基于Hadoop的分布式搜索引擎研究与实现
分布式计算平台的设计与实现
分布式计算平台的设计与实现随着互联网和计算机技术的迅猛发展,数据量的急速增加和计算速度的不断提高,分布式计算平台作为一种新型的计算方式,逐渐引起人们的关注和应用。
本文将探讨分布式计算平台的设计与实现。
一、什么是分布式计算平台分布式计算平台是指利用多台计算机资源进行分布式计算的一种计算模式。
它集合了多台计算机的计算能力和存储资源,通过网络将它们连接起来,形成一个庞大的计算机群。
在分布式计算平台中,各个计算机节点通过共享任务和结果,共同完成一项计算任务。
分布式计算平台的主要优势在于分布式计算的计算速度更快、计算能力更强、计算精度更高,并且具有较好的可扩展性和可靠性,同时减少计算能耗、节省成本,广泛应用于高性能计算、大规模数据分析、人工智能等领域。
二、分布式计算平台的设计原则分布式计算平台的设计需要考虑以下原则:(1)可扩展性:分布式计算平台为了适应不同规模的计算需求,需要具有较好的可扩展性,能够支持更多计算节点的加入和退出,这样可以在不同的项目开发和应用场景下满足不同的计算需求。
(2)可靠性:分布式计算平台需要具有良好的可靠性,防止单点故障出现,保证每个计算节点的可靠性和稳定性,以保证整个系统的稳定运行。
(3)任务分配:分布式计算平台需要能够把任务分配到各个计算节点上,根据不同计算节点的运行能力进行任务分配,以实现系统性能的优化。
(4)数据传输:分布式计算平台需要具有高效的数据传输能力,减少不必要的数据传输和存储,从而提高系统的传输速度和计算效率。
(5)安全性:分布式计算平台需要保证数据的安全性,尤其是在涉及到敏感数据的应用场景下,需要加强数据的加密和权限控制。
三、分布式计算平台的实现分布式计算平台的实现可以采用多种软件技术和编程语言,比如Hadoop、Spark、MapReduce、MPI等。
下面主要介绍基于Hadoop实现的分布式计算平台。
Hadoop是一种开源的分布式计算软件框架,适用于大规模计算和数据处理,目前已成为云计算和大数据处理的标准工具。
计算机专业毕业论文题目
计算机专业毕业论文题目计算机本科毕业自我鉴定计算机硬件毕业论文题目1、基于知识库的计算机硬件维修服务系统2、计算机硬件虚拟实验室的设计与研究3、通用性齿轮箱状态监测与故障诊断系统的研究4、局域网内计算机硬件资源管理系统的开发5、计算机监控管理系统的设计与实现6、企业人力资本投资与企业绩效7、基于DSP和FPGA的多功能嵌入式导航计算机系统设计8、面向服务软件体系架构原理与范例研究9、信息和通讯技术产业与经济增长:对中国实践的研究10、抗恶劣环境可穿戴计算机研究11、可穿戴计算机硬件技术研究12、基于DSP的导航计算机硬件设计13、计算机硬件虚拟实验平台的研究与开发14、星载并行计算机硬件系统可靠性设计与分析15、基于USB的可穿戴计算机接口设计16、半导体神经计算机硬件实现研究及在全方位实物识别中的应用17、基于本体和规则的计算机故障诊断研究18、基于尘源控制与净化设备的数字仿真系统的分析与应用19、中国计算机行业上市公司并购动因及并购绩效研究20、计算机硬件测试系统的设计与实现21、飞控计算机的容错研究与设计22、计算机硬件设备故障管理机制研究23、航天器时变计算机体系结构研究24、基于浮点DSP的微小型导航系统设计与工程实现研究25、无人机余度飞行控制计算机关键技术研究26、基于DSP的无人机飞控计算机的设计与实现27、激光陀螺捷联惯导系统快速原型技术研究28、基于586-Engine的小型化飞控计算机设计29、星载计算机的硬件容错设计与可靠性分析30、基于XEN网络虚拟化的性能研究31、基于Virtools的中学计算机硬件虚拟实验的研究与设计32、无人机余度飞行控制软件的设计与研究33、基于FPGA的多核可重构技术研究34、面向城市轨道交通的安全计算机设计35、在现代教育技术环境下开放实验教学模式研究36、基于PC755和PC107A的单板计算机的开发37、基于中职的计算机组装虚拟实验室的设计与开发研究38、无人机余度飞行控制计算机设计及研究39、基于双DSC的无人机飞控计算机核心系统的设计与实现40、无人机余度飞行控制软件设计与研究计算机网络技术专业毕业论文题目1、基于移动互联网下服装品牌的推广及应用研究2、基于Spark平台的恶意流量监测分析系统3、基于MOOC翻转课堂教学模式的设计与应用研究4、一种数字货币系统P2P消息传输机制的设计与实现5、基于灰色神经网络模型的网络流量预测算法研究6、基于KNN算法的Android应用异常检测技术研究7、基于macvlan的Docker容器网络系统的设计与实现8、基于容器云平台的网络资源管理与配置系统设计与实现9、基于OpenStack的SDN仿真网络的研究10、一个基于云平台的智慧校园数据中心的设计与实现11、基于SDN的数据中心网络流量调度与负载均衡研究12、软件定义网络(SDN)网络管理关键技术研究13、基于SDN的数据中心网络动态负载均衡研究14、基于移动智能终端的医疗服务系统设计与实现15、基于SDN的网络流量控制模型设计与研究16、《计算机网络》课程移动学习网站的设计与开发17、数据挖掘技术在网络教学中的应用研究18、移动互联网即时通讯产品的用户体验要素研究19、基于SDN的负载均衡节能技术研究20、基于SDN和OpenFlow的流量分析系统的研究与设计21、基于SDN的网络资源虚拟化的研究与设计22、 SDN中面向北向的控制器关键技术的研究23、基于SDN的网络流量工程研究24、基于博弈论的云计算资源调度方法研究25、基于Hadoop的分布式网络爬虫系统的研究与实现26、一种基于SDN的IP骨干网流量调度方案的研究与实现27、基于软件定义网络的WLAN中DDoS攻击检测和防护28、基于SDN的集群控制器负载均衡的研究29、基于大数据的网络用户行为分析30、基于机器学习的P2P网络流分类研究31、移动互联网用户生成内容动机分析与质量评价研究32、基于大数据的网络恶意流量分析系统的设计与实现33、面向SDN的流量调度技术研究34、基于P2P的小额借贷融资平台的设计与实现35、基于移动互联网的智慧校园应用研究36、内容中心网络建模与内容放置问题研究37、分布式移动性管理架构下的资源优化机制研究38、基于模糊综合评价的P2P网络流量优化方法研究39、面向新型互联网架构的移动性管理关键技术研究40、虚拟网络映射策略与算法研究计算机信息管理毕业论文题目1、基于RFID技术的固定资产管理软件系统的设计与开发2、基于RFID高校信息管理系统的研究与实现3、数据库管理系统中的隐式授权问题研究4、生产制造行业中RFID技术的应用5、中小型银行信息管理系统的研究与实践6、基于Web教务管理系统安全方案研究7、基于RFID的可追溯果园生产过程管理系统8、基于SOA的联邦式信息检索平台的研究与实现9、基于信息管理的垃圾短信控制系统的设计与实现10、基于QR二维码的井群信息管理系统研究11、基于视景重现的舰船IETM系统开发12、 RFID技术在物资仓库管理系统中的应用研究13、基于RFID的大型赛事人员及车辆信息管理系统开发应用研究14、基于RFID的输变电设备EPC编码的应用研究15、基于目录服务的物联网元数据及公共服务管理系统的设计及实现16、基于目录服务的物联网节点信息管理系统的设计与实现17、基于PKI技术的高校电子档案安全管理系统的设计与实现18、面向隐私保护的第三方个人信息服务平台研究19、基于神经网络的车牌识别与信息管理系统20、平庄西露天矿地质信息管理系统的开发及应用研究21、安全信息管理(SIM)风险管理的研究与实现22、数据备份恢复工具的设计与实现23、个人信息管理中文件路径编码研究24、电子商务信息管理系统数据安全性研究25、基于XML的移动艾滋病信息管理系统安全研究26、虹膜识别技术在医疗信息管理系统中的设计与实现27、单点登录方法研究及模型实现28、基于RFID的药品包装信息管理系统29、基于WebGIS的五金产业信息搜索系统的设计与实现30、地下管线三维CAD与信息管理软件开发。
