word完整版培优专题3 等腰三角形含答案1推荐文档
【专项训练】等腰三角形练习题及答案
ED CABF§14.3 等腰三角形1.等腰三角形练习题 (第一课时)一、选择题1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm 3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 4.等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80°5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108°EDCABHFG二、填空题6.等腰△ABC 的底角是60°,则顶角是________度.7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________. 9.如图,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____. 10.△ABC 中,AB=AC .点D 在BC 边上(1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; (2)∵AD 是中线,∴∠________=∠________;________⊥________; (3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______. 三、解答题11.已知△ABC 中AB=AC ,AD ⊥BC 于D ,若△ABC 、△ABD 的周长分别是20cm 和16cm ,•求AD 的长.12.如图,在四边形ABCD 中,AB=AD ,CB=CD ,求证:∠ABC=∠ADC.DCAB13.已知△ABC 中AB=AC ,点P 是底边的中点,PD ⊥AB ,PE ⊥AC ,垂足分别是D 、E ,•求证:PD=PE.四、探究题14.如图,CD 是△ABC 的中线,且CD= 12AB ,你知道∠ACB 的度数是多少吗?由此你能得到一个什么结论?请叙述出来与你的同伴交流.DCAB答案:1.D 2.B 3.A 4.C 5.B 6.607.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 8.(90+ 12n )° 9.70° 10.略 11.6cm12.连接BD ,∵AB=AD ,∴∠ABD=∠ADB .∵CB=CD ,∴∠CBD=∠CDB .∴∠ABC=∠ADC13.连接AP ,证明AP 平分∠BAC .14.∠ACB=90°.结论:若一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形练习题 (第二课时)一、选择题1.如图1,已知OC 平分∠AOB ,CD ∥OB ,若OD=3cm ,则CD 等于( )A .3cmB .4cmC .1.5cmD .2cmD C A BE DCABFEDCABHF(1) (2) (3) 2.△ABC 中AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有( )A .1个B .2个C .3个D .4个3.如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( )A .①②③B .①②③④C .①②D .①4.如图3,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EFC .CH=HD D .AC=AF 二、填空题5.△ABC 中,∠A=65°,∠B=50°,则AB :BC=_________.6.已知AD 是△ABC 的外角∠EAC 的平分线,要使AD•∥BC ,•则△ABC•的边一定满足________.7.△ABC 中,∠C=∠B ,D 、E 分别是AB 、AC 上的点,•AE=•2cm ,•且DE•∥BC ,•则AD=________.8.一灯塔P 在小岛A 的北偏西25°,从小岛A 沿正北方向前进30海里后到达小岛,•此时测得灯塔P 在北偏西50°方向,则P 与小岛B 相距________. 三、解答题9.如图,已知AB=AC ,E 、D 分别在AB 、AC 上,BD 与CE 交于点F ,•且∠ABD=•∠ACE , 求证:BF=CF .10.如图,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,•求证:△DBE 是等腰三角形.ED CABFED AB F四、探究题11.如图,AF是△ABC的角平分线,BD⊥AF交AF的延长线于D,DE∥AC•交AB 于E,求证:AE=BE.EDC ABF答案:1.A 2.C 3.A 4.C 5.1 6.AB=AC 7.2cm 8.30海里9.连接BC,∵AB=AC,∴∠ABC=∠ACB,又∵∠ABD=∠ACE,∴∠FBC=∠FCB,∴FB=FC10.证明∠D=∠BED11.证明∠EAD=∠EDA ,∠EBD=∠EDB 分别得到AE=DE ,BE=DE2.等边三角形练习题一、选择题1.正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( ) A .60° B .90° C .120° D .150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ) A .①②③ B .①②④ C .①③ D .①②③④3.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF•的形状是( )A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形ED CABF21EDCA B4.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( ) A .2cm B .4cm C .8cm D .16cm5.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是()A.等腰三角形 B.等边三角形 C.不等边三角形 D.不能确定形状二、填空题6.△ABC中,AB=AC,∠A=∠C,则∠B=_______.7.已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______.8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.9.△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,•则CD•的长度是_______.三、解答题10.已知D、E分别是等边△ABC中AB、AC上的点,且AE=BD,求BE与CD•的夹角是多少度?11.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC•于点D,•求证:•BC=3AD.D CB12.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;③判断△CFH•的形状并说明理由.EDCAHF四、探究题13.如图,点E 是等边△ABC 内一点,且EA=EB ,△ABC 外一点D 满足BD=AC ,且BE 平分∠DBC ,求∠BDE 的度数.(提示:连接CE )DECB答案:1.C 2.D 3.A 4.C 5.B 6.60° 7.60°8.三;三边的垂直平分线 9.1cm 10.60°或120°11.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∴在Rt△ADC中CD=•2AD,•∵∠BAC=120°,∴∠BAD=120°-90°=30°,∴∠B=∠BAD,∴AD=BD,∴BC=3AD12.①∵∠ACB=∠DCE=60°,∴∠BCE=∠ACD.又∵BC=AC,CE=CD,∴△BCE≌△ACD;②证明△BCF≌△ACH;③△CFH是等边三角形.13.连接CE,先证明△BCE≌△ACE得到∠BCE=∠ACE=30°,再证明△BDE•≌△BCE得到∠BDE=∠BCE=30°。
等腰三角形性质试题及答案
一.教学内容:2.1 等腰三角形2.2 等腰三角形的性质二. 重点、难点:重点:理解和掌握等腰三角形以下性质:1. 等腰三角形轴对称性质;2. 等边对等角;3. 三线合一。
难点:1. 推导性质。
通过操作,观察、分析、归纳得出等腰三角形性质的过程。
2. 应用性质。
等腰三角形三线合一性质的运用,在解题思路上需要作一些转换。
三. 知识要点及学习目标1. 等腰三角形的有关概念。
首先要能根据边的长短识别和判断等腰三角形;其次,能够明确指出已知的等腰三角形的顶角、底角、腰和底边。
如图,△ABC中,若AB、BC、AC三边中有其中两边相等,则△ABC称为等腰三角形。
(1)(2)(3)图(1)中AB=AC,图(2)中AC=BC,图(3)中AB=BC。
相等的两边称为等腰三角形的腰,另一边称为等腰三角形的底边;两腰的夹角称为等腰三角形的顶角,另外两个角称为等腰三角形的底角。
你能指出上述三幅图中的腰、底边,顶角和底角吗?2. 等腰三角形的轴对称性。
通过折纸操作认识探索等腰三角形的轴对称性。
明确等腰三角形的对称轴是等腰三角形顶角平分线所在的直线(不是顶角平分线本身)。
根据轴对称图形的概念我们知道:如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫轴对称图形。
如果在△ABC中,AB=AC,我们画出顶角∠BAC的平分线AD,沿着AD对折△ABC会发现什么结论?通过操作显示出等腰△ABC 是一个轴对称图形。
它的对称轴就是角平分线AD所在的直线。
