初中数学-三角形的证明单元测试题(有答案)
(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试(含答案解析)(2)
一、选择题1.已知如图,C为线段AE上一动点(不与A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,OC,以下四个结论:①AD=BE;②△CPQ是等边三角形;③AD⊥BC;④OC平分∠AOE.其中正确的结论是()A.①②③④B.③④C.①②③D.①②④2.已知点P是ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫ABC的费马点(Fermat point).已经证明:在三个内角均小于120︒的ABC中,当APB APC BPC时,P就是ABC的费马点.若点P是腰长为6的等120++=()腰直角三角形DEF的费马点,则PD PE PFA.6 B.33+C.63D.93.如图,在四边形ABCD中,点E在边AD上,∠BCE=∠ACD,∠BAC=∠D=40°,AB=DE,AC=AE,则∠B的度数为()A.100°B.110°C.120°D.130°4.已知等腰三角形的两边长分别为a,b,且a,b满足3a-+|b﹣4|=0,则此等腰三角形的周长为()A.7 B.10 C.11 D.10或115.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D.若∠A=30°,AE=10,则CE的长为()A.5 B.4 C.3 D.26.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB 1上取点B 2,B 3,…,分别以B 1B 2,B 2B 3,…为边作等边三角形△B 1A 2B 2,△B 2A 3B 3,…使得A 1,A 2,A 3,…在同一直线上,该直线交y 轴于点C .若OA 1=1,∠OA 1C =30°,则点B 9的横坐标是( )A .2552B .5112C .256D .51327.下列说法错误的是( ) A .有两边相等的三角形是等腰三角形 B .直角三角形不可能是等腰三角形C .有两个角为60°的三角形是等边三角形D .有一个角为60°的等腰三角形是等边三角形8.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C 5D 7 9.如图,ABC 中,AB AC =,BD DC =,若80BAC ∠=︒,AD AE =,则CDE∠的度数为( )A .40°B .30°C .20°D .10° 10.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 11.如图,在平面直角坐标系中,点A 的坐标为()1,0,以线段OA 为边在第四象限内作等边ABO ,点C 为x 轴正半轴上一动点(1OC >),设点C 的坐标为(),0x ,连结BC ,以线段BC 为边的第四象限内作等边CBD ,直线DA 交y 轴于点E ,点E 的坐标是( )A .(3B .0,2x ⎛⎫ ⎪⎝⎭C .()0,3D .30,2x ⎛⎫ ⎪ ⎪⎝⎭ 12.若以Rt ABC △的一边为边画一个等腰三角形,使它的第三个顶点也在Rt ABC △的其他边上,则这样的等腰三角形最多能画出( )A .3个B .5个C .6个D .7个二、填空题13.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.14.如图,在等边ABC中,点D在AC边上,点E在ABC外部,若∠=∠,CE BDACE ABD=,连接AE,DE,则ADE的形状是______.15.如图,△ACD是等边三角形,若AB=DE,BC=AE,∠E=115°,则∠BAE=_____°.16.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为60,AB=16,BC=14,则DE的长等于_____.17.如图,∠MON=33°,点P在∠MON的边ON上,以点P为圆心,PO为半径画弧,角OM于点A,连接AP,则∠APN=____.18.如图,∠AOB=30°,点P在∠AOB的内部,OP=6cm,点E、F分别为OA、OB上的动点,则△PEF周长的最小值为________cm.19.如图,在ABC 中,AB BC =,30C ∠=︒,过点B 作BD BC ⊥,交AC 于点D ,若2CD =,则AD 的长为__________.20.如图,AD 平分BAC ∠,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.则下列结论中:①AD 是ABC ∆的高;②ABC ∆是等边三角形;③ED FD =;④AB AE BF =+.其中正确的是______________(填写序号)三、解答题21.如图,Rt △ABC 中,∠BCA =90°,AC =BC ,点D 是BC 的中点,CE ⊥AD 于E ,BF ∥AC 交CE 的延长线于点F .(1)求证:△ACD ≌△CBF ;(2)连结DF ,求证:AB 垂直平分DF ;(3)连结AF ,试判断△ACF 的形状,并说明理由.22.如图,在△ABC 中,∠BAC =62°,∠B =78°,AC 的垂直平分线交BC 于点D . (1)求∠BAD 的度数;(2)若AB =8,BC =11,求△ABD 的周长.23.如图.在△ABC 中,∠C =90 °,∠A =30°.(1)用直尺和圆规作AB 的垂直平分线,分别交AB 、AC 于D 、E ,交BC 的延长线于F ,连接EB .(不写作法,保留作图痕迹)(2)求证:EB 平分∠ABC .(3)求证:AE =EF .24.在△DEF 中,DE =DF ,点B 在EF 边上,且∠EBD =60°,C 是射线BD 上的一个动点(不与点B 重合,且BC≠BE ),在射线BE 上截取BA =BC ,连接AC .(1)当点C 在线段BD 上时,①若点C 与点D 重合,请根据题意补全图1,并直接写出线段AE 与BF 的数量关系为 ; ②如图2,若点C 不与点D 重合,请证明AE =BF +CD ;(2)当点C 在线段BD 的延长线上时,用等式表示线段AE ,BF ,CD 之间的数量关系(直接写出结果,不需要证明).25.如图,已知等腰ABC 的底边13BC cm =,D 是腰BA 延长线上一点,连接CD ,且12BD cm =,5CD cm =.(1)判断BDC 的形状,并说明理由;(2)求ABC 的周长.26.已知:如图,,,C D Rt AC BD AD ∠=∠=∠=与BC 相交于点P .≌.求证:(1)Rt ABC Rt BAD△是等腰三角形.(2)PAB【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先由SAS判定△ACD≌△BCE,证得①正确;再由ASA证△ACP≌△BCQ,得到CP=CQ,②正确,同理证得CM=CN,得到④正确;易得③不正确.【详解】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠BCD+∠ECD,∠BCD=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,故①正确;∠CAD=∠CBE,∵∠BCA=∠BCD=60°,AC=BC,∴△ACP≌△BCQ(ASA),∴CP=CQ,又∵∠PCQ=60°,∴△CPQ是等边三角形,故②正确;过C作CM⊥BE于M,CN⊥AD于N,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵CD=CE,∠CND=∠CMA=90°,∴△CDN≌△CEM(AAS),∴CM=CN,∵CM⊥BE,CN⊥AD,∴OC平分∠AOE,故④正确;当AC =CE 时,AP 平分∠BAC ,则∠PAC =30°,此时∠APC =180°﹣30°﹣60°=90°,则AD ⊥BC ,故③不正确;故选:D .【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.2.B解析:B【分析】根据题意首先画出图形,过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,求出PE ,PF ,DP 的长即可解决问题.【详解】解:如图:过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,在等腰Rt DEF △中,6DE DF ==DM EF ⊥,223EF DE ∴==3EM DM ∴=∵∠PEM =30°,∠PME =90°,∴EP =2PM ,则()2222PM EM PM +=,解得:1PM =,则2PE =, 故31DP ,同法可得2PF =, 则312233PD PE PF ++++=故选:B .【点睛】此题主要考查了等腰三角形的性质,正确画出图形进而求出PE的长是解题关键.3.B解析:B【分析】先ASA证明△BAC≌△EDC,再利用全等三角形的性质,等腰三角形的两底角相等即可求解.【详解】解:∵∠BCE=∠ACD,又∵∠BCE=∠BCA+∠ACE,∠ACD=∠DCE+∠ACE,∴∠BCA=∠DCE,∵∠BAC=∠D=40°,AB=DE,∴△BAC≌△EDC(ASA),∴AC=CD,∴∠CAE=∠D=40°,∵AC=AE,∴∠AEC=∠ACE=1(180°﹣∠CAE)=70°,2∵∠AEC=∠D+∠DCE,∴∠DCE=30°,∴∠ACB=30°,∴∠B=180°﹣∠ACB﹣∠BAC=110°.故选:B.【点睛】考查了全等三角形的判定与性质,等腰三角形的性质,关键是根据ASA证明△BAC≌△EDC.4.D解析:D【分析】先根据非负数的性质列式求出a、b的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,a-3=0,b-4=0,解得a=3,b=4,①4是腰长时,三角形的三边分别为4、4、3,∵4+4>3,∴能组成三角形,4+4+3=11,②4是底边时,三角形的三边分别为3、3、4,能组成三角形,周长=3+3+4=10,所以,三角形的周长为11或10.故选:D.【点睛】本题考查了等腰三角形的性质,绝对值非负数,偶次方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出a 、b 的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.5.A解析:A【分析】先根据含30°角的直角三角形的性质求出DE =5,再根据角平分线的性质求出CE =DE =5即可.【详解】解:∵DE ⊥AB ,∴∠ADE =90°,在Rt △ADE 中,∠A =30°,AE =10,∴DE =12AE =5, ∵BE 平分∠ABC ,DE ⊥AB ,∠ACB =90°,∴CE =DE =5,故选:A .【点睛】本题考查的是角平分线的性质、含30°角的直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.B解析:B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴OC=3,∴点C 的坐标为(0,-,∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,,设直线A 1A 2的解析式为y kx =-∴03k =-,∴3k =∴直线A 1A 2的解析式为33y x =-, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(12,∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,2),同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,∴A 2的纵坐标为2,则233x =-, 解得:52x =,∴点A 2的坐标为(52,2), ∴B 1A 2=2,同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=,,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律. 7.B解析:B【分析】利用等腰三角形和等边三角形的判定解答即可.【详解】A.有两边相等的三角形是等腰三角形,所以A 选项正确;B.等腰直角三角形就是等腰三角形,故B 选项错误;C.有两个角为60°的三角形是等边三角形,正确;D.有一个角为60°的等腰三角形是等边三角形,正确.故选B .【点睛】本题考查了等腰三角形和等边三角形的判定,解题的关键是熟练掌握有关性质. 8.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒,145AC AB BE AE ==+=+=,在Rt △ACE 中,3CE ===; 故答案选A .【点睛】 本题主要考查了等腰三角形的性质,准确计算是解题的关键.9.C解析:C【分析】 根据已知可求得∠DAC 及∠ADE 的度数,根据∠CDE=90°-∠ADE 即可得到答案.【详解】解:∵AB =AC ,BD=DC∴ AD⊥BC(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)∴∠ADC=90°,∵∠BAC=80°,∴∠BAD=∠DAC= 80°÷2=40°(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合),∵AD=AE,∴∠ADE=( 180°−40°)÷2=70°,∴∠CDE=∠ADC-∠ADE=90°-70°=20°,故答案为:C.【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,掌握等腰三角形的性质,三角形内角和定理是解题的关键.10.B解析:B【分析】由△ABC为等边三角形,可求出∠BOA=90°,由△ADO是等腰三角形求出∠ADO=∠AOD=30°,即可求出∠BOD的度数.【详解】解:∵△ABC为等边三角形,BO为中线,∴∠BOA=90°,∠BAC=60°∴∠CAD=180°﹣∠BAC=180°﹣60°=120°,∵AD=AO,∴∠ADO=∠AOD=30°,∴∠BOD=∠BOA+∠AOD=90°+30°=120°,故选:B.【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.11.A解析:A【分析】由等边三角形的性质可得AO=OB=AB=1,BC=BD=CD,∠OBA=∠CBD=60°,可证△OBC≌△ABD,可得∠BAD=∠BOC=60°,可求∠EAO=60°,即可求OE点E坐标.【详解】解:∵△AOB,△BCD是等边三角形,∴AO=OB=AB=1,BC=BD=CD,∠OBA=∠CBD=60°,∴∠OBC=∠ABD,且OB=AB,BC=BD,∴△OBC≌△ABD(SAS),∴∠BAD=∠BOC=60°,∴∠EAO=180°−∠OAB−∠BAD=60°,在Rt△AOE中,AO=1,∠EAO=60°,∠OEA=30°,∴AE=2 AO=2,∴OE=22=3,21∴点E坐标(0,3),故选A.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,坐标与图形性质,灵活运用全等三角形的判定和性质是本题的关键.12.D解析:D【分析】先以Rt△ABC三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点,也可以作三边的垂直平分线确定等腰三角形的第三个顶点.【详解】解:如图1,以B为圆心,BC长为半径画弧,交AB于点D,连接CD,则△BCD是等腰三角形;如图2,以A为圆心,AC长为半径画弧,交AB于点D,连接CD,则△ACD是等腰三角形;如图3,作AB的垂直平分线,交AC于点D,连接BD,则△BCD是等腰三角形;如图4,以C为圆心,BC长为半径画弧,交AC于点D,交AB于点F,连接BD,CF 则△BCD、△BCF是等腰三角形;如图5,作BC的垂直平分线,交AB于点D,连接CD,则△BCD是等腰三角形;如图6,作AC的垂直平分线,交AB于点D,连接CD,△ACD是等腰三角形,∴符合题意的等腰三角形最多能画7个,故选:D.【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.二、填空题13.【分析】设∠OAC=x ∠CAB=y 根据等腰三角形的性质则∠OCA=x ∠OBA=x+y ∠OBC=x+30°利用三角形内角和定理计算即可【详解】解:设∠OAC=x ∠CAB=y ∵OA=OC ∴∠OCA=x ∵解析:60.【分析】设∠OAC=x ,∠CAB=y ,根据等腰三角形的性质,则∠OCA=x ,∠OBA=x+y ,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x ,∠CAB=y ,∵OA=OC ,∴∠OCA=x ,∵OA=OB ,∴∠OBA=x+y ,∵OC=OB ,∴∠OBC=x+30°,∵30ACB ∠=︒,∴∠CAB+∠OBA+∠OBC=150°,∴y+x+y+ x+30°=150°,∴2(x+y)=120°,∵∠AOB=180°-2∠OBA=180°-2(x+y),∴∠AOB=180°-120°=60°,故答案为:60.【点睛】本题考查了等腰三角形的性质,三角形内角和定理,熟练应用性质,合理引进未知数,采用设而不求的思想计算是解题的关键.14.等边三角形【分析】由等边三角形的性质可以得出AB=AC ∠BAD=60°由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°AD=AE 就可以得出△ADE 为等边三角形【详解】解:的形状是等边解析:等边三角形【分析】由等边三角形的性质可以得出AB=AC , ∠BAD=60°,由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°,AD=AE ,就可以得出△ADE 为等边三角形.【详解】解:ADE 的形状是等边三角形,理由:∵ABC 为等边三角形,∴AB=AC , ∠BAD=60°,在∆ABD 和∆CAE 中 AB AC ACE ABD CE BD =⎧⎪∠=∠⎨⎪=⎩, ∴∆ABD ≌∆ACE ,∴∠CAE=∠BAD=60°,AD=AE ,∴∆ADE 为等边三角形,故答案为:等边三角形.【点睛】本题考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是灵活运用相关性质.15.125【分析】先证明得到再根据三角形内角和得到所求角中两角的和最后与等边三角形内角相加就得到结果【详解】解:是等边三角形在与中故答案为125【点睛】这道题考察的是等边三角形的性质全等三角形的判定和性 解析:125【分析】先证明ABC DEA ≌,得到BAC ADE ∠∠=,再根据三角形内角和得到所求角中两角的和BAC DAE ∠+∠,最后与等边三角形内角CAD ∠相加就得到结果.【详解】解:ACD 是等边三角形,AC AD ∴=,60CAD ∠︒=在ABC 与DEA 中, =⎧⎪=⎨⎪=⎩AB DE BC AE AC AD ABC DEA SSS ∴≌()BAC ADE ∴∠∠=18011565BAC DAE ADE DAE ∴∠+∠∠+∠︒-︒︒===6560125BAE BAC DAE CAD ∴∠∠+∠+∠︒+︒︒===故答案为125.【点睛】这道题考察的是等边三角形的性质,全等三角形的判定和性质,三角形内角和的概念.解题的关键在于熟练掌握这些相关知识点.16.【分析】过点D 作DF ⊥BC 垂足为F 根据角平分线的性质得到FD=DE 再利用面积求DE 即可【详解】解:过点D 作DF ⊥BC 垂足为F ∵BD 是△ABC 的角平分线DE ⊥ABDF ⊥BC ∴FD=DEDE=4故答案为解析:【分析】过点D 作DF ⊥BC ,垂足为F ,根据角平分线的性质得到FD=DE ,再利用面积求DE 即可.【详解】解:过点D 作DF ⊥BC ,垂足为F ,∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,∴FD=DE ,182ABD SAB DE DE =⋅=, 172CBDS BC DF DE =⋅=, ABC ABD DBC S S S =+△△△,8760DE DE +=,DE=4,故答案为:4.【点睛】本题考查是角平分线的性质,解题关键是熟知角平分线性质,作垂线,利用面积求DE . 17.66°【分析】根据等腰三角形的性质可知∠MON=∠PAO 再用外角的性质求解即可【详解】解:由作图可知PO=PA ∴∠MON=∠PAO=33°∠APN=∠MON+∠PAO=66°故答案为:66°【点睛】解析:66°【分析】根据等腰三角形的性质可知∠MON=∠PAO ,再用外角的性质求解即可.【详解】解:由作图可知,PO=PA ,∴∠MON=∠PAO=33°,∠APN =∠MON+∠PAO=66°,故答案为:66°.【点睛】本题考查了等腰三角形的性质和外角的性质,解题关键是通过作图得到等腰三角形,依据等腰三角形的性质熟练计算.18.6【分析】作点P 关于OA 对称的点作点P 关于OB 对称的点连接与OA 交于点E 与OB 交于点F 此时△PEF 的周长最小然后根据∠AOB=30°结合轴对称的性质证明△是等边三角形从而可得答案【详解】解:如图作点解析:6【分析】作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小,然后根据∠AOB=30°,结合轴对称的性质证明△12OPP 是等边三角形,从而可得答案.