22﹣2=20台.答:甲安装队每天安装22台空调,则乙安装队每天安装20台空调.22.如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)【考点】切线的判定;弧长的计算.【分析】(1)连接BD,OD,求出OD∥BC,推出OD⊥DE,根据切线判定推出即可;(2)求出∠BOD=∠GOB,求出∠BOD的度数,根据弧长公式求出即可.【解答】(1)证明:如图1,连接BD、OD,∵AB是⊙O直径,∴∠ADB=90°,∴BD⊥AC,∵AB=BC,∴AD=DC,∵AO=OB,∴OD是△ABC的中位线,∴DO∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为半径,∴DE是⊙O切线;(2)解:如图2所示,连接OG,OD∵DG⊥AB,OB过圆心O,∴弧BG=弧BD,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠BOG=∠BOD=70°,∴∠GOD=140°,∴劣弧DG的长是=π.五、解答题(三)(每题9分,共27分)23.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求经过点C的反比例函数的(2)若直线AB上的点C在第一象限,且S△BOC解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式;(2)根据三角形的面积公式和直线解析式求出点C的坐标,即可求解.【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2;(2)设点C的坐标为(m,n),经过点C的反比例函数的解析式为y=,∵点C在第一象限,=×2×m=2,∴S△BOC解得:m=2,∴n=2×2﹣2=2,∴点C的坐标为(2,2),则a=2×2=4,∴经过点C的反比例函数的解析式为y=.24.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE 交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)要证明CF=CH,可先证明△BCF≌△ECH,由∠ABC=∠DCE=90°,AC=CE=CB=CD,可得∠B=∠E=45°,得出CF=CH;(2)根据△EDC绕点C旋转到∠BCE=45°,推出四边形ACDM是平行四边形,由AC=CD判断出四边形ACDM是菱形.【解答】(1)证明:∵AC=CE=CB=CD,∠ACB=∠ECD=90°,∴∠A=∠B=∠D=∠E=45°.在△BCF和△ECH中,,∴△BCF≌△ECH(ASA),∴CF=CH(全等三角形的对应边相等);(2)解:四边形ACDM是菱形.证明:∵∠ACB=∠DCE=90°,∠BCE=45°,∴∠1=∠2=45°.∵∠E=45°,∴∠1=∠E,∴AC∥DE,∴∠AMH=180°﹣∠A=135°=∠ACD,又∵∠A=∠D=45°,∴四边形ACDM是平行四边形(两组对角相等的四边形是平行四边形),∵AC=CD,∴四边形ACDM是菱形.25.在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,点O是AB边上动点,以O为圆心,OB为半径的⊙O与边BC的另一交点为D,过点D作AB的垂线,交⊙O于点E,联结BE、AE(1)当AE∥BC(如图(1))时,求⊙O的半径长;(2)设BO=x,AE=y,求y关于x的函数关系式,并写出定义域;(3)若以A为圆心的⊙A与⊙O有公共点D、E,当⊙A恰好也过点C时,求DE 的长.【考点】圆的综合题;全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质;勾股定理;平行四边形的判定与性质;锐角三角函数的定义.【分析】(1)过点O作OG⊥BD于G,设AB与DE的交点为F,如图(1),易证△AEF≌△BDF及四边形AEDC是平行四边形,从而可得BD=DC=5,根据垂径定理可得BG=DG=BD=,然后在Rt△BGO中运用三角函数和勾股定理即可求出⊙O的半径长;(2)过点A作AH⊥BC于H,如图(2),运用三角函数、勾股定理及面积法可求出AC、AB、AH、BH、CH,根据垂径定理可得DF=EF,再根据线段垂直平分线的性质可得AE=AD.