(这里要注意到对称轴的概念——直线,而△ABC的顶角平分线是一条线段即这里的折痕,不能把它们混为一谈,同时也要把一般角的平分线——射线与它们区别开)。
3. 推导等腰三角形的性质。
通过进一步实验、观察、交流等活动推导等腰三角形的性质,从而加深对轴对称变换的认识。
因为等腰三角形是轴对称图形,而图形轴对称变换是全等变换中的一种基本变换,所以如下图,△ABC中,若AB=AC,AD是△ABC的∠BAC的平分线,当我们沿AD折叠时,会发现AD两旁的△ABD与△ACD能够重合即△ABD≌△ACD。
等腰三角形含练习答案
等腰三角形知识点一:等腰三角形有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角, 腰与底边的夹角叫做底角. 等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合. 特别的:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上的中线、角平分线、高线对应相等.简称等腰三角形三线合一.1.△ABC 中,AB=AC.(1)若∠B=50°, 则∠C=__ ,∠A=___ (2)若∠A=100°, 则∠B=__ ,∠C=__2. (1) 等腰三角形的一个内角为50°,则另两个角为 (2) 等腰三角形的一个内角为100°,则另两个角为__ . (3) 等腰三角形的一个内角为90°,则另两个角为___ 归纳:已知等腰三角形的一个内角的度数,求其它两角时, (a)若已知角为钝角或直角,则它一定是顶角; (b)若已知角为锐角,它可能是顶角,也可能是底角。
例1、等腰三角形的顶角为70°,底角为_______.。
2、在三角形ABC 中,AB=AC,BAC ∠=90°,AD是BC边上的高,则BAC ∠=_____ BD=____=______3、如图2,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD 图中共有几个等腰三角形?分别写出它们的顶角和底角。
4、如图,在△ABC 中,AB=AD=DC,BAD ∠=36°,求B ∠和C ∠度数。
DCABCD B A例1 如图所示,在Rt△ABC中,∠BCA是直角,E是AC上的一点,ED⊥AB于D,BD=BC,CD、BE交于点F.求证:CD⊥BE.思路:由BD=BC知△BCD是等腰三角形,所以要证明CD⊥BE只需证明BE是△BCD的底边上的中线或者顶角的平分线即可。
中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)
中考数学复习----《等腰三角形》知识点总结与专项练习题(含答案解析)知识点总结1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。
其中相等的两边叫做腰,另一边叫做底。
两腰构成的夹角叫做顶角,腰与底构成的夹角叫做底角。
2.等腰三角形的性质:①等腰三角形的两腰相等。
②等腰三角形的两底角相等。
(简称“等边对等角”)③等腰三角形底边的中线、高线以及顶角平分线相互重合。
(简称底边上三线合一)3.等腰三角形的判定:①有两条边相等的三角形是等腰三角形。
②有两个底角相等的三角形是等腰三角形。
(等角对等边)③若一个三角形某一边上存在“三线合一”,则三角形是等腰三角形。
练习题1、(2022•黑龙江)如图,△ABC中,AB=AC,AD平分∠BAC与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若△ABC的面积是24,PD=1.5,则PE的长是()A.2.5 B.2 C.3.5 D.3【分析】如图,过点E作EG⊥AD于G,证明△EGP≌△FDP,得PG=PD=1.5,由三角形中位线定理可得AD的长,由三角形ABC的面积是24,得BC的长,最后由勾股定理可得结论.【解答】解:如图,过点E作EG⊥AD于G,∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,∴∠PDF=∠EGP=90°,EG∥BC,∵点E是AB的中点,∴G是AD的中点,∴EG=BD,∵F是CD的中点,∴DF=CD,∴EG=DF,∵∠EPG=∠DPF,∴△EGP≌△FDP(AAS),∴PG=PD=1.5,∴AD=2DG=6,∵△ABC的面积是24,∴•BC•AD=24,∴BC=48÷6=8,∴DF=BC=2,∴EG=DF=2,由勾股定理得:PE==2.5.故选:A.2、(2022•淄博)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=50°.城市规划部门想新修一条道路CE,要求CF=EF,则∠E的度数为()A.23°B.25°C.27°D.30°【分析】先根据平行线的性质,由AB∥CD得到∠DFE=∠BAE=50°,根据等腰三角形的性质得出∠C=∠E,再根据三角形外角性质计算∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠BAE=50°,∵CF=EF,∴∠C=∠E,∵∠DFE=∠C+∠E,∴∠C=∠DFE=×50°=25°,故选:B.3、(2022•鞍山)如图,在△ABC中,AB=AC,∠BAC=24°,延长BC到点D,使CD=AC,连接AD,则∠D的度数为()A.39°B.40°C.49°D.51°【分析】利用等边对等角求得∠B=∠ACB=78°,然后利用三角形外角的性质求得答案即可.【解答】解:∵AB=AC,∠BAC=24°,∴∠B=∠ACB=78°.∵CD=AC,∠ACB=78°,∠ACB=∠D+∠CAD,∴∠D=∠CAD=∠ACB=39°.故选:A.4、(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是()A.60°B.70°C.80°D.90°【分析】过点C作CD∥l1,利用平行线的性质可得∠1+∠2=∠ACB,再由等腰三角形的性质可得∠ACB=∠ABC,从而可求解.【解答】解:过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=(180°﹣∠BAC)=70°,∴∠1+∠2=70°.故选:B.5、(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3 B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3 D.∠1≠∠2,∠1>∠3【分析】根据线段垂直平分线的性质,等腰三角形的性质解答即可.【解答】解:∵DE为AB的中垂线,∴∠BDE=∠ADE,BE=AE,∴∠B=∠BAE,∴∠1=∠2,∵∠EAC>90°,∴∠3+∠C<90°,∵∠B+∠1=90°,∠B=∠C,∴∠1>∠3,∴∠1=∠2,∠1>∠3,故选:B.6、(2022•宜宾)如图,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AEDF的周长是()A.5 B.10 C.15 D.20【分析】由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明▱AFDE的周长等于AB+AC.【解答】解:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∠B=∠EDC,∠FDB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠FDB,∠C=∠EDC,∴BF=FD,DE=EC,∴▱AFDE的周长=AB+AC=5+5=10.故选:B.7、(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.8、(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB ⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【分析】根据等腰三角形的性质求出AC,根据勾股定理求出OC,根据坐标与图形性质写出点A的坐标.【解答】解:设AB与x轴交于点C,∵OA=OB,OC⊥AB,AB=6,∴AC=AB=3,由勾股定理得:OC===4,∴点A的坐标为(4,3),故选:D.9、(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【分析】利用等腰三角形的性质得到∠C=∠BAC=25°,利用平行线的性质得到∠BEA=95°,再根据三角形外角的性质即可求解.【解答】解:如图,∵AB=BC,∠C=25°,∴∠C=∠BAC=25°,∵l1∥l2,∠1=60°,∴∠BEA=180°﹣60°﹣25°=95°,∵∠BEA=∠C+∠2,∴∠2=95°﹣25°=70°.故选:A.10、(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是()A.30°B.40°C.50°D.60°【分析】设底角的度数是x°,则顶角的度数为(2x+20)°,根据三角形内角和是180°列出方程,解方程即可得出答案.【解答】解:设底角的度数是x°,则顶角的度数为(2x+20)°,根据题意得:x+x+2x+20=180,解得:x=40,故选:B.11、(2022•广安)若(a﹣3)2+5−b=0,则以a、b为边长的等腰三角形的周长为.【分析】先求a,b.再求第三边c即可.【解答】解:∵(a﹣3)2+=0,(a﹣3)2≥0,≥0,∴a﹣3=0,b﹣5=0,∴a=3,b=5,设三角形的第三边为c,当a=c=3时,三角形的周长=a+b+c=3+5+3=11,当b=c=5时,三角形的周长=3+5+5=13,故答案为:11或13.12、.