matlab第9章 MATLAB在电路仿真

合集下载

matlab电路仿真教程

matlab电路仿真教程

matlab电路仿真教程Matlab是一种功能强大的软件,用于进行电路仿真和分析。

通过Matlab,用户可以轻松地进行电路分析、验证和优化。

在本教程中,我将介绍如何使用Matlab进行电路仿真,并提供一些实例来帮助您更好地理解。

首先,我们需要了解Matlab中的电路仿真工具。

Matlab提供了许多函数和工具箱,用于电路建模和仿真。

其中最常用的是Simulink和Circuits工具箱。

Simulink是一个可视化的仿真环境,用于建立和模拟电路系统。

Circuits工具箱则提供了一些基本电路元件和函数,用于电路建模和分析。

要开始使用Matlab进行电路仿真,首先需要安装Matlab和Simulink软件,并确保您具有有效的许可证。

然后,打开Matlab并导航到Simulink库。

在Simulink库中,您将找到许多电路元件,例如电阻器、电容器和电感器,以及电压源和电流源。

将合适的元件拖放到工作区域中,然后连接它们以构建您的电路。

在电路建模完成后,您需要为电路设置适当的参数。

例如,您可以指定电阻、电容和电感的值,以及电压源和电流源的值。

您还可以添加信号源和观察点,以便在仿真期间监视电路的行为。

一旦您完成了电路建模和参数设置,接下来就可以对其进行仿真了。

在Simulink工具箱中,有几种不同类型的仿真可用,例如时域仿真和频域仿真。

通过选择合适的仿真类型,并设置仿真时间和步长,您可以开始执行仿真并观察电路的响应。

在仿真完成后,您可以使用Matlab绘图工具箱中的一些函数来绘制和分析电路响应。

例如,您可以绘制电压随时间的变化曲线,或者计算电源输出和负载电流之间的关系。

通过使用Matlab的分析工具,您还可以进行降阶、优化和参数估计等进一步分析。

让我们通过一个简单的示例来说明如何使用Matlab进行电路仿真。

假设我们有一个简单的RC电路,其中包括一个电阻器和一个电容器。

我们想要了解电容器的电压如何随时间变化。

整流电路matlab仿真

整流电路matlab仿真

实验一:单相桥式全控整流电路的性能研究一、实验目的1.加深理解单相桥式全控整流电路的工作原理2.研究单相桥式变流电路整流的全过程3.掌握单相桥式全控整流电路MATLAB的仿真方法,会设置各模块的参数。

二、预习内容要点1. 单相桥式全控整流带电阻性负载的运行情况2. 单相桥式全控整流带阻感性负载的运行情况3. 单相桥式全控整流带具有反电动势负载的运行情况三、实验仿真模型1、电路结构单相桥式全控整流电路的电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

2、建模在MATLAB新建一个Model,命名为dianlu1,同时模型建立如下图所示单相桥式阻感负载整流电路四、实验内容及步骤1.对单相桥式全控整流带电阻性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。

以延迟角30°为例(1)器件的查找以下器件均是在MATLAB R2014a环境下查找的,其他版本类似。

有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找(2)连接说明有时查找出来的器件属性并不是我们想要的例如:变压器可以双击变压器进入属性后,取消three windings transformer就是单相变压器。

(3)参数设置1.双击交流电源把电压设置为220V,频率为50Hz;2.双击脉冲把周期设为0.02s,占空比设为10%,延迟角设为30度,由于属性里的单位为秒,故把其转换为秒即,30×0.02/360;3.双击负载把电阻设为20Ω,电感设为0.1H;4.双击示波器把Number of axes设为5,同时把History选项卡下的Limit data points to last 前面的对勾去掉;5.晶闸管参数保持默认即可(4)仿真波形及分析1.当供电给纯电阻负载a.触发角α=0°c. α=90°从图中可以看出输出电压Ud的电压波形相对延迟角为30度时的波形向后推迟了,同理可以得出输出电压Ud的平均值变小了。

matlab电力电子仿真教程

matlab电力电子仿真教程

MATLAB在电力电子技术中的应用目录MATLAB在电力电子技术中的应用 (1)MATLAB in power electronics application (2)目录 (4)1绪论 (6)1.1关于MATLAB软件 (6)1.1.1MATLAB软件是什么 (6)1.1.2MATLAB软件的特点和基本操作窗口 (7)1.1.3MATLAB软件的基本操作方法 (10)1.2电力电子技术 (12)1.3MATLAB和电力电子技术 (13)1.4本文完成的主要内容 (14)2MATLAB软件在电路中的应用 (15)2.1基本电气元件 (15)2.1.1基本电气元件简介 (15)2.1.2如何调用基本电器元件功能模块 (17)2.2如何简化电路的仿真模型 (19)2.3基本电路设计方法 (19)2.3.1电源功能模块 (19)2.3.2典型电路设计方法 (20)2.4常用电路设计法 (21)2.4.1ELEMENTS模块库 (21)2.4.2POWER ELECTRONICS模块库 (22)2.5MATLAB中电路的数学描述法 (22)3电力电子变流的仿真 (25)3.1实验的意义 (25)3.2交流-直流变流器 (25)3.2.1单相桥式全控整流电路仿真 (26)3.2.2三相桥式全控整流电路仿真 (38)3.3三相交流调压器 (53)3.3.1无中线星形联结三相交流调压器 (53)3.3.2支路控制三角形联结三相交流调压器 (59)3.4交流-交流变频电路仿真 (64)3.5矩阵式整流器的仿真 (67)1绪论1.1关于MATLAB软件作为当今世界最流行的第四代计算机语言,MATLAB软件语言系统,由于它在科学计算,网络控制,系统建模与仿真,数据分析,自动控制,图形图像处理航天航空,生物医学,物理学,通信系统,DSP处理系统,财务,电子商务,等不同领域的广泛应用以及它自身所具备的独特优势,目前MATLAB已备受许多科研领域的青睐与关注。

基于Matlab的电路实时仿真平台设计与实现

基于Matlab的电路实时仿真平台设计与实现

基于Matlab的电路实时仿真平台设计与实现基于Matlab的电路实时仿真平台设计与实现一、引言电路仿真是电子工程领域中重要的工具之一,在电子电路设计过程中起着至关重要的作用。

而基于Matlab的电路实时仿真平台则是利用Matlab软件对电路进行仿真实验的重要应用之一。

本文将介绍基于Matlab的电路实时仿真平台的设计与实现过程。

二、电路仿真平台的设计与实现1. 平台功能需求分析基于Matlab的电路实时仿真平台的设计与实现主要包含以下功能需求:(1)电路建模:能够支持电路元件的建模以及电路的连接和布线。