基于Hadoop的分布式爬虫及其实现
基于Hadoop的分布式爬虫及其实现引言随着互联网的快速发展和信息的爆炸式增长,大数据时代已经来临。
海量的数据涌入网络,并形成了一个巨大的信息资源库。
如何有效地从这个海洋中提取有价值的信息,成为了当今互联网领域面临的重要挑战之一。
为了应对这一挑战,分布式爬虫技术应运而生。
本文将介绍基于Hadoop的分布式爬虫的实现过程及其优势。
一、分布式爬虫的背景与意义1.1 现有的爬虫技术传统的爬虫技术主要是基于单机环境下的串行爬虫,即一个爬虫程序在一个机器上运行,通过遍历链接、下载网页并解析的方式进行信息抓取。
然而,在处理大规模的数据量时,单机环境面临着许多挑战,如性能瓶颈、系统崩溃等。
1.2 分布式爬虫的优势与应用分布式爬虫依赖于分布式计算框架,如Hadoop,将爬取任务进行拆分,通过多个爬虫节点并行执行,大大提高了爬取效率。
同时,分布式爬虫还能够充分利用多个计算节点的存储资源,提高数据的采集速度和处理能力。
因此,分布式爬虫在大规模数据挖掘、搜索引擎优化等领域具有广泛的应用前景。
二、基于Hadoop的分布式爬虫的实现步骤2.1 爬虫任务的拆解与调度在分布式爬虫中,首先需要将爬取任务进行拆分,分配给多个爬虫节点。
如何进行任务的拆解与调度是整个分布式爬虫实现的重要环节。
Hadoop的MapReduce框架提供了良好的任务调度机制,可以将爬取任务拆解成独立的Map任务,再通过Reduce任务进行合并和处理。
2.2 爬虫节点的配置与管理在分布式爬虫中,每个爬虫节点都需要配置相应的设备和环境。
常见的配置包括网络代理、数据存储路径、爬取深度等。
此外,还需要对爬虫节点进行管理和监控,确保节点的正常工作和性能优化。
2.3 数据的采集与清洗数据的采集是分布式爬虫的核心步骤之一。
在分布式爬虫中,不同的爬虫节点负责采集不同的数据片段,并将采集结果通过消息队列等方式传递给中心节点。
中心节点进行数据的合并和清洗,去除重复数据和无效信息,得到最终的爬取结果。
基于Hadoop的Nutch分布式网络爬虫的研究9.2
基于Hadoop的Nutch分布式主题主题网络爬虫的研究施磊磊,施化吉,朱玉婷(江苏大学计算机科学与通信工程学院,江苏镇江212013)摘要:针对Nutch分布式主题爬虫的爬取效率和爬取的准确度问题,本文提出了改进的主题判断和预测模型来提高下载网页的主题相关度和网页的质量,同时引入改进的PageRank 算法来计算链接主题网页的优先级,并搭建Hadoop分布式集群环境,以MapReduce分布式计算模型以达到高效率的分布式爬取,然后利用HBase、Zookeeper和Memcached来达到高效率的分布式存储,最后通过实验验证了Nutch分布式主题爬虫的高效性、准确性、扩展性和可靠性。
关键词:主题爬虫;Hadoop集群; Nutch; MapReduceResearch on Nutch distributed web crawlersubject oriented.SHI Lei-lei , SHI Hua-ji , ZHU Yu-tin(School of Computer Science and Telecommunication Engineering,Jiangsu University,Zhenjiang 212013,China)Abstract:For crawling crawling efficiency and accuracy problems Nutch crawler distributed topic, this paper proposes an improved model to predict and judge topics to improve the quality of downloaded pages and pages of the topic, while the introduction of the improved PageRank algorithm to calculate the link priorities and build Hadoop distributed cluster environment to MapReduce distributed computing model in order to achieve efficient crawling topic pages, preferably through experimental verification of the efficiency of the subject reptiles, scalability and reliability.Keywords:topic crawler;Hadoop cluster;Nutch;MapReduce1 引言Nutch是一个开源的垂直搜索引擎,它使用Java语言开发,具有跨平台应用的优点,Nutch作为主题网络爬虫和lucene的结合,功能上极其强悍,每个月数以亿计的网页爬取量,网页搜索的高速,开源的功能剖析都是我们选择研究它的关键因素。
基于Hadoop的大数据处理系统设计与实现
基于Hadoop的大数据处理系统设计与实现随着互联网和移动智能终端的飞速发展,数据量不断增长,由此产生的数据处理和存储需求也日益增加。
而传统的数据库处理方式已经无法满足如此庞大的数据量和处理速度需求,于是大数据处理技术应运而生。
Hadoop是其中最著名的开源大数据处理框架,下面将介绍基于Hadoop的大数据处理系统的设计和实现。
一、需求分析设计一个基于Hadoop的大数据处理系统,需要先进行需求分析。
我们需要对系统进行如下几个方面的分析:1.数据存储系统需要提供存储庞大数据的容器和机制,并且要保证数据的完整性和可靠性。
2.数据处理系统需要支持对大数据的处理和分析,并能够以高效的方式对数据进行处理。
3.系统性能系统需要具有良好的性能,并且能够对数据进行快速处理。
基于这些要求我们可以设计出一个基于Hadoop的大数据处理系统,用于处理大规模数据。
二、系统设计1.系统架构设计Hadoop设计的核心是分布式计算,系统采用主从架构模式,包含一个主服务器和多个从服务器,从服务器上运行着Data Node和Task Tracker进程,分别负责数据存储和数据处理,主服务器上运行着Name Node和Job Tracker进程,分别负责管理文件系统和任务管理。