(2022•岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.【分析】根据等腰三角形的性质可知D是BC的中点,即可求出CD的长.【解答】解:∵AB=AC,AD⊥BC,∴CD=BD,∵BC=6,∴CD=3,故答案为:3.13、(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为.【分析】由等腰△ABC是“倍长三角形”,可知AB=2BC或BC=2AB,若AB=2BC=6,可得AB的长为6;若BC=3=2AB,因1.5+1.5=3,故此时不能构成三角形,这种情况不存在;即可得答案.【解答】解:∵等腰△ABC是“倍长三角形”,∴AB=2BC或BC=2AB,若AB=2BC=6,则△ABC三边分别是6,6,3,符合题意,∴腰AB的长为6;若BC=3=2AB,则AB=1.5,△ABC三边分别是1.5,1.5,3,∵1.5+1.5=3,∴此时不能构成三角形,这种情况不存在;综上所述,腰AB的长是6,故答案为:6.14、(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.【分析】分∠A是顶角和底角两种情况讨论,即可解答.【解答】解:当∠A是顶角时,△ABC的顶角度数是40°;当∠A是底角时,则△ABC的顶角度数为180°﹣2×40°=100°;综上,△ABC的顶角度数是40°或100°.故答案为:40°或100°.15、(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解答】解:∵AB=AC且∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.11。
人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)
人教版八年级数学13.3 等腰三角形培优训练一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A.甲、乙两种作法都正确B.甲的作法正确,乙的作法不正确C.甲的作法不正确,乙的作法正确D.甲、乙两种作法都不正确2. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对3. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 104. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为()A. 2B. 4C. 6D. 87. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题(本大题共6道小题)11. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.12. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.13. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.14. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.15. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:DE=DF.18. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.19. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.20. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.人教版八年级数学13.3 等腰三角形培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.3. 【答案】C 【解析】∵AB =AC ,AD 平分∠BAC ,∴根据等腰三角形三线合一性质可知AD ⊥BC ,BD =CD ,在Rt △ABD 中,AB =5,AD =3,由勾股定理得BD =4,∴BC =2BD =8.4. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.5. 【答案】D[解析] 选项A 由等角对等边可得△ABC 是等腰三角形;选项B 由所给条件可得△ADB ≌△ADC ,由全等三角形的性质可得AB =AC ;选项C 由垂直平分线的性质可得AB =AC ;选项D 不可以得到AB =AC. 6. 【答案】B7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D ,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.9. 【答案】C10. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题(本大题共6道小题)11. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.12. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.13. 【答案】514. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC. ∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.15. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.16. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题(本大题共4道小题)17. 【答案】证明:连接AD.∵AB=AC,D为BC的中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.18. 【答案】解:(1)证明:如图,过点D作DM∥AB,交CF于点M,则∠MDF=∠E.∵△ABC是等边三角形,∴∠CAB=∠CBA=∠C=60°.∵DM∥AB,∴∠CDM=∠CAB=60°,∠CMD=∠CBA=60°.∴△CDM是等边三角形.∴CM=CD=DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF ≌△EBF(ASA).∴DM =BE. ∴CD =BE.(2)∵ED ⊥AC ,∠CAB =∠CBA =60°, ∴∠E =∠FDM =30°. ∴∠BFE =∠DFM =30°. ∴BE =BF ,DM =MF.∵△DMF ≌△EBF ,∴MF =BF. ∴CM =MF =BF.又∵BC =AB =12,∴BF =13BC =4.19. 【答案】解:(1)∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠BEG =∠AGC′=48°. 由折叠的性质得∠CEF =∠C′EF , ∴∠CEF =12(180°-48°)=66°. (2)证明:∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠GFE =∠CEF. 由折叠的性质得∠CEF =∠C′EF , ∴∠GFE =∠C′EF.∴GE =GF ,即△EFG 是等腰三角形.20. 【答案】证明:∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°. ∵DE ∥AB ,∴∠EDC =∠B =60°,∠DEC =∠A =60°. ∵EF ⊥DE ,∴∠DEF =90°. ∴∠F =90°-∠EDC =30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC. ∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.。
中考专题复习等腰三角形与直角三角形含答案(可编辑修改word版)
4.C
5.(2013•莱芜)在平面直角坐标系中,O 为坐标原点,点 A 的坐标为(1, 3 ),M 为坐
标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点 M 的个数为( )
A.4
B.5
C.6
D.8
5.C
6.(2013•滨州)在等腰△ABC 中,AB=AC,∠A=50°,则∠B=
.
6.65°
度.
思路分析:根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可
得出∠E 的度数.
解:∵△ABC 是等边三角形,
∴∠ACB=60°,∠ACD=120°,
∵CG=CD,
∴∠CDG=30°,∠FDE=150°,
∵DF=DE,
∴∠E=15°.
故答案为:15.
点评:本题考查了等边三角形的性质,互补两角和为 180°以及等腰三角形的性质,难度
思路分析:过另一个顶点 C 作垂线 CD 如图,可得直角三角形,根据直角三角形中 30°角 所对的边等于斜边的一半,可求出有 45°角的三角板的直角直角边,再由等腰直角三角形 求出最大边. 解:如图,
过点 C 作 CD⊥AD,∴CD=3, 在直角三角形 ADC 中, ∵∠CAD=30°, ∴AC=2CD=2×3=6, 又三角板是有 45°角的三角板, ∴AB=AC=6, ∴BC2=AB2+ AC2=62+62=72,
A.18°
B.24°
C.30°
D.36°
思路分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC 的度
数.