(2)仿真参数设置:能够设置仿真的时间范围、步长等参数。

(3)仿真结果分析:能够实时显示电路中各个元件的电压、电流、功率等参数,并提供结果分析的功能。

(4)实验控制:能够控制实验的开始、暂停、恢复、停止等操作。

(5)数据记录与导出:能够记录仿真实验过程中的数据,并支持数据导出为Excel或其他格式。

2. 平台设计与实现基于以上功能需求,我们设计了一套基于Matlab的电路实时仿真平台。

平台的实现主要分为以下几个模块:(1)电路建模模块:利用Matlab提供的图形用户界面工具,搭建了一个电路建模界面。

用户可以通过该界面选择电路元件,并将元件进行连线和布线,从而实现电路的建模。

在建模过程中,用户还可以设置元件的参数和初始条件。

(2)仿真参数设置模块:通过设定仿真的时间范围、步长等参数,用户可以对仿真实验进行灵活的配置,以满足不同的需求。

(3)仿真运行模块:在完成电路建模和参数设置后,用户可以点击“运行”按钮,开始进行仿真实验。

平台利用Matlab强大的计算能力,根据电路模型和仿真参数进行实时的仿真计算,并实时绘制出电路中各个元件的电压、电流曲线等。

用户可以通过切换窗口或界面,实时观察仿真结果。

(4)实验控制模块:平台提供了开始、暂停、恢复、停止等操作按钮,用户可以根据需要自由控制仿真实验的进行。

例如,在观察到关键数据点时,用户可以暂停仿真实验,通过对元件参数的调整,进一步优化电路设计。

matlab电路仿真教程

matlab电路仿真教程
举例说明 Sim6_1.mdl
三、Simulink常用模块介绍
在模块浏览器中的Simulink节点下包含了搭建一个Simulink模块所 需要的基本模块。本节主要对其中的Sources模块库、Sinks 模块库、 Simpower systeems模块库中的常用模块进行介绍。
Sources 模块
阶跃函数,起始时间是第1秒而非0秒。双击step模块,对仿真起始时间(step time)和阶跃
正弦波,电路中常用到的正弦信号(Sine Wave)模块,双击图标,在弹出的窗口中
调整相关参数。信号生成方式有两种:Time based 和 Sample based 。
从工作空间输入。从MATLAB Workspace输入已有的函数作为仿真的激
励信号。首先要在MATLAB环境下建立一个时间向量和相应的函数值向量,然后将时间向量和函数值
matlab电路仿真教程
1
Simulink简介
一、Simulink窗口环境 1. 启动Simulink
在MATLAB窗口的工具栏中单击 图标 在命令窗口中输入命令: >>simulink
2. Simulink浏览器 标题栏 菜单栏 工具栏 模块说明框
基本模块库
已安装专用 模块库
模块查找框 模块显示框
SimPower Systems模块
DC Voltage Source直流电压源,在 “Electrical Sources”模块内. Series RLC Branch 串联RLC 支路,设置参数可以去掉任一元件,将其变为单独的电阻、电容或电感 的支路。 将Series RLC Branch 模块设置成单一电阻时,应将参数:“Resistance”设 为所仿真电阻的真实值, “Inductance”设置为0,“Capacitance”设置为inf; 将Series -RLC Branch模块设置单一电感时,应将参数:“Inductance”设置为所仿真电感的真实值, “Resistance”设置为0,“Capacitance”设置为inf; 将Series RLC Branch设置单一电容时,应将参ห้องสมุดไป่ตู้: “Capacitance”设置为所仿真电感的真实值, “Resistance”和“Inductance”均设置为0。

matlab在电路分析和仿真中的应用

matlab在电路分析和仿真中的应用
2024/7/15
MATLAB/SIMULNK的主要产品及其相互关系
2024/7/15
MATLAB的优点
• 1. 容易使用 • 2. 可以由多种操作系统支持 • 3. 丰富的内部函数 • 4. 强大的图形和符号功能 • 5. 可以自动选择算法 • 6. 与其他软件和语言有良好的对接性
2024/7/15
2024/7/15
Matlab 的安装
2 输入名字和公司名称 3 在第三个空白处(PLP)输入软件的序列号sn 4 继续安装,直到安装完成。
2024/7/15
5 安装帮助 将安装目录中的help文件夹替换为安装包中的 help文件夹
MATLAB 7用户界面概述
MATLAB 7的用户界 面主要包括以下三个 方面的内容: • MATLAB 7的主菜单 • MATLAB 7的工具栏 • MATLAB 7的窗口
matlab自定义的函数文件称内置函数文件
调用内置函数的方法:使用函数名并给出相应的入 口、出口参数即可。
例如:sin.m函数——用type sin查不到。
调用格式:y=sin(2*x)
1
实际应用中:
0.8
x=0:2*pi/180:2*pi;
0.6
y=sin(2*x)
0.4
0.2
plot(x,y)
0
-0.2
2024/7/15
-0.4
-0.6
取R=255欧,L=125uH,C=6800pF,则:
H (s)
sRC s2LC sRC
1
85s2
1734000s 1734000s
1014
m文件如下: % LCR串联谐振电路 R=255; L=125*10^(-6); C=6800*10^(-12);

基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析

基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析

基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析本文以MATLAB软件的SIMULINK仿真软件包为平台,对桥式直流PWM 变换电路进行仿真分析文章对每个电路首先进行原理分析,进而建立相应的仿真模型,经过详细计算确定并设置仿真参数进行仿真,对于每次仿真结果均采用可视化波形图的方式直接输出。

在对仿真结果分析的基础上,不断优化仿真参数,使其最大化再现实际物理过程,并根据各个电路的性能进行参数改变从而观察结果的异同。

标签:SIMULINK;PWM;电路仿真1 桥式直流PWM变换电路简介桥式直流PWM变流器仿真实验是对全控型器件的应用。

实验电路中,前端为不可控整流、后端为开关型逆变器,此结构形式应用最为广泛。

逆变器的控制采用PWM方式。

对这个实验有所掌握的话,对后续课程设计直流调速系统也会有很大启发。

因为直流PWM-M调速系统近年来发展很快,直流PWM-M调速系统采用全控型电力电子器件,调制频率高,与晶闸管直流调速系统相比动态响应速度快,电动机转矩平稳脉动小,有很大优越性,因此在小功率调速系统和伺服系统中的应用越来越广泛。

2 桥式直流PWM变换电路的工作原理本实验系统的主电路采用双极性PWM控制方式,其中主电路由四个MOSFET(VT1~VT4)构成H桥。

Ub1~Ub4分别由PWM调制电路产生后经过驱动电路放大,再送到MOSFET相应的栅极,用以控制MOSFET的通断。

在双极性的控制方式中,VT1和VT4的栅极由一路信号驱动,VT2和VT3的栅极由另一路信号驱动,它们成对导通。

控制开关器件的通断时间可以调节输出电压的大小,若VT1和VT4的导通时间大于VT2和VT3的导通时问,输出电压的平均值为正,VT2和VT3的导通时间大于VT1和VT4的导通时间,则输出电压的平均值为负,所以可以用于直流电动机的可逆运行。

3 计算机仿真实验(1)桥式直流PWM变换电路仿真模型的建立。

根据所要仿真的电路,在SIMULINK窗口的仿真平台上构建仿真模型。

基于MATLAB-Simulink的模拟电子电路仿真

基于MATLAB-Simulink的模拟电子电路仿真

课程作业课程名称:MATLAB 班级:姓名:学号:基于Matlab-Simulink的LRC整流滤波电路仿真摘要:模拟电子是工科类专业的技术基础课程,实践性和应用性都很强。

