第2章 植物的水分生理

合集下载

第二章 植物的水分生理

第二章 植物的水分生理
第二章 植物的水分生理
水是生命的源泉,生命不仅发生于水的环境,而且生命过程必须在 水的环境中进行。 水是原生质的最主要成分,原生质的含水量大约在70-90%。在细胞 中物质的代谢、运输及生物体中细胞间的信号传递、物质运输都是 在水溶液中进行的。 水不仅是细胞内代谢反应的基质,而且直接参加了许多生物化学反 应。 细胞的含水量与其生理活动强弱常常是密切相关的。
植物体在一生中需要不断的吸收和散失水分。 水分吸收是其生命活动的需要,而水分散失也是植物必须的。 如,水分可以维持其适宜的体温,夏季炎热干燥的环境,叶片每小 时散失的水分相当于自身所含的全部水分,通过蒸发,将光照带来 的多余的热量散失掉,避免了温度升高的危害。在典型情况下,叶 片吸收的光能有约一半被这种方式消耗掉; 又如水分散失产生的蒸腾拉力,可将根系吸收的矿质元素带到地上 部。
维持导管水流的连续性。
水的内聚力 水分子间的氢键使水分子间存在很大的引力。
粘附力
液固相间引力,如水分子与导管壁表面分子之间存在粘附力。
4. 良好溶剂
水分子体积小、具有极性,是许多电解质和极性分子的良好溶剂, 是已知的溶解范围最宽的溶剂。 水分子可以在离子或极性大分子表面形成水合层,降低溶质分子间 的作用,促进溶解。
分生组织:通过细胞壁的果胶、纤维素,胞内蛋白质亲水胶体对水的 吸附力吸收水分,ψm是也是细胞水势的主要组分。
3. 降压吸水(negative pressure absorption of water)
指因ψp的降低而引发的细胞吸水。 ψp<0,细胞水势更低,吸水力更强。
(三)细胞吸水过程中水势组分的变化
是指液体中成群的原子或分子(例如组成水溶液的各种物质的分子)在压 力梯度(要受两端压力势差控制。

2 第2章 植物的水分生理--自测题

2 第2章 植物的水分生理--自测题

第 2 章 植物的水分生理自测题:一、名词解释:1水分代谢 2.水势 3.渗透势 4.压力势 5. 衬质势 6.重力势 7.自由水 8.束缚水 9.渗透作用10.吸胀作用 11.代谢性吸水 12.水的偏摩尔体积 13.化学势 14.水通道蛋白 15.吐水 16.伤流 17.根压18.蒸腾拉力 19.蒸腾作用 20.蒸腾速率 21.蒸腾比率 22.蒸腾系数 23.小孔扩散律 24 .永久萎蔫25.临界水势 26.水分临界期 27.生理干旱 28.内聚力学说 29.节水农业二、 缩写符号翻译:1. atm2.bar3.MPa4.Pa5.PMA6.RH7.RWC8.μw9.V w 10.Wact11.Ws 12.WUE 13.ψw 14.ψp 15.ψs 16.ψm 17.ψπ 18.AQP 19.RDI 20.SPAC三、 填空题:1.植物细胞吸水方式有 、 和 。

2.植物调节蒸腾的方式有 、 和 。

3.植物散失水分的方式有 和 。

4.植物细胞内水分存在的状态有 和 。

5.水孔蛋白存在于细胞的 和 上。

水孔蛋白活化依靠 作用调节。

6.细胞质壁分离现象可以解决下列问题: 、 和 。

7.自由水/束缚水比值越大,则代谢 ;其比值越小,则植物的抗逆性 。

8.一个典型细胞的水势等于 ;具有液泡的细胞的水势等于 ;干种子细胞的水势等于 。

9.形成液泡后,细胞主要靠 吸水。

10.风干种子的萌发吸水主要靠 。

11.溶液的水势就是溶液的 。

12.溶液的渗透势决定于溶液中 。

13.在细胞初始质壁分离时,细胞的水势等于 ,压力势等于 。

14.当细胞吸水达到饱和时,细胞的水势等于 ,渗透势与压力势绝对值 。

15.将一个ψp=-ψs 的细胞放入纯水中,则细胞的体积 。

16.相邻两细胞间水分的移动方向,决定于两细胞间的 。

17.植物可利用水的土壤水势范围为 。

18.植物根系吸水方式有: 和 。

前者的动力是__ ,后者的动力是 。

植物生理学02植物的水分关系

植物生理学02植物的水分关系

第二节 植物对水分的吸收
一、植物细胞的吸水
细胞对水分的吸收主要有渗透性吸水和吸胀吸水两种方式。
(一)细胞的渗透性吸水 水分从水势高的系统通过半透膜向水势低的系
统移动的现象,称之为渗透作用。 渗透系统的条件:半透膜及半透膜两侧有浓度差
(图)。
A
B
糖液 半透膜 纯水
图 半透膜的渗透作用 .漏斗内未加糖时,液面与烧杯中的纯水相平 .漏斗内加糖后,渗透作用使烧杯内水面下降而漏斗内液面上升
. 植物细胞的水势组成 水势(Ψ)溶质势(Ψ)压力势(Ψ) 衬质势(Ψ)
()溶质势
溶质势也称渗透势(Ψπ),是由于溶质颗粒 与水分子作用而引起细胞水势降低的数值,与溶液 中溶质颗粒的数目成反比,即溶质越多,溶质势越 小,水势越小。所以,溶液的浓度与水势成反比。 溶质势为负值。
()衬质势
衬质势是指细胞中的亲水物质(如蛋白质、淀 粉粒、纤维素、核酸等大分子)对水分子的束缚而 引起水势下降的数值,因此也为负值。已形成液泡 的细胞,其亲水胶体已被水饱和,衬质势忽略不计。
(一)根系的吸水区域
根尖是吸水的主要区域。在根尖,位于伸长区后的 根毛区表皮细胞突起,形成大量根毛,这是根系吸水的 主要部位。
在未形成液泡之前细胞靠吸胀(涨)作用吸水, 如风干种子的萌发吸水。
(三)代谢性吸水
植物细胞利用呼吸作用产生的能量使水分 经过质膜进入细胞的过程,叫做代谢性吸水。
证据
当通气良好时,细胞呼吸加强,细胞吸水增强; 相反,减小氧气或以呼吸抑制剂处理时,细胞呼吸速率 降低,细胞吸水减少。
二、植物根系的吸水
一个成熟的植物细胞就是一个完整的渗透装置
细胞壁 (全透性) 细胞膜 原 液泡膜 生
质 细胞质 层 细胞液 细胞核