解:∵AB=AC,∠A=36°,
∴∠ABC=∠ACB=7,2°
∵BD 是 AC 边上的高,
等腰三角形的判定同步培优题典(解析版)
专题3.4等腰三角形的判定姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•肥城市校级月考)如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC、∠BCD 的平分线,则图中的等腰三角形有()A.3个B.4个C.5个D.2个【分析】根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,即可得出答案.【解析】共有5个.∵AB=AC∴△ABC是等腰三角形;∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=12∠ABC,∠ECB=12∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;∵∠A=36°,AB=AC,∴∠ABC=∠ACB=12(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=12∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:C.2.(2019秋•河西区期中)在△ABC中,∠A=45°,∠B=45°,则下列判断错误的是()A.△ABC是直角三角形B.△ABC是锐角三角形C.△ABC是等腰三角形D.∠A和∠B互余【分析】根据等腰直角三角形的判定解答即可.【解析】∵在△ABC中,∠A=45°,∠B=45,∴∠C=90°,即△ABC是等腰直角三角形,∠A和∠B互余故选:B.3.(2019秋•东海县期中)△ABC中,AD,BE分别是边BC,AC上的高,若∠EBC=∠BAD,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【分析】发现∠ABC与∠C分别是∠BAD与∠EBC的余角,得到二角相等,根据等腰三角形的判定可得答案.【解析】∵∠EBC+∠C=90°,∠C+∠CAD=90°,∴∠CAD=∠EBC,∵∠EBC=∠BAD∴∠BAD=∠CAD,∠CAD+∠C=90°∠BAD+∠ABC=90°∴∠ABC=∠C∴AB=AC∴为等腰三角形.故选:A.4.(2020春•松江区期末)如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组【分析】根据等腰三角形的判定定理逐个判断即可.【解析】①、∵△ABC中,AB=AC,∴△ABC是等腰三角形,故①正确;②、∵△ABC中,∠B=56°,∠BAC=68°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣68°﹣56°=56°,∴∠B=∠C,∴△ABC是等腰三角形,故②正确;③∵△ABC中,AD⊥BC,AD平分∠BAC,∴∠BAD=∠CAD,∠ADB=∠ADC,∵∠B+∠BAD+∠ADB=180°,∠C+∠CAD+∠ADC=180°,∴∠B=∠C,∴△ABC是等腰三角形,故③正确;④、∵△ABC中,AD⊥BC,AD平分边BC,∴AB=AC,∴△ABC是等腰三角形,故④正确;即正确的个数是4,故选:D.5.(2020•海门市一模)线段AB在如图所示的8×8网格中(点A、B均在格点上),在格点上找一点C,使△ABC是以∠B为顶角的等腰三角形,则所有符合条件的点C的个数是()A.4B.5C.6D.7【分析】根据题意可得,以点B为圆心,BA长为半径画圆,圆与格点的交点即为符合条件的点C.【解析】如图所示:使△ABC是以∠B为顶角的等腰三角形,所以所有符合条件的点C的个数是6个.故选:C.6.(2020春•阜宁县期中)以下列各组数据为边长,可以构成等腰三角形的是()A.1cm、2cm、3cm B.3cm、3cm、4cmC.1cm、3cm、1cm D.2cm、2cm、4cm【分析】根据三角形的三边关系即可作出判断.【解析】根据三角形的三边关系可知:A.1+2=3,不能构成三角形,不符合题意;B.3+3>4,能构成三角形,而且是等腰三角形,符合题意;C.1+1<3,不能构成三角形,不符合题意;D.2+2=4,不能构成三角形,不符合题意.故选:B.7.(2020•衡水模拟)在证明等腰三角形的判定定理“等角对等边”,即“如图,已知:∠B=∠C,求证:AB=AC”时,小明作了如下的辅助线,下列对辅助线的描述正确的有()①作∠BAC的平分线AD交BC于点D②取BC边的中点D,连接AD③过点A作AD⊥BC,垂足为点D④作BC边的垂直平分线AD,交BC于点DA.1个B.2个C.3个D.4个【分析】①②③分别从能否判定△ABD≌△ACD来分析,④从辅助线本身作法来分析即可.【解析】①作∠BAC的平分线AD交BC于点D,则由∠B=∠C,∠BAD=∠CAD,AD=AD,可判定△ABD≌△ACD(AAS),从而可得AB=AC,故①正确;②取BC边的中点D,连接AD,则∠B=∠C,BD=CD,AD=AD,无法判定△ABD≌△ACD,故没法证明AB=AC,故②错误;③过点A作AD⊥BC,垂足为点D,则由∠B=∠C,∠BDA=∠CDA,AD=AD,可判定△ABD≌△ACD(AAS),从而可得AB=AC,故③正确;④作BC边的垂直平分线AD,交BC于点D,过已知点不能作出已知线段的垂直平分线,辅助线作法错误,故④错误.综上,正确的有①③.故选:B.8.(2019秋•新泰市期末)如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB 于点D,交AC于点E,那么下列结论,其中正确的有()①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.A.1个B.2个C.3个D.4个【分析】根据角平分线的定义得到∠DBF=∠CBF,根据平行线的性质得到∠DFB=∠CBF,推出△BDF 是等腰三角形;故①正确;同理,EF=CE,于是得到DE=DF+EF=BD+CE,故②正确;根据三角形的内角和和角平分线的定义得到∠BFC=180°﹣65°=115°,故③正确;推出DF不一定等于EF,故④错误.【解析】∵BF是∠AB的角平分线,∴∠DBF=∠CBF,∵DE∥BC,∴∠DFB=∠CBF,∴∠DBF=∠DFB,∴BD=DF,∴△BDF是等腰三角形;故①正确;同理,EF=CE,∴DE=DF+EF=BD+CE,故②正确;∵∠A=50°,∴∠ABC+∠ACB=130°,∵BF平分∠ABC,CF平分∠ACB,∴∠FBC=12∠ABC,∠FCB=12∠ACB,∴∠FBC+∠FCB=12(∠ABC+∠ACB)=65°,∴∠BFC=180°﹣65°=115°,故③正确;当△ABC为等腰三角形时,DF=EF,但△ABC不一定是等腰三角形,∴DF不一定等于EF,故④错误;故选:C.9.(2019秋•江油市期末)如图:D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若BD=1,BC=3,则AC的长为()A.5B.4C.3D.2【分析】延长BD交AC于E,如图,利用CD平分∠ACB,BD⊥CD先判断△BCE为等腰三角形得到DE=BD=1,CE=CB=3,再证明EA=EB=2,然后计算AE+CE即可.【解析】延长BD交AC于E,如图,∵CD平分∠ACB,BD⊥CD,∴△BCE为等腰三角形,∴DE=BD=1,CE=CB=3,∵∠A=∠ABD,∴EA=EB=2,∴AC=AE+CE=2+3=5.故选:A.10.(2019秋•西青区期末)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC的值为()A.6B.7C.8D.9【分析】只要证明EG=EB,DF=DC即可解决问题.【解析】∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵FG=2,ED=6,∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•田家庵区期末)如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有8个.【分析】以A点为顶点的等腰三角形可作3个,以B点为顶点的等腰三角形可作3个,以AB为底边的等腰三角形可作2个.【解析】如图,△ABC是等腰三角形,这样的格点C有8个.故答案为8.12.(2019秋•永定区期末)如图,∠AOB=56°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为124°或76°或28°.【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【解析】∵∠AOB=56°,OC平分∠AOB,∴∠AOC=28°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=28°,∴∠OEC=180°﹣28°﹣28°=124°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=12(180°﹣28°)=76°;③当E在E3时,OC=CE,则∠OEC=∠AOC=28°;故答案为:124°或76°或28°.13.(2019秋•樊城区期末)已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为70°或40°或20°.【分析】分三种情形分别求解即可;【解析】如图,有三种情形:①当AC=AD时,∠ACD=70°.②当CD′=AD′时,∠ACD′=40°.③当AC=AD″时,∠ACD″=20°,故答案为70°或40°或20°14.(2019秋•来凤县期末)如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在坐标轴上找一点P,使得△P AB是等腰三角形,则符合条件的点P共有6个.【分析】分类讨论:AB=AP时,AB=BP时,AP=BP时,根据两边相等的三角形是等腰三角形,可得答案.【解析】①当AB=AP时,在y轴上有2点满足条件的点P,在x轴上有1点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P,在x轴上有2点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.③当AP=BP时,在x轴、y轴上各有一点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.综上所述:符合条件的点P共有6个.故答案为:6.15.(2019秋•江油市期末)如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有9个.【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【解析】①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.16.