在模拟电子学习实践中,引入MATLAB仿真工具,将传统学习方式和计算机技术有机地结合起来,使学习过程生动形象更利于掌握。

学实践表明该法不仅能提高学习质量,而且能提高学生的综合素质。

关键词:模拟电子MATLAB-Simulink仿真学习实践Abstract:Analog-electric is the technical basement of engineering majors,it is practical and applying,in the practice of study in analog-electric ,we take advantage of Matlab-Simulink tool to combine conventional learning method with computer technology organically,which make learning progress more vivid and understanding . Learning Practice turned out that this method not only advance the quality of studying,but also the comprehensive diathesis of students.Keyword:analog-electric MATLAB-Simulink Emulation Learning Practice0前言目前,模拟电子课程所涉及的理论和技术应用十分广泛,发展迅速,并且日益渗透到其他学科领域, 在我国社会主义现代化建设中具有重要的作用。

模拟电子课程是高等学校工程类专业的一门技术基础课程, 同时是我校面向机械制造、电气自动化、计算机信息技术、通讯工程等工科类专业开设的一门技术基础课程。

matlab电路仿真

matlab电路仿真

Matlab电路仿真软件包-simpowersystems1.入门1.1.SymPowerSystem是什么1.1.1.介绍在Matlab提供的simulink仿真环境下,与其他建模产品结合在一起,用于对电子、机械系统进展建模。

要学会使用SymPowerSystem,应首先学会使用Simulink仿真。

1.1.2.设计中的仿真的作用〔略〕1.1.3.SymPowerSystem仿真库你可迅速将SymPowerSystem投入使用。

该库包含了许多典型的功率设备模型,例如,变压器、导线、机械、能源电子等。

这些仿真模型来源于产品手册,基于工程实际。

SymPowerSystem包含一个主要的库:powerlib。

powerlib库显示了所有包含的模块和模块名称。

1.1.4.SymPowerSystem中的非线性模块〔略〕1.1.5.仿真时需要的环境:Maltab 和Simulink1.2.如何使用该指南1.2.1.对于新用户将学会如下知识和技能:(1)使用该库创建和仿真电子电路模型(2)将一个电子电路于simulink模块连接在一起(3)分析电子电路的稳定状态和频率响应(4)离散化模型,以便加快仿真速度(5)使用矢量图仿真方法(6)构建自定义的非线性仿真模型1.2.2.对于经验丰富的模块用户〔略〕1.2.3.所有用户〔略〕1.3.创建和仿真简单的电路1.3.1.介绍SymPowerSystem允许你对包含线性或非线性的电子电路进展建模和仿真。

在本章节中,您将学习到:(1)浏览SymPowerSystems的powerlib库(2)如何利用SymPowerSystem创建一个简单的电路(3)如何将电路与simulink模块互联。

下述电路是即将创建的电路:图1 要建模和仿真的电路1.3.2.使用powerlib创建电路(1)使用如下命令打开powerlib:powerlib(2)从powerlib的文件菜单下,允许“新建〞菜单命令,新建一个空白电路稳定,存为:circurt1(3)打开Electrical Sources库,复制其中的AC Voltage Source模块到circuit1中(4)双击AC Voltage Source,打开其属性设置对话框,按图1所示进展设置(5)改模块的名称为“Vs〞(6)将elements库中的Parallel RLC Branch模块复制到circuit1中,按图1进展参数设置(7)用同样的方法参加其他模块到电路中(8)注意参加的传输线模块:传输线模块模型图如下〔这是一段模型,一条导线通常有假如干段,每一段参数都一样,如图1所示〕:该模型是对参数分布一致的传输线的模拟。

matlab在电路仿真

matlab在电路仿真

a11=R1+R2; a12=-R2; a13=0; % 计算系数矩阵各元素的值
a21=-R2;a22=R2+R3+R4;a23=-R4;
a31=0;a32=-R4;a33=R4+R5+R6;
14
b1=1;b2=0;b3=0;
A=[a11,a12,a13; a21,a22,a23; a31,a32,a33];
16
17
2 含受控源的电阻电路
【例3】 如图12所示的是一个含受控源的电阻电路,设 R1=R2=R3=4、R4=2,控制常数k1=0.5、k2=4,is=2A。求i1 和i2。
18
解:方法一,M文件法。 (1) 建模。按图12列出节点方程为
1 R1
R12ua
R12ub
is
k1i2
R 12ua R 12R 13R 14 ubk1i2k R 2i3 1
matlab在电路仿真
本章学习目标
q 掌握电路系统模块集的使用 q 掌握电阻电路、电路的时域、稳态
和频域分析方法
2
主要内容
n 1 电路系统模块集简介 n 2 电阻电路 n 3 动态电路的时域分析 n 4 动态电路的稳态分析 n 5 电路的频域分析
3
1 电力系统模块集简介
电力系统模块集共有Electrical Sources、 Elements、Power Electronics、Machines、 Measurements、Application Libraries、Extras、 powergui和Demos等9个模块组。模块下面显示 的是版本号和开发该模块的公司的一些信息。
24
25
3 动态电路的时域分析

MATLAB与电力系统仿真

MATLAB与电力系统仿真
MATLAB应用技术
2.电力系统元件库简介 与电力系统建模与仿真有关的一些元件 :
1)电源元件(Electrical Sources) 直流电压源
交流电压源
交流电流源
三相压电源
受控电压源 受控电流源 三相可编程电压源
MATLAB应用技术
➢三相电源参数设置:
电源内部连接方式: Y:Y形连接,中性点不引出 Yn:Y形连接,中性点引出,可以 接外电路(如:中性点经电阻或消 弧线圈接地) Yg:Y形连接,中性点直接接地。
形式汇报
听口诀写算 式
扔骰子说口 诀
MATLAB应用技术
第四个环节:总结提升,升华课堂
说一说本节 课的收获
评一评自己 的课堂表现
根据学生的 回答总结全

评价学生
MATLAB应用技术
七.说作业设计
60页第1题:根据口诀写算式,巩固一个口诀可以写出两个乘法算式的知识 61页第1题:回顾口诀之间的联系,后一个口诀的得数是前一个口诀的得数加6 62页第7题:先找规律,再根据算式说口诀,复习编口诀的过程。
3
cos( 2 )
3 1
2
sin( cos(
2
3
2
3
)
)
ia ib
1
ic
2
在MATLAB中,使用abc坐标系统转换为dq0坐标系统(abc_to_dq0
Transformation)元件可以实现这种变换。
abc_to_dq0 Transformation在电力系统元件库(PowerLib)中的附加元件(Extras)
MATLAB应用技术
六.说教学过程
第一个环节:创设情境,导入新知 第二个环节:观察比较,探究新知 第三个环节:巩固练习,学以致用 第四个环节:总结提升,升华课堂

matlab仿真单相桥式全控整流电路

matlab仿真单相桥式全控整流电路

设计课题: 单相桥式全控整流电路姓名:学院: 信息工程学院专业: 电子信息科学与技术班级: 09级学号:日期 2010-2011第三学期指导教师: 李光明张军蕊单相桥式全控整流电路一、问题描述及工作原理1、单相桥式全控整流电路(电阻性负载)单相桥式全控整流电路(电阻性负载)如图1所示,电路由交流电源、整流变压器、晶闸管、负载以及触发电路组成。