第二章 水分生理

第二章 水分生理

44
3.温度
▵ 气孔开度一般随温度的升高而增大。在30℃左右,气孔
开度达最大。
但35℃的温度会引起气孔开度减小。
低温下(如10℃)长时期光照也不能使气孔张开。 ▵ 温度对气孔开度的影响可能是通过影响呼吸作用和光合 作用,改变叶内CO2 浓度而起作用的。
45
4.水分
▵ 缺水可导致植物保卫细胞失水而关闭气孔。
第四节 蒸腾作用 一、蒸腾作用的生理意义和蒸腾部位 二、气孔蒸腾 三、影响蒸腾作用的外、内条件 第五节 植物体内水分的运输 一、水分运输的途径 二、水分运输的速度 三、水分沿导管或管胞上升的动力
第三节 植物根系对水分的吸收
一、根系吸水的途径 二、根系吸水的动力 三、影响根系吸水的土壤条件
第六节 合理灌溉的生理基础
2.压力势Ψp 由于细胞壁压力的存在而引起的细胞水势增加
的值叫压力势,一般为正值。
3.衬质势Ψm 是细胞胶体物质的亲水性和毛细管对自由水的
束缚作用而引起水势降低的值,以负值表示。 一个具有液泡的成熟细胞的水势主要由渗透势和压力势组成, 即 Ψw=Ψπ+Ψp
14
㈣ 细胞间的水分移动
▵ 相邻两细胞的水分移动方向,决定于两细胞间的水 势差异,水势高的细胞中的水分向水势低的细胞流动。
15
二、细胞的吸涨作用
▵吸涨:指亲水胶体吸水膨胀的现象。 ▵吸胀力:干燥种子细胞质、细胞壁、淀粉粒、蛋白质等等生 物大分子都是亲水性的,而且都处于凝胶状态,它们对水分子的 吸引力很强,这种吸引水分子的力称为吸胀力。 ▵吸胀作用:因吸胀力的存在而吸收水分子的作用称为吸胀作 用。 吸胀力实际上就是衬质势,即由吸胀力的存在而降低的水势值。
渗 透:是指溶剂分子通过半透膜而移动的现象。