【详解】解:如图,作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小.此时△PEF 的周长就是12PP 的长,由轴对称的性质可得:12,,POE POE P OF POF ∠=∠∠=∠12OP OP OP ==()122222,POP POE POF POE POF AOB ∴∠=∠+∠=∠+∠=∠∵∠AOB=30°,∴1260POP ∠=︒,∴△12OPP 是等边三角形.6OP =,∴121 6.PP OP OP ===∴△PEF 周长的最小值是6.故答案为:6.【点睛】本题考查轴对称最短路径问题,关键是确定E ,F 的位置,本题的突破点是证明△12OPP 是等边三角形.19.【分析】利用等腰三角形的性质判定证明BD=AD 利用直角三角形中30°角的性质计算BD 即可得解【详解】∵∴∠A=30°∠ABC=120°∵∴∠CBD=90°BD=1∴∠DBA=30°∴∠DBA=∠A ∴ 解析:1.【分析】利用等腰三角形的性质,判定,证明BD=AD ,利用直角三角形中30°角的性质计算BD 即可得解.【详解】∵AB BC =,30C ∠=︒,∴∠A=30°,∠ABC=120°,∵BD BC ⊥,2CD =,∴∠CBD=90°,BD=1,∴∠DBA=30°,∴∠DBA=∠A ,∴BD=AD ,∴AD=1.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质,熟练掌握性质,并灵活运用性质是解题的关键.20.①③④【分析】利用平行线的性质∠C=∠FBD 则可证明∠C=∠ABC 于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB 如图利用角平分线的性质得到DE=DHDH=DF 则可对③进行判断;证明△A解析:①③④【分析】利用平行线的性质∠C=∠FBD ,则可证明∠C=∠ABC ,于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB ,如图,利用角平分线的性质得到DE=DH ,DH=DF ,则可对③进行判断;证明△ADE ≌△ADH 得到AH=AE ,同理可得BH=BF ,则可对④进行判断.【详解】解:∵BC 恰好平分∠ABF ,∴∠ABC=∠FBD ,∵AC ∥BF ,∴∠C=∠FBD ,∴∠C=∠ABC ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,CD=BD ,∴AD 是ABC ∆的高;ABC ∆是等腰三角形;所以①正确;②错误;过D 点作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DE ⊥AC ,DH ⊥AB ,∴DE=DH ,∵AC ∥BF ,DE ⊥AC ,∴DF ⊥BF ,∵BD 平分∠ABF ,DH ⊥AB ,∴DH=DF ,∴DE=DF ,所以③正确;在△ADE 和△ADH 中,AD AD DE DH =⎧⎨=⎩, ∴△ADE ≌△ADH (HL ),∴AH=AE ,同理可得BH=BF ,∴AB=AH+BH=AE+BF ,所以④正确.故答案为:①③④.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的性质.三、解答题21.(1)见解析;(2)见解析;(3)△ACF 是等腰三角形,理由见解析【分析】(1)由AAS 证明△ACD ≌△CBF 即可;(2)由全等三角形的性质得CD =BF ,由CD =BD ,得BF =BD ,证出∠ABC =∠ABF ,由等腰三角形的性质即可得出结论;(3)由全等三角形的性质得AD =CF ,由垂直平分线的性质得AD =AF ,得出AF =CF 即可.【详解】(1)证明:∵CE ⊥AD ,∠BCF +∠ADC =90°,∵∠BCA =90°,BF ∥AC ,∴∠CBF =180°﹣∠BCA =90°,∴∠BCF +∠CFB =90°,∴∠CFB =∠ADC ,在△ACD 和△CBF 中,ACD CBF ADC CFB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF (AAS );(2)证明:由(1)得:△ACD ≌△CBF ,∴CD =BF ,∵D 为BC 的中点,∴CD =BD ,∴BF =BD ,∵∠BCA =90°,AC =BC ,∴∠ABC =45°,∴∠ABF =90°﹣∠ABC =45°,∴∠ABC =∠ABF ,∵BF =BD ,∴AB 垂直平分DF ;(3)解:△ACF 是等腰三角形,理由如下,如图:连接AF由(1)得:△ACD ≌△CBF ,∴AD =CF ,由(2)得:AB垂直平分DF,∴AD=AF,∴AF=CF,∴△ACF是等腰三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,直角三角形的性质,线段垂直平分线的性质等知识,熟练掌握等腰三角形的判定与性质,全等三角形的判定定理是解题关键.22.(1)22°;(2)19.【分析】(1)利用三角形内角和求得∠C=40°,利用垂直平分线的性质,求得∠DAC=40°,最后计算∠BAD的度数即可;(2)利用周长的定义,垂直平分线的性质计算即可.【详解】解:(1)∵∠BAC=62°,∠B=78°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣62°﹣78°=40°,∵DE垂直平分AC,∴AD=CD,∴∠CAD=∠C=40°,∴∠BAD=∠BAC﹣∠CAD=62°﹣40°=22°;(2)∵AD=CD,AB=8,BC=11,∴△ABD的周长=AB+AD+BD=AB+CD+BD=AB+BC=8+11=19.【点睛】本题考查了三角形的内角和定理,线段垂直平分线的性质,熟练运用定理和性质是解题的关键.23.见解析【分析】(1)先作线段AB的垂直平分线DE,再延长BC即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE,得到答案;(3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC,证得BE=EF,又因为AE= BE,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE是AB的垂直平分线∴DE⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB平分∠ABC.(3)证明:∵DE是AB的垂直平分线∴DE⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.24.(1)①AE=BF;②见解析;(2)AE=BF﹣CD或AE=CD﹣BF【分析】(1)①如图1,根据已知条件得到△ABC是等边三角形,由等边三角形的性质得到AD=AB=BC,∠DAB=∠ABC=60°,由邻补角的性质得到∠EAD=∠FBD=120°,推出△ADE≌△BDF,根据全等三角形的性质即可得到结论;②证明:在BE上截取BG=BD,连接DG,得到△GBD是等边三角形.同理,△ABC也是等边三角形.求得AG=CD,通过△DGE≌△DBF,得到GE=BF,根据线段的和差即可得到结论;(2)如图3,连接DG,由(1)知,GE=BF,AG=CD,根据线段的和差和等量代换即可得到结论;如图4,连接DG,由(1)知,GE=BF,AG=CD,根据线段的和差和等量代换即可得到结论.【详解】解:(1)①如图1,∵BA=BC,∠EBD=60°,∴△ABC是等边三角形,∴AD=AB=BC,∠DAB=∠ABC=60°,∴∠EAD=∠FBD=120°,∵DE=DF,∴∠E=∠F,在△AEC与△BCF中,E FEAD FBDAD BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BDF(AAS),∴AE=BF;故答案为:AE=BF;②证明:在BE上截取BG=BD,连接DG,∵∠EBD=60°,BG=BD,∴△GBD是等边三角形.同理,△ABC也是等边三角形.∴AG=CD,∵DE=DF,∴∠E=∠F.又∵∠DGB=∠DBG=60°,∴∠DGE=∠DBF=120°,在△DGE与△DBF中,E FEGD FBDDG BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DGE≌△DBF(AAS),∴GE=BF,∴AE=BF+CD;(2)如图3,在BE上截取BG=BD,连接DG,由(1)知,GE=BF,AG=CD,∴AE=EG﹣AG;∴AE=BF﹣CD,如图4,在BE上截取BG=BD,连接DG,由(1)知,GE=BF,AG=CD,∴AE=AG﹣EG;∴AE=CD﹣BF,故AE=BF﹣CD或AE=CD﹣BF.【点睛】本题考查等腰三角形的性质、等边三角形的判定与性质、全等三角形的判定与性质,解答的关键是熟练掌握相关知识的运用,利用截长补短的方法做辅助线构造全等三角形和等边三角形,运用类比的方法解决问题.25.(1)直角三角形,理由见解析;(2)325 12cm【分析】(1)根据勾股定理的逆定理得出答案即可;(2)根据勾股定理求出AC,再求出ABC的周长即可.【详解】解:(1)BDC是直角三角形,理由是:∵BC=13cm,BD=12cm,CD=5cm,∴BD2+CD2=BC2,∴∠D=90°,即BDC是直角三角形;(2)设AB=AC=x cm,在Rt ADC中,由勾股定理得:AD2+DC2=AC2,即(12-x)2+52=x2,解得:x=169 24,∴AB=AC=16924(cm),∵BC=13cm,∴△ABC的周长=AB+AC+BC=16924+16924+13=32512(cm).【点睛】本题考查了勾股定理和勾股定理的逆定理,熟记勾股定理的逆定理是解此题的关键.26.(1)见解析;(2)见解析【分析】(1)利用HL即可证明;(2)根据全等三角形的性质可得∠ABP=∠BAP,从而得到PA=PB,即可得证.【详解】解:(1)∵∠C=∠D=Rt∠,AC=BD,AB=BA,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌Rt△BAD,∴∠ABP=∠BAP,∴PA=PB,∴△PAB是等腰三角形.【点睛】本题主要考查了全等三角形的判定及性质,证明Rt△ABC≌Rt△BAD是解题的关键.。
(典型题)初中数学八年级数学下册第一单元《三角形的证明》检测(包含答案解析)
一、选择题1.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒= D .20,A AD BC BD ∠=︒=+ 2.如图,在ABC 中,4AB AC ==,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//MN BC 分别交AB 、AC 于M 、N ,则AMN 的周长为( )A .12B .4C .8D .不确定 3.下列说法错误的是( )A .有两边相等的三角形是等腰三角形B .直角三角形不可能是等腰三角形C .有两个角为60°的三角形是等边三角形D .有一个角为60°的等腰三角形是等边三角形4.如图,在ABD ∆中,AD AB =,90DAB ︒∠=,在ACE ∆中,AC AE =,90EAC ︒∠=,CD ,BE 相交于点F ,有下列四个结论: ①BDC BEC ∠=∠;②FA 平分DFE ∠;③DC BE ⊥;④DC BE =.其中,正确的结论有( )A .①②③④B .①③④C .②③D .②③④ 5.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .66.如图,在Rt ABC △中,90BAC ︒∠=,AD BC ⊥于点D ,AE 平分BAD ∠交BC 于点E ,则下列结论一定成立的是( )A .AC AE =B .EC AE = C .BE AE =D .AC EC = 7.如图,ABC 中,AB AC =,BD DC =,若80BAC ∠=︒,AD AE =,则CDE∠的度数为( )A .40°B .30°C .20°D .10°8.如图,等腰ABC 中,10AB AC ==,12BC =,点D 是底边BC 的中点,以A 、C 为圆心,大于12AC 的长度为半径分别画圆弧相交于两点E 、F ,若直线EF 上有一个动点P ,则线段PC PD +的最小值为( )A .6B .8C .10D .129.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm10.在Rt ABC △中,90ACB ∠=︒,5cm =BC ,12cm AC =,三个内角的平分线交于点P ,则点P 到AB 的距离PH 为( )A .1cmB .2cmC .3013cmD .6013cm 11.如图,在ABC 中,ED //BC ,ABC ∠和ACB ∠的平分线分别交ED 于点F 、G ,若2FG =,6ED =,则DB EC +的值为( )A .3B .4C .5D .912.如图,以△ABC 的边AB 、AC 为边向外作等边△ABD 与等边△ACE ,连接BE 交DC 于点F ,下列结论:①CD =BE ;②FA 平分∠DFE ;③∠BFC =120°;④AFE EFC S AF S FC∆∆=.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题13.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DEAB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.14.如图,一副含30和45︒角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,6cm AC =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC方向滑动.当点E 从点A 滑动到点C 时,连接BD .则ABD △的面积最大值为_________2cm .15.如图,在ABC 中,AB AC =,AD 平分BAC ∠,PD 垂直平分AB 连接BD 并延长,交边AC 于点E .若BCE 是等腰三角形,则BAC ∠的度数为________.16.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D ,有下列结论:①EF BE CF =+;②点O 到ABC 各边的距离相等;③1902BOC A ∠=+∠︒;④()12AD AB AC BC =+-.其中正确的结论是______(把你认为正确结论的序号都填上).17.如图:已知ABC 是等腰三角形,120BAC ∠=︒,6AB AC ==,点D 是BC 上的中点,点E 是射线AD 上的一动点,点F 是射线CA 上的一动点,且AE CF =,连接BF 、CE ,则BF CE +的最小值______.18.如图,已知一次函数y =﹣x +1的图象与x 轴、y 轴分别交于点A ,B ,点M 在y 轴上(M 不与原点重合),并且使以点A ,B ,M 为顶点的三角形是等腰三角形,则M 的坐标为_____.19.如图,某住宅小区在施工过程中留下了一块空地四边形ABCD ,经测量,3m AB =,4m BC =,12m CD =,13m DA =,90B ∠=︒.小区美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地需花_________元.20.如图,在Rt ABC 中,90C ∠=︒,32AC =,24BC =,AB 的垂直平分线分别交AB 、AC 于点D 、E ,则AE 的长是__________.三、解答题21.如图,四边形ABCD ,BC ∥AD ,P 为CD 上一点,PA 平分∠BAD 且BP ⊥AP , (1)若∠BAD=80°,求∠ABP 的度数;(2)求证:BA=BC+AD ;(3)设BP=3a ,AP=4a ,过点P 作一条直线,分别与AD ,BC 所在直线交于点E ,点F .若AB=EF ,求AE 的长(用含a 的代数式表示)22.如图,在四边形ABCD 中,90,A ABC BCD BDC ∠=∠=︒∠=∠,过点C 作CE BD ⊥,垂足为E .求证:AB CE =23.如图,等边△ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC . (1)如图①,点E 为AB 的中点,求证:AE=DB .(2)如图②,点E 在边AB 上时,AE DB (填:“>”,“<”或“=”).理由如下:过点E 作EF ∥BC ,交AC 于点F (请你完成以下解答过程).(3)在等边△ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED=EC .若AB=1,AE=2时,直接写出CD 的长.24.如图,△ABC 是等边三角形,点D 在BC 的延长线上,连接AD ,以AD 为边作等边△ADE ,连接CE .(1)求证BD =CE ;(2)若AC +CD =2,则四边形ACDE 的面积为 .25.已知:任意一个三角形的三条角平分线都交于一点.如图,在ABC 中,BD 、CD 分别平分ABC ∠、ACB ∠,过点D 作直线分别交AB 、AC 于点E 、F ,若AE AF =,解答下列问题:(1)证明:DE DF =;(2)若60A ∠=︒,8AB =,7BC =,5AC =,求EF 的长.26.在平面直角坐标系中,已知A(x,y),且满足x2+6x+y2﹣6y+18=0,过点A作AB⊥y 轴,垂足为B.(1)求A点坐标;(2)如图1,若分别以AB、AO为边作等边△ABC和等边△AOD,试判定线段AC和CD的数量关系和位置关系,并说明理由;(3)如图2,若在x轴正半轴上取一点M,连接BM并延长至N,以BN为直角边作等腰Rt△BNE,∠BNE=90°,过点A作AF∥y轴交BE于点F,连接MF,设OM=a,MF=b,AF=c,试证明:11ca b ab +=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD =BC+BD.【详解】解:∵AB=AC,BD平分∠ABC,设∠ABC=∠C=2x,则∠A=180°-4x,∴∠ABD=∠CBD=x,第一次折叠,可得:∠BED=∠C=2x,∠BDE=∠BDC,第二次折叠,可得:∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC,∴AD=AF+FD=BC+BD,故选D.【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.2.C解析:C【分析】由角平分线的定义和平行线性质易证△BME和△CNE是等腰三角形,即BM=ME,CN=NE,由此可得△AMN的周长=AB+AC.【详解】解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN//BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键.3.B解析:B【分析】利用等腰三角形和等边三角形的判定解答即可.【详解】A.有两边相等的三角形是等腰三角形,所以A 选项正确;B.等腰直角三角形就是等腰三角形,故B 选项错误;C.有两个角为60°的三角形是等边三角形,正确;D.有一个角为60°的等腰三角形是等边三角形,正确.故选B .【点睛】本题考查了等腰三角形和等边三角形的判定,解题的关键是熟练掌握有关性质. 4.D解析:D【分析】由△ABD 和△ACE 都是等腰直角三角形得出AB=AD ,AE=AC ,∠BAD=∠CAE=90°,再进一步得出∠DAC=∠BAE 证得△ABE ≌△ADC ,可以判断①③④;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,利用面积相等证得AP= AQ ,再利用角平分线的判定定理即可判断②.【详解】∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,∠BDA=∠ECA=45︒,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即:∠DAC=∠BAE ,在△ABE 和△ADC 中,AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC (SAS ),∴BE=DC ,故④正确;∠ADF=∠ABF ,∴∠BDC=45︒-∠ADF ,∠BEC=45︒-∠AEF ,而∠ADF=∠ABF ≠∠AEF ,∴∠BDC ≠∠BEC ,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD ⊥BE ,故③正确;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,∵△ABE ≌△ADC ,∴ABE ADC S S =,∵BE=DC ,∴AP= AQ ,∵AP ⊥CD ,AQ ⊥BE ,∴FA 平分∠DFE ,故②正确;综上,②③④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,角平分线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.5.C解析:C【分析】连接OC ,过点O 作OF BC ⊥于F ,求得212CE DE ==,60CED ∠=︒,再根据条件得出9030EOF OEF ∠=︒-∠=︒,得到122EF OE ==,即可得解; 【详解】连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=,在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒,∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥, ∴12CF BF BC ==, 在Rt △OEF 中,∵60OEF ∠=︒, ∴9030EOF OEF ∠=︒-∠=︒, ∴122EF OE ==, ∴10CF CE EF =-=,∴8BE BC CE =-=;故答案选C .