我所要分析的问题是α为不同值时,输出电压及电流的波形变化。

idR图1其工作原理如下:(1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。

因此在0~α区间,4个晶闸管都不导通。

假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。

(2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。

(3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。

(4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

2、单相桥式全控整流电路(阻-感性负载)单相桥式全控整流电路(阻-感性负载)如图2所示:图2其工作原理如下:(1)在电压u2正半波的(0~α)区间。

晶闸管VT1、VT4承受正向电压,但无触发脉冲,VT1、VT4处于关断状态。

假设电路已经工作在稳定状态,则在0~α区间由于电感的作用,晶闸管VT2、VT3维持导通。

(2)在u2正半波的(α~π)区间。

在ωt=α时刻,触发晶闸管VT1、VT4使其导通,负载电流沿a→VT1→L→R→VT4→b→T的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。

如何使用Matlab进行电路仿真与分析

如何使用Matlab进行电路仿真与分析

如何使用Matlab进行电路仿真与分析引言:Matlab作为一种高级编程语言和数学建模工具,被广泛应用于各个领域。

在电路仿真与分析中,它可以帮助我们快速建立电路模型,并进行准确的仿真和分析。

本文将介绍如何使用Matlab进行电路仿真与分析。

一、Matlab的基本原理和优势Matlab是以矩阵运算为核心的编程语言,具有易于学习、功能强大以及丰富的工具箱等优势。

在电路仿真与分析中,Matlab可以实现电路模型的建立、节点分析、参数优化等功能,大大简化了电路设计和分析的过程。

二、电路模型的建立1. 基本元件的建模在Matlab中,我们可以使用基本元件的理想模型进行电路仿真与分析,例如电阻、电容、电感等。

通过定义电路元件的特性参数,我们可以轻松地建立电路模型。

2. 开关和放大器的建模除了基本元件,我们还可以建立开关和放大器等复杂电路元件的模型。

Matlab提供了各种模型和工具,例如理想开关模型、MOSFET模型、操作放大器模型等,可以帮助我们更准确地描述电路行为。

三、电路仿真与分析1. 网络分析法Matlab提供了丰富的网络分析工具,例如电压源、电流源、电阻、电容和电感等。

通过定义电路拓扑和元件参数,我们可以利用Matlab进行节点分析、等效电路求解、功率分析等操作,得到准确的电路行为结果。

2. 时域和频域分析除了网络分析,Matlab还支持时域和频域分析,帮助我们深入理解电路行为。

在时域分析中,我们可以观察电压和电流的波形、幅值、频率等信息;在频域分析中,我们可以计算电路的频谱、谐波失真等参数,从而评估电路性能和稳定性。

四、参数优化和曲线拟合1. 参数优化Matlab提供了各种优化算法和工具,例如遗传算法、模拟退火算法等,可以帮助我们优化电路的性能。

通过定义优化目标和约束条件,我们可以利用Matlab进行参数调整,提高电路的效率和可靠性。

2. 曲线拟合在电路设计中,我们经常需要通过试验数据来拟合曲线,以得到合适的电路模型。

MATLAB仿真在电子电路课程中的应用研究

MATLAB仿真在电子电路课程中的应用研究
分别运 用 MA AB语 言编 程及 用 Smuik设计 TL i l n
模块 图这两 种方法 , 电路 进行仿 真分 析和计 算 。 对 1 .MATL AB软 件 简介
很 多 软件公 司都 开发 了 自己的计 算机仿 真软 件, 比较适 合于 电路 分析 和仿真 的主要 有 P pc , si e
E A, rtlMATL D P o e, AB等 , 它们 各 有 优缺 点 , 其
中功能强 大 的就 是 MA AB TL .
MATL AB 源 于 Mar a o ao y一 词 , ti L b rtr x 原
数学 表 达 式 , 结 果 便 以数 值 或 图 形 方 式 显 示 其
个有效的辅助分析工具。
关键词 : 电子 电路 分 析 ; 真 ; 仿 MAT A L B语 言 ; 可视 化 仿 真 环境 中 图 分 类 号 : P 1 T 32 文 献 标 识 码 B
电子 电路 相 关 课 程 是 电 类 专 业 非 常 重要 的 基 础课 , 我们经 常要 对 电子 电路 求解 , 电路 比较 在 复杂 、 程数量 较 多 的情 况下 , 方 手工 求解不 仅 费时
出来 。
MATL AB 自产 生 之 日开 始 , 以其 强 大 的 就 功 能和 良好 的开 放性 而在 众 多软 件 中独 占鳌头 。
如 今 , 版本 的 MATL 新 AB在 符 号运 算 上 不 甘 落
意 为矩阵 实验室 。 开 始它 就 是 一 种 专 门用 于 矩 一

收 稿 日期 :0 6 0 一 O 20 — 9 9 作 者 简 介 : 美珍 ( 9 6 ) 女 . 教 授 . 高 16 一 . 副 主要 从 事物 理教 学 及 其研 究 工 作 。

matlab电路仿真教程

matlab电路仿真教程
举例说明 Sim6_1.mdl
三、Simulink常用模块介绍
在模块浏览器中的Simulink节点下包含了搭建一个Simulink模块所 需要的基本模块。本节主要对其中的Sources模块库、Sinks 模块库、 Simpower systeems模块库中的常用模块进行介绍。
Sources 模块
阶跃函数,起始时间是第1秒而非0秒。双击step模块,对仿真起始时间(step time)和阶跃
基于MATLAB/Simulink的直流电路仿真分析 电路如图所示,参数如下:R1=2,R2=4,R3=12,R4=4,R5=12,R6=4,R7=2,Us=10V。求i3,U4,U7;
仿真结果
携手共进,齐创精品工程
Thank You
世界触手可及
17
启动方式: (1)模块库浏览器的菜单“File”/“New”/“Model”命令 (2)单击工具栏上的 图标
菜单栏 工具栏
模块编辑框
当前状态
仿真进程
仿真解法
二、Simulink基本操作 创建一个简单的模型大致有以下三个步骤: 1)建立模型窗口并保存为以.mdl为后缀的模型文件; 2)将功能模块由模块库窗口复制到模型窗口,进行参数设置; 3)连接模块,从而构成需要的系统模型。
向量的名称[T, U]填入该图标的对话框中。
Sinks模块 Sinks模块库中的模块主要功能是接受信号,并且将接受的信号显示出来。
输出到工作空间,功能与From Workspace正好相反,把仿真结果连同输入信号
输出到工作空间去。
XY示波器:显示 MATLAB的图形窗口。输入曲线是以时间为横轴的绘图区域。
它的作用是将信号值直接显示在该模块的窗口中。输出信号是个直流信号时,