然后在Rt△BGO中运用三角函数和勾股定理可求出BG(用x的代数式表示),进而可用x的代数式依次表示出BD、DH,AD、AE,问题得以解决;(3)①若点D在H的左边,如图(2),根据等腰三角形的性质可得DH=CH,从而依次求出BD、DF、DE的长;②若点D在H的右边,则点D与点C重合,从而可依次求出BD、DF、DE的长.【解答】解:(1)过点O作OG⊥BD于G,设AB与DE的交点为F,如图(1),根据垂径定理可得BG=DG.∵AE∥BC,∴∠AEF=∠BDF.在△AEF和△BDF中,,∴△AEF≌△BDF,∴AE=BD.∵∠BFD=∠BAC=90°,∴DE∥AC.∵AE∥BC,∴四边形AEDC是平行四边形,∴AE=DC,∴BD=DC=BC=5,∴BG=DG=BD=.在Rt△BGO中,tan∠OBG==,∴OG=BG=×=,∴OB===,∴⊙O的半径长为;(2)过点A作AH⊥BC于H,如图(2),在Rt△BAC中,tan∠ABC==,设AC=3k,则AB=4k,∴BC=5k=10,∴k=2,∴AC=6,AB=8,∴AH===,∴BH===,∴HC=BC﹣BH=10﹣=.∵AB⊥DE,∴根据垂径定理可得DF=EF,∴AB垂直平分DE,∴AE=AD.在Rt△BGO中,tan∠OBG==,∴OG=BG,∴OB===BG=x,∴BG=x,∴BD=2BG=,∴DH=BH﹣BD=﹣x,∴y=AE=AD====(0<x≤);(3)①若点D在H的左边,如图(2),∵AD=AC,AH⊥DC,∴DH=CH=,∴BD=BH﹣DH=﹣=.在Rt△BFD中,tan∠FBD==,∴BF=DF,∴BD===DF=,∴DF=,∴DE=2DF=;②若点D在H的右边,则点D与点C重合,∴BD=BC=10,∴DF=10,∴DF=6,∴DE=2DF=12.综上所述:当⊙A恰好也过点C时,DE的长为或12.3月22日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考模拟试题(五)一、单项选择题(每小题2分,共16分。
每小题只有一个选项正确。
请把正确选项的字母填在题后的括号内)1.感受身边的物理——质量为1.5×106mg的物体最可能的是()A.一只母鸡B.一头大象C.一头奶牛D.一只蚊子2.在我国的许多地方,过春节人们喜爱放鞭炮(如图1所示),下面是四位同学关于这件事的观点,你觉得谁的观点最正确()A.小明:放鞭炮能增加节日的喜庆气氛,鞭炮声不能算作噪声。
B.小华:放鞭炮没有任何好处。
C.小轩:放鞭炮虽然可以烘托节日气氛,但它会产生噪声、空气污染问题。
D.小新:只要用收录机播放鞭炮的录音,就不存在噪声污染问题了。
图13.许多家庭的门上都装有防盗门镜(俗称“猫眼”)。
从室内透过防盗门镜向外看,可以看到来客的正立、缩小的像。
由此可以断定,此时防盗门镜的作用相当于一个()A.凸透镜B.凹透镜C.三棱镜D.玻璃砖4.下列各种自然现象形成的过程中,要吸收热量的是()A. 春天,冰雪融化汇成的溪流B. 夏天,冰箱门口飘出的“白气”C. 秋天,草丛之上晶莹的露珠D. 冬天,天上纷纷飘落的雪花5.如右图2,旅游登山时蔓背囊中的物品有轻有重,应该怎样摆放更科学呢? ( ) A.把重的物品放在背囊下部。
B.把重的物品放在背囊上部。
C.从取拿方便考虑,把常用的放上部。
D.随意摆放都可以。
图26.如图3所示的家庭电路中,有两个器件连接错误,它们是( ) A.闸刀开关和带开关的灯泡B.带开关的灯泡和带熔丝的二线插座C.带开关的灯泡和三线插座D.闸刀开关和三线插座图37.一只粉笔盒放在水平的讲台面上。
以下关于这只粉笔盒所涉及到的物理知识的叙述中,说法正确的是()A.它对讲台的压力和讲台对它的支持力是平衡力B.它所受到的合力为零C.因为它处于静止,所以它没有惯性D.它不能自动地沿桌面滑动,是因为它受到摩擦力8. 关于电冰箱,以下说法正确的是()A.电冰箱的温度比较低,这是液体蒸发吸热造成的B.电冰箱散热器摸起来烫手,这主要是电流的热效应造成的C.夏天,打开电冰箱看到的“白烟”是冰箱内蔬菜水果等蒸发产生的水蒸气D.家用电冰箱的耗电功率通常超过1000W二、双项选择题(每小题3分,共9分。
每小题有两个选项正确。
请把正确选项的字母填在题后的括号内。
