四种命题典型例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四种命题·典型例题

能力素质

[ ] 分析条件及结论同时否定,位置不变.

答选D.

例2 设原命题为:“对顶角相等”,把它写成“若p则q”形式为________.它的逆命题为________,否命题为________,逆否命题为________.分析只要确定了“p”和“q”,则四种命题形式都好写了.

解若两个角是对顶角,则两个角相等;若两个角相等,则这两个角是对顶角;若两个角不是对顶点,则这两个角不相等;若两个角不相等,则这两个角不是对顶角.

例3 “若P={x|x|<1},则0∈P”的等价命题是________.

分析等价命题可以是多个,我们这里是确定命题的逆否命题.

≠{x||x|<1}”

例4 分别写出命题“若x2+y2=0,则x、y全为0”的逆命题、否命题

和逆否命题.

分析根据命题的四种形式的结构确定.

解逆命题:若x、y全为0,则x2+y2=0;

否命题:若x2+y2≠0,则x,y不全为0;

逆否命题:若x、y不全为0,则x2+y2≠0.

说明:“x、y全为0”的否定不要写成“x、y全不为0”,应当是“x,y 不全为0”,这要特别小心.

例5 有下列四个命题:

①“若xy=1,则x、y互为倒数”的逆命题;

②“相似三角形的周长相等”的否命题;

③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;

[ ] A.①②B.②③

C.①③D.③④

分析应用相应知识分别验证.

解写出相应命题并判定真假

①“若x,y互为倒数,则xy=1”为真命题;

②“不相似三角形周长不相等”为假命题;

③“若方程x2-2bx+b2+b=0没有实根,则b>-1”为真命题;

选C.

点击思维

例6 以下列命题为原命题,分别写出它们的逆命题,否命题和逆否命题.

①内接于圆的四边形的对角互补;

②已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d;

分析首先应当把原命题改写成“若p则q”形式,再设法构造其余的三种形式命题.

解对①:原命题:“若四边形内接于圆,则它的对角互补”;

逆命题:“若四边形对角互补,则它必内接于某圆”;

否命题:“若四边形不内接于圆,则它的对角不互补”;

逆否命题:“若四边形的对角不互补,则它不内接于圆”.

对②:原命题:“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,其中“已知a、b、c、d是实数”是大前提,“a=b,c=d”是条件,“a+c =b+d”是结论.所以:

逆命题:“已知a、b、c、d是实数,若a+c=b+d,则a=b,c=d”;

否命题:“已知a、b、c、d是实数,若a≠b或c≠d,则a+c≠b+d”(注意“a=b,c=d”的否定是“a≠b或c≠d”只需要至少有一个不等即可);

逆否命题:“已知a、b、c、d是实数,若a+c≠b+d则a≠b或c≠d”.逆否命题还可以写成:“已知a、b、c、d是实数,若a+c≠b+d则a=b,c=d两个等式至少有一个不成立”

说明:要注意大前题的处理.试一试:写出命题“当c>0时,若a>b,则ac>bc”的逆命题,否命题,逆否命题,并分别判定其真假.

例7 已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2

+2ax-2a=0至少有一个方程有实根,求实数a的取值范围.

分析如果从正面分类讨论情况要复杂的多,而利用补集的思想(也含有反证法的思想)来求三个方程都没有实根的a范围比较简单.

说明:利用补集思想,体现了思维的逆向性.

学科渗透

例8 分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.

②当abc=0时,a=0或b=0或c=0.

分析改造原命题成“若p则q形式”再分别写出其逆命题、否命题、逆否命题.在判定各种形式命题的真假时要注意利用等价命题的原理和规律.

命题;

②原命题;“若abc=0,则a=0或b=0或c=0”,是真命题;

逆命题:“若a=0或b=0或c=0,则abc=0”是真命题;

否命题:“若abc≠0,则a≠0且b≠0且c≠0”,是真命题;(注意:“a=0或b=0或c=0”的否定形式是“a≠0且b≠0且c≠0”

逆否命题:“若a≠0且b≠0且c≠0,则abc≠0”,是真命题.

说明:判定四种形式命题的真假可以借助互为逆否命题的等价性.

分析如果直接从条件推证,方向不明,过程不可预测,较难,可以使用反证法.

解设a、b、c都不大于0,即a≤0,b≤0,c≤0,则有a+b+c≤0,而

=(x2-2x)+(y2-2y)+(z2-2z)+π

=(x-1)2+(y-1)2+(z-1)2+(π-3)

∴a+b+c>0这与a+b+c≤0矛盾.

因此a、b、c中至少有一个大于0.

说明:如下表,我们给出一些常见词语的否定.

相关文档
最新文档