MATLAB电路仿真

MATLAB电路仿真

MATLAB 实验仿真报告实验一直流电路一实验例题1 节点分析MATLAB程序为:%计算节点电压的程序%给定阻抗矩阵Y和电流向量IY= [0.15 -0.1 -0.05;-0.1 0.145 -0.025;-0.05 -0.025 0.075];I= [5; 0; 2];Fprintf ('V1£¬V2ºÍV3£» \n')v=inv(Y)*I运行结果v = 404.2857350.0000412.8571二实验内容1电阻电路的计算1)MATLAB程序为:%计算给定阻抗矩阵Z和电压向量的回路电流%Z是阻抗矩阵%V是电压向量%初始化矩阵Z和向量VZ= [20 -12 0;-12 32 -12; 0 -12 18];U= [10 0 0]';I=inv (Z)*U;I3=I (1)-I (2);U4=I (2)*8;U7=I (3)*2;Fprintf ('i3=%8.4f A\n', I3)Fprintf ('u4=%8.4f V\n', U4)Fprintf ('u7=%8.4f V\n', U7)运行结果i3= 0.3571 Au4= 2.8571 Vu7= 0.4762 V(2)MATALAB程序为%将1)中方程左边的I2换到右边,右边的Us换到左边%新的矩阵A和向量BA= [20 0 -1;-12 -12 0; 0 18 0];B= [6 -16 6]';C=inv (A)*B;Us=C (3);I3=C (1)-0.5;I7=C (2);Fprintf ('Us=%8.4f V\nI3=%8.4f A\nI7=%8.4f A', Us, I3, I7)运行结果Us= 14.0000 VI3= 0.5000 AI7= 2.0000 A2求解电路中的电压%计算节点电压的程序%给定阻抗矩阵Y和电流向量IY= [-4.275 0.125 4.65 0;-0.125 0.075 0.05 0;-0.1 -0.2 0.55 -0.25; 0 0 0 1];I= [0 5 0 24]';V=Y/I;V1=V (1);V3=V (2);V4=V (3);V5=V (4);Ia= (V (3)-V (2))/5; %计算流过5Ω的电流V2=V1-10*Ia; %计算节点2的电压Fprintf ('V1=%8.4f V\nV2=%8.4f V\nV3=%8.4f V\nV4=%8.4f V\nV5=%8.4f V\n', V1, V2, V3, V4, V5)运行结果V1=117.4792 VV2=299.7708 VV3=193.9375 VV4=102.7917 VV5= 24.0000 V实验二 直流电路2一 实验示例MATLAB 程序为R1=4;R2=2;R3=4;R4=8;%设置元件参数Is1=2;Is2=0.5;%按A*X=B*Is 列写电路的矩阵方程其中X=[u1;u2;ua];Is=[Is1;Is2;Ia] a11=1/R1+1/R4;a12=-1/R1;a13=-1/R4;%设置系数矩阵Aa21=-1/R1; a22=1/R1+1/R2+1/R3; a23=-1/R3;a31=a13; a32=a23; a33=a11;A= [a11, a12, a13; a21, a22, a23; a31, a32, a33];B= [1, 1, 0; 0, 0, 0; 0,-1, 1];X1=A\B*[Is1; Is2; 0]; Uoc=X1(3);X2=A\B*[0; 0; 1]; Re=X2(3);Rl=0:10; p= (Rl*Uoc. / (Re+Rl)).*Uoc. /(Re+Rl), %设RL 序列,求其功率Figure (1), plot (Rl, p), grid运行结果p = 0 0.6944 1.0204 1.1719 1.2346 1.25001.2397 1.2153 1.1834 1.1480 1.111101234567891000.20.40.60.811.21.4二实验内容1电阻电路的计算Us=10; Req=10e3; Rl=Req;P=Us^2*Rl/ (Req+Rl) ^2;%求负载最大功率Rl=0:50e3;p= (Rl*Us. / (Req+Rl)).*Us. / (Req+Rl);%设RL序列,求其功率figure (1), plot (Rl, p), grid %画出功率曲线图Fprintf ('Maximum power dissipation is %5.4f W', P)运行结果Maximum power dissipation is 0.0025 W-3x 1042MATLAB程序为Us=48; Re=6; Rl=Re;P=Us^2*Rl/ (Re+Rl)^2; %求负载最大功率Rl = [0 2 4 6 10 18 24 42 90 186];p= (Rl*Us. / (Re+Rl)).*Us. / (Re+Rl) %设RL序列,求其功率Figure (1), plot (Rl, p), gridFprintf ('Maximum power dissipation is %5.4f W', P)运行结果p = 0 72.0000 92.1600 96.0000 90.000072.0000 61.4400 42.000 22.5000 11.6250Maximum power dissipation is 96.0000 W0204060801001201401601802000102030405060708090100实验三正弦稳态一实验示例戴维南定理MATLAB程序为Z1=-j*250;Z2=250;ki=0.5;Is=2;%设定元件参数a11=1/Z1+1/Z2;a12=-1/Z2;a13=0;%设定系数矩阵Aa21=a12; a22=1/Z2; a23=-ki;a31=1/Z1; a32=0; a33=-1;A= [a11, a12, a13; a21, a22, a23; a31, a32, a33];B= [1, 0; 0, 1; 0, 0];%求方程解X=【Ua;Ub;I1】=A\B*【Is;Ib】X0=A\B*[Is; 0];Uoc=X0(2),%Uoc等于Ib=0,Is=2是的UbX1=A\B*[0; 1]; Ze=X1(2),%最大负载功率发生在Zl=Ze’时Pmax= (abs (Uoc)) ^2/4/real (Ze)运行结果Uoc = 5.0000e+002 -1.0000e+003iZe = 5.0000e+002 -5.0000e+002iPmax = 625二实验内容1 MATLAB程序为R1=2;R2=3;R3=4;XL=2;XC1=3;XC2=5;Us1=8;Us2=6;Us3=8;Us4=15;%设定元件参数a11=1/R1+1/R2+1/(j*XL)+(1/XC1)*j;a12=-(1/R2+(1/XC1)*j);%设定系数矩阵Aa21=a12; a22=1/R2+1/R3+ (1/XC1)*j+ (1/XC2)*j;A= [a11 a12; a21 a22];B= [2-4*j; 3*j];%求解U=【Un1;Un2】U=A\B; Un1= U (1), Un2=U (2),IC1= (U (1)-U (2))/ (-XC1*j),IR1=Un1/R1; IL= (Un1-Us1)/ (XL*j),IR2= (U (1)-U (2)-Us2)/R2,IR3= (Un2-Us3)/R3,IC2= (Un2-Us4)/ (-XC2*j)Un1 = 3.7232 - 1.2732iUn2 = 4.8135 + 2.1420iIC1 = 1.1384 - 0.3634iIL = -0.6366 + 2.1384iIR2 = -2.3634 - 1.1384iIR3 = -0.7966 + 0.5355iIC2 = -0.4284 - 2.0373i2复功率R1=4;R2=2;R3=R2;XC=8;Us=10;Is=10;Z1=6*j;Z2=4*j;Z3=Z2;Is1=Us/R1;%设定元件参数Y1= (R1-XC*j)/ (R1*(-XC*j));Y2=1/Z1; Y3=1/Z3; Y4=1/ (Z2+R2); Y5=1/R3;y11=Y1+Y2; y12=-Y2; y13=0; y22=Y2+Y3+Y4;y23=-Y4; y33=Y4+Y5; y21=y12; y31=y13;y32=y23;%设定系数矩阵YY= [y11 y12 y13;y21 y22 y23;y31 y32 y33];I= [Is1; 0; Is];U=Y\I;IR1=-(U (1)-Us)/R1;Pu=Us *conj (IR1)Pi=U (3)*conj (Is)运行结果Pu = -4.0488 - 9.3830iPi = 1.7506e+002 +3.2391e+001i实验四交流分析和网络函数实验内容1U1=5; U2=2*exp (5*pi/12*j); Z1=4-2.5*j; Z2=6-5*j; Z3=10+8*j;z11=Z1+Z2; z12=-Z2;z21=-Z2; z22=Z2+Z3;Z= [z11 z12;z21 z22];U= [U1;-U2];I=inv (Z)*U, Uc= (I (1)-I (2))*(-10*j)I1abs=abs (I (1)); I1ang=angle (I (1))*180/pi;Ucabs=abs (Uc); Ucang=angle (Uc)*180/pi;Fprintf ('current I1, magnitude: %f\n current I1, angle in degree: %f\n', I1abs*sqrt (2), I1ang) Fprintf ('voltage Uc, magnitude: %f\n voltage Uc, angle in degree: %f', Ucabs*sqrt (2), Ucang)运行结果I = 0.3745 + 0.1005i Uc = 3.1902 - 2.7597iCurrent I1, magnitude: 0.548304Current I1, angle in degree: 15.019255Voltage Uc, magnitude: 5.965524Voltage Uc, angle in degree:-40.861691>>2MATLAB程序为Ua=110; Ub=110*exp (-2*j*pi/3); Uc=110*exp (2*j*pi/3);Za1=1+j; Za2=5+12*j; Zb1=1-2*j; Zb2=3+4*j; Zc1=1-0.5*j; Zc2=5-12*j;Van=Za2/ (Za1+Za2)*Ua; Vbn=Zb2/ (Zb1+Zb2)*Ub; Vcn=Zc2/ (Zc1+Zc2)*Uc;Fprintf ('phasor voltage Van, magnitude: %f\nphasor voltage Van, angle in degree: %f\n', abs (Van), angle (Van)*180/pi)Fprintf ('phasor voltage Vbn, magnitude: %f\nphasor voltage Vbn, angle in degree: %f\n', abs (Vbn), angle (Vbn)*180/pi)Fprintf ('phasor voltage Vcn, magnitude: %f\nphasor voltage Vcn, angle in degree: %f\n', abs (Vcn), angle (Vcn)*180/pi)运行结果phasor voltage Van, magnitude: 99.875532phasor voltage Van, angle in degree: 2.155276phasor voltage Vbn, magnitude: 122.983739phasor voltage Vbn, angle in degree:-93.434949phasor voltage Vcn, magnitude: 103.134238phasor voltage Vcn, angle in degree: 116.978859实验五动态电路实验内容1 正弦激励的一阶电路MATLAB程序为R=2; C= 0.5;T=R*C; Uc0=4;%输入元件参数Um=10; w=2; Zc=1/ (j*w*C);t=0:0.1:10;Us=Um * cos(w * t);%输入激励信号Ucp=Us *Zc/(R+Zc);%计算稳态分量Ucp0=Ucp(1);%计算稳态分量的初始值Uct=(Uc0-Ucp0 )* exp(-t/T);%计算暂态分量Uc=Uct+Ucp;%计算电路的全响应plot (t ,Uc,t,Uct,t,Ucp),grid%绘制稳态分量,暂态分量,全响应的波形图运行结果012345678910-2-112342 二阶欠阻尼电路的零输入响应MATLAB 程序为L=0.5;C=0.02;%输入元件参数uc0=1; iL0=0;For R=1:10;alpha=R/2/L;wn=sqrt(1/(L*C));%输入给定参数p1=-alpha+sqrt (alpha^2-wn^2);p2=-alpha-sqrt (alpha^2-wn^2);dt= 0.01; t=0: dt: 2;uc1=(p2*uc0-iL0/C)/(p2-p1)*exp(p1*t);%uc 的第一个分量uc2=-(p1*uc0-iL0/C)/(p2-p1)*exp(p2*t);%uc 的第二个分量iL1=p1*C*(p2*uc0-iL0/C)/(p2-p1)*exp(p1*t);iL2=-p2*C*(p1*uc0-iL0/C)/(p2-p1)*exp(p2*t);uc= uc1+uc2;iL= iL1+iL2;Figure (1), plot (t, uc), hold on;Figure (2), plot (t, iL), hold on;End运行结果00.20.40.60.81 1.2 1.4 1.6 1.82-0.8-0.6-0.4-0.200.20.40.60.81-0.2-0.15-0.1-0.050.050.10.15实验六 频率响应实验示例1 一阶低通电路的频率响应 MATLAB 程序为ww=0:0.2:4;%设定频率数组 H=1./(1+j*ww);%求复频率响应 Figure (1)subplot(2,1,1),plot(ww, abs(H)),%绘制幅频响应grid, label ('ww'), ylabel ('angle(H)')subplot(2,1,2),plot(ww, angle(H))%绘制相频响应 grid, label('ww'),ylabel('angle(H)') figure(2)%绘制对数频率响应subplot(2,1,1),semilogx(ww,20*log10(abs(H)))%纵坐标为分贝 grid, label('ww'),ylabel('分贝')subplot(2,1,2),semilogx(ww, angle(H))%绘制相频响应 grid, label('ww'),ylabel('angle(H)') 运行结果00.51 1.52 2.53 3.540.20.40.60.81wwa n g l e (H )00.51 1.52 2.53 3.54-1.5-1-0.5wwa n g l e (H )100ww分贝100wwa n g l e (H )实验七 simulink 仿真交流电路实验示例Continuous pow erguiv +-VM Ucs-+VCVSSeries RLC Branchsignalrm sRMS3signalrm sRMS2signalrm sRMS1R2R10.5Gainsignalm agnitudeangleFourier2signalm agnitudeangleFourier1signalm agnitudeangleFourierDisplay8Display7Display6Display5Display4Display3Display2Display1Displayi +-CM I2i +-CM I1i +-CMAC IsContinuous powerguiv +-VM Ucs-+VCVSSeries RLC BranchsignalrmsRMS3signalrmsRMS2signal rmsRMS1R2R10.5GainsignalmagnitudeangleFourier2signalmagnitudeangleFourier1signalmagnitudeangleFourier9.711Display842.87Display76.962Display6-43Display510.3Display47.17Display310.05Display2-1.636Display114.66Displayi +-CM I2i +-CM I1i +-CMAC Is本学期实验体会这学期的仿真课收获很多,本次实验课与理论课联系较紧密,理解操作起来更简单一些。