【点睛】本题主要考查了等腰三角形的判定与性质,准确分析计算是解题的关键.6.D解析:D【分析】根据角平分线的性质得出∠BAE=∠DAE ,再根据∠CEA=∠B+∠BAE ,∠CAE=∠CAD+∠DAE 得出∠CAE=∠CEA 即可得出答案.【详解】解:∵90BAC ∠=︒,∴∠BAE+∠DAE+∠CAD=90°,∠B+∠C=90°∵AD ⊥BC∴∠BAE+∠DAE+∠B=90°,∠DAE+∠DEA=90°,∠CAD+∠C=90°∵AE 平分BAD ∠∴∠DAE=∠BAE∵∠B+∠C=90°∴∠CAD=∠B∵∠CEA=∠B+∠BAE∴∠CEA=∠DAE+∠CAD=∠CAE∴AC=EC ,其他选项均缺少条件,无法证明一定相等,故选:D .【点睛】本题考查直角三角形两锐角和为90°,角平分线的定义以及等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题.7.C解析:C【分析】根据已知可求得∠DAC及∠ADE的度数,根据∠CDE=90°-∠ADE即可得到答案.【详解】解:∵AB=AC,BD=DC∴ AD⊥BC(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)∴∠ADC=90°,∵∠BAC=80°,∴∠BAD=∠DAC= 80°÷2=40°(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合),∵AD=AE,∴∠ADE=(180°−40°)÷2=70°,∴∠CDE=∠ADC-∠ADE=90°-70°=20°,故答案为:C.【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,掌握等腰三角形的性质,三角形内角和定理是解题的关键.8.B解析:B【分析】由作法知EF是AC的垂直平分线,可得AP=CP,线段PC PD+的最小就是PA+PD,当A、P、D三点共线时最短,由点D是底边BC的中点,可BD=CD=6,由AB=AC,可得AD BC⊥,在Rt△ABD中,由勾股定理得:8即可.【详解】解:连结PA,由作法知EF是AC的垂直平分线,∴AP=CP,∴PC+PD=PA+PD,线段PC PD+的最小就是PA+PD,当A、P、D三点共线时最短,∵点D是底边BC的中点,∴BD=CD=11BC=12=6 22⨯,∵AB=AC,∴AD BC⊥,在Rt△ABD中,由勾股定理得:AD=22221068AB BD -=-=,(PC+PD )最小=(PA+PD )最小=AD=8.故选择:B .【点睛】本题考查垂直平分线的性质,等腰三角形的三线合一性质,勾股定理,掌握垂直平分线的性质,等腰三角形的三线合一性质,勾股定理,关键是利用垂直平分线将PC 转化为PA ,找到P 、A 、D 三点共线时最短.9.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,∴60EFD EBM∠=∠=,∴EFD△是等边三角形,2DE cm=,∴2EF FD ED cm===,∴4DM cm=,EBM△是等边三角形,∴60EMB∠=,∴30NDM∠=,∴2NM cm=,∴4BN BM NM cm=-=,∴28BC BN cm==.故选:D.【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN的长度是解决问题的关键.10.B解析:B【分析】由勾股定理解得13cmAB=,根据角平分线的性质,可得,,CAP PAB ABP CBP ACP BCP∠=∠∠=∠∠=∠,过点P,分别作Rt ABC△三边的垂线段,继而证明MAP△()HAP ASA≅△,PMC△()PNC ASA≅△,BHP()BNP ASA≅△,由全等三角形对应边相等的性质得到PM PH=,,PM PN PN PH==,即可证明PM PH PN==,最后利用三角形面积公式及等积法解题即可求得PH的值.【详解】解:在Rt ABC△中,90ACB∠=︒,5cm=BC,12cmAC=,13AB∴===P是Rt ABC△中三个内角的平分线的交点,,,CAP PAB ABP CBP ACP BCP∴∠=∠∠=∠∠=∠过点P,分别作Rt ABC△三边的垂线段,如图,在MAP△与HAP△中,CAP BAPAP APAMP AHP∠=∠⎧⎪=⎨⎪∠=∠⎩∴MAP△()HAP ASA≅△同理得,PMC △()PNC ASA ≅△,BHP ()BNP ASA ≅△,PM PN PN PH ∴==PM PH PN ∴== 111222ABC S AC PM AB PH BC PN ∴=⋅+⋅+⋅ 1()2AC AB BC PH =++⋅ 1(51213)2PH =⨯++⋅ 15PH =又115123022ABC S AC BC =⋅=⨯⨯= 1530PH ∴=2PH ∴=故选:B .【点睛】本题考查勾股定理、角平分线的性质、全等三角形的判定与性质、三角形的面积公式及等积法等知识,是重要考点,难度较易,掌握相关知识是解题关键.11.B解析:B【分析】根据平行线的性质和等腰三角形的判定证得EG =EB ,DF =DC 即可求得结果.【详解】解:∵ED ∥BC ,∴∠DFB =∠FBC ,∠EGC =∠GCB ,∵∠DBF =∠FBC ,∠ECG =∠GCB ,∴∠DFB =∠DBF ,∠ECG =∠EGC ,∴BD =DF ,CE =GE ,∵FG =2,ED =6,∴DB +EC =DF +GE =ED−FG =6−2=4,故选:B .【点睛】本题考查等腰三角形的判定和性质、角平分线的定义,平行线的性质等知识,解题的关键是等腰三角形的证明.12.A解析:A【分析】过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,证明△ADC ≌△ABE ,可判断①,再证明AM =AN ,结合AM ⊥CD 于M ,AN ⊥BE 于N ,可判断②,证明∠ACF +∠BEC +∠ACE =120°,结合三角形的外角的性质可判断③,证明∠FAN =∠FCH =30°, 利用含30的直角三角形的性质与勾股定理可得: 33,,AN AF HC FC == 再利用三角形的面积公式可判断④.【详解】解:过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,∵△ABD ,△ACE 都是等边三角形,∴AD =AB ,AE =AC ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE .在△ADC 和△ABE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ABE (SAS ),∴CD =BE ,∠AEB =∠ACD ,故①正确∵△ADC ≌△ABE ,∴AM =AN .∵AM ⊥CD 于M ,AN ⊥BE 于N ,∴AF 平分∠DFE ,故②正确.∵∠AEB =∠ACD ,∴∠AEC +∠ACE =120°=∠AEB +∠BEC +∠ACE ,∴∠ACF +∠BEC +∠ACE =120°,∴∠BFC =∠ACF +∠BEC +∠ACE =120°,故③正确,∴∠DFE=120°,∴∠DFA=∠EFA=60°=∠CFE.∵AN⊥BE,CH⊥EF,∴∠FAN=∠FCH=30°,∴2,,2,, AF FN AN FC FH HC======∴,,AN AF HC FC==∴12.12AEFEFCEF AN AFS AN AFS CH FCEF CH⨯⨯====⨯⨯故④正确.故选:A.【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,角平分线的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.二、填空题13.5°【分析】首先根据角平分线的判定方法判定AD是∠BAC的平分线然后利用外角性质求∠ADB的度数即可【详解】解:∵∠C=90°DE⊥AB∴∠C=∠AED=90°在Rt∆ACD和Rt∆AED中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD是∠BAC的平分线,然后利用外角性质求∠ADB的度数即可.【详解】解:∵∠C=90°,DE⊥AB∴∠C=∠AED=90°,在Rt∆ACD和Rt∆AED中DE DCAD AD=⎧⎨=⎩,∴Rt∆ACD≌Rt∆AED,∴∠CAD=∠EAD,∴AD平分∠BAC,∴∠CAD=12∠BAC,∵∠C=90°,AC=BC,∴∠B=∠CAB=45°,∴∠CAD=22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.14.cm2【分析】过点作于点作于点连接由直角三角形的性质可得cmcmcm 由可证△△可得由三角形面积公式可求则时有最大值【详解】解:cmcmcmcm 当点从点滑动到点时得△过点作于点作于点连接且且△△当时有 解析:(1239236)+-cm 2 【分析】 过点D 作D N AC '⊥于点N ,作D M BC '⊥于点M ,连接BD ',AD ',由直角三角形的性质可得23BC =cm ,43AB =cm ,32ED DF ==cm ,由“AAS ”可证△D NE ''≅△D MF '',可得D N D M ''=,由三角形面积公式可求111222AD B S BC AC AC D N BC D M '''=⨯+⨯⨯-⨯⨯△,则E D AC ''⊥时,AD B S '△有最大值. 【详解】解:6AC =cm ,30A ∠=︒,45DEF ∠=︒, 233BC ∴==cm ,43AB =cm ,32ED DF ==cm ,当点E 从点A 滑动到点C 时,得△E D F ''',过点D 作D N AC '⊥于点N ,作D M BC '⊥于点M ,连接BD ',AD ',90MD N '∴∠=︒,且90E D F '''∠=︒,E D NF D M ''''∴∠=∠,且90D NE D MF ''''∠=∠=︒,E D D F ''''=,∴△D NE ''≅△()D MF AAS '',D N D M ''∴=,AD B ABC AD C BD C S S S S '''=+-△△△△当E D AC ''⊥时,AD B S '△有最大值,1111123(623)2222AD B S BC AC AC D N BC D M D N ''''∴=⨯+⨯⨯-⨯⨯=-⨯△AD B S '∴△最大值1(62=-⨯=cm 2.故答案为:cm 2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定AD B S '△有最大值时的图形位置是本题的关键.15.45°或36°【分析】设∠BAD=∠CAD=α根据三角形内角和定理和三角形外角的性质表示∠EBC ∠BEC 和∠C 再分三种情况讨论即可【详解】解:∵AD 平分∴设∠BAD=∠CAD=α∵AB=AC ∴∠AB解析:45°或36°.【分析】设∠BAD=∠CAD =α,根据三角形内角和定理和三角形外角的性质表示∠EBC 、∠BEC 和∠C ,再分三种情况讨论即可.【详解】解:∵AD 平分BAC ∠,∴设∠BAD=∠CAD=α,∵AB=AC ,∴∠ABC=∠C=1802902αα︒-=︒-, ∵PD 垂直平分AB ,∴AD=BD , ∴∠ABD=∠BAD=α,∠EBC=∠ABC-∠ABE=902α︒-,∴∠BEC=∠ABE+∠BAC=3α,当BE=BC 时,∴∠BEC=∠C ,即903αα︒-=,解得22.5α=︒,∴245BAC α∠==︒;当BE=CE 时,∠EBC=∠C ,此时E 点和A 点重合,舍去;当BC=CE 时,∴∠EBC=∠BEC ,即9023αα︒-=,解得18α=︒,∴236BAC α∠==︒,故答案为:45°或36°.【点睛】本题考查三角形外角的性质,等腰三角形的性质,三角形内角和定理,垂直平分线的性质.掌握方程思想,能正确表示相关角是解题关键.16.①②③④【分析】由在△ABC 中∠ABC 和∠ACB 的平分线相交于点O 根据角平分线的定义与三角形内角和定理即可求得③正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF=BE+解析:①②③④【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得③1902BOC A∠=+∠︒正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④根据求得答案,即可得到④正确.【详解】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°12-∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确.∴AM=AD,BM=BN,CD=CN,∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC-BC)故④正确,故答案为:①②③④.【点睛】此题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.17.12【分析】延长BA到G使AG=AC=6先证明△ACG是等边三角形得AC=GC再证明△ACE≌△CGF得CE=GF可得BF+CE=BF+GF最后根据两点之间线段最短可得结论【详解】解:延长BA到G使解析:12【分析】延长BA到G,使AG=AC=6,先证明△ACG是等边三角形得AC=GC,再证明△ACE≌△CGF 得CE=GF,可得BF+CE=BF+GF,最后根据两点之间线段最短可得结论.【详解】解:延长BA到G,使AG=AC=6,如图,∵∠BAC=120°,AB=AC,∴∠GAC=60°,∠ABC=∠ACB=30°,∵AG=AC∴△ACG是等边三角形∴CG=AC=6,∠ACG=60°,∵D是BC的中点,AB=AC∠BAC=60°=∠ACG,∴∠DAC=12又AE=CF∴△ACE≌△CGF∴CE=GF∴BF+CE=BF+GF要使BF+CE最小,只要使BF+GF最小即可,根据两点之间线段最短可得:BF+GF≥BG=AB+AG=6+6=12即BF+CE的最小值为12,故答案为:12.【点睛】此题考查了等边三角形的判定与性质,全等三角形的判定与性质,两点之间线段最短等知识,作辅助线构造等边三角形是解答此题的关键.18.(01+)(01-)(0-1)【分析】分别以点AB为圆心以AB的长为半径画圆两圆与y轴的交点即为M点再由OA=OB可知原点也符合题意【详解】解:分别以点AB为圆心以AB的长为半径画圆如图共有4个点对解析:(0,1+2),(0,1-2),(0,-1).【分析】分别以点A、B为圆心,以AB的长为半径画圆,两圆与y轴的交点即为M点,再由OA=OB可知原点也符合题意.【详解】解:分别以点A、B为圆心,以AB的长为半径画圆,如图,共有4个点对于y=-x+1,当x=0时,y=1,当y=0时,x=1∴A(1,0),B(0,1)∴OA=OB=1∴2∴当AB为腰时,BM12∴OM12∴点M1的坐标为(0,2),∵OA=1,2∴OM3=1∴点M3的坐标为(0,-1)∵BM22∴OM22∴点M2的坐标为(0,2+1)∵OA=OB∴点M4的坐标为(0,0)(舍去)综上,点M的坐标为:(0,20,2),(0,-1).故答案为:(0,2),(0,2),(0,-1).【点睛】此题考查了等腰三角形的性质,勾股定理,以及一次函数与坐标轴的交点,利用了数形结合及分类讨论的思想,在分类讨论分情况解决数学问题时,必须认真审题,全面考虑,做到不重不漏,一次分类必须按同标准进行,分出的每一部分必需都是相互独立的.本题要求学生求出相应线段后,注意根据点在坐标轴上的位置选择合适的符号,进而写出坐标. 19.3600【分析】连接AC 根据勾股定理的性质计算得AC ;根据勾股定理的逆定理推导得计算得从而得四边形面积;结合草坪每平方米100元通过计算即可得到答案【详解】如图连接AC ∵∴∵∴∴∴∴四边形面积为:∵解析:3600【分析】连接AC ,根据勾股定理的性质,计算得AC 、ABC S ;根据勾股定理的逆定理,推导得90ACD ∠=︒,计算得ACD S,从而得四边形ABCD 面积;结合草坪每平方米100元,通过计算即可得到答案.【详解】如图,连接AC∵3m AB =,4m BC =,90B ∠=︒ ∴225AC AB BC m +=,2162ABC S AB BC m =⨯=△ ∵12m CD =,13m DA =∴22222512169DA AC CD =+=+=∴90ACD ∠=︒ ∴21302ACD S AC CD m =⨯=△ ∴四边形ABCD 面积为:236ABC ACD S S m +=△△∵草坪每平方米100元∴铺满这块空地需花:361003600⨯=元,故答案为:3600.【点睛】本题考查了勾股定理及其逆定理的知识;解题的关键是熟练掌握勾股定理和勾股定理逆定理,从而完成求解.20.25【分析】首先连接BE 根据线段垂直平分线的性质可得AE =BE 然后设AE =x 由勾股定理可得方程:x2=242+(32−x )2继而求得答案【详解】解:连接BE∵AB的垂直平分线分别交ABAC于点DE∴解析:25【分析】首先连接BE,根据线段垂直平分线的性质,可得AE=BE,然后设AE=x,由勾股定理可得方程:x2=242+(32−x)2,继而求得答案.【详解】解:连接BE,∵AB的垂直平分线分别交AB、AC于点D、E,∴AE=BE,设AE=x,则BE=x,EC=AC−AE=32−x,∵Rt△ABC中,∠C=90°,AC=32,BC=24,∴x2=242+(32−x)2,解得:x=25,故答案为:25,【点睛】此题考查了线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与方程思想的应用.三、解答题21.(1)∠ABP=50°;(2)见解析;(3)①EA=52a或EA=3910a【分析】(1)由PA平分∠BAD且BP⊥AP,∠BAD=80°,在Rt APB中即可求得.(2)延长BP交AD延长线于H,可得AB=AH,可证△BCP≌△HDP,可得BC=DH,从而结论可证.(3)过点P作一条直线,分别与AD,BC所在直线交于点E,点F.若AB=EF,可能有两种情况,延长BP交AE延长线于H,每种情况都可依据角平分线的性质,过P点分别做PI 和PG垂直于AB和AH,则PI=PG;然后通过解直角三角形即可求解.【详解】解:(1)∵PA平分∠BAD且∠BAD=80°,∴∠BAP=∠DAP=40°;又∵∠BPA=90°∴∠ABP+∠BAP=90°,故∠ABP=50°.(2)延长BP交AD延长线于H,∵PA平分∠BAD,∴∠BAP=∠DAP而∠BPA=90°=∠HPA,∴∠ABP=∠AHP,∴AB=AH;∵AP⊥BH,∴BP=PH;∵BC//AH,∴∠PBC=∠H;而∠BPC=∠HPD;∴△BCP≌△HDP(ASA);∴BC=DH,故AB=AH=AD+DH=AD+BC.(3)①延长BP交AE延长线于H,过P点分别做PI和PG垂直于AB和AH,则PI=PG;易得△BFP≌△HEP,∴ BP=HP=3a,FP=EP=12 EF;在直角三角形ABP中,BP2+AP2=AB2;∴ AB=5a,EP=52a;∵在直角三角形ABP中AB PI BP AP⋅=⋅,∴ PI=125a=PG;在直角三角形EPG中,GP2+EG2=EP2,∴ EG=710a;在直角三角形HPG中,GP2+HG2=HP2,∴ GH=95a;∴ EH=52a;∴ EA=AH-EH=52a.②延长BP 交AE 延长线于H ,过P 点分别做PI 和PG 垂直于AB 和AH ,由①得GH=95a ,EG=710a ; ∴ EH=1110a ; ∴ EA=3910a .【点睛】本题主要考查了角平分线的性质,全等三角形的判定及性质,解直角三角形,解题的关键是准确作出辅助线.22.证明见解析.【分析】用“角角边”证明△ABD ≌ECB 即可.【详解】证明:∵90A ABC ∠=∠=︒,∴∠ABD+∠ADB=90°,∠ABD+∠DBC=90°,∴∠ADB=∠DBC ,∵BCD BDC ∠=∠,∴BD=BC ,∵∠A=∠BEC=90°,∴△ABD ≌△ECB∴AB CE =.【点睛】本题考查了等腰三角形的判定和全等三角形的判定与性质,解题关键是找准全等三角形,依据等腰三角形的判定和同角的余角相等证明全等.23.