2.数据存储设计系统采用HDFS(Hadoop Distributed File System)作为数据存储的容器,HDFS的特点是高可用性以及对大文件的支持。
在HDFS中,数据被分成块并分布在多个服务器上进行存储,从而提高了存储性能和可靠性,同时也通过数据缓存,实现了数据的快速读取。
3.数据处理设计系统采用MapReduce模型进行数据处理,MapReduce的特点是并行和分布式处理。
MapReduce将数据处理任务分解成两个阶段:Map阶段和Reduce阶段,Map阶段负责将输入数据处理成键值对,Reduce阶段则负责将相同键的值进行聚合得到最终结果。
基于hadoop的课程设计题目
基于hadoop的课程设计题目正文:基于Hadoop的课程设计题目是指以Hadoop作为基础框架进行开发的课程设计项目。
Hadoop是一个开源的分布式计算框架,可以处理海量数据的存储和分析,具有高可靠性和可扩展性的特点。
在这样的设计中,学生可以通过设计和实现一个基于Hadoop的应用来深入了解分布式计算和大数据处理的原理和技术。
以下是一些基于Hadoop的课程设计题目的例子:1. 大数据处理与分析平台的设计与实现:学生可以设计并实现一个大数据处理与分析平台,该平台能够接收大规模数据集,使用Hadoop进行分布式存储和计算,并提供数据查询、可视化等功能。
2. 分布式日志分析系统的设计与实现:学生可以设计并实现一个分布式日志分析系统,该系统能够处理大量的日志数据,并提取有用的信息,如异常日志、用户行为等,帮助企业进行系统监控和故障排查。
3. 分布式推荐系统的设计与实现:学生可以设计并实现一个基于Hadoop的分布式推荐系统,该系统能够根据用户的历史数据和兴趣,为用户提供个性化的推荐内容,如电影、音乐、商品等。
4. 分布式图计算的设计与实现:学生可以设计并实现一个分布式图计算系统,该系统能够处理大规模图数据,并进行图计算算法的实现,如PageRank、社区发现等,用于社交网络分析、网络流量优化等领域。
5. 分布式机器学习系统的设计与实现:学生可以设计并实现一个分布式机器学习系统,该系统能够处理大规模的训练数据,并进行机器学习算法的训练和预测,如分类、聚类、推荐等,用于大数据分析和智能决策。
以上仅是一些基于Hadoop的课程设计题目的示例,学生可以根据自己的兴趣和实际情况进行选择和拓展。
通过这样的课程设计,学生可以掌握大数据处理和分布式计算的基本原理和技术,提升自己在大数据领域的实际应用能力。
基于Hadoop的大数据处理与分析系统设计与实现
基于Hadoop的大数据处理与分析系统设计与实现一、引言随着互联网的快速发展和智能化技术的不断进步,大数据已经成为当今信息时代的重要组成部分。
大数据处理与分析系统的设计与实现变得愈发重要。
Hadoop作为一个开源的分布式计算框架,被广泛应用于大数据处理与分析领域。
本文将探讨基于Hadoop的大数据处理与分析系统的设计与实现。
二、Hadoop简介Hadoop是Apache基金会的一个开源项目,主要用于存储和处理大规模数据。
它提供了一个分布式文件系统(HDFS)和一个分布式计算框架(MapReduce),能够有效地处理海量数据。
Hadoop的核心设计理念是将数据分散存储在多台服务器上,并通过并行计算来加速数据处理过程。
三、大数据处理与分析系统架构设计1. 数据采集在大数据处理与分析系统中,首先需要进行数据采集。
数据可以来自各种来源,如传感器、日志文件、数据库等。
通过Hadoop提供的工具和技术,可以将这些数据采集并存储到HDFS中。
2. 数据清洗与预处理由于原始数据可能存在噪音和不完整性,需要对数据进行清洗和预处理。
这包括去除重复数据、填充缺失值、转换数据格式等操作。
Hadoop提供了MapReduce等机制来实现这些操作。
3. 数据存储清洗和预处理后的数据需要进行存储。
HDFS是Hadoop提供的分布式文件系统,具有高容错性和可靠性,适合存储大规模数据。
此外,还可以结合其他存储系统如HBase、Cassandra等进行存储。
4. 数据处理与分析在数据存储完成后,可以利用Hadoop的MapReduce框架进行数据处理与分析。
MapReduce将任务分解成Map和Reduce两个阶段,实现并行计算。
通过编写MapReduce程序,可以实现各种复杂的数据处理和分析操作。
5. 数据可视化最终结果需要以直观的方式呈现给用户。
数据可视化是大数据处理与分析系统中至关重要的一环。
通过工具如Tableau、PowerBI等,可以将处理后的数据以图表、报表等形式展示出来,帮助用户更好地理解和利用数据。
基于Hadoop的大数据分析系统的设计与实现
基于Hadoop的大数据分析系统的设计与实现随着信息化时代的到来,数据量呈爆炸式增长,如何利用这些海量数据来为企业、政府等机构提供更好的服务成为一个热门话题。
而大数据分析技术的产生和发展,为这个问题提供了一个有效的解决方案。
作为其中的代表性技术之一,Hadoop已经成为一款备受欢迎的大数据分析系统。
本文将从设计和实现两个层面来总结分析基于Hadoop的大数据分析系统。
1. 设计1.1 数据的分片Hadoop的一个核心思想就是将数据分成很多块进行处理。
这种方式可以有效增加并行度,减少单个节点处理的压力,提高系统的效率。
分片的大小一般由MapReduce框架中的“块大小(block size)”参数来定义,一般建议设置为128MB到256MB之间。
1.2 数据的存储Hadoop的数据存储一般采用HDFS(分布式文件系统)进行管理,其基本特点是数据分布式存储,副本备份,处理集群与数据存储集群分离,容错性强。
HDFS的数据块默认大小为64MB,每个文件至少存储3个副本(可设置),且这些副本分布在不同的节点上,以保证数据的冗余备份和高可用。
1.3 数据的处理Hadoop采用MapReduce编程模型对数据进行处理。
MapReduce本身是一种分布式计算模型,可以为不同类型的数据提供不同的计算方式。
MapReduce过程包括两个阶段:Map和Reduce。
Map负责将数据进行划分、处理和输出,Reduce则负责合并Map输出结果并输出最终结果。
事实上,Map和Reduce运行的都是相同的代码,但在MapReduce框架中,它们的作用却不同。
1.4 数据的分发Hadoop的一大特点是能够很好地利用分布式式处理来提高数据分析的效率。
在Hadoop的分布式式处理中,数据的分发通常采用Hadoop的YARN(Yet Another Resource Negotiator)来负责完成。
YARN是Hadoop的一个资源调度系统,它提供了一个简单的接口,使得用户可以对运行在集群上的应用程序进行监控和管理。
基于Hadoop的大数据处理平台设计与实现
基于Hadoop的大数据处理平台设计与实现一、引言随着互联网的快速发展和智能设备的普及,大数据已经成为当今社会中不可忽视的重要资源。
大数据处理平台作为支撑大数据应用的基础设施,扮演着至关重要的角色。
本文将围绕基于Hadoop的大数据处理平台的设计与实现展开讨论,探讨其架构、关键技术和实际应用。
二、Hadoop简介Hadoop是一个开源的分布式计算平台,由Apache基金会开发和维护。