应用matlab数字逻辑电路仿真

应用matlab数字逻辑电路仿真

创建模型如下:
MATLAB 数字逻辑电路仿真
MATLAB 数字逻辑电路仿真
注意pulse generator模块的参数设置
模块名称 X2 X1 X0
Pulse type sample based sample based sample based
amplitud e 1 1 1
period 2 2 2
3线—8线二进制译码器真值表
X2 X1 X0 Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7
0
0 0 0 1 1
0
0 1 1 0 0
0
1 0 1 0 1
1
0 0 0 0 0
0
1 0 0 0 0
0
0 1 0 0 0
0
0 0 1 0 0
0
0 0 0 1 0
0
0 0 0 0 1
0
0 0 0 0 0
0
0 0 0 0 0
MATLAB 数字逻辑电路仿真
A=0101,B=0111实现A+B
MATLAB 数字逻辑电路仿真
§5.2 时序逻辑电路仿真
X1 Xn Z1
组 合 逻 辑 电 路
Zn
触 发 器
MATLAB 数字逻辑电路仿真
基本触发器模块: 1、RS触发器
MATLAB 数字逻辑电路仿真
RS触发器真值表
S 0 0 0 0 R 0 0 1 1 Qn 0 1 0 1 Qn+1 0 1 0 0
注意事项:
对于Pulse Generator的 属性中设置,选用 Sample based、 Amplitude=1、Period=8、 pulse width=1、 phase delay=0,1,2,3, 4,5,6,7、 sample time=1

如何利用Matlab进行模拟电路设计和仿真测试

如何利用Matlab进行模拟电路设计和仿真测试

如何利用Matlab进行模拟电路设计和仿真测试引言:在电子技术领域,模拟电路设计及仿真测试起到了至关重要的作用。

Matlab作为一款功能强大的科学计算工具,具有丰富的工具箱和扩展性,能够帮助工程师们完成复杂的电路设计和仿真测试工作。

本文将介绍如何使用Matlab进行模拟电路设计和仿真测试,以及常用的工具箱和技巧。

一、Matlab的基本特点和优势1.1 Matlab的功能和应用领域Matlab是一种基于矩阵和数组的高级数学语言和环境,具有工程计算、数据可视化、算法开发和模拟仿真等多种功能。

在电子技术领域,Matlab可以用于电路设计和仿真测试、信号处理、图像处理等方面的工作。

1.2 Matlab的优势(1)易于学习和使用:Matlab采用了类似于C语言的语法,对于熟悉编程的工程师来说非常容易入手。

(2)强大的数学计算能力:Matlab集成了丰富的数学函数和算法,可以快速处理各类数学计算任务。

(3)丰富的工具箱和扩展性:Matlab提供了各种工具箱,包括Simulink、DSP System Toolbox、RF Toolbox等,可以满足不同领域的需求。

(4)强大的图形和可视化功能:Matlab支持二维和三维图形的绘制,可以帮助工程师更直观地理解和分析数据。

(5)良好的与硬件设备的接口:通过适配器和接口,Matlab可以与硬件设备进行连接,实现数据的实时采集和控制。

二、利用Matlab进行模拟电路设计2.1 电路设计的基本流程在进行模拟电路设计之前,我们需要先明确电路设计的基本流程。

一般而言,电路设计的流程可以分为需求分析、系统规划、电路设计、电路优化和验证等几个阶段。

在Matlab中,我们可以利用其丰富的工具箱和函数来完成这些任务。

2.2 电路设计所需的Matlab工具箱在Matlab中,有几个常用的工具箱适用于电路设计,包括Signal Processing Toolbox(信号处理工具箱)、Control System Toolbox(控制系统工具箱)和Simulink(系统仿真工具箱)。