第二章植物的水分代谢

第二章植物的水分代谢

第2章植物的水分代谢一、名词解释1. 水分代谢2. 自由水3. 束缚水5. 化学势7. 水势10. 渗透作用11. 半透膜12. 溶质势势降低的数值.溶质势表示溶液中水分潜在的渗透水平的大小,因此, 溶质势乂可称为了渗透势(osmosis potential, 兀).溶质势可用小s=RTlnNw/ V w,m公式计算,也可按范特霍夫公式小s=小TT =-iCRT计算.13. 衬质势14. 压力势15. 重力势.16. 膨压17. 集流18. 质壁别离20. 水通道蛋白22. 吸胀作用23. 根压24 .伤流25. 吐水29水分临界期.30 .蒸腾效率31. 蒸腾系数40、被动吸水41、等渗溶液42、主动吸水二、填空题1 .将一植物细胞放人纯水(体积很大)中,到达平衡时测得其小视-0.26Mpa,那么该细胞的n p为了n必.3. 将一植物细胞放入小w=0.8 MPa的溶液(体权相对细胞来说很大)中,吸水到达平衡时测得细胞的小s=-o.95MPa,那么该细胞内的小p为了,小叫.4. 某种植物形成5g十物质消耗了2.5Kg水,其蒸腾效率为了蒸腾系数为了.5. 植物体内自由水/束缚水比值降低时,植物的代谢活动 ,抗逆性o8 .利用质壁别离现象可以判断细胞、细胞的以及观测物质透过原生质层的难易程度.9 .根系吸水有主动吸水和被动吸水两种方式,前者的动力是 ,后者的动力是010 .和纯水相比,含有溶质的水溶液其冰点, 渗透势.11. 在干旱条件下,植物为了了维持体内的水分平■衡,一方面要一方面要尽量.12. 水分沿着导管或管胞上升的下端动力是,上端动力是.由丁的存在,保证水柱的连续性而使水分不断上升.这一学说在植物生理学上被称为了014. 气孔在叶面所占的面积一般为了 ,但气孔蒸腾失去了植物体内的大量水分,这是由于气孔蒸腾符合原理,这个原理的根本内容17.一般认为了,植物细胞吸水时起到半透膜作用的是:、和三个局部.19. 细胞中的自由水越多,原生质粘性 ,代谢 ,抗性.21. 植物细胞发生初始质壁别离时,其W w =;当细胞吸水到达饱和时,其W w= o22. 一般植物细胞W w= ;当细胞刚发生质壁别离时,其WW= 023. 液泡化的植物细胞,其水势主要由__________ 和成,而以忽略不计.27. 种子萌发时靠 '乍用吸水,其吸水量与关.28. 分生组织主要依靠水,形成液泡的细胞主要靠吸水.30. 以下吸水过程中水势的组分分别是:吸胀吸水W w=;渗透吸水Ww= ___________ _________ w= ;分生组织细胞吸水W w= ; 一个典型细胞水势组分,W w= ;成长植株的细胞吸水W w=31. 当细胞发生质壁别离时,压力势为了,细胞的水势等于 ,当细胞水势等于零时,细胞的和相等,但方向 .32. 当细胞处于质壁别离时,Wp= , Ww= ;当细胞充分吸水完全膨胀时,W p= , Ww= 在细胞初始质壁别离与充分吸水膨胀之间,随着细胞吸水,W s=, W p=, Ww= o35. 一个细胞的W s=-1.9Mpa, W p=0.9Mpa将其放入装有纯水的烧杯中,当到达平衡时细胞体积增加了30%该时细胞的W s为了, Wp为了, WW为了.36. 植物根部吸水水平最强的部位为了,由于.38. 植物从叶尖、叶缘分泌液滴的现象称为了 ,其动力是.40. 在暖湿天气条件下,植物吸水动力主要是 ,在十热天气下,植物吸水动力士适旦TE o41. 一般说来,蒸腾强烈的植物,吸水主要是由‘引起的,蒸腾程度很弱的植物, 吸水主要由■引起.45. _____________________ 根系吸水动力有________ 和两种.前者与有关,后者那么与关.48. 植物失水有_______ 和种方式.49. _________________________ 蒸腾可促进植物体内的和■向上运输,乂可防止叶面受到害.51.水分通过气孔扩散的速度与小孔的正比,不与小孔的正比.58. 提升保卫细胞内?_________________ 和可使气孔关闭.59. 气孔开闭的无机离子吸收(K泵)学说认为了气孔在光照下张开时,保卫细胞内子浓度升高,这是由于保卫细胞内含 ,在光照下可以产生,供应质膜上的 ,引起主动吸收子,降低保卫细胞的水势而使气孔开放.60. 在光下由于进行光合作用,保卫细胞内少,导致pH上升, _____________________ 酶在pH降低时把变为了使水势,气孑L .63.常用的蒸腾作用指标是?___________________ 和.69.植物水分代谢的三个过程为了> _______________ 和o73. ___________________________________ 作物灌水的生理指标有?和o74. 当水势作为了植物灌溉的指标时,以为了可靠.二、判断是非并改正1 .等渗溶液就是摩尔数相等的溶液.()2. 纯水的水势为了零,叶片完全吸水膨胀时水势也为了零,因此此时叶片内水为了纯水. ()3. 蒸腾拉力引起被动吸水,这种吸水与水势梯度无关.()4. 细胞间水分流动的方向取决于它们的水势差. ()5. 植物对水分的吸收、运输和散失过程称为了蒸腾作用. ()6. 将一充分吸水饱和的细胞放入比其细胞液浓度低10倍的溶液中,其体积变小.()7. 溶液的渗透势等于其渗透压的负值,因此可用公式:小s=-icRT来计算.()8. 从植物受伤或折断处溢出液体的现象称为了伤流,通过测定伤流的量分可以了解根系生理活动的强弱.()9. 在正常晴天情况下,植物叶片水势从早晨t中午t黄昏的改变趋势低t高t低.()10. 将一植物细胞放入与其渗透势相等的糖溶液中,该细胞既不吸水也不失水.()11. 在一个含有水分的体系中,水参加化学反响的本领或者转移的方向和限度也可以用系统中水的化学势来反映.()12. 有一充分饱和的细胞,将其放入比细胞液浓度低50倍的溶液中,那么体积不变. ()13.1M蔗糖溶液和1M NaCI溶液的渗透势是相同的.()14、氢键的存在是水的比热和气化热都高的重要因素. ()15、植物被动吸水的动力来自叶片的蒸腾作用所产生的蒸腾拉力, 而与相邻细胞间的水势梯度无关.()16、已液泡化的植物活细胞,因其原生质体被水分所饱和,所以衬质势所占比例很小. ()17、植物的水势低于空气的水势,所以水分才能蒸发到空气中. ()18、植物细胞的水势永远是负值,而植物细胞的压力势却永远是正值. ()19、一个细胞放入某浓度的溶液中时, 假设细胞液浓度与外界溶液的浓度相等, 那么细胞水势不变.()四、I可答题与计算题2. 植物在纯水中培养一段时间后,如果给水中参加一些盐,植物会发生暂时萎焉,为了什么?3. 十旱时不宜给植物施肥,为了什么?4. 为了什么夏季晴天中午不能用井水浇灌作物?6. 一植物细胞的小w =-0.8MPa,在初始质壁别离时小s = -1.6 MPa,设该细胞在初始质壁别离时比原来体积缩小4%,计算其原来的小s和小p.12. 土壤里的水从植物的哪局部进入植物, 乂从哪局部离开植物,其间的通道如何?动力如何?13. 植物受涝后,叶片为了何会萎^或变黄?14. 植物如何维持其体温的相对恒定?15. 低温抑制根系吸水的主要原因是什么?16. 以下观点是否正确,为了什么?(1) 一个细胞放入某一浓度的溶液中时,假设细胞液浓度与外界溶液的浓度相等,那么体积不变.(2) 假设细胞的W p=—W s,将其放入某一溶液中时,那么体积不变.(3) 细胞的Ww=Ws,将其放入纯水中,那么体积不变.(4) 有一充分饱和的细胞,将其放入比细胞液浓度低50倍的溶液中,那么体积不变.17. 简述有关气孔开闭的无机离子(<)吸收学说.18. 设一个细胞的中w = — 8巴,初始质壁别离时的W s=- 16巴,假假设该细胞在初始质壁别离时比原来的体积缩小4%计算其原来的W s和W p各为了多少巴?19. 简述植物叶片水势的日改变20. 植物代谢旺盛的部位为了什么自由水较多?21. 简述气孔开闭的主要机理.22 .什么叫质壁别离现象?钻研质壁别离有什么意义?23. 分析产生以下实验结果的机理生长旺盛的麦苗在适温、高温条件下:(1)加水,有吐水现象;(2)加20%Nacl 无明显吐水;(3)冷冻处理,无明显吐水24. 在农业生产上对农作物进行合理灌溉的依据有哪些?26. M季土壤灌水,最好在早晨或黄昏进行较为了合理,为了什么?28.在正常的和十热的天气条件下,气孔开闭的日改变曲线有何不同,为了什么?31. 何谓根压,怎样证明根压的存在?32. 举例说明植物存在主动吸水和被动吸水?34.化肥施用过多为了什么会产生“烧苗〞现象?38. 为了什么在植物移栽时,要剪掉一局部叶子,根部还要带土?39. 夏季中午植物为了什么经常出现萎^现象?41. 光是怎样引起植物的气孔开放的?42. 试述水分对植物的生理生态作用?第3章植物的矿质与氮素营养一、名词解释溶液培养法砂基培养法被动吸收主动吸收.|膜转运蛋白离子通道载体共转运生理酸性盐生理碱性盐生理中性盐单盐蠹害团.离子拮抗平衡溶液叶面营养诱导酶硝酸复原酶单盐蠹害平衡溶液41、离子拮抗42、养分临界期43、再利用元素45. 外连丝46. 植物营养最大效率期47. 协同效应二、填空题1 .确定某种元素是否为了植物必需元素时,常用法.2. 现已确定,植物必需大量元素有;微量元素有.3. 以下各酶含有什么金届离子:碳酸酎酶,多酚氧化酶 ,细胞色素氧化酶 ,过氧化氢酶 , 固氮酶.5. 华北、西北地区果树小叶病是由于缺乏元素的缘故.6. 油菜花而不实由丁缺引起.7. 豆科植物的共生固氮作用需要三种元素参加,它们是、和08. 离子扩散的方向取决丁和的相对数值大小.10. 一般来说,外界溶液的pbfi对根系吸收盐分的影响是,阳离子的吸收值随pH 的, 而阴离子的吸收随pH的.11. (NH4) 2SO是届丁生理性盐,NaNG是届丁生理性盐.14. 根部吸收的无机离子是通过向上运输的,但也能横向运输到 <喷在叶面的有机和无机物质是通过运输到植株各局部的.衰老器官解体的原生质与高分子颗粒还可通过向新生器官转移.15. 是表皮细胞外壁的通道,它从角质层的内外表延伸到表皮细胞的质膜, 其中充满表皮细胞原生质体的分泌物.16. 在16种植物面必需元素中,只有 ______ 4 ____ 种不存在丁灰分中.17. 这所以被称为了肥料三要素,这是由于.19. 从无机氮所形成的第一个有机氮化合物主要是 .20. 根吸收矿质元素最活泼的区域是.对丁难丁再利用的必需元素,其缺乏病症最先出现在O21. 可再利用的元素从老叶向幼嫩局部的运输通道是.22. 根外追肥时,喷在叶面的物质进入叶细胞后,是通过通道运输到植物多局部的.23. 业硝酸复原成氨是在细胞的中进行的.对丁非光合细胞,是在中进行的;而对丁光合细胞,那么是在中进行的.24. 根对矿质元素的吸收有主动吸收和被动吸收两种,在实际情况下,以吸收为了主.25. 水稻等植物叶片中天冬酰胺的含量可作为了诊断的生理指标.28.硝酸盐复原速度白天比夜间 ,这是由于叶片在光下形成的和能促进硝酸盐的复原.33. 钻研矿质营养常用的方法有 ______ 和.34. 确定必需元素的三条标准是、和39. ________________________________________ 老叶和茎秆出现红色或紫色常是由于缺__________________________________________ 所致,它使基部茎叶片积累大量合成,所以产生红色.41.缺Ca的显著病症是由于Ca是构成的成分之一.43. 缺Mg能影响成,从而引起状.44. 缺Mg会影响成,从而引起脉间状.45. 缺Fe能影响成,从而引起绿.49. 油菜“花而不实〞与缺元素关;豆科植物根瘤发育不好与缺元素有关.50. 在必需元素中,金届元素生长素合成有关,而___________________和那么与光合作用分解水,释放氧气有关.53. 缺乏必需元素? ?> 等,均可引起植物产生缺绿病.55. 缺N和缺Fe都能引起缺绿病,二者区别在丁缺氮病,缺铁病.56. 植物必需元素中,■元素与生长素有关,■等元素参加光合作用中水的分解.58. 当缺乏> ?■等元素时,其病症先在嫩叶或生长点出现.59. 当缺乏? : 元素时,其病症先在老叶出现.62. 植物细胞吸收矿质元素的三种方式为了?和o63. 离子扩散除取决丁化学势梯度外,还取决丁梯度,二者合起来称为了66. 支持载体学说的实验证据是 ______ 和象的存在.67. 长期施用硝态氮肥,可能导致土壤故称这类化肥为了.68. 土壤中施用NHNO3 土壤pH 因此该化肥届于 .73.根外追肥和喷药等,主要是通过_________ 和入植物体的.78. _________________________________________ 根部吸收矿质元素,其向上运输的动力是__________________________________________ 和.79. 栽培叶菜类应多施 ____ 肥,栽培块根、块茎作物在后期应多施巴.81.植物合理施月巴的指标有 , , _______________ 和等.83.水稻叶鞘中的量过高,常是N营养缺乏的指标.85.白菜十心病、苹果疮痂病与缺元素有关;幼叶先期脉间失绿,后呈灰白色与缺元素有关.四、判断是非并改正1. 植物吸收矿质元素最活泼区域是根尖分生区.()2. 植物从土壤溶液中既吸收硝态氮,乂吸收铉态氮.()3. 植物吸收矿质元素和水分间的关系是正相关.()4. NH4NOH于生理酸性盐,(NH4)2SO届于生理碱’性盐.()5. 植物体内的钾一般不形成稳定的结构物质.()6. 缺N时植物的幼叶首先变黄.()7. 温度越高,细胞膜的透性就越高,也就越有利于矿质元素的吸收.()8. 植物根系通过被动吸收到达杜南平衡时, 细胞内阴阳离子的浓度都相等.()9. 氮不是矿质元素,而是灰分元素.()10. 同族的离子问不会发生拮抗作用.()11. 固氮酶具有对多种底物起作用的功能.()12. 用毛笔蘸一些0.5%硫酸业铁溶液,在幼叶上写一个“ Mg'字,五天后在叶片上出现了一个明显的绿色,“Mg'字,说明该植物缺镁而缺铁.()13. 根部吸收各离子的数量不与溶液中的离子成比例. ()14. 把固氮菌(Azoto bacter)培养在含有15NH的培养基中,固氮水平立刻停止.()15. 植物吸收矿质元素最活泼的区域是根尖的分生区. ()16. N、P、K之所以被称为了“肥料三要素〞,是由于它们比其它必需矿质元素更重要. ()17. 所有植物完全只能依靠根吸SO2以提供其生长发育必需的硫元素五、问答题1. 植物必需元素具备哪些条件?2. 根外施肥有哪些优点?3. 试述矿质元素的综合生理作用.4. 植物营养必需的大量元素有哪几种?其中哪些是以阴离子状态被吸收?哪些以阳离子状态被吸收?哪些可以以阴离子或阳离子状态吸收?写出这些离子,并讨论外界溶液pHM阴、阳离子吸收的影响.5. 现配制了4种溶液(表3.1),每种溶液的总浓度都相同.用这些液培养已发育的小麦种子,14d后测得数据如表3.1所示.请分析其结及原因.表3.1 小麦的溶液培养6. 用溶液培养法钻研番茄的氮、磷、钾元素缺乏症时,忘记培养缸上贴标签.培养21d后发现A处理的番茄叶片卷缩.有缺绿斑,叶边枯焦,老叶病症比幼叶的更为了显著.B处理的番班叶干黄脱落,幼叶灰绿,叶柄叶脉呈紫色,根细而长,幼叶较老的缺乏症轻,整株生长缓慢.C处理的番茄叶片紫红色,叶及叶柄上有坏死斑,老叶病症较幼叶病症更明显,根系发育差,整枝生长慢.请你根据这些病症,为了不同处理的培养缸补贴标签.10. 支持矿质元素主动吸收的载体学说有哪些实验证据?并解释之.11. N肥过多时,植物表现出哪些失调病症?为了什么?13. 肥料适当深施有什么好处?14. 为了什么在石灰性土壤上施用NH4 N时,作物的长势较施用N03 N的好?15. 为了什么叶中的天冬酰胺或淀粉含量可作为了某些作物施用N肥的生理指标?22. 在含有Fe、K、P、Ca B、Mg C& S、Mn等营养元素的培养液中培养棉花,当棉苗第四片叶展开时,在第一片叶上出现了缺绿症,问该缺乏症是由丁上述元素中哪种元素含量缺乏而引起的?为了什么?27. 影响植物根部吸收矿质的主要因素有哪些?28. 何为了根外营养?其结构根底是什么?它有何优越性?29. 试述盐分吸收与水分吸收的关系?30. 为了了确切地证实某种元素是植物必需的微量元素,要做哪些实验?32. 试述根部吸收矿质的过程.33. 试述矿物质在植物体内运输的形式与途径,可用什么方法证明?34. 什么是营养临界期及营养最大效率期?它们对作物产量形成有何影响?35. 为了什么说施肥增产的原因是间接的?主要表现在哪些方面?36. 为了使肥效充分发挥,生产上常采取哪些主要举措?37. 必需矿质元素应具备哪几条标准?目前植物必需元素共有多少种?其中大量与微量元素各为了多少种?各是指哪些元素?38. 作物矿质元素是否缺乏,如何诊断?40. 根部吸收离子的数量总与土壤溶液(或培养液)中离子的数量成比例,对吗?为了什么?41. 为了什么在正常情况下植物体内业硝酸盐(NO2 )不会积累?44. 施肥如何才能做到合理?46. 何谓溶液培养?它在管理方面应注意什么?47. 缺氮与缺铁为了什么都能引起缺绿病,二者病症区别在哪里?48. 怎样才能证明某种元素是植物的必需?在进行这一工作时应注意些什么?49. 为了什么说水分和矿质元素的吸收是两个既相对独立,乂有密关系的生理过程.53. 如何理解“麦浇芽〞、“菜浇花〞?54. 浅谈矿质营养在植物体内的运输.56.简述植物NO3与光合作用的关系.61.如何提升植物养分利用效率?。