它主要包括Hadoop Distributed File System(HDFS)和MapReduce两个核心模块。
HDFS用于存储大规模数据集,而MapReduce 则用于并行处理这些数据。
Hadoop具有高可靠性、高扩展性和高效率等特点,被广泛应用于大数据领域。
三、大数据处理平台架构设计1. 架构概述基于Hadoop的大数据处理平台通常采用分布式架构,包括数据采集、数据存储、数据处理和数据展示等模块。
其中,数据采集模块负责从各种数据源中收集数据,数据存储模块负责将数据存储到分布式文件系统中,数据处理模块负责对数据进行分析和计算,数据展示模块则负责将处理结果可视化展示给用户。
2. 架构组件数据采集组件:包括日志收集器、消息队列等工具,用于实时或批量地采集各类数据。
数据存储组件:主要使用HDFS作为底层存储,保证数据的可靠性和高可用性。
数据处理组件:使用MapReduce、Spark等计算框架进行数据处理和分析。
数据展示组件:通过BI工具或Web界面展示处理结果,帮助用户理解和分析数据。
四、关键技术探讨1. 数据存储技术在基于Hadoop的大数据处理平台中,HDFS是最常用的分布式文件系统之一。
它通过将大文件切分成多个块,并在集群中多个节点上进行存储,实现了高容错性和高可靠性。
2. 数据处理技术MapReduce是Hadoop中最经典的并行计算框架之一,通过将任务分解成Map和Reduce两个阶段,并在多个节点上并行执行,实现了高效的大规模数据处理能力。
基于Hadoop的大数据分析与展示系统设计与实现
基于Hadoop的大数据分析与展示系统设计与实现一、引言随着互联网的快速发展和智能化技术的不断进步,大数据已经成为当今社会中不可或缺的重要资源。
大数据分析与展示系统作为处理和展示海量数据的关键工具,在各个领域都扮演着至关重要的角色。
本文将围绕基于Hadoop的大数据分析与展示系统的设计与实现展开讨论。
二、Hadoop技术简介Hadoop是一个开源的分布式计算平台,可以对大规模数据进行存储和处理。
其核心包括Hadoop Distributed File System(HDFS)和MapReduce计算框架。
HDFS提供了高容错性的存储解决方案,而MapReduce则用于并行处理大规模数据集。
三、大数据分析与展示系统架构设计1. 数据采集与清洗在大数据分析过程中,首先需要对数据进行采集和清洗。
数据可以来自各种来源,包括传感器、日志文件、数据库等。
通过Hadoop平台提供的工具,可以实现对数据的实时采集和清洗,确保数据质量和完整性。
2. 数据存储与管理清洗后的数据需要进行存储和管理,以便后续的分析和展示。
HDFS作为Hadoop平台的核心组件,提供了高可靠性和高扩展性的分布式存储解决方案,可以满足海量数据的存储需求。
3. 数据处理与分析在数据存储完成后,接下来是对数据进行处理和分析。
通过MapReduce等计算框架,可以实现对大规模数据集的并行处理,提取出有用的信息和结论。
同时,可以结合机器学习算法等技术,挖掘数据背后隐藏的规律和趋势。
4. 数据展示与可视化数据分析结果通常需要以直观形式呈现给用户,以便用户更好地理解和利用这些信息。
通过可视化技术,可以将复杂的数据转化为图表、地图等形式,帮助用户快速获取所需信息,并支持用户进行进一步的决策。
四、系统实现与优化1. 系统搭建与配置在实际搭建大数据分析与展示系统时,需要考虑硬件设备、软件环境等因素。
通过合理配置Hadoop集群,优化系统性能,提高数据处理效率。
基于Hadoop的大数据分析系统设计与实现
基于Hadoop的大数据分析系统设计与实现一、引言随着互联网的快速发展和智能化技术的不断进步,大数据已经成为当今信息时代的核心资源之一。
大数据分析系统作为处理和分析海量数据的重要工具,扮演着至关重要的角色。
本文将围绕基于Hadoop 的大数据分析系统的设计与实现展开讨论,探讨其在实际应用中的优势和挑战。
二、Hadoop技术概述Hadoop是一个开源的分布式计算平台,提供了可靠、高效、可扩展的分布式存储和计算能力。
其核心包括Hadoop Distributed File System(HDFS)和MapReduce计算框架。
HDFS用于存储海量数据,而MapReduce则用于并行处理这些数据。
除此之外,Hadoop生态系统还包括了各种组件,如Hive、Pig、Spark等,为大数据处理提供了丰富的选择。
三、大数据分析系统设计1. 系统架构设计基于Hadoop的大数据分析系统通常采用分布式架构,其中包括数据采集、数据存储、数据处理和数据展示等模块。
数据采集模块负责从各个数据源获取原始数据,数据存储模块使用HDFS进行数据持久化存储,数据处理模块通过MapReduce等技术进行数据处理,最终结果通过可视化工具展示给用户。
2. 数据处理流程设计在大数据分析系统中,数据处理流程至关重要。
设计合理的数据处理流程可以提高系统的效率和准确性。
通常包括数据清洗、数据转换、特征提取、模型训练等环节。
利用Hadoop平台提供的并行计算能力,可以加速这些过程,并支持更复杂的分析任务。
四、大数据分析系统实现1. 数据采集与存储在实际应用中,大数据分析系统需要从多个来源采集海量数据,并将其存储到HDFS中。
可以利用Flume、Kafka等工具进行实时数据采集,同时通过Hive建立元数据管理,方便对存储在HDFS中的数据进行查询和分析。
2. 数据处理与计算MapReduce是Hadoop中最经典的计算框架之一,通过编写Map和Reduce函数来实现并行计算任务。
施磊磊 江苏大学硕士论文开题报告--基于Hadoop和HBase的Nutch分布式垂直搜索引擎的研究
Nutch垂直搜索引擎
国内外研究现状
按照信息搜集方法和服务提供方式的不同,搜 索引擎分类:
目录式搜索引擎 全文搜索引擎 元搜索引擎
按照体系结构的不同,搜索引擎的分类:
集中式搜索引擎 分布式搜索引擎
国内外研究现状
张伟的垂直搜索引擎设计与实现一文中对爬虫工具Heritrix 进 行了很深入的研究,就其提供的扩展接口给出了具体的实现 模式,同时对该模式下如何减少无效网页的冗余进行了研究, 实现网页内容抓取的可控性。 刘朋的基于Lucene的垂直搜索引擎关键技术的研究应用一文 中根掘PageRank算法的思想,结合基于文本内容的启发式策 略和基于Web超链分析的策略二者之间的优点,提出了一种 新的主题爬行策略。
垂直搜索引擎中信息重复度比通用搜索引擎更低。 垂直搜索引擎索结果的准确性比通用搜索引擎更高。 垂直搜索引擎相对于通用搜索引擎覆盖率更高。 垂直搜索引擎相对于通用搜索引擎信息的时效性更高。
垂直搜索引擎架构
Nutch垂直搜索引擎
Nutch是一个免费的开源搜索引擎,它使用了Java语言进行开发, 具有跨平台应用的优点。 Nutch作为网络爬虫和lucene的结合,功能上来说极其强悍。 基于Hadoop的MapReduce分布式编程模型和HDFS分布式文件系 统。
研究目标及内容
研究目标
面向中药领域的网络爬虫算法的定制与优化 Nutch网页排序算法的改进
1.
2.
3.
Hadoop分布式集群环境的搭建与配置
分布式数据库HBase和分布式文件系统HDFS的结合
4.