只写出一个选项而且正确的得1分)9.课外活动时,小明和小华均在操作上沿直线进行跑步训练.在某次训练中,他们通过的路程和时间的关系如图4所示,则下列说法中正确的是()A.两人都做匀速直线运动B. 两人都不是做匀速直线运动C. 前2s内,小华跑得较快D.全程中,两人跑步的平均速度相同10.《中华人民共和国道路交通安全法》已于04年5月1 日图4所正式实施,为交通安全提供了一定的法律保障.下列对汽车行驶情况分析正确的是()A. 速度越大,则惯性越大,汽车就难以停下B. 刹车后,由于摩擦力的作用,因而汽车的速度逐渐减少C. 只要后面汽车的行驶速度小于前面的汽车,就无需对行车间距加以限制D.汽车行驶速度、车距、路面情况等均是影响交通安全的因素11.如图5所示,电池组电压一定.关于电路工作情况,下列说法中正确的是()A.闭合S1、S2时,两只灯泡是并联的B.若先闭合S1,再闭合S2,电压表、电流表的读数均变小C.若先闭合S1,再闭合S2,电压表、电流表的读数均变大D.若先闭合S1,再闭合S2,电压表读数不变、电流表读数变大图5三、填空题(每小题2分,共20分。
将正确答案写在题中横线上的空白处)12.教室中使用的投影仪应用了凸透镜成(选填“放大”或“缩小”、“实”或“虚”)像的原理。
某投影机闭合一个开关电风扇先转动,再闭合一个开关灯才亮,由此可以判定灯与电风扇是联的。
13.把长10cm左右的饮料吸管A插在盛水的杯子中,另一根吸管B的管口贴靠在A管的上端,往B管中吹气,如图6所示,你看到的现象是____________________________ 。
你判断的依据是__________________________________ 。
图614.有时瓶盖拧得太紧,为了把它打开,往往要包上一块毛巾后再拧,这样做的目的是为了增大______ ,从而达到增大______ 。
15.工人利用如图7所示的滑轮组将重900N的物体竖直向上匀速提升0.5m,工人对绳的拉力为600N,则滑轮组对重物所做的有用功W有用=__________J,该滑轮组此时的机械效率η=________%.图7 16.冬天,李明同学插上电热取暖器的插头后,发现室内电灯变暗了,他用电压表测量供电电压,结果发现不接取暖器时电压是210V,接上电热取暖器后电压降为200V,他用的电热取暖器上标有“220V,1000W的字样。
由此可以知道供电电路的电阻为__________Ω,电热取暖器的实际功率为____________W。
17.小红家中的电能表如图8所示,根据电能表的铭牌,你能读到哪些信息?请写出其中两条:(1)_________________。
(2)___________________ 。
图818.图示9为一闸刀开关,标出的7个部分中属于绝缘体的两个部分是胶盖和_______,熔丝的作用是当电路发生短路或____________情况时,自动切断电路,起保护电路作用。
19.自然界的物质存在各种物理性质,组成物体的物质不同,它们的性质一般不同.在弹簧测力计、橡皮泥、保险丝和指南针等物体中,利用磁性工作的是,利用弹性工作的是。
20.将图10中的电磁铁连入你设计的电路中(在方框内完成),要求:A.电路能改变电磁铁磁性的强弱;B.使小磁针静止时如图所示.图10图1121.传送带上有一个物体M,质量为2kg,它与传送带一起以lm/s的速度在水平方向向右匀速运动,不计空气阻力.请在图11中画出M受力情况的示意图.四、分析与简答题(每小题5分,共10分)22.冬天,地处北部山区的一些居民,为了室内的保温,常把纸条粘在窗缝处,俗称“溜窗缝”.为了使纸条不因潮湿而脱落,通常把纸条粘在室外的窗缝处.请你用学过的物态变化知识解释:为什么不把纸条粘在室内的窗缝处?23.某同学要利用一把卷尺和一小块平面镜测出如图12所示的水平地面上的一棵大树的高度.(1)画图表示他的测量方法,并简述测量的主要步骤.(2)用字母表示所测得的量,写出大树高度H的表达式H=五、实验与探究(本题共22分)24. 妈妈在做菜时问小刚,你知道花生油的密度是多大?⑴小刚想,花生油是油类,它的密度应该比水小,于是他滴了一滴油在水中,发现油浮在水上,由此可以证明他的猜想是________的.⑵到学校后,他做了如下实验:先用调好的天平测出烧杯和花生油的总质量150g,然后将一部图9图12分花生油倒入量筒中,再测出剩余花生油和烧杯的质量为107.6g ,读出量筒中花生油的体积,如图13甲所示,最后算出花生油的密度,请你将测得的结果填入下表.⑶图13乙是他在实验结束后整理器材的情景,其中操作不规范的是________________________ 。