2.2 植物的水分代谢

2.2 植物的水分代谢

气孔为什么 能够运动?
与保卫细胞 的结构特点 有关。

双子叶植物气孔的运动(张开、关闭)
压力 拉力 压力
压 力
是什么原因造成了保卫细胞吸水或者失水呢

气孔运动的机制
经典的淀粉——糖互变学说
K+离子泵学说 苹果酸代谢学说
(四)影响气孔运动的因素
1.光
光可促进保卫细胞内苹果酸的形成和K+、Cl-的积 累。一般情况下,光可促进气孔张开,暗则气孔
1)角质层蒸腾 (cuticular transpiration) 2)气孔蒸腾 (stomatal transpiraton)
占的比例较小,大 约0.1%。
2.叶片蒸腾
1)角质层蒸腾 (cuticular transpiration) 2)气孔蒸腾 (stomatal transpiraton)
主要方式
(一)概念 水分以气态形式通过植物体表面,从体内散 失到大气中的过程叫做蒸腾作用。
蒸腾与蒸发是两个不同的过程: 蒸腾是一个生理过程。 蒸发是一个纯物理过程。
(二)蒸腾作用的生理意义
1、蒸腾作用产生的蒸腾拉力是植物吸收和运输水分的主要动力。
2、蒸腾作用是植物吸收和运输矿质营养与有机物的动力。 3、蒸腾作用可以降低植物体和叶片的温度。 4、蒸腾作用的正常进行有利于CO2的同化。
关闭。但景天科酸代谢植物例外:它们的气孔白
天关闭,夜晚张开。
光促进气孔开放的机制?
红光和蓝光都可引起气孔张开
通常认为红光是通过间接效应,而蓝光是直接 对气孔开闭起作用的。蓝光使气孔张开的效率 是红光的10倍.
2、CO2
低浓度CO2 促使气孔张开, 高浓度CO2引起气孔的关闭。
原因:

第二章 植物水分生理

第二章 植物水分生理

ψw = ψm
ψw = ψs +ψp
第二节 植物细胞对水分的吸收
4.细胞吸水过程中水势组分
环境状况 体积 细胞状态 松弛状态,临界质 壁分离 膨胀状态,细胞吸 水 饱和状态,充分膨 胀 萎蔫状态,失水, 质壁分离 ψp ψw
等渗溶液
低渗溶液 纯水中 高渗溶液
V=1
V>1 V最大 V<1
ψ p=0
ψ p增大 ψ p=-ψ s ψ p<0
根部吸水的途径
第三节 植物根系对水分的吸收
五、影响根系吸水的土壤条件 1.土壤通气状况:通气状况良好,有利于根 吸水; 2.土壤温度:适宜的温度范围内土温愈高, 根系吸水愈多; 3. 土壤溶液浓度:根细胞水势小于土壤水势 有利于根系吸水
细胞初始质壁分离时:
ψp =0, ψw = ψs
充分饱和的细胞:
ψw = 0 ψs = -ψp
蒸腾剧烈时: ψp < 0, ψw < ψs
第二节 植物细胞对水分的吸收
二、 细胞吸水的方式: 2.吸胀吸水:依赖于低的ψ m而引起的吸水。 是无液泡的分生组织和干燥种子细胞的主 要吸水方式。
原理:淀粉、纤维素和蛋白质这些亲水性物质吸水而膨胀。
一、 植物的含水量 不同植物含水量不同 水生植物——鲜重的90%以上 地衣、藓类——仅占6%左右 草本植物——70%~85% 木本植物——稍低于草本植物。 一种植物,不同环境下有差异 荫蔽、潮湿 > 向阳、干燥环境 同一植株中,不同器官、组织不同 根尖、幼苗和绿叶——60%~90% 树干——40~50% 休眠芽——40% 风干种子为8%~14% 生命活动较旺盛的部分,水分含量较多。
第二章植物水分生理
水是生命起源的先决条件,没有水就没有生命, 也就没有植物。植物对水分的吸收、运输、

第二章 植物的水分生理自测

第二章 植物的水分生理自测

(一)填空1.由于的存在而引起体系水势降低的数值叫做溶质势。

溶质势表示溶液中水分潜在的渗透能力的大小,因此,溶质势又可称为。

溶质势也可按范特霍夫公式Ψs=Ψπ=来计算。

(溶质颗粒,渗透势, -iCRT) 2.具有液泡的细胞的水势Ψw=。

干种子细胞的水势Ψw=。

(Ψs+Ψp,Ψm)3.盐碱地或灌溉水中的盐分浓度高,可引起作物干旱。

(生理)4.某种植物每制造一克干物质需要消耗水分500g,,其蒸腾系数为,蒸腾效率为____________。

(500,2g·kg-1H2O) 5.通常认为根压引起的吸水为吸水,而蒸腾拉力引起的吸水为吸水。

(主动吸水,被动吸水)6.植物从叶尖、叶缘分泌液滴的现象称为,它是存在的体现。

(吐水,根压)7.在标准状况下,纯水的水势为。

加入溶质后其水势,溶液愈浓其水势愈。

(0、下降、愈低)8.永久萎蔫是引起的,暂时萎蔫则是暂时的引起的。

相当于土壤永久萎蔫系数的水,其水势约为 MPa。

(土壤缺少有效水,蒸腾>吸水,-1.5)9.植物的吐水是以状态散失水分的过程,而蒸腾作用以状态散失水分的过程。

(液体,气体)10.田间一次施肥过多,作物变得枯萎发黄,俗称苗,其原因是土壤溶液水势于作物体的水势,引起水分外渗。

(烧,低)11.种子萌发时靠作用吸水,干木耳吸水靠作用吸水。

形成液泡的细胞主要靠作用吸水。

(吸胀,吸胀,渗透)12.植物细胞处于初始质壁分离时,压力势为,细胞的水势等于其。

当吸水达到饱和时,细胞的水势等于。

(0,Ψs,0)13.植物细胞中自由水与束缚水之间的比率增加时,原生质胶体的粘性,代谢活性,抗逆性。

(降低,上升,下降)14.气孔开放时,水分通过气孔扩散的速度与小孔的成正比,不与小孔的成正比。

(周长,面积) 15.气孔在叶面上所占的面积一般为 %,但通过气孔蒸腾可散失植物体内的大量水分,这是因为气孔蒸腾符合原理。

(1,小孔律)16.移栽树木时,常常将叶片剪去一部分,其目的是减少。

第二章 水分生理-新

第二章 水分生理-新

原生质吸水膨胀,对细胞壁产生压力,而细胞 壁对原生质会产生一个反作用力,这就是细胞 的压力势。 细胞压力势一般为正值,质壁分离时,压力 势为零;只有在蒸腾过旺时为负值。
⑤重力势
由于重力的存在使体系水势增加的
数值,称重力势。重力使水向下移动,即处于 较高位置的水比较低位置的水有较高的水势。 当体系中的两个区域高度相差不大时,重力势 可忽略不计。
3、测定细胞的渗透势
4、观察物质通过细胞的速率。
把发生了质壁分离的细胞浸在水势较高的稀 溶液或清水中,外液中的水分又会进入细胞, 液泡变大,整个原生质层很快会恢复原来的 状态,重新与细胞壁相贴,这种现象称为质壁 分离复原。
以水的偏摩尔体积(Vw)所得的商,称为水势。
概念
• 水的化学势差Δμw是体系中水的化学势
μw与同温下纯水的化学势μw°之差值
偏摩尔体积在一定温度、压力和浓度下,1 摩尔某组分在混合物中所体现出来的体积,称 为该组分在该条件下的偏摩尔体积。偏摩尔体 积的单位是m3· -1。 mol
化学势是能量概念, 单位为J/mol [J=N(牛顿)· m], 偏摩尔体积的单位为m3/mol,
第一节
一.水的理化性质
二.植物的含水量
水分与植物细胞
三.植物体内水分存在的状态
四.水分在植物生命活动中的作用
一、水的理化性质
水独特的性质是由它的分子结构造成的。 水分子有很强的极性。2个氢原子和1个氧原子 以共价键结合,使水分子成为极性分子。带正 电何的一端可以和带负电何的一端相互吸引形 成氢键。所以水分子之间有很强的内聚力。
适合于水分短距离的(如细胞间)迁徙。
(二)集流
集流是指液体中成群的原子或分子在压力 梯度下的共同移动 特点:集流与溶质浓度梯度无关; 中、远距离运输; 通过膜上的水孔蛋白形成的水通道实施的。