研究目标及内容
基于分布式数据库的云计算平台设计与实现
基于分布式数据库的云计算平台设计与实现随着互联网技术的不断发展和人们对数据存储和处理需求的不断提高,云计算平台在现代社会中发挥着越来越重要的作用。
然而,云计算平台的设计与实现并不是一件简单的事情,其中涉及到多种技术和知识,其中最重要的就是分布式数据库技术。
分布式数据库技术是指将一个数据库分散在多个计算机上,使得每个计算机都有独立的数据存储和处理能力,同时又能够通过网络连接进行协作,实现全局数据的共享和管理。
在云计算平台中,分布式数据库技术的应用极为广泛,它可以使得云计算平台实现更高效、更可靠、更安全的数据存储和处理功能。
在设计和实现基于分布式数据库的云计算平台时,需要考虑以下几个方面的问题:1.数据划分和分配一个分布式数据库通常由多个节点组成,每个节点都存储了一部分数据。
因此在设计云计算平台时,需要考虑如何划分和分配数据,使得各个节点之间的负载比较均衡,同时又能够确保数据的一致性和完整性。
2.数据备份和恢复在分布式数据库中,节点之间会相互备份和恢复数据,以保证数据的可靠性和安全性。
因此在设计云计算平台时,需要考虑如何实现数据的备份和恢复策略,以应对各种异常情况和故障。
3.数据访问控制和安全性在云计算平台中,涉及到多个用户对数据的访问和处理,因此需要考虑如何实现数据访问控制和安全性保障。
这包括用户认证、数据加密、权限管理等方面的问题。
4.性能优化和扩展性在实现云计算平台时,需要考虑如何优化系统性能,使得系统能够更加高效、快速地处理数据。
同时,还需要考虑如何实现平台的扩展性,以适应未来的业务需求和用户量增长。
在实现基于分布式数据库的云计算平台时,还需要考虑如何选择合适的分布式数据库技术。
常见的分布式数据库技术包括Hadoop、Cassandra、MongoDB等,每种技术都有其特点和适用场景,需要根据具体的业务需求和系统设计情况来选择合适的技术。
总之,基于分布式数据库的云计算平台的设计与实现是一项非常复杂和重要的任务,需要综合考虑数据划分、备份、访问控制、安全性、性能优化和扩展性等方面的问题。
【毕业论文选题】计算机网络技术专业毕业论文题目
计算机网络技术专业毕业论文题目又到了各位应届别业生开始着手论文的时期了,目前一些计算机网络技术专业同学为论文题目而发愁,今天可以来看我们老师最新精选整理的200个题目,欢迎各位同学借鉴。
计算机网络技术专业毕业论文题目一:1、基于移动互联网下服装品牌的推广及应用研究2、基于Spark平台的恶意流量监测分析系统3、基于MOOC翻转课堂教学模式的设计与应用研究4、一种数字货币系统P2P消息传输机制的设计与实现5、基于灰色神经网络模型的网络流量预测算法研究6、基于KNN算法的Android应用异常检测技术研究7、基于macvlan的Docker容器网络系统的设计与实现8、基于容器云平台的网络资源管理与配置系统设计与实现9、基于OpenStack的SDN仿真网络的研究10、一个基于云平台的智慧校园数据中心的设计与实现111、基于SDN的数据中心网络流量调度与负载均衡研究12、软件定义网络(SDN)网络管理关键技术研究13、基于SDN的数据中心网络动态负载均衡研究14、基于移动智能终端的医疗服务系统设计与实现15、基于SDN的网络流量控制模型设计与研究16、《计算机网络》课程移动学习网站的设计与开发17、数据挖掘技术在网络教学中的应用研究18、移动互联网即时通讯产品的用户体验要素研究19、基于SDN的负载均衡节能技术研究20、基于SDN和OpenFlow的流量分析系统的研究与设计21、基于SDN的网络资源虚拟化的研究与设计22、SDN中面向北向的控制器关键技术的研究23、基于SDN的网络流量工程研究24、基于博弈论的云计算资源调度方法研究25、基于Hadoop的分布式网络爬虫系统的研究与实现26、一种基于SDN的IP骨干网流量调度方案的研究与实现27、基于软件定义网络的WLAN中DDoS攻击检测和防护28、基于SDN的集群控制器负载均衡的研究29、基于大数据的网络用户行为分析30、基于机器学习的P2P网络流分类研究31、移动互联网用户生成内容动机分析与质量评价研究32、基于大数据的网络恶意流量分析系统的设计与实现33、面向SDN的流量调度技术研究34、基于P2P的小额借贷融资平台的设计与实现35、基于移动互联网的智慧校园应用研究36、内容中心网络建模与内容放置问题研究237、分布式移动性管理架构下的资源优化机制研究38、基于模糊综合评价的P2P网络流量优化方法研究39、面向新型互联网架构的移动性管理关键技术研究40、虚拟网络映射策略与算法研究计算机网络技术专业毕业论文题目二:41、内容中心网络网内缓存策略研究42、内容中心网络的路由转发机制研究43、学习分析技术在网络课程学习中的应用实践研究44、互联网流量特征智能提取关键技术研究45、云环境下基于随机优化的动态资源调度研究46、基于OpenStack开放云管理平台研究47、基于OpenFlow的软件定义网络路由技术研究48、未来互联网试验平台若干关键技术研究49、基于云计算的海量网络流量数据分析处理及关键算法研究50、基于网络化数据分析的社会计算关键问题研究51、基于Hadoop的网络流量分析系统的研究与应用52、基于支持向量机的移动互联网用户行为偏好研究53、“网络技术应用”微课程设计与建设54、移动互联网环境下用户隐私关注的影响因素及隐私信息扩散规律研究55、未来互联网络资源负载均衡研究56、面向云数据中心的虚拟机调度机制研究57、基于OpenFlow的数据中心网络路由策略研究58、云计算环境下资源需求预测与优化配置方法研究59、基于多维属性的社会网络信息传播模型研究360、基于遗传算法的云计算任务调度算法研究61、基于OpenStack开源云平台的网络模型研究62、SDN控制架构及应用开发的研究和设计63、云环境下的资源调度算法研究64、异构网络环境下多径并行传输若干关键技术研究65、OpenFlow网络中QoS管理系统的研究与实现66、云协助文件共享与发布系统优化策略研究67、大规模数据中心可扩展交换与网络拓扑结构研究68、数据中心网络节能路由研究69、Hadoop集群监控系统的设计与实现70、网络虚拟化映射算法研究71、软件定义网络分布式控制平台的研究与实现72、网络虚拟化资源管理及虚拟网络应用研究73、基于流聚类的网络业务识别关键技术研究74、基于自适应流抽样测量的网络异常检测技术研究75、未来网络虚拟化资源管理机制研究76、大规模社会网络中影响最大化问题高效处理技术研究77、数据中心网络的流量管理和优化问题研究78、云计算环境下基于虚拟网络的资源分配技术研究79、基于用户行为分析的精确营销系统设计与实现80、P2P网络中基于博弈算法的优化技术研究计算机网络技术专业毕业论文题目三:81、OpenFlow网络中虚拟化机制的研究与实现82、基于时间相关的网络流量建模与预测研究83、B2C电子商务物流网络优化技术的研究与实现484、基于SDN的信息网络的设计与实现85、基于网络编码的数据通信技术研究86、计算机网络可靠性分析与设计87、基于OpenFlow的分布式网络中负载均衡路由的研究88、城市电子商务物流网络优化设计与系统实现89、基于分形的网络流量分析及异常检测技术研究90、网络虚拟化环境下的网络资源分配与故障诊断技术91、基于中国互联网的P2P-VoIP系统网络域若干关键技术研究92、网络流量模型化与拥塞控制研究93、计算机网络脆弱性评估方法研究94、Hadoop云平台下调度算法的研究95、网络虚拟化环境下资源管理关键技术研究96、高性能网络虚拟化技术研究97、互联网流量识别技术研究98、虚拟网络映射机制与算法研究99、基于业务体验的无线资源管理策略研究100、移动互联网络安全认证及安全应用中若干关键技术研究101、基于DHT的分布式网络中负载均衡机制及其安全性的研究102、高速复杂网络环境下异常流量检测技术研究103、基于移动互联网技术的移动图书馆系统研建104、基于连接度量的社区发现研究105、面向可信计算的分布式故障检测系统研究106、社会化媒体内容关注度分析与建模方法研究107、P2P资源共享系统中的资源定位研究108、基于Flash的三维WebGIS可视化研究109、P2P应用中的用户行为与系统性能研究5。