(1)见解析;(2)=,理由见解析;(3)1或3【分析】(1)根据等腰三角形的三线合一得到CE为∠ACB的平分线,证明BD=BE,等量代换证明结论;(2)过点E作EF∥BC,交AC于点F,证明△DBE≌△EFC,根据全等三角形的性质证明;(3)分点E在AB的延长线上和点E在BA的延长线上两种情况,根据全等三角形的性质解答.【详解】(1)证明:∵△ABC为等边三角形,点E为AB的中点,∴CE为∠ACB的平分线,∴∠BCE=12∠ACB=12×60°=30°.∵ED=EC,∴∠D=∠DCE=30°,∵∠ABC=60°,∠D+∠DEB=∠ABC,∴∠DEB=30°,∴BD=BE,∵AE=BE,∴AE=BD;(2)解:AE=BD,理由如下:如图,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠ACB=∠ABC=60°,∵EF∥BC,∴∠AEF=∠ABC=∠AFE=∠ACB=60°,∴△AEF为等边三角形,∴AB=AC,∴BE=CF,∴∠DBE=∠EFC=120°,在△DBE和△EFC中,DE EC DBE EFC BE FC =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EFC (SAS ),∴EF=DB ,∵AE=EF ,∴AE=DB ;故答案为:=;(3)当点E 在BA 的延长线上时,如图③,作EF ∥BC 交CA 的延长线于F ,则△AEF 为等边三角形,∴AF=AE=EF=2,∠BEF=60°,∴∠CEF=60°+∠BEC ,∵∠EDC=∠ECD=∠B+∠BEC=60°+∠BEC ,∴∠CEF=∠EDB ,在△CEF 和△EDB 中,603CEF EDB F B EB CF ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴△CEF ≌△EDB (AAS ),∴BD=EF=2,∴CD=BD-BC=1,当点E 在AB 的延长线上时,如图,作EF ∥BC 交AC 的延长线于F ,则△AEF 为等边三角形,∴AF=AE=EF=2,∠AEF=60°,∴∠CEF=60°-∠AEC ,∵∠D=∠ECD=∠ABC+∠AEC=60°+∠AEC ,∴∠CEF=∠D ,在△CEF 和△EDB 中,601CEF D F DBE EB CF ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴△CEF ≌△EDB (AAS ),∴BD=EF=2,∴CD=BD+BC=3,综上所述,CD=1或3.【点睛】本题考查了等边三角形的性质、三角形全等的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.24.(1)详见解析;(2【分析】(1)由题意可以得到△ABD ≌△ACE ,从而得到BD=CE ;(2)分别过E 作AC 、CD 的垂线EM 、EN ,由(1)及勾股定理可以求得EM 、EN 的值,然后根据三角形面积计算方法及AC+CD=2可以得到四边形ACDE 的面积 .【详解】证明:(1)∵△ABC 和△ADE 为等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△ACE (SAS ),∴BD =CE ;(2)∵△ABD ≌△ACE ,∴∠ACE =∠ABD =60°,∴∠DCE =180°﹣∠ACE ﹣∠ACB =180°﹣60°﹣60°=60°,过点E 作EM ⊥AC 于M ,过E 作EN ⊥BC ,交BC 延长线于N ,∴EM =EN ,∵CE =BD =AC +CD =2,∴EM =EN 3∴ACE DCE ACDE S S S =+四边形1122AC EM CD EN =⨯+⨯ ()1132322EM AC CD =+== 3【点睛】本题考查四边形的综合应用,熟练掌握等边三角形的性质、三角形全等的判定及应用、勾股定理、三角形面积的计算方法及角平分线的性质是解题关键.25.(1)见解析;(2)4【分析】(1)连接AD 由AE AF =可得AEF 是等腰三角形,由三条角平分线交于一点可证AD 平分BAC ∠即可;(2)在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x ==,易证AEF 为等边三角形,可得2AE AF EF x ===,60AEF ∠=︒,可证BED ≌BMD (SAS )可得DM DE =,82BM BE x ==-,BED BMD ∠=∠60DMN AEF ∠=∠=︒,再证NCD ≌FCD (SAS )可得,52DN DF CN CF x ===-,可证DMN 为等边三角形,由BC BM MN NC =++构造方程解之即可.【详解】(1)证明:连接AD ,AE AF =,∴AEF 是等腰三角形,BD 、CD 分别平分ABC ∠、ACB ∠,∴AD 平分BAC ∠,∴DE DF =;(2)解:在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x ==,60A AE AF ∠=︒=, ,∴AEF 为等边三角形,∴2AE AF EF x ===,60AEF ∠=︒,在BED 和BMD 中,BE BM EBD MBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴BED ≌BMD (SAS ),∴DM DE =,82BM BE x ==-,BED BMD ∠=∠,60DMN AEF ∴∠=∠=︒,在CND △和CFD △中,CN CFBM NCD FCD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴NCD ≌FCD (SAS ),∴ ,52DN DF CN CF x ===-, 又DE DF =, ∴DM DN DE x ===,又60DMN ∠=︒, ∴DMN 为等边三角形,∴MN DM x ==,∴(82)(52)7BC BM MN NC x x x =++=-++-=,即2x =,∴24EF x ==.【点睛】本题考查等腰三角形性质,角平分线性质,等边三角形判定与性质,三角形全等判定与性质,利用BC BM MN NC =++构造方程是解题关键.26.(1)点A 的坐标为(﹣3,3);(2)CD =AC ,CD ⊥AC .理由见解析;(3)见解析.【分析】(1)由非负数的性质可求出x =﹣3,y =3,则可得出答案;(2)由等边三角形的性质得出AB =AC ,AO =AD ,∠DAO =∠CAB =60°,证明△DAC ≌△OAB ,由全等三角形的性质可得出CD =OB ,∠ACD =∠ABO =90°,则可得出结论;(3)在AF上取一点P,使得AP=OM=a,连接BP,证明△BAP≌△BOM,由全等三角形的性质得出∠ABP=∠OBM,BP=BM,证明△FBP≌△FMB,由全等三角形的性质得出FP =FM=b,即可得出结论;【详解】(1)∵x2+6x+y2﹣6y+18=0,∴(x+3)2+(y﹣3)2=0,∴x+3=0,y﹣3=0,∴x=﹣3,y=3,∴点A的坐标为(﹣3,3);(2)CD=AC,CD⊥AC.理由如下:∵△ABC和△AOD为等边三角形,∴AB=AC,AO=AD,∠DAO=∠CAB=60°,∴∠DAO﹣∠CAO=∠CAB﹣∠CAO,∴∠DAC=∠OAB,∴△DAC≌△OAB(SAS),∴CD=OB,∠ACD=∠ABO=90°,由(1)可知BO=AB=3,又∵AB=AC,∴CD=OB=AB=AC,且CD⊥AC,(3)证明:在AF上取一点P,使得AP=OM=a,连接BP,∵AB=BO,AP=OM,∠PAB=∠MOB=90°,∴△BAP≌△BOM(SAS),∴∠ABP=∠OBM,BP=BM,∵∠ABP+∠PBO=90°,∴∠OBM+∠PBO=90°,又∵△BEN为等腰直角三角形,∴∠FBN=45°,∴∠PBF=90°﹣45°=45°=∠FBN,又∵BF =BF ,∴△FBP ≌△FBM (SAS ),∴FP =FM =b ,∴AF =FP+AP ,即c =a+b . ∴11b a c a b ab ab++== . 【点睛】 本题是三角形的综合题,考查了完全平方公式及非负数的性质,等腰直角三角形的性质,等边三角形的性质,全等三角形的判定与性质,坐标与图形的性质,熟练掌握等腰直角三角形的性质以及等边三角形的性质是解题的关键;。
(典型题)初中数学八年级数学下册第一单元《三角形的证明》检测题(含答案解析)
一、选择题1.如图,在Rt ABC △中,90,ACB AC BC ∠=︒≠.点P 是直角边所在直线上一点,若PAB △为等腰三角形,则符合条件的点P 的个数最多为( )A .3个B .6个C .7个D .8个2.如图,在ABC ∆中,∠ACB =90°,∠A =30°,BC =2,点D 在AB 上,连结CD ,将ADC ∆沿CD 折叠,点A 的对称点为E ,CE 交AB 于点F ,下列结论正确的个数是( ) ①当BF =BC 时,EF =23-2;②当BF =BC 时,DEF ∆为直角三角形;③当DEF ∆为直角三角形,EF =23-2;④当DE 平行ABC ∆的边时,∠BCE =30°A .1B .2C .3D .43.如图,在ABC 中,AB =AC =6,且15ABC S =△,AD ,BE 是ABC 的两条高线,P 是AD 上一动点,则PC PE +的最小值是( )A .4B .5C .6D .84.如图,在ABC 中,点A 、B 、C 的坐标分别为(,0)m 、(0,2)和(5,3),则当ABC 的周长最小时,m 的值为( )A.0 B.1 C.2 D.35.下列各组线段a、b、c中不能组成直角三角形的是()A.a=7,b=24,c=25 B.a=4,b=5,c=6C.a=3,b=4,c=5 D.a=9,b=12,c=156.如图,△ABC中,DC=2BD=2,连接AD,∠ADC=60°.E为AD上一点,若△BDE和△BEC都是等腰三角形,且AD=31,则∠ACB=()A.60°B.70°C.55°D.75°7.如图,直线AB,CD交于点O,若AB,CD是等边△MNP的两条对称轴,且点P在直线CD上(不与点O重合),则点M,N中必有一个在()A.∠AOD的内部B.∠BOD的内部C.∠BOC的内部D.直线AB上8.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A .2552B .5112C .256D .51329.如图,点B 是线段AC 上任意一点(点B 与点A ,C 不重合),分别以AB 、BC 为边在直线AC 的同侧作等边三角形ABD 和等边三角形BCE ,AE 与BD 相交于点G 、CD 与BE 相交于点F ,AE 与CD 相交于点H ,连HB ,则下列结论:①AE CD =;②120AHC ∠=︒;③HB 平分AHC ∠;④CH EH BH =+.其中正确的结论有( )A .4个B .3个C .2个D .1个10.如图所示,在ABC 中,90BAC ∠=︒,30ACB ∠=︒,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果1AP =,则AC 的长为( )A .1B .2C .3D .411.如图,在平面直角坐标系中,点A 的坐标为()1,0,以线段OA 为边在第四象限内作等边ABO ,点C 为x 轴正半轴上一动点(1OC >),设点C 的坐标为(),0x ,连结BC ,以线段BC 为边的第四象限内作等边CBD ,直线DA 交y 轴于点E ,点E 的坐标是( )A .()0,3B .0,2x ⎛⎫ ⎪⎝⎭C .()0,3D .30,x ⎛⎫ ⎪ ⎪⎝⎭ 12.等腰三角形一腰的垂直平分线与另一腰所在直线的夹角是40°,则这一等腰三角形的底角为( )A .65°B .25°C .50°D .65°或25°二、填空题13.如图,在△ABC 中,∠C =90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E .已知CB =8,BE =5,则点E 到AB 的距离为_____.14.如图,等腰三角形ABC 的面积为80,底边10BC =,腰AC 的垂直平分线EF 交,AC AB 于点E ,F ,若D 为BC 边中点,M 为线段EF 上一动点,则CDM 的周长最小值为________.15.如图,DE ∥BC ,AE =DE =1,BC =3,则线段CE 的长为_____.16.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6,D 为BC 上一点,连接AD ,过点A作AE ⊥AD ,取AE =AD ,连接BE 交AC 于F .当△AEF 为等腰三角形时,CD =_____.17.如图,D 是等边三角形ABC 外一点,3AD =,2CD =,则BD 的最大值是________________.18.如图,80AOB ∠=︒,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE △是等腰三角形,那么OEC ∠的度数为________.19.如图,在ABC 中,AB BC =,30C ∠=︒,过点B 作BD BC ⊥,交AC 于点D ,若2CD =,则AD 的长为__________.20.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交AB 、AC 于点E 、F .那么下列结论:①BD=DC ;②△BED 和△CFD 都是等腰三角形;③点D 是EF 的中点;④△AEF 的周长等于AB 与AC 的和.其中正确的有______.(只填序号)三、解答题21.如图1,直线AB :y=43x +4分别与x 轴、y 轴交于A 、B 两点,过点B 的直线交x 轴负半轴于点C ,将△BOC 沿BC 折叠,使点O 落在BA 上的点M 处.(1)求A 、B 两点的坐标;(2)求线段BC 的长;(3)点P 为x 轴上的动点,当∠PBA=45°时,求点P 的坐标.22.如图,在ABC 中,AB BC =,90ABC ∠=︒,点E 在BC 上,点F 在AB 的延长线上,且AE CF =.(1)求证:ABE CBF △≌△;(2)若75ACF ∠=︒,求EAC ∠的度数.23.阅读下列材料,完成相应任务.三角形中边与角之间的不等关系学习了等腰三角形,我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.那么,不相等的边所对的角之间的大小关系怎样呢?大边所对的角也大吗?下面是奋进小组的证明过程.如图1,在△ABC中,已知AB>AC>BC.求证:∠C>∠B>∠A.证明:如图2,将△ABC折叠,使边AC落在AB上,点C落在AB上的点C′处,折痕AD交BC于点D.则∠A C′D=∠C.∵∠A C′D=∠B+∠BDC′(依据1)∴∠A C′D>∠B∴∠C>∠B(依据2)如图3,将△ABC折叠,使边CB落在CA上,点B落在CA上的点B′处,折痕CE交AB于点E.则∠CB′E=∠B.∵∠CB′E=∠A+∠AEB′∴∠CB′E>∠A∴∠B>∠A∴∠C>∠B>∠A.归纳总结:利用轴对称的性质可以把研究边与角之间的不等问题,转化为较大量的一部分与较小量相等的问题,这是几何中研究不等问题是常用的方法.类似地,应用这种方法可以证明“在一个三角形中,大角对大边,小角对小边”的问题.如图1,已知△ABC中,∠C>∠B>∠A.求证:AB>AC>BC.下面是智慧小组的证明过程(不完整).证明:如图2,在∠BCA的内部,作∠BCF=∠B,CF交AB于点F.则CF=BF(依据3)在△ACF中,AF+CF>AC,∴AF+BF>AC,∴AB>AC;…任务一:①上述材料中依据1,依据2,依据3分别指什么?依据1:;依据2:;依据3:.②上述材料中不论是由边的不等关系,推出角的不等关系,还是由角的不等关系推出边的不等关系,都是转化为较大量的一部分与较小量相等的问题,再用三角形外角的性质或三边关系进而解决,这里主要体现的数学思想是_____________;(填正确选项的代码) A . 转化思想 B . 方程思想 C . 数形结合思想任务二:请将智慧小组的证明过程补充完整,并在备用图中作出辅助线.任务三:根据上述材料得出的结论,判断下列说法,正确的有__________(将正确的代码填在横线处).①在△ABC 中,AB >BC ,则∠A >∠B ;②在△ABC 中,AB >BC >AC ,∠C =89°,则△ABC 是锐角三角形;③Rt △ABC 中,∠B =90°,则最长边是AC ;④在△ABC 中,∠A =55°,∠B =70°,则AB =BC .24.如图,已知点D 、E 是△ABC 内两点,且∠BAE =∠CAD ,AB =AC ,AD =AE .(1)求证:ABD ACE △≌△.(2)延长BD 、CE 交于点F ,若86BAC ∠=︒,20ABD ∠=︒,求BFC ∠的度数. 25.如图,在ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,CD 的垂直平分线FM 交AC 于点F ,交BC 于点M .(1)求ADE ∠的度数;(2)ADF 是什么三角形?说明理由.(3)若将题目中“100BAC ∠=︒”改为“∠BAC =120°”,且FM =4,其他条件不变,求AB 的长.26.如图,射线,ON OE OS OW 、、分别表示从点O 出发北、东、南、西四个方向,将直角三角尺的直角顶点与点O 重合.(1)图中与∠BOE 互余的角是____________或____________;(2)①用直尺和量角器作AOE ∠的平分线OP ;②在①所做的图形中,如果132AOE ∠=︒,那么点P 在点O 北偏东____________°的方向上(请说明理由).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分为三种情况:①BP=AB,②AP=AB,③AP=BP,再求出答案即可.【详解】解:作BC、AC所在直线,然后分别以B、A点为圆心,以AB为半径作圆分别交BC、AC 所在直线于6点,再作AB的垂直平分线与BC所在直线交于2点,总共符合条件的点P的个数最多有8个,故选:B.【点睛】本题考查了等腰三角形的判定,线段垂直平分线的性质.能求出符合的所有情况是解此题的关键.2.C解析:C【分析】由勾股定理可求A C 的长,利用折叠的性质和等腰三角形的性质依次计算可得①②正确.利用直角三角形分类讨论可知EF 有两种情况,③不正确,由平行内错角角相等可知④正确;【详解】解:①∵BF =BC ,且∠ABC =60°,∴BCF ∆为等边三角形,BF =CF =BC =2,ACAB =4,∵ADC ∆沿CD 折叠,∴CE =ACEF =CE -CF ,故①正确;②当BF =BC 时,∠EFD =∠BFC =60°,∴∠DEF =∠A =30°,∠EDF =90°,∴EDF ∆为直角三角形,故②正确;③当DEF ∆为直角三角形时,此处要分情况讨论,当∠EDF =90°时,∵∠DEF =∠A =30°,∴∠EFD =60°=∠BFC ,EF =EC -CF-2,当∠EFD =90°时,∵∠ABC =60°,∠BCF =30°,∴FCEF =EC -FC ,综上所述,EF ,故③错误;④当DE 平行于ABC ∆的边时,∵DE ∥BC ,∴∠EDF =∠ABC =60°,∵∠DEC =30°,∴∠BCF =∠DEC =30°,故④正确,故选C【点睛】本题考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CA ,学会运用分类讨论是解题的关键. 3.B解析:B【分析】连接PB ,根据等腰三角形的性质和垂直平分线的性质计算即可;【详解】连接PB ,∵AB AC =,BD CD =,∴AD 是等腰△ABC 底边BC 边的中垂线,∴PB PC =,∴PC PE PB PE +=+,又PB PE BE +≥,∴B ,P ,E 三点共线时,PB PE +最小,即等于BE 的长,又∵△1152ABC S AC BE ==,6AC =, ∴5BE =;故答案选B .【点睛】本题主要考查了等腰三角形的性质、垂直平分线的性质,结合轴对称的性质计算是解题的关键. 4.C解析:C【分析】做出B 关于x 轴对称点为B′,连接B′C ,交x 轴于点A',此时ABC 的周长最小,由等腰直角三角形的性质可求∠OB'A'=∠OA'B'=45°,可求OB'=OA'=1,即可求解.【详解】解:如图所示,做出B 关于x 轴对称点为B′,连接B′C ,交x 轴于点A',此时△ABC 周长最小过点C作CH⊥x轴,过点B'作B'H⊥y轴,交CH于H,∵B(0,2),∴B′(0,-2),∵C(5,3),∴CH= B′H=5,∴∠CB'H=45°,∴∠BB' A'=45°,∴∠OB'A'=∠OA'B'=45°,∴OB'=OA'=2,则此时A'坐标为(2,0).m的值为2.故选:C.【点睛】此题考查了轴对称-最短路径问题,考查了轴对称的性质,等腰直角三角形的性质等知识,根据已知得出A点位置是解题关键.5.B解析:B【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的和的平方是否等于最长边的平方,分别对每一项进行分析,即可得出答案;【详解】A、222724=25+,能构成直角三角形;B、222+≠,不能构成直角三角形;45=416C、222+,能构成直角三角形;34=5D、222912=225=15+,能构成直角三角形;故选:B.