植物的水分生理

植物的水分生理
植物的水分生理
植物的物质代谢
维持各种生命活动过程中化学变化(物质的 合成、转化和分解)的总称。
合成代谢
(光合作用)
代谢
体内物质代谢
(糖、蛋白质、 脂类和核酸)
分解代谢
(呼吸作用)
外界吸收物质 代谢
水分
矿质元素
空气
(光合作用)
有 第二章 植物的水分生理

无 收
第一节
植物对水分的需要
在 【一】植物的含水量
解、脱氢反应,光合作用。 • 3. 水分是各种生化反应的差不多介质
(溶剂)。 • 4. 水分能保持植物的固有姿态。(就像
吹气气球)
第二节 植物细胞对水分 的吸收
在植物的生命活 动中,植物不断的从 环境中吸收水分,也 不断的向环境中散失 水分。植物是如何从 环境中吸收水分的呢?
要紧有三种方式
• 【一】扩散 • 【二】集流 • 【三】渗透作用
【三】根系吸水的动力
1. 根压(叶片未展开时,是要紧动力)
证明根压存在的两种现象:
伤流
吐水
【三】根系吸水的动力
• 2. 蒸腾拉力(要紧动力)
• 在蒸腾作用中,首先是气 孔下腔细胞失水,水势降 低,它就向相邻细胞吸水, 使相邻细胞水势降低,这 种水势降低作用,通过一 个个细胞传递到木质部导 管,使导管水势降低,导 管向根系吸水,使根系水 势降低,产生吸水力。
【一】扩散(以浓度为动力)
是一种自发过程,是由于分子的随机热运动所造 成的,物质从浓度高的区域向浓度低的区域移动 的现象。--细胞间水分的迁移(短距离)
水 孔 蛋 白
(磷 质脂 膜双 )分
子 层
【二】集流(以压力为动力)
是指液体中成群的原子或分子在压力梯度 下共同移动。

第二章 植物的水分生理(2)

第二章 植物的水分生理(2)

⒉无机离子泵学说,又称 K+泵假说、钾离子学说
日本学者于1967年发现,照光时,K+从周围细胞进入保卫 细胞,保卫细胞中K+浓度增加,溶质势降低,吸水,气孔张 开;暗中则相反,K+由保卫细胞进入表皮细胞,保卫细胞水 势升高,失水,气孔关闭。 用微型玻璃钾电极插入保卫细胞可直接测定K+浓度变化。 光下保卫细胞逆着浓度梯度积累K+,使K+达到0.5mol·L-1, 溶质势可降低2MPa左右。
第五节 植物体内水分向地上部分的运输
一、水分运输的途径和速度
1.途径:
土壤→根毛→根的皮层→内皮层→ 中柱鞘→根的导管或管胞→茎的导管 →叶柄导管→叶脉导管→叶肉细胞→ 叶细胞间隙→气孔下腔→气孔→大气
2.速度:
共质体运输只有几毫米,水分通过时 阻力大,运输速度慢,一般只有103cm·-1 h 导管是中空长形死细胞,阻力小,水 分运输速度一般3~ 45m·h-1; 管胞中由于管胞分子相连的细胞壁未 打通,水分要经过纹孔才能移动,阻 力较大,运输速度不到0.6m·h-1。 水分运输的速率白天大于晚上,直射 光下大于散射光下。
二、气孔蒸腾 stomatal transpiration (一)气孔的形态结构及生理特点
气孔是植物表皮上一对特化的细胞─保 卫细胞和由其围绕形成的开口的总称, 是植物进行体内外气体交换的门户.
每mm2叶片上有几十到几百个气孔。 气孔所占面积,不到叶面积的1%,但气孔的蒸腾量却相当于 所在叶面积蒸发量的10%~50%,甚至100% 。这是因为气 体通过多孔表面扩散的速率,不与小孔的面积成正比,而与小 孔的周长成正比。这就是所谓的小孔扩散律。 保卫细胞含有较多的叶绿体和线粒体。 叶绿体内含有淀粉体。 细胞质中含有PEP羧化酶(磷酸烯醇式丙酮酸羧化酶) 催化羧化反应: PEP +HCO3-→草酰乙酸→苹果酸。

2 第2章 植物的水分生理--复习材料+自测题

2 第2章 植物的水分生理--复习材料+自测题

第 2 章 植物的水分生理一、 教学大纲基本要求了解水的物理化学性质和水分在植物生命活动中的作用;了解水的化学势、水势的基本概念、植物生理学中引入 水势的意义;了解植物细胞的水势的组成、溶质势、衬质势、压力势等的概念及其在植物细胞水势组成中的作用,了 解并初步学会植物组织水势的测定方法;了解植物根系对水分吸收的部位、途径、吸水的机理以及影响根系吸水的土 壤条件;了解植物的蒸腾作用的生理意义和气孔蒸腾是蒸腾的主要方式、蒸腾作用的指标、测定方法以及适当降低蒸 腾速率的途径;了解植物体内水分从地下向地上部分运输的途径和速度、水分沿导管上升的机制;作物的需水规律、 合理灌溉指标及灌溉方法以及发展节水农业促进水资源持续利用的重要性。