基于Hadoop的大数据处理系统设计与实现
基于Hadoop的大数据处理系统设计与实现一、引言随着互联网的快速发展和智能设备的普及,大数据时代已经到来。
海量的数据被不断地产生和积累,如何高效地处理和分析这些数据成为了各行各业面临的重要挑战。
Hadoop作为一个开源的分布式计算框架,被广泛应用于大数据处理领域。
本文将介绍基于Hadoop的大数据处理系统的设计与实现。
二、Hadoop概述Hadoop是一个由Apache基金会开发的分布式系统基础架构,主要用于存储和处理大规模数据集。
其核心包括Hadoop DistributedFile System(HDFS)和MapReduce计算模型。
HDFS用于存储数据,而MapReduce则用于处理数据。
除此之外,Hadoop生态系统还包括了许多其他组件,如YARN、HBase、Hive等,为用户提供了丰富的功能和工具。
三、大数据处理系统设计1. 系统架构设计基于Hadoop的大数据处理系统通常采用分布式架构,包括多个节点组成的集群。
其中,主要包括NameNode、DataNode、ResourceManager和NodeManager等角色。
NameNode负责管理文件系统的命名空间和访问控制,DataNode负责存储实际的数据块,而ResourceManager和NodeManager则负责资源管理和任务调度。
2. 数据采集与存储在设计大数据处理系统时,需要考虑如何进行数据采集和存储。
通常情况下,数据可以通过Flume、Kafka等工具进行实时采集,并存储在HDFS中。
同时,也可以将结构化数据存储在关系型数据库中,如MySQL或HBase。
3. 数据处理与分析一旦数据被存储在HDFS中,就可以利用MapReduce、Spark等计算框架进行数据处理和分析。
通过编写MapReduce程序或Spark应用程序,可以实现对大规模数据集的高效处理和计算。
4. 数据可视化与展示为了更直观地展示数据处理结果,可以利用可视化工具如Tableau、PowerBI等进行数据可视化与展示。
施磊磊 20130930 开题报告
江苏大学硕士学位研究生开题报告论文题目基于Hadoop和Hbase的Nutch分布式垂直搜索引擎的研究姓名施磊磊学号S1208052专业计算机应用技术指导教师施化吉教授2013 年09月30日基于Hadoop和Hbase的Nutch分布式垂直搜索引擎的研究一、课题的研究背景、目的和意义随着互联网的飞速发展,大量网站如同雨后春笋般大批涌现,目前互联网己经发展成为一个拥有上千亿个页面和超链接的海量信息空间,而且所包含的页面仍在继续以惊人的速度增长。
人们工作与生活中需要的许多信息都蕴含在信息量庞大的互联网中。
互联网信息极大地便利和丰富了人们的生活,但同时也给信息的组织、查找与分析等带来了极大的挑战。
海量数据增加了用户对信息的阅读和选择。
然而面对这么多的网页内容信息,人们怎样准确、快捷地访问到自己所需要的网页呢?在这样的形势下,人们需要借助搜索引擎来帮助他们寻找自己需要的资料,因此搜索引擎应运而生。
搜索引擎是指因特网上专门提供查询服务的一类网站,它以一定的策略在互联网中搜集、发现信息,对信息进行理解、提取、组织和处理,并为用户提供检索服务,从而起到信息导航的作用。
通用的搜索引擎如Google、百度等,将很多网站信息自动整理在一个平台上,提供整合导航以及快捷的查询服务,成为互联网发展自门户网站以来的最具开创性和革命性的Web产品,围绕通用搜索引擎的Web搜索与挖掘的研究也越来越深入。
与此同时,通用搜索引擎的局限性也逐渐被人们认识到,搜索结果众多导致的海量信息无序化,使得用户很难精化搜索结果,无法将查询结果以结构化的方式展现给用户。
虽然Google等通用搜索引擎提供了复杂的Ranking排序机制,使得“重要”查询结果会排在搜索页面的前几页,但是由于通用搜索引擎的数据来源分布广,而且查询词语的多义性会导致主题的不确定,用户依然难以快捷的找到想要的结果。
这些搜索引擎面向所有的用户,力争在返回结果上做到全面,但是往往使得用户真正需要的资料淹没在大量的无用的信息中。
Hadoop应用开发-Hadoop分布式文件系统HDFS
18
元数据持久化机制
Ø对文件系统的每次更改会被以日志记录的方式记录进EditLog事务
4.4日志HD中F,S元Nam数eNo据de会管在理本机地文制件系统中创建一个文件(如图4-7所
示)来储EditLog事务日志。完整的元数据会被持久化到本地文 件系统中的FSImage文件中
4.2独立HD存F储S的。文基件本被切概分念后的block在Linux文件系统的视角下就是一
个一个的文件
8
数据复制 data replication
ØHDFS是一个非常适合存放超大文件的文件系统,但是在HDFS 集群上将文件拆分为block存放时,单个block的损坏会对文 件的整体性造成影响。因此作为容错的考虑,block的复制策
14
6. 连接全部建立成功后,客户端开始向第一个节点传输第 一个block。该block数据以packet为单位进行传输。数 据的校验则是以更小的chunk单位进行。数据在客户端
4.3 本HD地F和S的da数tan据od读e端写都流有程读取和写入的缓存队列。每一次
packet在pipeline上的传输都需要反向应答。直到写完 预定的block为止。同样的,节点1、节点2和节点3之间 也会以同样的方式同步传输。 7. 当第一个block传输完成后,客户端再次发送请求到 NameNode,将整个流程再次重复。
26
hadoop fs –get <src> <localdst>复制文件到本地文件系统。 (copyToLocal命令同get相似)
4.5 HDFS Shell命令 hadoop fs -rm <path>删除指定的文件。只删除非空目录和文件。
基于Hadoop的大数据处理与分析平台设计与实现
基于Hadoop的大数据处理与分析平台设计与实现一、引言随着互联网的快速发展和智能化技术的不断进步,大数据已经成为当今社会中不可或缺的重要资源。
大数据的处理和分析对于企业决策、市场营销、风险控制等方面起着至关重要的作用。
在这样的背景下,基于Hadoop的大数据处理与分析平台设计与实现显得尤为重要。