(2018秋•恩施市期末)如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH,添的钢管长度都与OE相等,则最多能添加这样的钢管5根.【分析】因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ的度数(必须≤90°),就可得出钢管的根数.【解析】如图所示,∠AOB=15°,∵OE=FE,∴∠GEF=∠EGF=15°×2=30°,∵EF=GF,所以∠EGF=30°∴∠GFH=15°+30°=45°∵GH=GF∴∠GHF=45°,∠HGQ=45°+15°=60°∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QM,∴∠QMH=75°,∠HQM=180﹣75°﹣75°=30°,故∠OQM=60°+30°=90°,不能再添加了.故答案为5.17.(2019春•盐湖区校级月考)在△ABC中,∠B=50°,当∠A为50°或65°或80°时,△ABC是等腰三角形.【分析】由已知条件,根据题意,分两种情况讨论:①∠B是顶角;②∠B是底角,③∠B=∠C=50°,利用三角形的内角和进行求解.【解析】①∠B是顶角,∠A=(180°﹣∠B)÷2=65°;②∠B是底角,∠B=∠A=50°.③∠A是顶角,∠B=∠C=50°,则∠A=180°﹣50°×2=80°,∴当∠A的度数为50°或65°或80°时,△ABC是等腰三角形.故答案为:50°或65°或80°.18.(2018秋•宿松县期末)如图,△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD 为等腰三角形,则∠ADC的度数为20°或70°或100°.【分析】分三种情形分别求解即可.【解析】如图,有三种情形:①当AC=AD时,∠ADC=70°.②当CD′=AD′时,∠AD′C=100°.③当AC=AD″时,∠AD″C=20°,故答案为:70°或100°或20°三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2018秋•邵阳县期末)如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC(1)试判定△ODE的形状,并说明你的理由;(2)若BC=10,求△ODE的周长.【分析】(1)证明∠ABC=∠ACB=60°;证明∠ODE=∠ABC=60°,∠OED=∠ACB=60°,即可解决问题.(2)证明BD=OD;同理可证CE=OE;即可解决问题.【解析】(1)△ODE是等边三角形;理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°;∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°,∴△ODE为等边三角形.(2)∵OB平分∠ABC,OD∥AB,∴∠ABO=∠DOB,∠ABO=∠DBO,∴∠DOB=∠DBO,∴BD=OD;同理可证CE=OE;∴△ODE的周长=BC=10.20.(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.【分析】(1)根据等腰三角形的性质和三角形内角和得出∠DBC=36°,进而根据等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.【解答】证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.21.(2019秋•嘉祥县期末)(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F,试猜想EF、BE、CF之间有怎样的关系,并说明理由;(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,请直接写出EF、BE、CF之间的关系EF=BE﹣CF.【分析】(1)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系;(2)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系.【解析】(1)EF=BE+CF,理由:∵BO平分∠ABC,CO平分∠ACB,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF;(2)不成立,理由:∵BO平分∠ABC,CO平分∠ACD,∴∠EBO=∠OBC,∠FCO=∠OCD,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCD,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴EF=OE﹣OF=BE﹣CF.故答案为EF =BE ﹣CF .22.(2019秋•确山县期末)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.【分析】(1)由AB =AC ,∠ABC =∠ACB ,BE =CF ,BD =CE .利用边角边定理证明△DBE ≌△CEF ,然后即可求证△DEF 是等腰三角形.(2)根据∠A =40°可求出∠ABC =∠ACB =70°根据△DBE ≌△CEF ,利用三角形内角和定理即可求出∠DEF 的度数.【解答】证明:∵AB =AC ,∴∠ABC =∠ACB ,在△DBE 和△CEF 中{BE =CF ∠ABC =∠ACB BD =CE,∴△DBE ≌△CEF ,∴DE =EF ,∴△DEF 是等腰三角形;(2)∵△DBE ≌△CEF ,∴∠1=∠3,∠2=∠4,∵∠A +∠B +∠C =180°,∴∠B =12(180°﹣40°)=70°∴∠1+∠2=110°∴∠DEF=70°23.(2020•恩施州模拟)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC 即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解析】(1)∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵D为BC的中点,∴AD⊥BC,∴∠BAD=90°﹣∠ABC=90°﹣36°=54°.(2)∵BE平分∠ABC,∴∠ABE=∠EBC,又∵EF∥BC,∴∠EBC=∠BEF,∴BF=EF.24.(2019秋•永城市期末)如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F是BE的中点,连接CF并延长交AD于点G.(1)求证:CG平分∠BCD.(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.【分析】(1)根据角平分线的定义得到∠ABF=∠CBF=12∠ABC.根据平行线的性质得到∠ABF=∠E,推出△BCE是等腰三角形.根据等腰三角形的性质即可得到结论.(2)根据平行线的性质待定的∠ABC+∠BCD=180°.根据角平分线的定义即可得到结论.【解答】(1)证明:∵BE平分∠ABC,∴∠ABF=∠CBF=12∠ABC.∵AB∥CD,∴∠ABF=∠E,∴∠CBF=∠E,∴BC=CE,∴△BCE是等腰三角形.∵F为BE的中点,∴CF平分∠BCD,即CG平分∠BCD.(2)解:∵AB∥CD,∴∠ABC+∠BCD=180°.∵∠ABC=52°,∴∠BCD=128°.∵CG平分∠BCD,∴∠GCD=12∠BCD=64°.∵∠ADE=110°,∠ADE=∠CGD+∠GCD,∴∠CGD=46°.。
初中数学等腰三角形的存在性问题(word版+详解答案)
等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。
【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一【二次函数综合题中根据条件判定三角形的形状】典例指引1.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D,满足∠DAB=45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【举一反三】(2020·江西初三期中)如图①,已知抛物线y=ax 2+bx+3(a≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.类型二【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.(2019·山东初三期末)如图1,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(l )求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接,BE CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD ∆为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【举一反三】(2019·广东省中山市中山纪念中学三鑫双语学校初三期中)如图,已知抛物线y =ax 2+bx +c 的图象与x 轴交于A (2,0),B (﹣8,0)两点,与y 轴交于点C (0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.类型三【确定满足等腰三角形的动点的运动时间】典例指引3.(2018济南中考)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.【举一反三】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.【新题训练】1.(2020·江西初三)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),直线x=﹣2与x轴相交于点B,连接OA,抛物线y=﹣x2从点O沿OA方向平移,与直线x=﹣2交于点P,顶点M到点A时停止移动.(1)线段OA 所在直线的函数解析式是 ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段PA 最长?并求出此时PA 的长. (3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得△OMQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.2.(2018·山东中考真题)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.3.(2016·广西中考真题)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.4.