MATLAB_Simulink在电路分析与仿真中的应用

MATLAB_Simulink在电路分析与仿真中的应用
1 Z22 Z21 的程序.
程序清单 :
R = 100; L = 0. 02; C = 0. 01; W = 300; Z1 = R; Z2 = j3 W 3 L; Z3 = 1 / ( j3 W 3 C ) ;
Z ( 1, 1 ) = Z1 + Z2; Z ( 1, 2 ) = Z2;
Z ( 2, 2) = Z2 + Z3; Z ( 2, 1) = Z2;
借助图形分析电路问题是很容易理解的. 虽 然 MATLAB 工具箱中没有专门的电路函数工具 箱 , 但运用 Simulink的电力系统模块库 , 搭建电 路结构图实现仿真 , 也可以完成各种电路的仿 真. 下面分析一阶 RC动态电路当开关分或断时 , 电路换路情况下响应的动态过程.
如图 2所示 RC动态电路图 , 开关置于 a点 已有相当长一段时间之后 , 突然将开关切换到 b 点 , 下面在 Simulink仿真环境下对电路中的电容 电压 VC和电流 i( t)做出仿真波形图.
洛阳师范学院学报 2006年第 2期
·61·
4 Pow e rgu i在电路仿真中的应用
如图 5电路中有一个电力系统图形用户对话 框 powergui, 利用这个模块还可以得到电路的很 多信息. 双击该模块可打开如图 6 左侧部分所示 得功能菜单 , 其功能如下.
(1) Powergui模块可以显示系统稳定状态的 电流和电压及电路 (电感电流和电容电压 )所有 的状态变量值 ( Power Steady - State Tool按钮 ) ;
(4) 如果用户拥有控制工具箱 , Powergui模 块可以产生用户自己的系统状态空间模块 , 自动 打开 LTI相对于时域和频域的观测器接口 (U se LTI V iewer按钮 ) ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
控制常数则由2个simulink库下Math Operations 中的 Gain来完成。分别双击各元件,在弹出的 对话框中对各电阻及各控制元件根据题目给出 的条件赋值。
MATLAB中没有直流电流源,所以这里用了一个 小技巧,用受控电流源来完成。由于powerlib中有 直流电压源,所以选用一个直流电压源来控制受控 电流源,还需要1个Measurements模块下的电流测 量模块(Voltage Measurement)。电路图中电流源 的电流为2A,所以直流电压源的电压设为2V。
27
为了把电容上的三种电压波形画在一张图内, 并便于和图9.15比较,这里选用Voltage Measurement模块取出电容两端的电压,并送给 Sinks下的out模块,这样在仿真时会在MATLAB 工作空间中产生2个默认变量,时间变量tout和数 据变量yout。仿真时间设为10S,步长和方法一 保持一致,设为0.1S。仿真过程由以下几个步骤 完成: ① 如图9.16连接好仿真电路,然后对各元件 设置参数。交流电压源AC的参数为:Peak amplitude(V)为10;Phase值可这样求得:在
8
同时还需要调用Measurements模块中的Voltage Measurement和Simulink模块中Sinks下的虚拟示波 器Scope。最后添加上交互界面工具powergui。连 接好的电路仿真图模型如下图所示。
9
模型创建完成后,从模型编辑窗口中选择菜单命 令File→Save或Save As,选一个文件名(本例文件名 为mdlExam9_1)将模型以模型文件的格式(扩展名为 .mdl)存入磁盘。 在模型编辑窗口中对仿真的时间等参数设置完成 后,单击Start simulation按钮就开始进行仿真,本例 题仿真时间设为0.1秒。仿真结束后在MATLAB工作 空间中会有仿真产生的一些数据,用户可以对这些 数据进行分析或进行数据的可视化处理等。在本例 中双击虚拟示波器Scope,会出现如下页图所示的电 阻R2两端电压的波形图。
已知is=2A,由上式可解得i1和i2。
20
(2) MATLAB程序mExam9_3.m。 clear R1=4;R2=4;R3=4;R4=2; %给元件赋值 is=2;k1=0.5;k2=4; %给电源及控制系数赋值 %按照A*X=B*is列写电路的矩阵方程,其中X=[ua;ub;i1;i2] a11=1/R1+1/R2;a12=-1/R2;a13=0;a14=-k1; %设置系数A a21=-1/R2;a22=1/R2+1/R3+1/R4;a23=k2/R3;a24=k1; a31=1/R2;a32=-1/R2;a33=-1;a34=0; a41=0;a42=1/R4;a43=0;a44=-1;
4
【例9-1】 如图所示电路,输入的交流电压源为 10V、60Hz,电阻R1=15、R2=10,试求电阻R2 上的电压波形。
这个电路比较简单,只有1个交流电压源和2个 电阻,首先要搭建这个电路图。
5
选择菜单命令File→New→Model,出现如图所示 的模型编辑窗口。
然 后 在 MATLAB 命 令 窗 口 输 入 powerlib , 把 powerlib模块集调出来,双击打开Electrical Sources ,选中AC Voltage Source拖动到如图9.6所示的窗口 ;同理选中Elements里面的Series RLC Branch并拖 动到该窗口,由于有2个电阻,可以拖动2次,也可以 通过复制的方式来完成。
该方程组写成矩阵形式如下。
R 1 R 2 R 2 0 R 2 R2 R3 R4 R 4 R4 R 4 R5 R6 0 ia 1 i 0 u b s ic 0
21
A=[a11,a12,a13,a14;a21,a22,a23,a24;a31,a32,a3 3,a34;a41,a42,a43,a44]; B=[1;0;0;0]; X=A\B*is; display('i1和i2的值是'); i1=X(3),i2=X(4) (3) 程序运行结果。 i1和i2的值是 i1 = 1 i2 = 1
16
17
2 含受控源的电阻电路
【例9-3】 如图9.12所示的是一个含受控源的电阻电路, 设R1=R2=R3=4、R4=2,控制常数k1=0.5、k2=4, is=2A。求i1和i2。
18
解:方法一,M文件法。 (1) 建模。按图9.12列出节点方程为
1 1 1 u b is k 1 i 2 ua R2 R2 R1
24
25
9.3 动态电路的时域分析
1. 一阶动态电路的时域分析 【例9.4】如图9.14所示的是由正弦激励的一阶 电路,已知R=2Ω,C=0.5F,电容初始电压 uc(0+)=5V,激励的正弦电压,um=10V,。当t=0, 开关闭合,求电容电压的全响应、暂态响应与稳 态响应,并画出波形。
26
方法二,利用MATLAB中的电力系统模块集和虚拟 仪器搭建仿真电路 搭建好的仿真电路如下图所示,以文件名 mdlExam9_4存盘。该电路比较简单,只有1个交流 电压源,1个电阻,1个电容组成。但仿真过程需要 改变这几个元件的有些参数,需要一定技巧和近似 处理。
15
方法二,利用MATLAB中的电力系统模块集和 虚拟仪器搭建仿真电路。 根据图9.10知道电路需要1个Electrical Sources 模块下的DC Voltage Source,6个Elements模块 下的 Series RLC Branch。由于要测量电流和电 压,所以还需要Measurements模块下的电流测量 模块(Current Measurement)和电压测量模块 (Voltage Measurement),另需要2个Sinks模块下 的Display。然后根据题目给出的条件对各元件进 行赋值,搭建出如图9.11所示的仿真电路,以文 件名为mdlExam9_2存盘。最后进行仿真,2个 Display中显示的值即为所要求的电流值和电压值
28
方法一中激励源设为余弦函数 c o s tFra bibliotek ,而交流
电压源激励默认为正弦函数
22
方法二,利用MATLAB中的电力系统模块集和 虚拟仪器搭建仿真电路。 搭建好的仿真电路如图9.13所示,以文件名 mdlExam9_3存盘。根据图9.12知道电路需要4 个Elements模块下的 Series RLC Branch,2个 受控源是Electrical Sources下的Controlled Current Source和Controlled Voltage Source。 由于受控源分别受2条支路的电流控制,所以需 要2个Measurements模块下的电流测量模块 (Current Measurement)来引出这2条支路的电流 。
10
如果仿真时出错,会有出错信息的提示,读者 可以根据这些提示来改正电路中出现的错误。后 面一些复杂的电路仿真过程也和这个例题大致步 骤相同,在以后的例题中只给出搭建好的仿真电 路模型和参数设置说明,不再详述仿真电路的搭 建过程。
11
9.2 电 阻 电 路
1. 一般电阻电路
【例9-2】 如图9.10所示的电路,已知:us=10V ,R1=6、R2=8、R3=2、R4=12、R5=10、R6=5 。求i4和u6。
电力系统模块集共有Electrical Sources、 Elements、Power Electronics、Machines、 Measurements、Application Libraries、Extras 、powergui和Demos等9个模块组。模块下面 显示的是版本号和开发该模块的公司的一些信 息。 双击Electrical Sources、Elements、Power Electronics、Machines、Measurements、 Application Libraries和Extras中任一图标都将 打开一个下级子模块集,可以看到有很多的子 模块。
12
解:方法一,M文件法。 (1) 建模。用网孔法,按图9.10可列出网孔方程为
R 1 R 2 ia
R 2 ib u s
R 2 ia (R 2 R 3 R 4 ) ib R 4 ic 0
R 4 ib (R 4 R 5 R 6 ) ic 0
同理对Series RLC Branch和Series RLC Branch 1支路中的电阻值分别设置。还可以对这些元器件的 位置、方向和标注进行调整,具体方法读者在实验 时自己摸索。然后进行连线,把光标移动到需要连 线的元器件的连接端子,按住鼠标左键拖动到另一 个元器件的连接端子,释放鼠标即完成连线。 注意:在多于2条支路的节点处连接时,需要按 住Ctrl键,或将光标移动至连线的拐点处,等光标变 为十字交叉形再释放鼠标。
6
双击上图中的AC Voltage Source,就会出现 如下图所示的参数设置对话框。在对话框中可以 对 交 流 电 压 源 的 幅 值 (Peak amplitude) 、 相 位 (Phase) 、频率(Frequence) 、采样时间(Sample time)等进行设置。本例题中幅值设为10V、频率 设为60Hz。
1 1 R R2 1 1 R2 1 R2 0 1 R2 1 R2 1 R3 1 R2 1 R4 0 1 R4 k2 R3 1 0 k1
ua 1 k1 u 0 b i i1 0 s 0 i2 0 1
13
该矩阵方程组可简写为 A I B u ,由于电 源和电阻的值是已知的,从而可以求出ia 、ib和ic,而 i4 ib ic ,u 6 R 6 ic ,即可 得问题的解。
相关文档
最新文档