二、Hadoop简介Hadoop是一个开源的分布式计算平台,可以对大规模数据进行存储和处理。
它由Apache基金会开发,采用Java编程语言。
Hadoop主要包括Hadoop Common、Hadoop Distributed File System(HDFS)、Hadoop YARN和Hadoop MapReduce等模块。
三、大数据处理与分析平台设计1. 架构设计在设计基于Hadoop的大数据处理与分析平台时,首先需要考虑整体架构。
典型的架构包括数据采集层、数据存储层、数据处理层和数据展示层。
其中,数据采集层负责从各个数据源收集数据,数据存储层用于存储原始和处理后的数据,数据处理层包括数据清洗、转换和计算等功能,数据展示层则提供可视化的报表和图表展示。
2. 数据采集与存储在大数据处理平台中,数据采集是至关重要的一环。
可以通过Flume、Kafka等工具实现对各类数据源的实时采集。
而数据存储方面,HDFS是Hadoop中用于存储海量数据的分布式文件系统,具有高可靠性和高扩展性。
3. 数据处理与计算Hadoop MapReduce是Hadoop中用于并行计算的编程模型,通过Map和Reduce两个阶段实现对大规模数据的处理和计算。
同时,Hadoop YARN作为资源管理器,可以有效管理集群中的资源,并提供任务调度功能。
4. 数据展示与应用为了更好地展示和利用处理后的数据,可以使用Apache Hive、Apache Pig等工具进行SQL查询和复杂分析操作。
此外,通过搭建BI系统或者开发自定义应用程序,可以实现对数据进行更深入的挖掘和应用。
基于Hadoop的大数据分析系统设计与实现
基于Hadoop的大数据分析系统设计与实现随着互联网的不断发展和智能科技的不断进步,我们生活中产生的数据量越来越庞大。
如何处理和分析这些数据已经成为了当前互联网领域中的一个热门话题。
在此背景下,基于Hadoop的大数据分析系统应运而生。
Hadoop是一个大数据处理的分布式计算框架,由Apache基金会开发和维护。
Hadoop的闻名远播归功于其高效可靠的数据存储和处理能力。
它以MapReduce算法为基础,可以将大数据分散到多台服务器上进行并行处理,大大提高了数据处理和分析的速度。
大数据分析系统设计与实现的过程通常包括以下几个步骤:一、确定需求并进行数据采集在进行大数据分析前,首先需要确定分析目标和范围,然后进行数据采集。
数据采集包括爬虫抓取、数据导入、数据清洗等步骤。
在数据采集时,需要考虑数据的质量、数据的完整性和数据的及时性等因素。
二、搭建Hadoop集群Hadoop分布式计算的优越性在于可以将大数据分散到多台服务器上进行并行处理,提高数据处理效率。
因此,搭建Hadoop集群是大数据分析系统设计中的重要步骤。
Hadoop集群的搭建需要考虑服务器的数量、配置、性能等因素。
建议在实际搭建前可以先进行模拟实验,确定最优的搭建方案。
三、选择适合的数据分析工具Hadoop分布式计算的框架支持多种数据分析工具。
Spark、Hive、Pig、Mahout等等都是常用的数据分析工具。
在选择数据分析工具时,需要综合考虑数据的类型、数据量和分析需求等因素。
四、进行数据分析在确定好需求、搭建好Hadoop集群并选择好数据分析工具后,就可以开始进行数据分析了。
数据分析的过程需要按照需求进行数据加工、数据分析、数据可视化等工作。
同时,还需要考虑系统的性能、稳定性和安全性等因素。
五、结果展示和应用经过数据分析后,需要将分析结果进行展示并应用到实际场景中。
数据可视化是其中很重要的一环。
通过数据可视化,可以将分析结果以图表、报表等形式进行展示,更容易被管理者和决策者理解和接受。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原理工大学硕士学位论文基于Hadoop的分布式搜索引擎研究与实现姓名:封俊申请学位级别:硕士专业:软件工程指导教师:胡彧20100401基于Hadoop的分布式搜索引擎研究与实现摘要分布式搜索引擎是一种结合了分布式计算技术和全文检索技术的新型信息检索系统。
它改变了人们获取信息的途径,让人们更有效地获取信息,现在它已经深入到网络生活的每一方面,被誉为上网第一站。
目前的搜索引擎系统大多都拥有同样的结构——集中式结构,即系统所有功能模块集中部署在一台服务器上,这直接导致了系统对服务器硬件性能要求较高,同时,系统还有稳定性差、可扩展性不高的弊端。
为了克服以上弊端就必须采购极为昂贵的大型服务器来满足系统需求,然而并不是所有人都有能力负担这样高昂的费用。
此外,在传统的信息检索系统中,许多都采用了比较原始的字符串匹配方式来获得搜索结果,这种搜索方式虽然实现简单,但在数据量比较大时,搜索效率非常低,导致用户无法及时获得有效信息。
以上这两个缺点给搜索引擎的推广带来了很大的挑战。
为应对这个挑战,在搜索引擎系统中引入了分布式计算和倒排文档全文检索技术。
本文在分析当前几种分布式搜索引擎系统的基础上,总结了现有系统的优缺点,针对现有系统的不足,提出了基于Hadoop的分布式搜索引擎。
主要研究工作在于对传统搜索引擎的功能模块加以改进,对爬行、索引、搜索过程中的步骤进行详细分析,将非顺序执行的步骤进一步分解为两部分:数据计算和数据合并。
同时,应用Map/Reduce编程模型思想,把数据计算任务封装到Map函数中,把数据合并任务封装到Reduce函数中。
经过以上改进的搜索引擎系统可以部署在廉价PC构成的Hadoop分布式环境中,并具有较高的响应速度、可靠性和扩展性。
这与分布式搜索引擎中的技术需求极为符合,因此本文使用Hadoop作为系统分布式计算平台。
此外,系统使用了基于倒排文档的全文检索技术,构建了以关键词为单位的倒排索引模块,同时结合TF-IDF和PageRank算法,改进了网页评分策略,优化了搜索结果。
最后,详细分析了在应用Map/Reduce编程模型实现系统模块过程中遇到的问题,及其解决方案。
构建了一个4节点的小型分布式搜索引擎系统,通过对网络资源的爬行、索引和检索,以及对系统进行可靠性和扩展性测试,获得实验数据。
在分析实验数据的基础上,验证了所提出的基于Hadoop 的分布式搜索引擎的合理性。