(2019·广东广州市第二中学初三)如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=12-x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE 13个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.5.(2019·湖南中考模拟)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.6.(2018·山东中考模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.7.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C (﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.8.(2018·广东中考模拟)如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.9.(2019·四川中考模拟)如图,已知二次函数y =﹣x 2+bx+c (c >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求二次函数的解析式;(2)点P 为线段BM 上的一个动点,过点P 作x 轴的垂线PQ ,垂足为Q ,若OQ =m ,四边形ACPQ 的面积为S ,求S 关于m 的函数解析式,并写出m 的取值范围;(3)探索:线段BM 上是否存在点N ,使△NMC 为等腰三角形?如果存在,求出点N 的坐标;如果不存在,请说明理由.10.(2019·甘肃中考模拟)如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.11.(2019·安徽中考模拟)如图,已知直线1y x =+与抛物线2y ax 2x c =++相交于点()1,0A -和点()2,B m 两点.(1)求抛物线的函数表达式;(2)若点P 是位于直线AB 上方抛物线上的一动点,当PAB ∆的面积S 最大时,求此时PAB ∆的面积S 及点P 的坐标;(3)在x 轴上是否存在点Q ,使QAB ∆是等腰三角形?若存在,直接写出Q 点的坐标(不用说理);若不存在,请说明理由.12.(2018·江苏中考模拟)(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,11AM AN均为定值,并求出该定值.13.(2019·重庆中考模拟)如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.14.(2019·辽宁中考模拟)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.15.(2020·浙江初三期末)如图,抛物线y=﹣12x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.16.(2020·湖北初三期末)如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.17.(2019·吉林初三)如图1,抛物线与y =﹣211433x x ++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点D 是线段AB 上一点,且AD =CA ,连接CD .(1)如图2,点P 是直线BC 上方抛物线上的一动点,在线段BC 上有一动点Q ,连接PC 、PD 、PQ ,当△PCD 面积最大时,求PQ +10CQ 的最小值; (2)将过点D 的直线绕点D 旋转,设旋转中的直线l 分别与直线AC 、直线CO 交于点M 、N ,当△CMN 为等腰三角形时,直接写出CM 的长.18.(2020·江苏初三期末)在平面直角坐标系xOy 中,抛物线2y x mx n =-++与x 轴交于点A,B ( A 在B的左侧)(1)如图1,若抛物线的对称轴为直线3,4x AB =-= .①点A 的坐标为( , ),点B 的坐标为( , ); ②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O ,且与x 正半轴交于点C ,记平移后的抛物线顶点为P ,若OCP ∆是等腰直角三角形,求点P 的坐标.等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。
等腰三角形培优题目有答案
等腰三⾓形培优题⽬有答案2014.3.29 等腰三⾓形1.等腰三⾓形⼀腰上的⾼与另⼀腰的夹⾓为30°则顶⾓的度数为什么?2.等腰三⾓形顶⾓为α,⼀条腰上的⾼与底边所夹的⾓是β,则β与α的关系式为β=___________。
图1解答:如图1,AB=AC ,BD ⊥AC 于D ,作底边BC 上的⾼AE ,E 为垂⾜,则可知∠EAC=∠EAB =12α,⼜∠EAC C C =-=-9090°∠,∠°∠β,所以∠,EAC ==ββα12。
3.如图1,在△ABC 中,∠A=36°,AB=AC ,∠ABC 的平分线BE 交AC 于E .(1)求证:AE=BC ;(2)如图(2),过点E 作EF ∥BC 交AB 于F ,将△AEF 绕点A 逆时针旋转⾓α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,⼜∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.4.如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三⾓形.证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三⾓形.5.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂⾜为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直⾓三⾓形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).6.如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OC=6,OA=8,直线MN的解析式为y=﹣x+6 在直线MN上存在点P,使以点P,B,C三点为顶点的三⾓形是等腰三⾓形,请直接写出P点的坐标.解答:(1)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三⾓形是等腰三⾓形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(﹣a+6﹣6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).8.已知:如图,△ABC中,AB=AC,CE⊥AE于E,CE BC12,E在△ABC外,求证:∠ACE=∠B。
培优专题3_等腰三角形(含答案)[1]
3等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;推论2:等边三角形的各角都相等,并且每一个角都等于60°。
2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。
(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 定理及其推论的作用。
等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
【分类解析】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
人教版数学8年级上学期【能力培优】等腰三角形
13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)2.如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A为多少度时,∠EDF+∠EFD=120°,并请说明理由.3.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.专题二等边三角形的性质和判定4.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是__________.5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.6.如图,△ABC中,AB=BC=AC=12 cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.专题三最短路径问题7.如图,A、B两点分别表示两幢大楼所在的位置,直线a表示输水总管道,直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是()A.F和C B.F和E C.D和C D.D和E8.如图,现准备在一条公路旁修建一个仓储基地,分别给A、B两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小? (保留作图痕迹及简要说明)状元笔记【知识要点】1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等,并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【温馨提示】1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°.【方法技巧】1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.参考答案:1.①②③ 解析:∵DE ∥BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB .∵BF 是∠ABC 的平分线,CF 是∠ACB 的平分线,∴∠FBC=∠DBF ,∠FCE=∠FCB .∴∠DBF=∠DFB ,∠EFC=∠EC F ,∴△DFB ,△FEC 都是等腰三角形.∴DF=DB ,FE=EC ,即有DE=DF+FE=DB+EC .∴△ADE 的周长=AD+AE+DE=AD+AE+DB+EC=AB+AC .综上所述,命题①②③正确.2.解:(1)证明:∵AD+EC=AB ,∴BD=CE . ∵AB=AC ,∴∠B=∠C . ∵BE=CF ,∴△BDE ≌△CEF .∴DE=EF ,即△DEF 是等腰三角形.(2)∵∠A=40°,∴∠B=∠C=12(180°-∠A)=12(180°-40°)=70°. ∵△BDE ≌△CEF ,∴∠BDE=∠CEF .∴∠DEF=180°-∠BED -∠CEF=180°-∠BED -∠BDE=∠B=70°. (3)不能.∵∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形.(4)60°.理由:当∠A=60°时,∠B=∠C=60°,由(2)可得∠DEF=60°. ∴∠EDF+∠EFD=120°.3.