【点睛】本题考查了勾股定理的逆定理,用到的知识点是已知△ABC 的三边满足222+=a b c ,则△ABC 是直角三角形;6.D解析:D【分析】根据等腰三角形的性质求解即可;【详解】∵60EDC ∠=︒,∴60EBD BED ∠+∠=︒,∵△BDE 是等腰三角形,∴30EBD BED ∠=∠=︒,1BD DE ==,∵△BEC 是等腰三角形,∴30EBD ECD ∠=∠=︒,∵60EDC ∠=︒,∴90DEC ∠=︒,在Rt △DEC 中,∵30ECD ∠=︒,1DE =,∴tan 30DEEC ==︒又∵AD 1, ∴AE AD DE EC =-==,∴△AEC 为等腰三角形,又∵90DEC AEC ∠=∠=︒,∴45ECA EAC ∠=∠=︒,∴453075ACB ACE ECD ∠=∠+∠=︒+︒=︒;故答案选D .【点睛】本题主要考查了等腰三角形的性质应用,准确计算是解题的关键.7.D解析:D【分析】根据等边三角形是轴对称图形,利用轴对称图形的性质解决问题即可.【详解】解:如图,∵△PMN 是等边三角形,等边三角形的对称轴一定经过三角形的顶点,又∵直线CD ,AB 是△PMN 的对称轴,直线CD 经过点P ,∴直线AB 一定经过点M 或N ,故选:D .【点睛】本题考查轴对称,等边三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.B解析:B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴3 ∴点C 的坐标为(0,33-), ∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,33-, 设直线A 1A 2的解析式为3y kx =-∴30k =, ∴3k = ∴直线A 1A 2的解析式为3333y x =-, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(123, ∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,32),同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,∴A 2的纵坐标为2x = 解得:52x =,∴点A 2的坐标为(52, ∴B 1A 2=2,同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=, ,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律. 9.A解析:A【分析】利用等边三角形,ABD BCE 的性质,证明 ,ABE DBC ≌ 从而可判断①,由,ABE DBC ≌可得,EAB CDB ∠=∠ 再利用三角形的内角和定理可判断②,如图,过B 作BM AE ⊥交AE 于,M 过B 作BN DC ⊥交DC 于,N 利用全等三角形的对于高相等证明,BM BN = 从而可判断③,如图,在CH 上截取,HK HE = 连接,EK 证明EHK 为等边三角形,再证明,EHB EKC ≌ 可得,HB KC = 从而可判断④.【详解】解:,ABD BCE 为等边三角形, ,60,60BA BD ABD BC BE CE CBE ∴=∠=︒==∠=︒,,,ABD DBE CBE DBE ∴∠+∠=∠+∠ 即,ABE DBC ∠=∠(),ABE DBC SAS ∴≌,AE DC ∴= 故①符合题意;,ABE DBC ≌,EAB CDB ∴∠=∠,DGH AGB ∠=∠180,180,DHG CDB DGH ABD EAB AGB ∠=︒-∠-∠∠=︒-∠-∠60DHG ABD ∴∠=∠=︒,120AHC ∴∠=︒,故②符合题意; 如图,过B 作BM AE ⊥交AE 于,M 过B 作BN DC ⊥交DC 于,N,ABE DBC ≌,AE DC 为对应边,,BM BN ∴=HB ∴平分,AHC ∠ 故③符合题意;如图,在CH 上截取,HK HE = 连接,EK60,EHK AHD ∠=∠=︒EHK ∴为等边三角形,,60,EK EH HEK ∴=∠=︒60,60,HEK HEB FEK BEC FEK KEC ∠=︒=∠+∠∠=︒=∠+∠,HEB KEC ∴∠=∠,BE CE =(),EHB EKC SAS ∴≌,HB KC ∴=.CH CK HK BH EH ∴=+=+ 故④符合题意;综上:①②③④都符合题意,故选:.A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等边三角形的判定与性质,角平分线的判定,掌握以上知识是解题的关键.10.C解析:C【分析】由三角形的内角和定理和等腰三角形的性质,得到AP=BP=AE=PE=1,CE=BE=2,即可求出AC 的长度.【详解】解:∵在ABC 中,90BAC ∠=︒,30ACB ∠=︒,∴60ABC ∠=︒,∵AD BC ⊥于D ,BE 是ABC ∠的角平分线,∴30ABP DBP BAP ∠=∠=∠=︒,∴1AP BP ==,∵90BAC ∠=︒,30ACB ∠=︒,∴60EAP AEP ∠=∠=︒,∴△APE 是等边三角形,∴AP=BP=AE=PE=1,∵30DBP C ∠=∠=︒,∴CE=BE=1+1=2,∴213AC CE AE =+=+=;故选:C .【点睛】本题考查了等边三角形的判定和性质,等腰三角形的性质,三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确的进行解题.11.A解析:A【分析】由等边三角形的性质可得AO =OB =AB =1,BC =BD =CD ,∠OBA =∠CBD =60°,可证△OBC ≌△ABD ,可得∠BAD =∠BOC =60°,可求∠EAO =60°,即可求OE 3点E 坐标.【详解】解:∵△AOB ,△BCD 是等边三角形,∴AO =OB =AB =1,BC =BD =CD ,∠OBA =∠CBD =60°,∴∠OBC =∠ABD ,且OB =AB ,BC =BD ,∴△OBC ≌△ABD (SAS ),∴∠BAD =∠BOC =60°,∴∠EAO =180°−∠OAB−∠BAD =60°,在Rt △AOE 中,AO =1,∠EAO =60°,∠OEA=30°,∴AE=2 AO=2,∴OE=2221-=3,∴点E 坐标(0,3),故选A .【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,坐标与图形性质,灵活运用全等三角形的判定和性质是本题的关键.12.D解析:D【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【详解】解:①当为锐角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠A =50°,∴∠B=∠C=180502︒-︒ =65°; ②当为钝角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠BAC =∠ADE+∠AED =40°+90°=130°,∴∠B=∠C=1801302︒-︒ =25°. 故选:D .【点睛】本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角性质,分类讨论是正确解答本题的关键. 二、填空题13.【分析】根据作图过程可知AE 平分∠CAB 根据角平分线的性质即可得出结论【详解】解:根据作图过程可知:AE 平分∠CAB ∵CB =8BE =5∴CE =BC ﹣BE =8﹣5=3∵∠C =90°∴EC ⊥AC ∴点E 到解析:【分析】根据作图过程可知AE 平分∠CAB ,根据角平分线的性质即可得出结论.【详解】解:根据作图过程可知:AE 平分∠CAB ,∵CB =8,BE =5,∴CE =BC ﹣BE =8﹣5=3,∵∠C =90°,∴EC ⊥AC ,∴点E 到AB 的距离为3.故答案为:3.【点睛】本题考查了作图-基本做图,解决本题的关键是掌握基本的作图方法和理解角平分线的性质.14.21【分析】连接ADAM 由于△ABC 是等腰三角形点D 是BC 边的中点故AD ⊥BC 再根据三角形的面积公式求出AD 的长再根据EF 是线段AC 的垂直平分线可知点A 关于直线EF 的对称点为点CMA =MC 推出MC +解析:21【分析】连接AD ,AM ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点A 关于直线EF 的对称点为点C ,MA =MC ,推出MC +DM =MA +DM≥AD ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【详解】解:连接AD ,MA .∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×10×AD=80,解得:AD=16,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=16+12×10=21.故答案是:21.【点睛】本题考查的是轴对称−最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.15.【分析】由平行线的性质可得∠ADE=∠B由AE=DE=1可得∠ADE=∠DAE易得∠DAE=∠B可得AC=BC易得结果【详解】解:∵DE∥BC∴∠ADE=∠B∵AE =DE=1∴∠ADE=∠DAE∴∠解析:【分析】由平行线的性质可得∠ADE=∠B,由AE=DE=1,可得∠ADE=∠DAE,易得∠DAE=∠B,可得AC=BC,易得结果.【详解】解:∵DE∥BC,∴∠ADE=∠B,∵AE=DE=1,∴∠ADE=∠DAE,∴∠DAE=∠B,BC=3,∴AC=BC=3,∴CE=AC﹣AE=3﹣1=2,故答案为:2.【点睛】本题主要考查了平行线的性质和等腰三角形的性质等,关键是运用性质定理得出AC=BC=3.16.2或6【分析】分两种情形:当AE=AF时如图1中过点E作EH⊥AC于H证明AH=FH=CF=CD可得结论如图2中当AF=EF时点D与D重合此时CD=BC =6【详解】解:①当AE=EF时如图1中过点E解析:2或6【分析】分两种情形:当AE=AF 时,如图1中,过点E 作EH ⊥AC 于H .证明AH =FH =CF =CD ,可得结论,如图2中,当AF =EF 时,点D 与D 重合,此时CD =BC =6【详解】解:①当AE=EF 时,如图1中,过点E 作EH ⊥AC 于H .∵EA =EF ,EH ⊥AF ,∴AH =HF ,∵EA ⊥AD ,∴∠EAD =∠EHA =∠C =90°,∴∠EAH +∠CAD =90°,∠CAD +∠ADC =90°,∴∠EAH =∠ADC ,在△EHA 和△ACD ,EAH ADC EHA C AE DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EHA ≌△ACD (AAS ),∴AH =CD ,EH =AC =CB .在△EHF 和△BCF 中,EFH BFC EHF C EH BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EHF ≌△BCF (AAS ),∴FH =CF ,∴AH =FH =CF =CD ,∴CD =13AC =2, ②如图2中,当AF =EF 时,点B 与点D 重合,此时CD =BC =6综上所述,满足条件的CD的长度为2或6故答案为:2或6【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.5【分析】将AD顺时针旋转60°得连结可得AD=DD′=AD′可证△ABD′≌△ACD(SAS)可得BD′=CD由BD′+DD′≥BD当BD′D三点在一线时BD最大BD最大=BD′+DD′=5【详解解析:5【分析】将AD顺时针旋转60°,得AD',连结BD',可得AD=DD′=AD′,可证△ABD′≌△ACD (SAS),可得BD′=CD,由BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=5.【详解】解:∵将AD顺时针旋转60°,得AD',连结BD',则AD=DD′=AD′,∴△ADD′是等边三角形,又∵等边三角形ABC,∴∠BAC=∠D AD',∴∠BAD′+∠D′AC=∠CAD+∠D′AC=60°,∴AB=AC,AD′=AD,∴△ABD′≌△ACD(SAS),∴BD′=CD,∴BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=CD+AD=2+3=5.故答案为:5..【点睛】本题考查三角形旋转变换,等边三角形判定与性质,掌握三角形旋转变换的性质,等边三角形判定与性质,用三角形三边关系确定B、D′、D共线是解题关键.18.40°或70°或100°【分析】求出∠AOC根据等腰得出三种情况OE=CEOC=OEOC=CE根据等腰三角形性质和三角形内角和定理求出即可【详解】解:∵∠AOB=80°OC平分∠AOB∴∠AOC=4解析:40°或70°或100°【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【详解】解:∵∠AOB=80°,OC平分∠AOB,∴∠AOC=40°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=40°,∴∠OEC=180°﹣40°﹣40°=100°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=12(180°﹣40°)=70°;③当E在E3时,OC=CE,则∠OEC=∠AOC=40°;故答案为:100°或70°或40°.【点睛】本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,用了分类讨论思想.19.【分析】利用等腰三角形的性质判定证明BD=AD 利用直角三角形中30°角的性质计算BD 即可得解【详解】∵∴∠A=30°∠ABC=120°∵∴∠CBD=90°BD=1∴∠DBA=30°∴∠DBA=∠A ∴ 解析:1.【分析】利用等腰三角形的性质,判定,证明BD=AD ,利用直角三角形中30°角的性质计算BD 即可得解.【详解】∵AB BC =,30C ∠=︒,∴∠A=30°,∠ABC=120°,∵BD BC ⊥,2CD =,∴∠CBD=90°,BD=1,∴∠DBA=30°,∴∠DBA=∠A ,∴BD=AD ,∴AD=1.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质,熟练掌握性质,并灵活运用性质是解题的关键.20.②④【分析】由平行线得到角相等由角平分线得角相等根据平行线的性质及等腰三角形的判定和性质逐一判断即得答案【详解】解:∵EF ∥BC ∴∠EDB=∠DBC ∠FDC=∠DCB ∵∠ABC 与∠ACB 的平分线交于 解析:②④【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质逐一判断即得答案.【详解】解:∵EF ∥BC ,∴∠EDB=∠DBC ,∠FDC=∠DCB ,∵∠ABC 与∠ACB 的平分线交于点D ,∴∠EBD=∠DBC ,∠FCD=∠DCB ,∴∠EDB =∠EBD ,∠FCD=∠FDC ,∴ED=EB ,FD=FC ,即△BED 和△CFD 都是等腰三角形;故②正确;∴△AEF 的周长为:AE+EF+AF=AE+ED+DF+AF=AB+AC ;故④正确;∵∠ABC 不一定等于∠ACB ,∴∠DBC 不一定等于∠DCB ,∴BD 与CD 不一定相等,故①错误.∵BE 与CF 无法判定相等,∴ED 与DF 无法判定相等,故③错误;综上,正确的有②④.故答案为:②④.【点睛】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.三、解答题21.(1)A (-3,0),B (0,4);(2)BC ;(3)P (-28,0)或(47,0)【分析】(1)令0x =,求得y ,令0y =,求得x ,即可求解;(2)设OC=a ,在Rt △ACM 中,利用勾股定理列式计算可求得43a =,即可求解; (3)分点P 在点A 的右边和左边两种情况讨论,分别作出辅助线,构造直角三角形,利用勾股定理求解即可.【详解】(1)令0x =,4443y x =+=, 令0y =,4043x =+,则3x =-, ∴点A 的坐标为(-3,0),点B 的坐标为(0,4);(2)设OC=a ,由折叠的性质可知:CM ⊥AB ,OC=CM=a ,OB=BM=4,由勾股定理得:5==,∴AM=1,在Rt △ACM 中,222AM MC AC +=,∴2221(3)a a +=-, ∴43a =, ∴222244()03341BC BO CO =+=+=; (3)如图,点P 在点A 的右边时,过P 作PG ⊥AB 于G , ∵点A 的坐标为(-3,0),点B 的坐标为(0,4),∴OA<OB ,∴点P 在点O 的右边,设PO= m ,则AP=3m +,∵APB 1122S AB PG AP OB =⨯=⨯, ∴()435PG m =+, ()()()22224333355AG AP PG m m m ⎡⎤=-=+-+=+⎢⎥⎣⎦, ∵∠PBA=45°,∴△BPG 是等腰直角三角形,∴()435BG PG m ==+, ∵ AG BG AB +=,∴()()3433555m m +++=, 解得:47m =, 此时点P 的坐标为(47,0); 如图,点P 在点A 的左边时,过P 作PH ⊥AB 于H ,设PO= n ,则AP=n 3-, ∵APB 1122S AB PH AP OB =⨯=⨯, ∴()4n 35PH =-, ()()()22224333355AH AP PH n n n ⎡⎤=-=---=-⎢⎥⎣⎦, ∵∠PBA=45°,∴△BPH 是等腰直角三角形,∴()435BH PH n ==-, ∵BH AH AB -=, ∴()()4333555n n ---=, 解得:28n =,此时点P 的坐标为(28-,0);综上,点P 的坐标为(28-,0)或(47,0) . 【点睛】本题考查了坐标与图形,一次函数的性质,以及等腰直角三角形的判定和性质,解题的关键是作出合适的辅助线,构造直角三角形,利用勾股定理求解.22.(1)见详解;(2)15°【分析】(1)由AB =CB ,∠ABC =90°,AE =CF ,即可利用HL 证得Rt △ABE ≌Rt △CBF ;(2)由AB =CB ,∠ABC =90°,即可求得∠CAB 与∠ACB 的度数,即可得∠FCB 的度数,又由Rt △ABE ≌Rt △CBF ,即可求得∠EAB 的度数,再得出∠EAC 的度数即可.【详解】(1)证明:∵∠ABC =90°,∴△ABE 与△CBF 为直角三角形.∵在Rt △ABE 与Rt △BCF 中,AB BC AE CF⎧⎨⎩==, ∴Rt △ABE ≌Rt △CBF (HL );(2)∵AB =BC ,∠ABC =90°,∴∠BAC =∠ACB =45°,∵∠ACF =75°,∴∠FCB =30°,∵Rt △ABE ≌Rt △CBF ,∴∠EAB =∠FCB =30°,∴∠EAC =45°-30°=15°.【点睛】此题考查了直角三角形全等的判定与性质,等腰直角三角形的性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.23.任务一:①依据1:三角形的外角等于与它不相邻的两个内角的和; 依据2:等量代换;依据3:如果一个三角形有两个角相等,那么这两个角所对的边也相等(或等角对等边); ②A ;任务二:见解析;任务三:②③④【分析】任务一:①根据三角形的外角性质、等量代换以及三角形中等角对等边性质即可写出依据;②根据分析过程渗透的思想为转化的思想方法;任务二:仿照推导AB >AC 的方法证明AC >BC 即可证明结论正确;任务三:根据结论“在一个三角形中,大角对大边,小角对小边,等边对等角”进行判断即可解答.【详解】解:任务一:①根据推导过程可知:依据1:三角形的外角等于与它不相邻的两个内角的和;依据2:等量代换;依据3:如果一个三角形有两个角相等,那么这两个角所对的边也相等(或等角对等边);故答案为:三角形的外角等于与它不相邻的两个内角的和;等量代换;如果一个三角形有两个角相等,那么这两个角所对的边也相等(或等角对等边);②根据推导过程体现了转化的数学思想方法,故选:A ;任务二:智慧小组的证明过程补充如下:证明:如图2,在∠BCA 的内部,作∠BCF=∠B ,CF 交AB 于点F .则CF=BF ,(等边对等角)在△ACF 中,AF+CF >AC ,∴AF+BF >AC ,∴AB >AC ;同理,如图,在∠ABC 的内部,作∠ABG=∠A ,BG 交AC 于点G ,如图,则AG=BG在△BCG 中,BG+CG >BC ,∴BG+CG >BC ,∴AC >BC∴AB >AC >BC .任务三:①∵AB >BC ,∴∠C >∠A ,错误;②∵在△ABC 中,AB >BC >AC ,∠C=89°,∴∠C >∠A >∠B ,又∠C=89°<90°,∴△ABC 是锐角三角形,正确;③∵Rt △ABC 中,∠B=90°,则最长边是斜边AC ,正确;④∵在△ABC 中,∠A=55°,∠B=70°,∴∠C=180°﹣∠A ﹣∠B=180°﹣55°﹣70°=55°,∴∠A=∠C∴AB=BC ,正确,故答案为:②③④.