关键词: Map/Reduce,Hadoop,分布式计算,搜索引擎 THE RESEARCH AND IMPLEMENTATION OFDISTRIBUTED SEARCH ENGINEBASED ON HADOOPABSTRACTDistributed Search Engine is a brand new information retrieval system which is consisted of distributed computing technology and full-text retrieval technology.It has changed the way of achieving informations for people and has made it more effectively. Now it has been deep into every aspects of the Internet, and it is known as the first Step of navigation.At present, most of the search engine system are structured similarly - centralized structure, which means all of system’s modules are deployed on one server, and it also result in the server must be of high performance,meanwhile, the system still have poor stability and bad scalability. In order to deal with these disadvantanges, people have to purchase very large and expensive servers to satisfy the system requirements, however, not everyone have the ability to afford such high cost. In addition, a primitive string matching mode was adopted to gain the results in many traditional information retrieval systems. Although this method is simple, the search efficiency became very low when data volume is huge, and customers could not retrieve useful informations in time. The two disadvantages mentioned above was a big challenge to the promotion of search engine. In order to deal with this challenge, the technology of distributed computing and inverted document full-text retrieval were introduced into the search engine system.In this paper, it summaried the advantages and disadvantages based on an analysis of several distributed search engine systems. In order to deal with theexisting drawbacks, it proposed a distributed search engine based on Hadoop. The main tasks of this paper are to improve the traditional search engine function modules, analyze the steps on the crawling, indexing, searching, in the process, and further decomposed these process that can be excuted disorderly into two parts: data computing and data combining. Then, packaged the algrithm of data computing into Map function, and the algrithm of data combining into Reduce function by using Map/Reduce programming thinkings. After the implementation of these technologies, it improved search engine system could be deployed on a Hadoop distributed environment which was structured by some low-cost PCs, so this system had high response speed, reliability and scalability. Because of the technology closed to the distributed search engine’s needs. In this paper, it used Hadoop distributed computing platform as a system. Besides, this paper constructed with keywords for inverted indexing module, by using the inverted document based full-text retrieval technology. And it combined with TF-IDF and PageRank algorithm to improve the page score strategy and optimize the search results.Finally, a detailed analysis of how to use Map/Reduce programming model to achieve system module has proposed as well as the difficulties in the implementation process, a nd it built a small distributed search engine system with four nodes, the experimental data was achieved by means of the crawling, indexing and retrieving through Internet, and tested system reliability and scalability. In the analysis of this experimental data, the rationality of the distributed search engine based on Hadoop has been validated.KEY WORDS: Map/Reduce, Hadoop, Distributed compute, Search Engine第一章绪论1.1 课题研究背景随着互联网的飞速发展,大量网站如同雨后春笋般大批涌现,截止2009年,全球互联网新增网站达4600万,总计达2.315亿。