解:(1)△ABC ,△ABD ,△ADE ,△EDC . (2)AD 与BE 垂直.证明:∵BE 为∠ABC 的平分线,∴∠ABE=∠DBE. 又∵∠BAE=∠BDE=90°,BE=BE , ∴△ABE 沿BE 折叠,一定与△DBE 重合. ∴A 、D 是对称点. ∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB , ∴AE=DE .在Rt △ABE 和Rt △DBE 中, AE =DE BE =BE ⎧⎨⎩,,∴Rt △ABE ≌Rt △DBE (HL ). ∴AB=BD .又△ABC 是等腰直角三角形,∠BAC=90°, ∴∠C=45°. 又∵ED ⊥BC ,∴△DCE 为等腰直角三角形. ∴DE=DC .即AB+AE=BD+DC=BC=10.4.6 解析:连接OD ,∵PO=PD ,∴OP=DP=OD .∴∠DPO=60°.∵△ABC 是等边三角形,∴∠A=∠B=60°,AC=AB=9.∵∠OPA=∠PDB=∠DPA -60°.∴△OPA ≌△PDB .∵AO=3, ∴AO=PB=3,∴AP=6.5.解:(1)△ODE是等边三角形,其理由是:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°.∴△ODE是等边三角形.(2)BD=DE=EC.其理由是:∵OB平分∠ABC,且∠ABC=60°,∴∠ABO=∠OBD=30°.∵OD∥AB,∴∠BOD=∠ABO=30°.∴∠DBO=∠DOB.∴DB=DO.同理,EC=EO.∵DE=OD=OE,∴BD=DE=EC.6.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12.(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t.解得t=4.∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM.∴∠AMN=∠ANM.∴∠AMC=∠ANB.∵AB=BC=AC,∴△ACB是等边三角形.∴∠C=∠B .在△ACM 和△ABN 中,AC AB C B AMC ANB =⎧⎪=⎨⎪=⎩,∠∠,∠∠, ∴△ACM ≌△ABN . ∴CM=BN .设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,△AMN 是等腰三角形, ∴CM=y -12,NB=36-2y ,CM=NB . y -12=36-2y ,解得:y=16.故假设成立.∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M 、N 运动的时间为16秒.7.A 解析:由轴对称--最短路线的要求可知:输水分管道的连接点是点B 关于a 的对称点B′与A 的连线的交点F ,煤气分管道的连接点是点A 关于b 的对称点A′与B 的连线的交点C .故选A .8.解:如图,作点B 关于公路的对称点B′,连接AB′,交公路于点C ,则这个基地建在C 处,才能使它到这两个超市的距离之和最小.第十三章轴对称13.1轴对称13.2画轴对称图形专题一轴对称图形1.下列图案是轴对称图形的是()A.B.C.D.2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠AB C和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B点、C点关于DE对称,有∠DBE=∠BCD,∠ABC=2∠BCD.且已知∠A=90°,故∠ABC+∠BCD=90°.故∠ABC=60°,∠C=30°.6.解:(1)对称点有A和A',B和B',C和C'.(2)连接A、A′,直线m是线段AA′的垂直平分线.(3)延长线段AC与A′C′,它们的交点在直线m上,其他对应线段(或其延长线)的交点也在直线m上,即若两线段关于直线m对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt△FDB中,∵∠F=30°,∴∠B=60°.在Rt△ABC中,∵∠ACB=90°,∠ABC=60°,∴∠A=30°.在Rt△AED中,∵∠A=30°,DE=1,∴AE=2.连接EB. ∵DE 是AB的垂直平分线,∴EB=AE=2. ∴∠EBD=∠A=30°.∵∠ABC=60°,∴∠EBC=30°.∵∠F=30°,∴EF=EB=2.故选B.AF ED8.8 解析:∵DF是AB的垂直平分线,∴DB=DA.∵EG是AC的垂直平分线,∴EC=EA.∵BC=8,∴△ADE的周长=DA+EA+DE=DB+DE+EC=BC=8.9.解:AB+BD=DE.证明:∵AD⊥BC,BD=DC,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.∴AB=CE.∴AB+BD=CE+DC=DE.10.C 解析:关于y轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5.解得1.5<a<2.5,又因为a必须为整数,∴a=2.∴点P2(-1,-1).∴P1点的坐标是(-1,1).。
等腰三角形练习(含答案)
EDC A B F1.等腰三角形练习题(第一课时)一、选择题1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 4.等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80°5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108°EDCABHFG二、填空题6.等腰△ABC 的底角是60°,则顶角是________度. 7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________. 9.如图,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____. 10.△ABC 中,AB=AC .点D 在BC 边上(1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; (2)∵AD 是中线,∴∠________=∠________;________⊥________; (3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______. 三、解答题11.已知△ABC 中AB=AC ,AD ⊥BC 于D ,若△ABC 、△ABD 的周长分别是20cm 和16cm ,•求AD 的长.12.如图,在四边形ABCD 中,AB=AD ,CB=CD ,求证:∠ABC=∠ADC.DCAB13.已知△ABC 中AB=AC ,点P 是底边的中点,PD ⊥AB ,PE ⊥AC ,垂足分别是D 、E ,• 求证:PD=PE.四、探究题14.如图,CD 是△ABC 的中线,且CD=12AB ,你知道∠ACB 的度数是多少吗?由此你能得到一个什么结论?请叙述出来与你的同伴交流.DCAB答案:1.D 2.B 3.A 4.C 5.B 6.607.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 8.(90+12n )° 9.70° 10.略 11.6cm 12.连接BD ,∵AB=AD ,∴∠ABD=∠ADB .∵CB=CD ,∴∠CBD=∠CDB .∴∠ABC=∠ADC 13.连接AP ,证明AP 平分∠BAC .14.∠ACB=90°.结论:若一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形练习题(第二课时)一、选择题1.如图1,已知OC 平分∠AOB ,CD ∥OB ,若OD=3cm ,则CD 等于( )A .3cmB .4cmC .1.5cmD .2cmD C A BE D ABFEDCABH F(1) (2) (3)2.△ABC 中AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有( ) A .1个 B .2个 C .3个 D .4个3.如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( ) A .①②③ B .①②③④ C .①② D .①4.如图3,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EFC .CH=HD D .AC=AF 二、填空题5.△ABC 中,∠A=65°,∠B=50°,则AB :BC=_________.6.已知AD 是△ABC 的外角∠EAC 的平分线,要使AD•∥BC ,•则△ABC•的边一定满足________. 7.△ABC 中,∠C=∠B ,D 、E 分别是AB 、AC 上的点,•AE=•2cm ,•且DE•∥BC ,•则AD=________. 8.一灯塔P 在小岛A 的北偏西25°,从小岛A 沿正北方向前进30海里后到达小岛,•此时测得灯塔P 在北偏西50°方向,则P 与小岛B 相距________. 三、解答题 9.如图,已知AB=AC ,E 、D 分别在AB 、AC 上,BD 与CE 交于点F ,•且∠ABD=•∠ACE , 求证:BF=CF .E D CA BF10.如图,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,• 求证:△DBE 是等腰三角形.ED CABF四、探究题11.如图,AF 是△ABC 的角平分线,BD ⊥AF 交AF 的延长线于D ,DE ∥AC•交AB 于E , 求证:AE=BE .ECABF答案:1.A 2.C 3.A 4.C 5.1 6.AB=AC 7.2cm 8.30海里9.连接BC ,∵AB=AC ,∴∠ABC=∠ACB ,又∵∠ABD=∠ACE ,∴∠FBC=∠FCB ,∴FB=FC 10.证明∠D=∠BED11.证明∠EAD=∠EDA ,∠EBD=∠EDB 分别得到AE=DE ,BE=DE。
中考数学专题特训 等腰三角形与直角三角形(含详细参考答案)
中考数学专题复习等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【赵老师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【赵老师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【赵老师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【赵老师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【赵老师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例 1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是.分析:此题需先根据题意画出当AB=AC时,当AB=BC时,当AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可.解:(1)当AB=AC时,∵∠A=30°,∴CD=12AC=12×8=4;(2)当AB=BC时,则∠A=∠ACB=30°,∴∠ACD=60°,∴∠BCD=30°,∴CD=cos∠BCD•BC=cos30°×8=43;(3)当AC=BC时,则AD=4,∴CD=tan∠A•AD=tan30°•4=433;故答案为:433或43或4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3:在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一 2. 定理及其推论的作用。