【点睛】本题考查三角形的边与角之间的不关系的推导及其应用,涉及三角形的外角性质、等腰三角形的等角对等边性质、三角形的内角和定理、判断三角形的形状、命题的证明等知识,掌握在一个三角形中,大角对大边,小角对小边这一性质的推导过程,会利用转化的思想进行命题的证明是解答的关键.24.(1)见解析;(2)126BFC ∠=︒.【分析】(1)由SAS 证明ABD ACE △≌△即可;(2)先由全等三角形的性质的20ACE ABD ∠=∠=︒再由等腰三角形的性质和三角形内角和定理得47ABC ACB ∠=∠=︒,则27FBC FCB ∠=∠=︒,即可得出答案.【详解】(1)证明∵BAE CAD ∠=∠∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴ABD ACE SAS △≌△();(2)解:∵ABD ACE △≌△,∴20ACE ABD ∠=∠=︒,∵AB =AC , ∴1(18086)472ABC ACB ∠=∠=︒-︒=︒, ∴472027FBC FCB ∠=∠=︒-︒=︒,∴1802727126BFC ∠=︒-︒-︒=︒.【点睛】本题主要考查全等三角形的性质及判定、等腰三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.25.(1)∠ADE =20°;(2)△ADF 是等腰三角形,证明见解析;(3)AB=16.【分析】(1)根据等腰三角形的性质和三角形内角和定理求出∠B 和∠C ,求出∠BDE ,即可求出答案;(2)根据垂直平分线的性质定理和等边对等角可求得∠FDC ,再根据三线合一和直角三角形两锐角互余可求得∠DAF 和∠ADF 得出它们相等即可得出△ADF 为等腰三角形;(3)可求得∠C=30°根据30°角所对直角边是斜边的一般可得FC ,可证明△ADF 为等边三角形即可求得AF ,从而求得AC ,继而求得AB .【详解】解:(1)∵在△ABC 中,AB=AC ,∠BAC=100°,∴∠B=∠C=12×(180°-∠BAC )=40°, ∵BD=BE ,∴∠BDE=∠BED=12×(180°-∠B )=70°, ∵在△ABC 中,AB=AC ,AD 是BC 边上的中线,∴AD ⊥BC ,∴∠ADB=90°,∴∠ADE=∠ADB-∠BDE=20°;(2)△ADF 是等腰三角形,理由是:∵CD 的垂直平分线MF 交AC 于F ,交BC 于M ,∴DF=CF ,∵∠C=40°,∴∠FDC=∠C=40°,∵AD ⊥BC ,∴∠ADC=90°,∴∠DAF=90°-∠C=50°,∴∠ADF=50°,∴∠DAF=∠ADF ,∴AF=DF ,∴△ADF 是等腰三角形;(3)∵∠BAC =120°,AB=AC ,∴∠B=∠C=12×(180°-∠BAC )=30°, 又∵AD 是BC 边上的中线,∴AD ⊥BC ,∴∠DAC=90°-∠C=60°,∵CD 的垂直平分线MF ,∴∠FMC=90°,DF=FC ,∴∠FDC=∠C=30°,∴∠ADF=∠ADC-∠FDC=60°,∠AFD=∠C+∠FDC=60°,∴△ADF 为等边三角形,AF=DF=FC ,∵MF=4,∴FC=2MF=8,∴AF= 8,∵AC=AF+CF=8+8=16,∵AB=AC ,∴AB=16.【点睛】本题考查了线段垂直平分线性质,等边三角形的性质和判定,含30°角的直角三角形的性质,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.26.(1)BON ∠;AOW ∠;(2)①见解析;②24︒,见解析【分析】(1)根据互余,平角的定义判断即可;(2)①作出角平分线即可;②利用角平分线的定义求出∠POE ,再求出∠NOP 即可解决问题;【详解】(1)90180AOB WOE ︒∠=∠=︒,,90AOW BOE ∴∠+∠=︒,90NOB BOE ∠+∠=︒, ∴图中与∠BOE 互余的角是BON ∠和AOW ∠;故答案为:BON ∠和AOW ∠;(2)①如图所示:②132AOE ∠=︒,OP 平分AOE ∠,1132662POE ∴∠=⨯︒=︒, 90NOE ∠=︒,906624NOB ∴∠=︒-︒=︒,∴点P 在点O 北偏东24︒的方向上;【点睛】本题考查了作图-应用与设计,角平分线的定义,方向角等知识解题的关键是理解题意,灵活运用所学知识解决问题;。
(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(含答案解析)
一、选择题1.如图,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是( )A .15B .16C .17D .242.如图,在Rt △ABC 中,∠BAC=90°,∠C=45°,AD ⊥BC 于点D ,∠ABC 的平分线分别交 AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交 BC 于点N ,连接EN ,下列结论:①△AFE 为等腰三角形;②DF= DN ;③AN = BF ;④EN ⊥NC .其中正确的结论有( )A .1个B .2个C .3个D .4个3.如图,在ABC 中,4AB AC ==,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//MN BC 分别交AB 、AC 于M 、N ,则AMN 的周长为( )A .12B .4C .8D .不确定 4.如图,在等腰三角形ABC 中,AB AC =,DE 垂直平分AB ,已知40ADE ∠=︒,则DBC ∠度数为( )A .5︒B .15︒C .20︒D .25︒5.下列命题中,假命题是( )A .直角三角形的两个锐角互余B .等腰三角形的两底角相等C .面积相等的两个三角形全等D .有一个角是60︒的等腰三角形是等边三角形6.如图,30MON ∠=︒点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ,223A B A ,334A B A ,…均为等边三角形,若11OA =,则边67B B 的长为( )A .63B .123C .323D .6437.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于点D .若∠A =30°,AE =10,则CE 的长为( )A .5B .4C .3D .28.如图,△ABC 中,DC =2BD =2,连接AD ,∠ADC =60°.E 为AD 上一点,若△BDE 和△BEC 都是等腰三角形,且AD =31+,则∠ACB =( )A .60°B .70°C .55°D .75°9.如图,在ABD ∆中,AD AB =,90DAB ︒∠=,在ACE ∆中,AC AE =,90EAC ︒∠=,CD ,BE 相交于点F ,有下列四个结论: ①BDC BEC ∠=∠;②FA 平分DFE ∠;③DC BE ⊥;④DC BE =.其中,正确的结论有( )A .①②③④B .①③④C .②③D .②③④ 10.如图,ACB △和DCE 均为等腰直角三角形,且90ACB DCE ∠=∠=︒,点A 、D 、E 在同一条直线上,CM 平分DCE ∠,连接BE .以下结论:①AD CE =;②CM AE ⊥;③2AE BE CM =+;④//CM BE ,正确的有( )A .1个B .2个C .3个D .4个11.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .612.如图,一棵高5米的树AB 被强台风吹斜,与地面BC 形成60︒夹角,之后又被超强台风在点D 处吹断,点A 恰好落在BC 边上的点E 处,若2BE =,则BD 的长是( )A .2B .3C .218D .247二、填空题13.如图.在ABC 中,2AB AC ==,40B C ∠=∠=︒,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E .(1)点D 从B 向C 的运动过程中,BDA ∠逐渐变____(填“大”或“小”);(2)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由._____.14.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.15.如图,ABC 中,45ABC ∠=︒,高AD 和BE 相交于点,30H CAD ∠=︒,若4AC =,则点H 到BC 的距离是_____________.16.在ABC ∆中,45A ∠=︒,60B ∠=︒,4AB =,点P 、M 、N 分别在边AB 、BC 、CA 上,连接PM 、MN 、NP ,则PMN ∆周长的最小值为__________17.等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形的底角度数为____________.18.已知,在等腰ABC ∆中,AD BC ⊥于点D ,且2BC AD =,则等腰ABC ∆底角的度数为_________.19.如图,在ABC 中,,AB AC AD =是BC 边上的中线,50B ∠=︒,则DAC ∠=___________20.在第1个△ABA 1中,∠B =30°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,第1个三角形的以A 1为顶点的内角的度数为__________;第n 个三角形的以A n 为顶点的内角的度数为__________.三、解答题21.如图,ABC ,其中AC BC >.(1)尺规作图:作AB 的垂直平分线交AC 于点P (要求:不写作法,保留作图痕迹); (2)若8,AB PBC =的周长为13,求ABC 的周长;(3)在(2)的条件下,若ABC 是等腰三角形,直接写出ABC 的三条边的长度. 22.已知:如图,ABC 是等腰三角形,AB AC =,36A ∠=︒(1)利用尺规作B平分线BD,交AC于点D;(保留作图痕迹,不写作法)△是否为等腰三角形,并说明理由.(2)判断ABD中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC于点E,23.如图,在ABCF.(1)若∠DAC=30°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系并说明理由.24.如图,在△ABC中,AC=BC,∠ACB=90°,延长CA至点D,延长CB至点E,使AD=BE,连接AE,BD,交点为O.(1)求证:OB=OA;(2)连接OC,若AC=OC,则∠D的度数是度.25.如图.在△ABC中,∠C=90 °,∠A=30°.(1)用直尺和圆规作AB的垂直平分线,分别交AB、AC于D、E,交BC的延长线于F,连接EB.(不写作法,保留作图痕迹)(2)求证:EB平分∠ABC.(3)求证:AE=EF.26.已知:如图,,,C D Rt AC BD AD ∠=∠=∠=与BC 相交于点P .求证:(1)Rt ABC Rt BAD ≌.(2)PAB △是等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据平行线的性质、角平分线的定义、等边对等角得到BE =OE ,OF =CF ,再进行线段的代换即可求出AEF 的周长.【详解】解:∵EF ∥BC ,∴∠EOB =∠OBC ,∵BO 平分ABC ∠,∴∠EBO =∠OBC ,∴∠EOB =∠EBO ,∴BE =OE ,同理可得:OF =CF ,∴AEF 的周长为AE +AF +EF =AE +OE +OF +AF = AE +BE +CF +AF =AB +AC =7+8=15.故答案为:A【点睛】 本题考查了等腰三角形的判定“等边对等角”,熟知平行线的性质,角平分线的定义和等腰三角形的判定定理是解题关键.2.D解析:D利用等腰三角形的性质,直角三角形的性质,线段垂直平分线的性质,三角形的全等,角平分线的定义,逐一判断即可.【详解】∵∠BAC=90°,AD⊥BC,BE平分∠ABC ,∴∠DBF+∠DFB=90°,∠ABE+∠AEF=90°,∠ABE=∠DBF,∴∠AEF=∠DFB=∠AFE,∴△AFE为等腰三角形,∴结论①正确;∵△AFE为等腰三角形,M为EF 的中点,∴∠AMF=90°,∴∠DBF=∠DAN,∵∠BAC=90°,∠C=45°,AD⊥BC于点D,∴AD=BD,∴△DBF≌△DAN,∴DF= DN,AN=BF,∴结论②③正确;∵∠ABM=∠NBM,∴∠BMA=∠BMN= 90°,BM=BM,∴△BMA≌△BMN,∴AM=MN,∴BE是线段AN的垂直平分线,∴EA=EN,∴∠EAN=∠ENA=∠DAN,∴AD∥EN,∵AD⊥BC∴EN⊥NC,∴结论④正确;故选D.【点睛】本题考查了等腰三角形的判定和性质,三角形的全等,线段的垂直平分线的定义和性质,平行线的判定和性质,直角三角形的性质,角平分线的定义,熟练掌握知识,灵活运用知识是解题的关键.3.C【分析】由角平分线的定义和平行线性质易证△BME和△CNE是等腰三角形,即BM=ME,CN=NE,由此可得△AMN的周长=AB+AC.【详解】解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN//BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键.4.B解析:B【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【详解】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=1(180°-∠A)=65°,2∴∠DBC=∠ABC-∠ABD=65°-50°=15°,故选:B.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键.5.C解析:C根据直角三角形的性质、等腰三角形的性质、全等三角形的概念、等边三角形的判定定理判断即可.【详解】解:A、直角三角形的两个锐角互余,本选项说法是真命题;B、等腰三角形的两底角相等,本选项说法是真命题;C、面积相等的两个三角形不一定全等,本选项说法是假命题;D、有一个角是60°的等腰三角形是等边三角形,本选项说法是真命题;故选:C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.C解析:C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2B2B3,B3B4B n B n+1的长为 2,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2∵B3A3=2B2A3,∴A3B3=4B1A2=4,∴B2B3∵A4B4=8B1A2=8,∴B3B4=43,以此类推,B n B n+1的长为2n-13,∴B6B7的长为323,故选:C.【点睛】本题考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题的关键.7.A解析:A【分析】先根据含30°角的直角三角形的性质求出DE=5,再根据角平分线的性质求出CE=DE=5即可.【详解】解:∵DE⊥AB,∴∠ADE=90°,在Rt△ADE中,∠A=30°,AE=10,∴DE=1AE=5,2∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴CE=DE=5,故选:A.【点睛】本题考查的是角平分线的性质、含30°角的直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.D解析:D【分析】根据等腰三角形的性质求解即可;【详解】∵60EDC ∠=︒,∴60EBD BED ∠+∠=︒,∵△BDE 是等腰三角形,∴30EBD BED ∠=∠=︒,1BD DE ==,∵△BEC 是等腰三角形,∴30EBD ECD ∠=∠=︒,∵60EDC ∠=︒,∴90DEC ∠=︒,在Rt △DEC 中,∵30ECD ∠=︒,1DE =,∴tan 30DEEC ==︒又∵AD1,∴AE AD DE EC =-==,∴△AEC 为等腰三角形,又∵90DEC AEC ∠=∠=︒,∴45ECA EAC ∠=∠=︒,∴453075ACB ACE ECD ∠=∠+∠=︒+︒=︒;故答案选D .【点睛】本题主要考查了等腰三角形的性质应用,准确计算是解题的关键.9.D解析:D【分析】由△ABD 和△ACE 都是等腰直角三角形得出AB=AD ,AE=AC ,∠BAD=∠CAE=90°,再进一步得出∠DAC=∠BAE 证得△ABE ≌△ADC ,可以判断①③④;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,利用面积相等证得AP= AQ ,再利用角平分线的判定定理即可判断②.【详解】∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,∠BDA=∠ECA=45︒,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即:∠DAC=∠BAE ,在△ABE 和△ADC 中,AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC (SAS ),∴BE=DC ,故④正确;∠ADF=∠ABF ,∴∠BDC=45︒-∠ADF ,∠BEC=45︒-∠AEF ,而∠ADF=∠ABF ≠∠AEF ,∴∠BDC ≠∠BEC ,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD ⊥BE ,故③正确;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,∵△ABE ≌△ADC ,∴ABE ADC S S =,∵BE=DC ,∴AP= AQ ,∵AP ⊥CD ,AQ ⊥BE ,∴FA 平分∠DFE ,故②正确;综上,②③④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,角平分线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.10.C解析:C【分析】由“SAS ”可证ACD BCE ≅∆∆,可得AD BE =,ADC BEC ∠∠=,可判断①,由等腰直角三角形的性质可得45CDE CED ∠=∠=︒.CM AE ⊥,可判断②,由全等三角形的性质可求90AEB CME ,可判断④,由线段和差关系可判断③,即可求解. 【详解】解:ACB ∆和DCE ∆均为等腰直角三角形,CA CB ∴=,CD CE =,90ACB DCE ∠=∠=︒,∵∠ACD+∠DCB=90°,∠DCB+∠BCE=90°,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,ADC BEC ∠∠=,故①错误,DCE ∆为等腰直角三角形,CM 平分DCE ∠,45CDE CED ∴∠=∠=︒,CM AE ⊥,故②正确,点A ,D ,E 在同一直线上,135ADC .135BEC ∴∠=︒.90AEB BEC CED ∴∠=∠-∠=︒,90AEB CME ,//CM BE ∴,故④正确,CD CE =,CM DE ⊥,DM ME ∴=.90DCE ∠=︒,1=2DM ME CM DE ∴==. 2AE AD DE BE CM ∴=+=+.故③正确,故选择:C .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明ACD BCE ≅∆∆是本题的关键.11.C解析:C【分析】连接OC ,过点O 作OF BC ⊥于F ,求得212CE DE ==,60CED ∠=︒,再根据条件得出9030EOF OEF ∠=︒-∠=︒,得到122EF OE ==,即可得解;【详解】连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=, 在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒, ∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥, ∴12CF BF BC ==, 在Rt △OEF 中,∵60OEF ∠=︒, ∴9030EOF OEF ∠=︒-∠=︒, ∴122EF OE ==, ∴10CF CE EF =-=,∴8BE BC CE =-=;故答案选C .【点睛】本题主要考查了等腰三角形的判定与性质,准确分析计算是解题的关键.12.C解析:C【分析】过点D 作DM ⊥BC ,设BD=x ,然后根据题意和含30°的直角三角形性质分别表示出BM ,EM ,DE 的长,结合勾股定理列方程求解.【详解】解:过点D 作DM ⊥BC ,设BD=x ,由题意可得:AB=5,AD=DE=5-x∵∠ABC=60°,DM ⊥BC ,∴在Rt △BDM 中,∠BDM=30° ∴1122BM BD x ==,则122ME BE BM x =-=- ∴2222BD BM DE ME -=-,222211()(5)(2)22x x x x -=---解得:218x =,即BD=218米 故选:C .【点睛】本题考查含30°的直角三角形性质和勾股定理解直角三角形,正确理解题意掌握相关性质定理列方程求解是关键.二、填空题13.