25 . 利用身边的物品、廉价的材料进行物理实验,探究物理规律,是学习物理的好方法。
给你一个透明玻璃杯、一支一端削尖的铅笔、几张白纸、足够的水,请你选用这几种器材,设计两个不同原理的小实验来研究或说明相关的物理问题。
实验器材 研究或说明的物理问题 实验1实验226.积雪对公路行车的危害主要表现在路况的改变。
路面积雪经车辆压实后,车轮与路面的摩擦力减小,汽车易左右滑摆。
同时,汽车的制动距离也难以控制,一旦车速过快、转弯太急,都可能发生交通事故。
专家研究表明,气温不同,积雪的厚薄不同,对汽车的危害也不一样。
当积雪厚度在5~15cm ,气温在0℃左右时,汽车最容易发生事故。
因为在这种条件下,路面上的冰雪常会呈“夜冻昼化”状态。
此时,护路工人常在路面上撒大量的盐,以避免“夜冻昼化”现象,即在相同气温条件下,融化了的冰雪不再结冰,从而减少交通事故的发生。
提出问题:在相同气温条件下,为什么水不再结冰了?猜想与假设:请你用学过的物理知识,针对这一现象产生原因提出一个合理的猜想,并说出你猜想的理由。
猜想:理由:设计实验方案:针对你的猜想,设计一个实验方案验证猜想的正确性。
实验方案及主要步骤: 。
分析与交流;除了在路面上撒盐外,你还有什么常用的办法,可以避免减少交通事故,这样做的道理是什么?方法:道理:27. 现要保持电压U 不变,探究电流I 随电阻R 变化的情况.( 1 ) 要求:第一次是把15Ω的电阻接人电路,调节滑动变阻器的阻值,使电压表的示数为2 . 5V ,读取电流表示数,请你根据要求在如图14中连接第一次实验所需的电路.( 2 ) 若将15Ω的电阻换成10Ω的电阻后,a .闭合开关,电压表的示数将b .按照你连接的电路,你应该向 移动滑动变阻烧杯和花生油的总质量(g ) 烧杯和剩余花生油的质量(g ) 花生油的质 量(g ) 量筒中花生油的体积(cm 3)花生油的密度g/ cm 3 150 107.6 乙甲 图13 图14器的滑片.并详细叙述你接下来的操作过程:六、综合类题(本题共23分)28. 如图15所示,电源电压为6V,灯泡上只标有“2V”字样,变阻器R的最大阻值是20Ω,当滑动头置于中点时,小灯泡正常发光,根据以上数据,请算出4个电学量。
29.物体的稳定性,也称稳度,它是指物体在同样受力的情况下,是否容易倾倒,稳度高,物体就不容易倾倒,为了探究影响稳度的因素,王伟同学做了下面一个实验,把一个如图16所示的物体放在水平地面上,用力推上端使之倾倒,然后再把该物体倒置在水平地面上,用同样大小的力去推它,王伟发现,第_________次(填“一”或“二”)更容易倾倒,由此王伟发现稳度至少与物体的_________有关,若王伟第一次是在A处推物体,请画出它所用最小推力的方向。
图16 30.全国铁路大提速给人们的出行带来极大的便利。
在桂林北到南宁之间约437km的铁道线上,运行着两对“城际快速列车”N801/N802次和N803/N804次。
下面是N801次快速列车的运行时刻表。
请根据列车时刻表回答下列问题:(1)N801次列车由桂林北到南宁全程的平均速度大约是多少km/h?(2)若列车是由东风4型内燃机车做牵引,列车行驶时机车的功率平均大小约为2.0×103kw,那么从桂林北到南宁,内燃机车所做的功大约是多少J?(3)请你根据上述表中信息再提出一个物理问题并进行解答。
31.小王家新买的电热淋浴器的铭牌如右表所示。
小王按说明书要求给淋浴器装满水,通电50 min,观察到淋浴器上温度计示数由23℃上升到45℃。
求:(1)在加热过程中,水箱中水吸收的热量是多少J?[C水=4.2×103 J/(kg·℃)](2)电热淋浴器加热过程中消耗的电能是多少J?(3)比较(1)、(2)两问计算结果,你认为违背能量守恒吗?为什么?额定电压 220 V~额定频率 50 Hz输入功率 1 600 W水箱容积 50 L防触电保护类别×生产编号××站名湛江阳江阳春广州到站时间8:17 10:30 13:26发车时间8:06 8:26 10:34里程0 11 176 43732.阅读下列短文,回答问题:汽车作为曾经推动人类文明向前跃进的现代社会的产物,在给人类的生活带来便捷舒适的同时,对自然生态环境的恶化也有难以推卸的责任。