等腰三角形的判定定理揭示了三角形中角与边的转化关系, 理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问【知识精读】(-)等腰三角形的性质 1.有关定理及其推论 定理:等腰三角形有两边相等; 3等腰三角形定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的 顶角平分线、底边上的中线、底边上的高互相重合。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 推论2:等边三角形的各角都相等,并且每一个角都等于 60 2.定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系, 由两边相等推出两 角相等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶 角的平分线“三线合一”的性质是今后证明两条线段相等, 两个角相等以及两条直线互相垂 直的重要依据。
(二)等腰三角形的判定 1.有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
) 推论 1:三个角都相等的三角形是等边三角形。
推论 2:有一个角等于60°的等腰三角形是等边三角形。
推论它是证明线段相等的重要定题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题, 在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合, 添加辅助线时, 有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况 来定。
【分类解析】例1.如图,已知在等边三角形 ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM 丄BC ,垂足为M 。
求证:M 是BE 的中点。
所以/ 1 = - / ABC2又因为CE = CD ,所以/ CDE = / E 所以/ ACB = 2/ E 即/ 1=/ E所以BD = BE ,又DM 丄BC ,垂足为 M分析:欲证M 是BE 的中点,已知 DM 丄BC ,所以想到连结 BD ,证BD = ED 。
因为△ABC 是等边三角形,/ DBE = - / ABC ,而由 CE = CD ,又可证/ E = - / ACB ,所以/ 12 2=/ E ,从而问题得证。
证明:因为三角形 ABC 是等边三角形,D 是AC 的中点所以M 是BE 的中点 (等腰三角形三线合一定理)例2.如图,已知: ABC 中,AB AC , D 是 BC 上一点,且 AD DB , DC CA ,求 BAC 的度数。
ED2分析:题中所要求的 BAC 在 ABC 中,但仅靠AB AC 是无法求出来的。
因此需 要考虑AD DB 和DC CA 在题目中的作用。
此时图形中三个等腰三角形,构成了内外 角的关系。
因此可利用等腰三角形的性质和三角形的内外角关系定理来求。
的关系是此等腰三角形性质的本质所在。
本条性质在解题中发挥着重要的作用, 这一点在后 边的解题中将进一步体现。
2.注意“等边对等角”是对同一个三角形而言的。
3.此题是利用方程思想解几何计算题,而边证边算又是解决这类题目的常用方法。
例3.已知:如图, ABC 中,AB AC ,CD AB 于D 。
求证:B 90解:因为AB AC , 所以 B C因为AD DB ,所以 B DABC ;因为CA CD ,所以CADCDA(等边对等角)而 ADC B DAB所以 ADC 2 B , DAC2 B所以 BAC 3 B又因为 B C BAC 180即 BC 3 B180所以 B36即求得 BAC108说明1.等腰三角形的性质是沟通本题中角之间关系的重要桥梁。
把边的关系转化成角BAC 2 DCB 。
分析:欲证角之间的倍半关系,结合题意,观察图形, BAC 是等腰三角形的顶角,于是想到构造它的一半,再证与DCB 的关系。
证明: 所以BC 于 E , AB AC12 - BAC (等腰三角形的三线合一性质)过点A 作AE 因为C说明:1.作等腰三角形底边高线的目的是利用等腰三角形的三线合一性质, 因此添加底边的高是一条常用的辅助线;2.对线段之间的倍半关系,常采用“截长补短”或“倍长中线”等辅助线的添加方法,对角间的倍半关系也同理,或构造“半”,或构造“倍”。
因此,本题还可以有其它的证法, 如构造出DCB的等角等。
4、中考题型:1.如图,△ ABC 中,AB = AC,/ A = 36°, BD、CE 分别为/ ABC与/ ACB 的角平分线,且相交于点F,则图中的等腰三角形有(分析:由已知条件根据等腰三角形的性质和三角形内角和的度数可求得等腰三角形有个,故选择C。
2.)已知:如图,在△ ABC中,AB = AC , D是BC的中点,DE丄AB , DF丄AC , E、F分别是垂足。
求证:AE = AF 。
又CD AB , 所以CDB 90所以3 90 (直角三角形两锐角互余)所以1 (同角的余角相等)即BAC DCBA. 6个B. 7个 D. 9个C. 8个构造角的倍半关系。
证明:因为AB AC ,所以 B C 又因为DE AB , DF AC 所以 BED CFD 90又D 是BC 的中点,所以DB DC 所以 DEB CFD(AAS) 所以BE CF ,所以AE AF5、题形展示:在BC 上截取BF BD ,只需证明CF AD ,考虑到1 2,想到在 BC 上截取BE BA ,连结DE ,易得,则有AD FD ,只需证明 DE CF ,这就要从条件出发,通过角度计算可以得出40 20而 BD BFBFDBDF £(180 2) 1(180 20 ) 80说明:证法二:连结AD ,通过 AEDAFD 证明即可例1.如图,ABC 中,AB AC , A 100,BD 平分 ABC 。
求证:AD BDBC 。
分析一:从要证明的结论出发,CF DF DE 。
证明一:在BC 上截取BE BA , BF BD ,连结 DE 、DF在 ABD 和 EBD 中,BA BE ,2,BD BDABD EBD(SAS) BED A 100 ADDE ,DEF 80又 AB AC ,A 100ABC— (180 100 ) 40DEF DFE 80 DE DFDFE 80 , C 40FDC DFE C 80 40 40FDC C DF FC ABC BF FC BD AD即AD BD BCDE分析二:如图,可以考虑延长BD到E,DF FC使DE = AD , 这样BD + AD=BD+DE=BE,只需证明BE = BC, 由于2 8020,只需证明 E BCE易证EDC ADB 180 100 20 60 , BDC 120,故作BDC的角平分线,则有ABD FBD,进而证明DEC DFC,从而可证出 E 80。
证明二:延长BD至U E,使DE = AD,连结CE , DF平分BDC交BC于由证明一知:1 2 20 , A 100则有3 180 100 20 60 , 60 , BDC 180 60 120 DF平分BDC 5 6060,在ABD和FBD中1 2, BD BD, 3ABD FBD(ASA)AD FD, BFD A 100 ,而AD DE, DF DE在DEC和DFC 中,DE DF, 5 6, DC DCDEC DFC(SAS)DFC 180 BFD 180 100 80在BCE 中,2 20 , 3 80BCE 80 , E BCEBC BE , AD BD BC说明:“一题多证”在几何证明中经常遇到,它是培养思维能力提高解题水平的有效途 径,读者在以后的几何学习中要善于从不同角度去思考、 力。
【实战模拟】5cm ,一腰上的中线把其周长分为两部分的差为 3cm ,则腰长为(去体会,进一步提高自身的解题能1.选择题:等腰三角形底边长为 A. 2 cm B. 8cmC. 2cm 或 8cmD.以上都不对2.如图,ABC 是等边三角形, CBD 90,BD BC ,贝U 1的度数是3. 求证:等腰三角形两腰中线的交点在底边的垂直平分线上4. ABC 中,AB AC , A 120 ,AB 的中垂线交 AB 于 D , 交CA 延长线于E ,求证:DE -BC 。
2BC【试题答案】1. B2.分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。
所以0点。
求证:点0在BC 的垂直平分线上。
证明:因为在 ABC 中,AB AC 所以 ABC ACB (等边对等角)又因为D 、E 分别为AC 、AB 的中点,所以DC EB 在BCD 和 CBE 中,解: 因为 ABC 是等边三角形所以 AB BC , ABC 60因为 BDBC ,所以AB BD在ABD 中,因为 CBD90, ABC 60 所以 ABD 150,所以 2 15所以12 ABC 753.分析: 首先将文字语言翻译成数学的符号语言和图形语言。
已知: 如图,在 ABC 中,AB AC ,D 、E 分别为AC 、AB 边中点,BD 、CE 交于分析:欲证本题结论,实际上就是证明0B 0C 。
而 0B 、0C 在ABC 中,于是想到利用等腰三角形的判定角等,那么问题就转化为证含有1、 2的两个三角形全等。
(中线定义)DC EB(已证)DCB EBC(已证)CB(公共边)BC所以BCD CBE(SAS)所以 1 2 (全等三角形对应角相等)。
C 30在 Rt ABF 和 Rt AED 中,所以OB OC (等角对等边)。
即点O 在BC 的垂直平分线上。
说明:(1)正确地理解题意,并正确地翻译成几何符号语言是非常重要的一步。
特别是把“在底边的垂直平分线上”正确地理解成“OB = OC ”是关键的一点。
(2)实际上,本题也可改成开放题:“△ ABC 中,AB = AC , D 、E 分别为AC 、AB 上的中点,BD 、CE 交于O 。
连结AO 后,试判断AO 与BC 的关系,并证明你的结论”其 解决方法是和此题解法差不多的。
4. 分析:此题没有给出图形,那么依题意,应先画出图形。
题目中是求线段的倍半关系, 观察图形,考虑取 BC 的中点。
证明:过点A 作BC 边的垂线AF ,垂足为F 。
在 ABC 中,AB AC , BAC 120所以所以2 60 , BF(等腰三角形三线合一性质)。