小80°或110°【分析】(1)由题意易得由点D 从B 项C 的运动过程中逐渐变大可求解问题;(2)由题意可分①若AD=DE 时②若时③若时则点D 与点B 重合点E 与点C 重合与题意矛盾故不符合题意;然后根据等腰解析:小 80°或110°【分析】(1)由题意易得140BDA BAD ∠=︒-∠,由点D 从B 项C 的运动过程中,BAD ∠逐渐变大可求解问题;(2)由题意可分①若AD =DE 时,②若AE DE =时,③若AE AD =时,则点D 与点B 重合,点E 与点C 重合,与题意矛盾,故不符合题意;然后根据等腰三角形的性质及角的等量关系可进行求解.【详解】解:(1)∵180BDA B BAD ∠+∠+∠=︒,∴140BDA BAD ∠=︒-∠,∵点D 从B 项C 的运动过程中,BAD ∠逐渐变大,∴BDA ∠逐渐变小;故答案为小;(2)若AD =DE 时,∵,40AD DE ADE =∠=︒,∴70DEA DAE ∠=∠=︒,∵DEA C EDC ∠=∠+∠,40B C ∠=∠=︒,∴30EDC ∠=︒,∴180110BDA ADE EDC ∠=︒-∠-∠=︒;若AE DE =时,∵,40AE DE ADE =∠=︒,∴40EDA DAE ∠=∠=︒,∴100DEA ∠=︒,∵DEA C EDC ∠=∠+∠,∴60EDC ∠=︒,∴18080BDA ADE EDC ∠=︒-∠-∠=︒;若AE AD =时,则点D 与点B 重合,点E 与点C 重合,与题意矛盾,故不符合题意; 综上所述:当80BDA ∠=︒或110°时,△ADE 的形状可以是等腰三角形;故答案为80°或110°.【点睛】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 14.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.15.2【分析】根据含30°角的直角三角形的性质可求解CD 的长然后利用AAS 证明△BDH ≌△ADC 可得HD=CD 进而求解【详解】解:∵AD ⊥BC ∴∠ADB=∠ADC=90°∴∠HBD+∠BHD=90°∵∠解析:2【分析】根据含30°角的直角三角形的性质可求解CD 的长,然后利用AAS 证明△BDH ≌△ADC ,可得HD =CD ,进而求解.【详解】解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,∴∠HBD +∠BHD =90°,∵∠CAD =30°,AC =4, ∴122CD AC ==, ∵BE ⊥AC ,∴∠HBD +∠C =90°,∴∠BHD =∠C ,∵∠ABD =45°,∴∠BAD =45°,∴BD =AD , 在△BDH 和△ADC 中,BHD C BDH ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDH ≌△ADC (AAS ),∴HD =CD =2,故点H 到BC 的距离是2.故答案为:2.【点睛】本题主要考查全等三角形的性质与判定,含30°角的直角三角形的性质,等腰直角三角形的性质和判定,证明△BDH ≌△ADC 是解题的关键.16.2【分析】作点M 关于AC 的对称点M′作点M 关于AB 的对称点M′′连接AMM′M′′M′M′′交AB 于点P′交AC 于点N′作AH ⊥BC 于点H 由对称性可知:当点M 固定时周长的最小值=M′M′′再推出M′解析:26 【分析】 作点M 关于AC 的对称点M′,作点M 关于AB 的对称点M′′,连接AM ,M′M′′,M′M′′交AB 于点P′,交AC 于点N′,作AH ⊥BC 于点H ,由对称性可知:当点M 固定时,PMN ∆周长的最小值= M′M′′,再推出M′M′′=2AM ,进而即可求解.【详解】如图,作点M 关于AC 的对称点M′,作点M 关于AB 的对称点M′′,连接AM ,M′M′′,M′M′′交AB 于点P′,交AC 于点N′,作AH ⊥BC 于点H ,由对称性可知:MN′=M′N′,MP′=M′′P′,AM=AM′=AM′′,∴当点M 固定时,PMN ∆周长的最小值=MN′+MP′+N′P′= M′N′+M′′P′+N′P′= M′M′′, ∵45A ∠=︒,∠M′AC=∠MAC ,∠M′′AB=∠MAB ,∴∠M′A M′′=90°,即∆ M′A M′′是等腰直角三角形,∴M′M′′=2=2AM AM ′,∴当AM 最小时,M′M′′的值最小,即AM 与AH 重合时,M′M′′的值最小,∵60B ∠=︒,4AB =,AH ⊥BC ,∴∠BAH=30°,∴AH=3AB =23,此时,M′M′′的值最小=2AH =26, ∴PMN ∆周长的最小值=26.故答案是:26.【点睛】本题主要考查轴对称—线段和的最小值,直角三角形的性质,作点M 关于AB ,AC 的对称点,把PMN ∆周长化为两点间的线段长,是解题的关键.17.65°或25°【分析】在等腰△ABC 中AB =ACBD 为腰AC 上的高∠ABD =40°讨论:当BD 在△ABC 内部时如图1先计算出∠BAD =50°再根据等腰三角形的性质和三角形内角和计算;当BD 在△ABC解析:65°或25°【分析】在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,讨论:当BD在△ABC内部时,如图1,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形内角和计算;当BD 在△ABC外部时,如图2,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形外角性质计算.【详解】解:在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB=1(180°﹣50°)=65°;2当BD在△ABC外部时,如图2,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,而∠BAD=∠ABC+∠ACB,∴∠ACB=1∠BAD=25°,2综上所述,这个等腰三角形底角的度数为65°或25°.故答案为:65°或25°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理以及三角形的外角性质,正确分类、熟练掌握上述知识是解题的关键.18.45°或15°或75°【分析】分三种情况讨论先根据题意分别画出图形当AB=AC 时根据已知条件得出AD=BD=CD从而得出△ABC底角的度数;当AB=BC时先求出∠ABD的度数再根据AB=BC求出底角解析:45°或15°或75°【分析】分三种情况讨论,先根据题意分别画出图形,当AB=AC时,根据已知条件得出AD=BD=CD,从而得出△ABC底角的度数;当AB=BC时,先求出∠ABD的度数,再根据AB=BC,求出底角的度数;当AB=BC时,根据AD=12BC,AB=BC,得出∠DBA=30°,从而得出底角的度数.【详解】①如图1,当AB=AC时,∵AD⊥BC,∴BD=CD,∵AD=12BC,∴AD=BD=CD,∴底角为45°;②如图2,当AB=BC时,∵AD=12BC,∴AD=12AB,∴∠ABD=30°,∴∠BAC=∠BCA=75°,∴底角为75°.③如图3,当AB=BC时,∵AD=12BC,AB=BC,∴AD=12AB,∴∠DBA=30°,∴∠BAC=∠BCA=15°;∴△ABC底角的度数为45°或75°或15°.故答案为:45°或15°或75°.【点睛】本题考查了含30度角的直角三角形和等腰三角形的性质,关键是根据题意画出图形,注意不要漏解.19.40【分析】首先根据等腰三角形的三线合一的性质得到AD⊥BC然后根据直角三角形的两锐角互余得到答案即可【详解】解:∵AB=ACAD是BC边上的中线∴AD⊥BC∠BAD=∠CAD∴∠B+∠BAD=90解析:40【分析】首先根据等腰三角形的三线合一的性质得到AD ⊥BC ,然后根据直角三角形的两锐角互余得到答案即可.【详解】解:∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC ,∠BAD =∠CAD ,∴∠B +∠BAD =90°,∵∠B =50°,∴∠BAD =40°,∴∠CAD =40°,故答案为:40.【点睛】考查了等腰三角形的性质,理解等腰三角形底边的高、底边的中线及顶角的平分线互相重合是解答本题的关键,难度不大.20.75°【分析】先根据等腰三角形的性质求出∠BA1A 的度数再根据三角形外角及等腰三角形的性质分别求出∠CA2A1∠DA3A2及∠EA4A3的度数找出规律即可得出∠An 的度数【详解】解:∵在△ABA1中解析:75° 1752n ︒- . 【分析】先根据等腰三角形的性质求出∠BA 1A 的度数,再根据三角形外角及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出∠A n 的度数.【详解】解:∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1A =1802B ︒-∠=75°, ∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角, ∴∠CA 2A 1=17522BA A ∠︒==37.5︒, 同理可得∠DA 3A 2=2752,∠EA 4A 3=3752︒, ,∴∠A n =1752n , 故答案为:75°;1752n . 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,找出规律是解答此题的关键.三、解答题21.(1)画图见解析;(2)△ABC的周长=21;(3)AB=8,AC=8,BC=5.【分析】(1)根据垂直平分线的作法作出图形即可;(2)根据垂直平分线的性质可得AP=BP,从而得出AC+BC的值,再根据AB=8,即可求得△ABC的周长;(3)分两种情况进行讨论即可.【详解】解:(1)如图所示:即PQ为所求;;(2)如图所示:∵AB的垂直平分线交AC于点P,∴PA=PB,∵△PBC的周长为13,∴PB+PC+BC=13,∴PA+PC+BC=13,即AC+BC=13,∴△ABC的周长=AB+AC+BC=8+13=21;(3)∵AC>BC,∴分两种情况,①AC=AB=8时,BC=21-AC-BC=21-8-8=5;②BC=AB=8时,AC=21-AB-BC=21-8-8=5,∵AC>BC,∴不合题意舍去;综上所述,若△ABC是等腰三角形,△ABC的三条边的长度为AB=8,AC=8,BC=5.【点睛】本题是三角形综合题目,考查了线段垂直平分线的性质、等腰三角形的性质、尺规作图、三角形周长等知识.本题综合性强,熟练掌握等腰三角形的性质和线段垂直平分线的性质是解题的关键.22.(1)见详解;(2)是等腰三角形,证明见详解.【分析】(1)以B为圆心,以任意长为半径画弧交AB、AC于两点,再以这两点为圆心,以大于这两点的距离的一半为半径画弧,交于一点,过点B和这点作射线交AC与点D即可;(2)由∠A=36°,求出∠ABC=72°,进而求出∠ABD,根据等角对等边即可证明结论.【详解】解:(1)如图所示:BD即为所求;△是等腰三角形.(2)ABD∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠ABD=∠A,∴AD=BD,△是等腰三角形.∴ABD【点睛】本题主要考查了等腰三角形的性质和判定,三角形的内角和定理,角平分线的性质,尺规作图-作已知角的平分线等知识点,解此题的关键是能正确画图和求出∠ABD的度数.23.(1)∠FDC=60°(2)∠AED=2∠B,理由见解析【分析】(1)根据垂直平分线及高线的性质即可求解.(2)根据高的定义和、线段垂直平分线的性质和等腰三角形的性质可得EF//BC,∠AED=2∠AEF,再根据平行线的性质得∠AEF=∠B,故可得∠AED=2∠B.【详解】解:(1)∵AD 是BC 边上的高线,EF 是AD 的垂直平分线,∠DAC=30°∴AF=FD ,∠ADC=90°∴∠FDA=30°,∴∠FDC=90°-30°=60°.(2)∵AD 是BC 边上的高线,EF 是AD 的垂直平分线,∴EF //BC ,EA=ED ,∴∠AED=2∠AEF ,∴∠AEF=∠B ,∴∠AED=2∠B .【点睛】本题考查了垂直平分线及高线的性质,平行线的判定及性质,解题的关键是熟练掌握垂直平分线、高线、平行线性质.24.(1)见解析;(2)22.5【分析】(1)根据全等三角形的判定和性质得出△ABD ≌△BAE ,进而得出OB=OA ;(2)根据全等三角形的判定和性质以及三角形内角和解答.【详解】证明:(1)∵AC=BC ,∠ACB=90°,∴∠ABC=∠BAC=45°.∴∠EBA=∠DAB=135°.在△ABD 与△BAE 中,135BE AD EBA DAB AB AB =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BAE (SAS ),∴∠DBA=∠EAB ,∴OB=OA ;(2)由(1)得:OB=OA ,在△OBC 与△OAC 中,OB OA OC OC BC AC =⎧⎪=⎨⎪=⎩,∴△OBC ≌△OAC (SSS ),∴∠OCB=∠OCA=12∠ACB=12×90°=45°, ∵AC=BC ,AC=OC ,∴OC=BC , ∴∠CBO=∠COB 1801804567.522OCB ︒︒︒︒-∠-===, 在Rt △BCD 中,∠D=180°-90°-∠CBO=22.5°.故答案为:22.5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,关键是根据全等三角形的判定和性质解答.25.见解析【分析】(1)先作线段AB 的垂直平分线DE ,再延长BC 即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE ,得到答案; (3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC ,证得BE=EF ,又因为AE= BE ,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB平分∠ABC.(3)证明:∵DE是AB的垂直平分线∴DE⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.26.(1)见解析;(2)见解析【分析】(1)利用HL即可证明;(2)根据全等三角形的性质可得∠ABP=∠BAP,从而得到PA=PB,即可得证.【详解】解:(1)∵∠C=∠D=Rt∠,AC=BD,AB=BA,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌Rt△BAD,∴∠ABP=∠BAP,∴PA=PB,∴△PAB是等腰三角形.【点睛】本题主要考查了全等三角形的判定及性质,证明Rt△ABC≌Rt△BAD是解题的关键.。
(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(含答案解析)(3)
一、选择题1.如图,点A 为MON ∠的角平分线上一点,过A 点作一条直线分别与MON ∠的边OM ON 、交于,B C 两点,点P 为BC 的中点,过P 作BC 的垂线交OA 的延长线于点D ,连接DB DC 、,若130MON ∠=︒,则BDC ∠=( )A .70︒B .60︒C .50︒D .40︒2.如图,在Rt △ABC 中,∠BAC=90°,∠C=45°,AD ⊥BC 于点D ,∠ABC 的平分线分别交 AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交 BC 于点N ,连接EN ,下列结论:①△AFE 为等腰三角形;②DF= DN ;③AN = BF ;④EN ⊥NC .其中正确的结论有( )A .1个B .2个C .3个D .4个3.如图,在ABC ∆中,90C ∠=︒,15B ∠=︒,DE 垂直平分AB ,交BC 于点E ,BE=10cm ,则AC 等于( )A .6cmB .5cmC .4cmD .3cm 4.等腰三角形的一个角为40︒,则其底角的度数为( ).A .40︒B .70︒C .40︒或70︒D .50︒或70︒5.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交边AC 于点D ,则DE 的长为( )A .13B .12C .32D .26.如图,在四边形ABCD 中,90A BDC ∠=∠=︒,C ADB ∠=∠,点P 是BC 边上的一动点,连接DP ,若3AD =,则DP 的长不可能是( )A .2B .3C .4D .57.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C .5D .78.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB ∠的度数为( )A .105︒B .120︒C .135︒D .150︒9.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm 10.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( )A .65°B .105°C .55°或105°D .65°或115°11.如图,ABC 中,AB 的垂直平分线分别交AB 、BC 于点D 、E ,AC 的垂直平分线分别交AC 、BC 于点F 、G ,若100BAC ∠=︒,则EAG ∠的度数是( )A .10°B .20°C .30°D .40°12.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上D .:DACABCSS=1:2二、填空题13.如图,在△ABC 中,边AB 、AC 的垂直平分线交于点O ,若∠BOC =80°,则∠A =_____.14.如图,某住宅小区在施工过程中留下了一块空地四边形ABCD ,经测量,3m AB =,4m BC =,12m CD =,13m DA =,90B ∠=︒.小区美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地需花_________元.15.在锐角ABC 中,AB AC =,CE 是高,且36ECA ∠=︒,平面内有一异于点A ,B ,C ,E 的点D ,若ABC CDA △△≌,则DAE ∠的度数为______.16.如图,80AOB ∠=︒,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE △是等腰三角形,那么OEC ∠的度数为________.17.如图,在△ABC 中,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,下面四个结论:①∠AFE=∠AEF ;②AD 垂直平分EF ;③BFD CED S BFS CE∆∆=;④EF//BC ;一定成立的结论是______(请将正确结论的序号填在横线上)18.如图,30,AOB OC ︒∠=为AOB ∠内部一条射线,点P 为射线OC 上一点,6OP =,点,M N 分别为,OA OB 边上动点,则MNP △周长的最小值为______.19.如图,//AB CD 、BAC ∠的平分线AP 与ACD ∠的平分线CP 相交于点P ,作PE AC ⊥于点E .若3PE =,则两平行线AB 与CD 间的距离为________ .20.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.三、解答题21.如图,ABC ,其中AC BC >.(1)尺规作图:作AB 的垂直平分线交AC 于点P (要求:不写作法,保留作图痕迹); (2)若8,AB PBC =的周长为13,求ABC 的周长;(3)在(2)的条件下,若ABC 是等腰三角形,直接写出ABC 的三条边的长度. 22.如图,△ABC 的三个顶点都在方格纸的格点上,其中点A 的坐标是(-1,0),B 点坐标是(-3,1),C 点坐标是(-2,3).(1)作△ABC 关于y 轴对称的图形△DEF ,其中A 、B 、C 的对应点分别为D 、E 、F ; (2)动点P 的坐标为(0,t ),当t 为何值时,PA +PC 的值最小,并写出PA +PC 的最小值;(3)在(1)的条件下,点Q 为x 轴上的动点,当△QDE 为等腰三角形,请直接写出Q 点的坐标.23.如图,//CD AB ,BC 平分ACD ∠,CF 平分ACG ∠,40BAC ∠=,12∠=∠.解答下列问题:(1)求1∠度数; (2)求4ACE∠∠的值. 24.如图,等边△ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC . (1)如图①,点E 为AB 的中点,求证:AE=DB .(2)如图②,点E 在边AB 上时,AE DB (填:“>”,“<”或“=”).理由如下:过点E 作EF ∥BC ,交AC 于点F (请你完成以下解答过程).(3)在等边△ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED=EC .若AB=1,AE=2时,直接写出CD 的长.25.如图,在△ABC 中,AB 边的垂直平分线l 1交BC 于点D ,AC 边的垂直平分线l 2交BC 于点E ,l 1与l 2相交于点O ,连接OB ,OC ,若△ADE 的周长为6 cm ,△OBC 的周长为16 cm .