二、本章知识要点水是生命的“先天”环境,没有水就没有植物。

水是植物体的主要组成成分。

水除了直接或间接地参与生理生化 反应之外,还调节植物的生态环境。

植物体内的水分以自由水和束缚水两种形态存在,两者的比例与植物的代谢强度 和抗逆性强弱有着密切关系。

每偏摩尔水的自由能就是水的化学势。

每偏摩尔体积水的化学势差就是水势。

植物细胞的水势由渗透势 (溶质势)、 压力势和衬质势组成,Ψw=Ψs+Ψp+Ψm。

水势单位采用压力单位(MPa)。

水分从水势高处通过半透膜移向水势低 处,就是渗透作用。

细胞吸水有渗透吸水、吸胀吸水之分。

具有液泡的植物细胞以渗透吸水为主,未形成液泡的嫩细 胞和干燥种子的吸水主要靠吸胀吸水。

细胞与细胞之间的水分移动方向,决定于两处的水势差,水分总是从水势高处 流向水势低处,直至两处水势差为零。

土壤中只有可利用水才能被植物根系吸收。

根系吸收水分最活跃的部位是根毛区。

根系吸水可分为主动吸水和被 动吸水,通常被动吸水是主要的。

凡是影响根压形成和影响蒸腾速率的内外条件,都影响根的吸水。

蒸腾作用在植物生活中具有重要的作用。

气孔蒸腾是蒸腾作用的主要方式。

气孔关闭机理可以用无机离子吸收学 说和苹果酸生成学说来解释。

第二章 水分生理

第二章 水分生理

2.吸胀吸水
依赖于低ψm而引起的吸水。衬质吸引水分子的力量称为吸 胀力,衬质吸水膨胀的现象称为吸胀作用。无液泡的分生组织, 干燥种子
3.降压吸水
因ψp的降低而引发的细胞吸水。
(三)细胞吸水过程中水势组分的变化
1.5 1
特例
1、强烈蒸腾下细胞 充 分 吸 水
0.5
0
Ψp为负值
2、初始质壁分离细胞
伤流和吐水是证实根压存在的两种生理现象。
(1)伤流
是从植物伤口溢出液体的现象。把丝瓜茎在近地面处切 断后,伤流现象可持续数日。
图2-11 伤流和根压 示意图 A.伤流液从茎部切 口处流出 B.用压 力计测定根压
伤流液 多种无机物和有机物,还有植物激素。
有些伤流液是重要的工业原料,松脂、生漆和橡 胶等。伤流液的数量和成分,根系生理活性的指标。
(4)水使植物保持固有的姿态
3.水对植物生存有着重要的生态意义
(1)水对植物体温的调节 不易受高温伤害。 (2)水对植物生存环境的调节 增加大气湿度、 改善土壤及土壤表面大气的温度、改善田间小气候等。
(3)水的透光性使水生植物的需光反应正常进行
生理需水 用于植物生命活动和 保持植物体内水分平衡所需要的水分。 生态需水 利用水的理化特性,调 节植物生态环境所需要的水分。
图2-10 植物根部吸收 水分途径示意图 水分可以经过质外体、 共质体和跨膜途径通过 皮层。水分到达内皮层 时被凯氏带阻断,必须 通过跨膜运输才能进出 内皮层
三、根系吸水的机理
(一)主动吸水
主动吸水由于根系代谢活动而引起的根系吸水的过程
伤流和吐水都是主动吸水的表现。
1.根压
根压是木质部中的正压力。
尼亚加拉瀑布

第二章-植物生理学 水分生理2

第二章-植物生理学 水分生理2
8. 保卫细胞与周围细胞的联系。
问题?
气孔开闭机制 气孔保卫细胞的信号转导
2.气孔运动机理 ( mechanisms of stomatal
movement)
渗透调节机理
气孔运动是保卫细胞水势的变化引起的,保卫细胞通过调 节其渗透势的变化来实现水分出入的调节。
(1)淀粉-糖转化学说
(2)无机离子泵学说,又称K+学说 (inorganic ion pump theory)
一水分在植物体内运输的途径二水分在植物体内运输的方向三水分在植物体内运输的动力土壤根毛皮层内皮层中柱鞘根的导管或管胞茎的导管叶柄导管叶脉导管叶肉细胞叶细胞间隙气孔下腔气孔大气土壤根导管茎导管叶柄导管气孔植物体内水分向地上部的运输植物体内水分向地上部的运输从高水势区向低水势区水分的迁移是顺水势梯度三水分在植物体内运输的动力水分沿导管上升的机制植物体内水分向地上部的运输动力有两方面
动 力的吸水过程. 的大气中,从而导致叶片细胞水势下降,这样就
吸 水
蒸腾拉力可高达 十几个MPa.
产生了一系列细胞间的水分运输,并造成根冠间 导管中的压力梯度,结果造成根部细胞水分亏缺, 水势降低,从而使根部细胞从周围土壤中吸水。
主动吸水和被动吸水
主动吸水和被动吸水在植物吸水的过程中所占的比重,因 植物生长状况和蒸腾速率而异。通常正在蒸腾着的植株, 尤其是高大的树木,其吸水的主要方式为被动吸水。只有 春季叶片未展开或树木落叶后,以及蒸腾速率很底的夜晚, 主动吸水才是主要的吸水方式。
根部吸水的共质体途径和质外体途径
凯氏带
木栓化,膜与壁紧贴 在一起。水、溶质不 能自由通过。
外部质外体
内皮层外,包括根毛、 皮层的胞间层、细胞 壁和细胞间隙
内部质外体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、水的理化性质
(一)水的组成和结构 水分子由2个氢原子和1 个氧原子以共价键结合, 呈“V”型,键角为 104.5°。
(二)水的物理化学性质
1.水的比热 2.水的沸点和气化热 3.水的密度 4.水的蒸气压
5.水的内聚力、粘附力和表面张力 6.毛细作用 7.水的高抗张强度 8.水的不可压缩性
一、植物细胞的水势
(一)细胞水势的组分
植物细胞水势至少要受到三个组分的影响,即溶质势ψs、压 力势ψp和衬质势ψm。 细胞的水势公式: ψw=ψs+ ψp +ψm 1.细胞的溶质势 植物细胞中含有大量溶质:无机离子、糖类、有机酸、色素、 悬浮在细胞液中的蛋白质、核酸等高分子物质也可视为溶质。
2.细胞的压力势
(一)自由能 (free energy,G) 在等温、等压条件下,可用于作功的能量。 (二)化学势(chemical potential,μ) 每摩尔物质所具有的自由能。 (三) 水势(water potential) 每偏摩尔体积的水的化学势差。 定义式: Ψw=(μw-μow)/ Vw,m = △μw / Vw,m
依赖于低 的ψm而 引起的吸 水(非代 谢性吸水) 因ψp的 降低而引 发的细胞 吸水 对于无液泡的分生组织和干燥种子,ψm是细胞水势的主要 组分,它们吸水主要依赖于ψm的吸胀吸水,蛋白质吸胀力> 淀粉>纤维素 干燥种子衬质水势常低于-10 MPa,有的甚至达-100MPa,所 以吸胀吸水就很容易发生 如蒸腾旺盛时,导管和叶肉细胞的细胞壁都因失水而收缩, 使ψp下降,引起细胞水势下降而吸水。失水过多时,还会 使细胞壁向内凹陷而产生负压,这时ψp<0,细胞水势更低, 吸水力更强。
3.衬质势ψm (matrix potential )


由于衬质的存在引起体系水势降低的数值称为 衬质势。 通常衬质势为负值. 比如干燥的衬质表面水势较低, 当衬质吸水达到平衡后,衬质具有的水势等于 体系的水势,可忽略不计。
4.压力势ψp (pressure potential)
由于压力的存在而使体系水势改变的数值。 加正压力,使体系水势升高; 加负压力,使体系水势下降。 如讨论同一大气压力下两个开放体系间水势差时,压力 可忽略不计。
5.重力势ψg (gravitational potential)
由于重力的存在使体系水势增加的数值。 ψg =ρgh ρ-水的密度,1kg*dm-3; g-重力加速度,9.8N*kg-1 h-高度 当体系中的两个区域高度相差不大时,重力势可忽略不 计.

体系的水势等于各变量之和: ψw=ψs+ψm+ψp+ψg 气相的水势公式按下式计算:
2.水是代谢过程的反应物质 3.水是各种生理生化反应和运输物质的介 质 4.水能使植物保持固有的姿态 5.水具有重要的生态意义 生理需水—满足植物生理活动所需要的 水分 .(以上1-4) 生态需水—利用水的理化特性,调节植 物周围的环境所需要的水分.(以上5)
三、自由能、化学势、水势 的基本概念
由于压力的存在 加正压力,使体系ψw升高;加负压 而使体系水势改 力,体系ψw下降。如讨论同一大气 压力下两个开放体系时,ψp可忽略 变的数值 不计 由于重力的存在 使体系水势增加 的数值 重力使水向下移动,处于较高位置的 水比较低位置的水有较高的水势。 当两个体系高度相差不大时,重力势 可忽略不计。
3.降压吸水-因ψp的降低而引发的细胞吸水
蒸腾旺盛时,导管和叶肉细胞的细胞壁失水 收缩,压力势下降,引起水势下降而吸水。 失水过多时,还使细胞壁内陷而产生负压, 这时ψp<0,细胞水势更低,吸水力更强。

(二)细胞的吸水形式
性质 渗 透 吸 水 吸 胀 吸 水 降 压 吸 水
由于ψs 的下降而 引起的细 胞吸水
第二章 植物的水分生理
第一节 水分与植物细胞



水是生命起源的先决条件,没有水就没有 生命。 植物对水分的吸收、运输、利用和散失的 过程,被称为植物的水分代谢(water metabolism)。 研究植物水分代谢的规律,为作物提供良 好的生态环境,这对农作物的高产、稳产、 优质、高效有着重要意义。
细胞水势的降低值 计,有液泡的细胞ψw = ψs+ψp ; 无液泡的分生组织和干燥种子,ψm是细 胞水势的主要组分,ψw = ψm
压力势 细胞壁在受到膨压作 草本植物叶肉细胞的ψp,在温暖天气的 用时会产生与膨压大 午后为0.3~0.5MPa,晚上则达1.5 MPa ψp
小相等、方向相反的 壁压,即压力势, ψp一般为正值.
(三)渗透作用
-溶液中的溶剂分子(水)通过 半透膜扩散的现象。 当半透膜两侧水势相等时,水 分子的进出达到动态平衡。此 时: 膜上方水势=膜外纯水水势 =0 即ψs+ψp=0, ψp = - ψs 这时半透膜上方的压力势就等 于负的糖液的渗透势。

渗透作用演示
图 2-1由渗透作用引起 的水分运转
第二节 植物细胞对水分的吸收
四、含水体系的水势组分
1.纯水的水势ψow
为零 零值并不是没有水势,就好比定海平面为海拔 高度为0一样,作为一个参比值。
2.溶质势ψs (solute potential)
由于溶质颗粒的存在而引起体系水势降低的数 值。 溶液的水势为负值, 标准压力下,溶液的水势等于其溶质势, ψw=ψs 溶质势表示溶液中水分潜在的渗透能力的大小, 因此溶质势又可称为渗透势(ψπ,osmotic potential )
重力势 ψg
五、水的移动
(一)集流(mass flow) 液体 中成群的原子或分子在压力 梯度(水势梯度)作用下共同 移动的现象。 (二)扩散(diffusion) 物 质分子从高浓度(高化学势) 区域向低浓度(低化学势)区 域转移,直到均匀分布的现 象。 扩散速度与物质的浓度梯 度成正比。 水的蒸发、叶片的蒸腾作 用都是水分子扩散现象。
ψw= RT/ Vw,m · lnPw / P0w = RT/Vw,m · lnRH
式中:R:气体常数(0.0083dm3·MPa·mol-1·K-1);
T:绝对温度(K) Vw,m –水的偏摩尔体积

Pw - 气相中水的蒸气分压;
P0w - 纯水的饱和蒸气压; RH - 相对湿度。
含水体系的水势组分(归纳)
细胞水势组分的归纳
组分
透势ψπ) 数值
性质
数值范围
干旱时,细胞液浓度高,溶质势较低
溶质势 细胞中含有的溶质引 一般陆生植物叶片细胞的ψs为-2~-1MPa ψs (渗 起细胞水势的降低的 旱生植物叶片细胞的ψs可低到-10 MPa; 衬质势 细胞中的亲水物质对 成熟细胞水势可用液泡的水势来代替,由 自由水的束缚而引起 于液胞含水量很高,ψm趋于0,可忽略不 ψm

Hale Waihona Puke 水通道蛋白生物膜上具有通透水 分功能的内在蛋白, 亦 称 水 孔 蛋 白 (aquaporin)。 水通道蛋白的作用是 通过减小水越膜运动 的阻力而使细胞间水 分迁移的速率加快。
水孔蛋白的模型
水孔蛋白的结构
2.吸胀吸水-
依赖于低的ψm而引起的吸水。



未形成液泡的幼嫩细胞能利用细胞壁的果胶、 纤维素以及细胞中的蛋白质等亲水胶体对水的吸 附力吸收水分。 蛋白质吸胀力最大,淀粉次之,纤维素较小。豆 类种子子叶中含蛋白质多,而种皮中含纤维素多, 吸胀过程中,由于子叶的吸胀力较种皮大而将种 皮胀破。 种子吸水后,衬质势很快上升。当充分吸足水后, 即使放在纯水中,种子也不再吸水。 由于吸胀过程与细胞的代谢活动没有直接关系, 所以又把吸胀吸水称为非代谢性吸水。
表现形式
含有液泡的细胞如根系、气孔开闭时保卫细胞的吸水主要为 渗透吸水,植物渗透吸水的三种情况
Ψ细胞<Ψ外液,细胞吸水,体积变大,此外液称高水势溶液 Ψ细胞=Ψ外液,水分平衡,体积不变,此外液称等水势(等渗)溶液 Ψ细胞>Ψ外液 细胞失水,体积变小,此外液称低水势溶液,会发
生质壁分离现象,如再放回高水势溶液中可质壁分离复原
组分
定义
数值范围
溶质势 由于溶质颗粒的 通常溶液的ψw=ψs,溶质愈多ψs愈 ψs (渗透 存在而引起体系 低,通常土壤溶液ψs约为-0.01 MPa, 势ψπ) 水势降低的数值 盐碱土则较低,海水ψs为-2.5 Mpa
衬质势 ψm
压力势 ψp
由于衬质的存在 干燥的衬质ψm可达-300 MPa,吸水 引起体系水势降 后迅速增高,被水饱和时ψm趋于0, 低的数值 干旱土壤的衬质势可低到-3 MPa
(三)细胞吸水过程中水势组分的变化
植物细胞吸水与失水取决于细胞与外界环境之 间的水势差(△ψw)。当细胞水势低于外界的水 势时,细胞就吸水;当细胞水势高于外界的水势 时,细胞就失水;而当细胞水势等于外界水势时, 水分交换达动态平衡。植物细胞在吸水和失水的 过程中,细胞体积会发生变化,其水势、溶质势 和压力势等都会随之改变。
细胞渗透吸水的三种情况
植物置于浓溶液中,由 于细胞壁的伸缩性有限, 而原生质层的伸缩性较大, 当细胞继续失水时,原生 质层便和细胞壁慢慢分离 开来,这种现象被称为质 壁分离。

质壁分离
质壁分离复原

把发生了质壁分离的细胞浸在水势较高的稀溶液或清水中, 外液中的水分又会进入细胞,液泡变大,原生质层很快会 恢复原来的状态,重新与细胞壁相贴,这种现象称为质壁分 离复原。 利用初始质壁分离可以测定细胞的渗透势:ψw=ψs+ψp 当ψp = 0, ψw=ψs
9.水的溶解特性
二、水分在植物生命活动中的作用
1.水是细胞的重要组成成分
一般植物组织含水量占鲜重的75%~90% 细胞中的水可分为二类 束缚水(bound water)-与细胞组分紧密结合不能自由移 动、 不易蒸发散失的水。 自由水(free water)--与细胞组分之间吸附力较弱, 可以自由移动的水。 两者比值 自由水 高 束缚水 低 原生质 溶胶 凝胶 代谢 旺盛 活性低 生长 快 迟缓 抗逆性 弱 强
相关文档
最新文档