(1)求线段BC 的长;(2)连接OA ,求线段OA 的长; (3)若∠BAC =120°,求∠DAE 的度数.26.在△ABC中,AB=AC,∠BAC=90,BD平分∠AB C交AC于点D.(1)如图1,点F为BC上一点,连接AF交BD于点E.若AB=BF,求证:BD垂直平分AF.(2)如图2,CE⊥BD,垂足E在BD的延长线上.试判断线段CE和BD的数量关系,并说明理由.(3)如图3,点F为BC上一点,∠EFC=12∠ABC,CE⊥EF,垂足为E,EF与AC交于点M.直接写出线段CE与线段FM的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】过D作DE⊥OM于E,DF⊥ON于F,求出∠EDF,根据角平分线性质求出DE=DF,根据线段垂直平分线性质求出BD=CD,证Rt△DEB≌Rt△DFC,求出∠EDB=∠CDF,推出∠BDC=∠EDF,即可得出答案.【详解】解:如图:过D作DE⊥OM于E,DF⊥ON于F,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°-90°-90°-130°=50°,∵DE⊥OM,DF⊥ON,OD平分∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,DB DC DE DF=⎧⎨=⎩,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:C.【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.2.D解析:D【分析】利用等腰三角形的性质,直角三角形的性质,线段垂直平分线的性质,三角形的全等,角平分线的定义,逐一判断即可.【详解】∵∠BAC=90°,AD⊥BC,BE平分∠ABC ,∴∠DBF+∠DFB=90°,∠ABE+∠AEF=90°,∠ABE=∠DBF,∴∠AEF=∠DFB=∠AFE,∴△AFE为等腰三角形,∴结论①正确;∵△AFE为等腰三角形,M为EF 的中点,∴∠AMF=90°,∴∠DBF=∠DAN,∵∠BAC=90°,∠C=45°,AD⊥BC于点D,∴AD=BD,∴△DBF≌△DAN,∴DF= DN,AN=BF,∴结论②③正确;∵∠ABM=∠NBM,∴∠BMA=∠BMN= 90°,BM=BM,∴△BMA≌△BMN,∴AM=MN,∴BE是线段AN的垂直平分线,∴EA=EN,∴∠EAN=∠ENA=∠DAN,∴AD∥EN,∵AD⊥BC∴EN⊥NC,∴结论④正确;故选D.【点睛】本题考查了等腰三角形的判定和性质,三角形的全等,线段的垂直平分线的定义和性质,平行线的判定和性质,直角三角形的性质,角平分线的定义,熟练掌握知识,灵活运用知识是解题的关键.3.B解析:B【分析】根据线段垂直平分线上的点到两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE=∠B,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AEC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=12 AE.【详解】解:∵DE垂直平分AB,∴AE=BE=10(cm),∴∠BAE=∠B=15°,∴∠AEC=∠BAE+∠B=15°+15°=30°,∵∠C=90°,∴AC=12AE=12×10=5(cm).故选:B . 【点睛】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.4.C解析:C 【分析】结合题意,根据等腰三角形、三角形内角和的性质计算,即可得到答案. 【详解】当40︒角为等腰三角形顶角时,其底角的度数为18040702;当40︒角为等腰三角形底角时,其底角的度数为40︒; 故选:C . 【点睛】本题考查了等腰三角形、三角形内角和的性质;解题的关键是熟练掌握等腰三角形的性质,从而完成求解.5.C解析:C 【分析】过P 作//PF BC 交AC 于F ,得出等边三角形APF ,推出AP PF QC ==,根据等腰三角形性质求出EF AE =,证PFD QCD ∆≅∆,推出FD CD =,推出12DE AC =即可. 【详解】解:过P 作//PF BC 交AC 于F ,//PF BC ,ABC ∆是等边三角形,PFD QCD ∴∠=∠,60APF B ∠=∠=︒,60AFP ACB ∠=∠=︒,60A ∠=︒,APF ∴∆是等边三角形, AP PF AF ∴==, PE AC ⊥, AE EF ∴=,AP PF =,AP CQ =,PF CQ ∴=,在PFD ∆和QCD ∆中 PFD QCD PDF CDQ PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, PFD QCD ∴∆≅∆,FD CD ∴=,EF FD AE CD ∴+=+, 12AE CD DE AC ∴+==, 3AC =,32DE ∴=, 故选:C .【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.6.A解析:A【分析】由三角形的内角和定理和角的和差求出∠ABD =∠CBD ,角平分线的性质定理得AD =DH ,垂线段定义证明DH 最短,求出DP 长的最小值为3,即可得到正确答案 .【详解】过点D 作DH ⊥BC 交BC 于点H ,如图所示:∵∠A=∠BDC=90° ,又∵∠C +∠BDC +∠DBC =180°,∠ADB +∠A +∠ABD =180°,∴∠ABD =∠CBD ,∴BD 是∠ABC 的角平分线,又∵AD ⊥AB ,DH ⊥BC ,∴AD =DH ,又∵AD =3,∴DH =3,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长等于3,即DP 长的最小值为3,故DP 的长不可能是2,【点睛】本题综合考查了三角形的内角和定理,角的和差,角平分线的性质定理,垂线段的定义等知识点,重点掌握角平分线的性质定理,难点是作垂线段找线段的最小值.7.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒,145AC AB BE AE ==+=+=,在Rt △ACE 中,3CE ===; 故答案选A .【点睛】 本题主要考查了等腰三角形的性质,准确计算是解题的关键.8.B解析:B【分析】 由△ABC 为等边三角形,可求出∠BOA =90°,由△ADO 是等腰三角形求出∠ADO =∠AOD =30°,即可求出∠BOD 的度数.【详解】解:∵△ABC 为等边三角形,BO 为中线,∴∠BOA =90°,∠BAC =60°∴∠CAD =180°﹣∠BAC =180°﹣60°=120°,∵AD =AO ,∴∠ADO =∠AOD =30°,∴∠BOD =∠BOA +∠AOD =90°+30°=120°,故选:B .【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.9.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.10.D解析:D【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.【详解】解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°−25°=65°.综上所述,顶角的度数为:65°或115°.故选D.【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况.同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.11.B解析:B【分析】根据三角形内角和定理求出∠C+∠B,根据线段的垂直平分线的性质得到EA=EB,根据等腰三角形的性质得到∠EAB=∠B,同理,∠GAC=∠C,计算即可.【详解】解:∵∠BAC=100°,∴∠C+∠B=180°−100°=80°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EAB=∠B,同理:∠GAC=∠C,∴∠EAB+∠GAC=∠C+∠B=80°,∴∠EAG=100°−80°=20°,故选B.【点睛】本题考查的是线段的垂直平分线的性质和等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用ACD ACD ABC ACD ABD S S S S S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴=11,,22ACD ABD S AC CD S AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.二、填空题13.40°【分析】连接OA根据三角形内角和定理得到∠OBC+∠OCB=100°根据线段垂直平分线的性质得到AO=BOAO=CO根据等腰三角形的性质计算即可【详解】解:连接OA∵∠BOC=80°∴∠OBC解析:40°.【分析】连接OA,根据三角形内角和定理得到∠OBC+∠OCB=100°,根据线段垂直平分线的性质得到AO=BO,AO=CO,根据等腰三角形的性质计算即可.【详解】解:连接OA,∵∠BOC=80°,∴∠OBC+∠OCB=100°,∴∠OAB+∠OBA+∠OAC+∠OCA=80°,∵AB、AC的垂直平分线交于点O,∴AO=BO,AO=CO,∴∠OAB=∠OBA,∠OAC=∠OCA,∴∠B AC=∠OAB+∠OAC=40°,故答案为:40°.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.3600【分析】连接AC根据勾股定理的性质计算得AC;根据勾股定理的逆定理推导得计算得从而得四边形面积;结合草坪每平方米100元通过计算即可得到答案【详解】如图连接AC∵∴∵∴∴∴∴四边形面积为:∵解析:3600【分析】S;根据勾股定理的逆定理,推导得连接AC,根据勾股定理的性质,计算得AC、ABCS,从而得四边形ABCD面积;结合草坪每平方米100元,通∠=︒,计算得ACD90ACD过计算即可得到答案.【详解】如图,连接AC∵3m AB =,4m BC =,90B ∠=︒ ∴225AC AB BC m +=,2162ABC S AB BC m =⨯=△ ∵12m CD =,13m DA =∴22222512169DA AC CD =+=+=∴90ACD ∠=︒ ∴21302ACD S AC CD m =⨯=△ ∴四边形ABCD 面积为:236ABC ACD S S m +=△△∵草坪每平方米100元∴铺满这块空地需花:361003600⨯=元,故答案为:3600.【点睛】本题考查了勾股定理及其逆定理的知识;解题的关键是熟练掌握勾股定理和勾股定理逆定理,从而完成求解.15.117°或9°【分析】根据等腰三角形的性质和全等三角形的性质解答即可【详解】如图所示∵在△ABC 中AB =ACCE 是高且∠ECA =36°∴∠BAC =90°-36°=54°∠ACB =∠ABC =63°∵△解析:117°或9°【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【详解】如图所示,∵在△ABC 中,AB =AC ,CE 是高,且∠ECA =36°,∴∠BAC =90°-36°=54°,∠ACB =∠ABC =63°,∵△ABC ≌△CDA ,∴∠CAD =∠ACB =63°,∴∠DAE =∠CAD+∠BAC =63°+54°=117°,同理,∠D1AE=∠CAD1-∠BAC=63°-54°=9°,故答案为:117°或9°【点睛】本题考查了全等三角形的性质及等腰三角形的性质,熟练掌握等腰三角形的性质,正确找出对应角是解题关键.16.40°或70°或100°【分析】求出∠AOC根据等腰得出三种情况OE=CEOC=OEOC=CE根据等腰三角形性质和三角形内角和定理求出即可【详解】解:∵∠AOB=80°OC平分∠AOB∴∠AOC=4解析:40°或70°或100°【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【详解】解:∵∠AOB=80°,OC平分∠AOB,∴∠AOC=40°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=40°,∴∠OEC=180°﹣40°﹣40°=100°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=12(180°﹣40°)=70°;③当E在E3时,OC=CE,则∠OEC=∠AOC=40°;故答案为:100°或70°或40°.【点睛】本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,用了分类讨论思想.17.①②③【分析】由三角形ABC 中∠BAC 的平分线交BC 于点D 过点D 作DE ⊥ACDF ⊥AB 根据角平分线的性质可得DE=DF ∠ADE=∠ADF 然后根据全等三角形的性质可得AF=AE 继而证得①∠AFE=∠A解析:①②③【分析】由三角形ABC 中,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AC ,DF ⊥AB ,根据角平分线的性质,可得DE=DF ,∠ADE=∠ADF ,然后根据全等三角形的性质,可得AF=AE ,继而证得①∠AFE=∠AEF ;又由线段垂直平分线的判定,可得②AD 垂直平分EF ;然后利用三角形的面积公式求解即可得③BFD CED S BF S CE ∆∆=,EF 平行BC 不能判断,于是可得④ . 【详解】解:①∵三角形ABC 中,∠BAC 的平分线交BC 于点D ,DE ⊥AC ,DF ⊥AB ,∴∠ADE=∠ADF ,DF=DE ,∵AD=AD ,∴Rt △ADF ≌Rt △ADE (HL ),∴AF=AE ,∴∠AFE=∠AEF ,故正确;②∵DF=DE ,AF=AE ,∴点D 在EF 的垂直平分线上,点A 在EF 的垂直平分线上,∴AD 垂直平分EF ,故正确;③∵12BFD DF S BF ∆=•,S △CDE =12CE DE •,DF=DE , ∴BFD CED S BF S CE∆∆=;故正确; ④∵∠EFD 不一定等于∠BDF ,∴EF 不一定平行BC .故错误.故答案为:①②③.【点睛】此题考查了角平分线的性质、线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.18.6【分析】作点P 关于OA 的对称点P1点P 关于OB 的对称点P2连结P1P2与OA 的交点即为点M 与OB 的交点即为点N 则此时MN 符合题意求出线段P1P2的长即可【详解】解:作点P 关于OA 的对称点P1点P 关解析:6【分析】作点P 关于OA 的对称点P 1,点P 关于OB 的对称点P 2,连结P 1P 2,与OA 的交点即为点M ,与OB 的交点即为点N ,则此时M 、N 符合题意,求出线段P 1P 2的长即可.【详解】解:作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2与OA的交点即为点M,与OB的交点即为点N,△PMN的最小周长为PM+MN+PN=P1M+MN+P2N=P1P2,即为线段P1P2的长,连结OP1、OP2,则OP1=OP2=OP=6,又∵∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形,∴P1P2=OP1=6,即△PMN的周长的最小值是6.故答案是:6.【点睛】本题考查了等边三角形的性质和判定,轴对称−最短路线问题的应用,关键是确定M、N的位置.19.6【分析】先过点P作FG⊥AB可以得到FG⊥CD根据角平分线的性质可得OE=OF=OG即可求得AB与CD之间的距离【详解】解:过点P作FG⊥AB即PF⊥AB∵AB∥CD∴FG⊥CD即PG⊥CD∴FG解析:6【分析】先过点P作FG⊥AB,可以得到FG⊥CD,根据角平分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.【详解】解:过点P作FG⊥AB,即PF⊥AB.∵AB∥CD,∴FG⊥CD,即PG⊥CD.∴FG就是AB与CD之间的距离.∵∠BAC与∠DCA的平分线相交于点P,PE⊥AC,PF⊥AB,PG⊥CD.∴PE=PF,PE =PG,∴PE=PF=PG,∴AB与CD之间的距离=2•PE=2×3=6.故答案为:6.【点睛】本题主要考查角平分线上的点到角两边的距离相等的性质,作出AB 与CD 之间的距离是正确解决本题的关键.20.【分析】先利用同角的余角相等得到=再通过证得到即再利用三角形内角和得可得最后利用角的和差即可得到答案=【详解】证明:∵∴∴=又∵∴∴即∵∴即∴=故答案为:【点睛】本题考查了直角三角形的性质内角和定理 解析:=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】 本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.三、解答题21.(1)画图见解析;(2)△ABC 的周长=21;(3)AB=8,AC=8,BC=5.【分析】(1)根据垂直平分线的作法作出图形即可;(2)根据垂直平分线的性质可得AP =BP ,从而得出AC +BC 的值,再根据AB =8,即可求得△ABC 的周长;(3)分两种情况进行讨论即可.【详解】解:(1)如图所示:即PQ 为所求;;(2)如图所示:∵AB的垂直平分线交AC于点P,∴PA=PB,∵△PBC的周长为13,∴PB+PC+BC=13,∴PA+PC+BC=13,即AC+BC=13,∴△ABC的周长=AB+AC+BC=8+13=21;(3)∵AC>BC,∴分两种情况,①AC=AB=8时,BC=21-AC-BC=21-8-8=5;②BC=AB=8时,AC=21-AB-BC=21-8-8=5,∵AC>BC,∴不合题意舍去;综上所述,若△ABC是等腰三角形,△ABC的三条边的长度为AB=8,AC=8,BC=5.【点睛】本题是三角形综合题目,考查了线段垂直平分线的性质、等腰三角形的性质、尺规作图、三角形周长等知识.本题综合性强,熟练掌握等腰三角形的性质和线段垂直平分线的性质是解题的关键.22.(1)见解析;(2)t=1,最小值为323)Q(51,051,0)或(5,0)或(94,0) 【分析】 (1)分别作出A ,B ,C 的对应点D ,E ,F 即可. (2)连接CD 交y 轴于点P ,连接PC ,点P 即为所求作.(3)根据等腰三角形的判定画出图形分类求解即可.【详解】解:(1)如图,△DEF 即为所求作;(2)如图,点P 即为所求作,点P 的坐标为(0,1),∴当1t =时,PA +PC 的值最小,最小值为CD=223332+=;(3)DE 22215=+=,如图,当5Q 的坐标为:Q 1(51,0),Q 251,0); 当5Q 的坐标为:Q 3(5,0);当DQ=EQ 时,设Q (m ,0),∵D (1,0),E (3,1),2DQ =2EQ ,∴()()222131m m -=-+, 解得:94m =. ∴Q 4(94,0); 综上,满足条件的点Q 的坐标为:(1,01,0)或(5,0)或(94,0). 【点睛】 本题考查了作图-轴对称变换,等腰三角形的性质,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(1)70°;(2)32 【分析】(1)根据角平分线的性质可得∠ACB =12∠ACD ,∠ACF =12∠ACG ,再利用平角定义可得∠BCF =90°,进而可得CB ⊥CF ,计算出∠ACB 的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;(2)利用三角形内角和计算出∠3的度数,然后计算出∠ACE 的度数,根据∠4的度数可得结果.【详解】解:(1)∵BC 平分∠ACD ,CF 平分∠ACG ,∴∠ACB =12∠ACD ,∠ACF =12∠ACG , ∵∠ACG +∠ACD =180°,∴∠ACF +∠ACB =90°,∴CB ⊥CF ,∵∠BAC =40°,∵CD//AB ,∴∠ACG =40°,∴∠ACF =20°,∴∠ACB =90°-20°=70°,∴∠BCD =70°,∵CD ∥AB ,∴∠2=∠BCD =70°,∵∠1=∠2,∴∠1=70°;(2)∵∠BCD =70°,∴∠ACB =70°,∵∠1=∠2=70°,∴∠3=40°,∴∠ACE =30°,∵CF 平分∠ACG ,∴∠ACF =∠4=20°, ∴4ACE ∠∠=3020︒︒=32. 【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.24.(1)见解析;(2)=,理由见解析;(3)1或3【分析】(1)根据等腰三角形的三线合一得到CE为∠ACB的平分线,证明BD=BE,等量代换证明结论;(2)过点E作EF∥BC,交AC于点F,证明△DBE≌△EFC,根据全等三角形的性质证明;(3)分点E在AB的延长线上和点E在BA的延长线上两种情况,根据全等三角形的性质解答.【详解】(1)证明:∵△ABC为等边三角形,点E为AB的中点,∴CE为∠ACB的平分线,∴∠BCE=12∠ACB=12×60°=30°.∵ED=EC,∴∠D=∠DCE=30°,∵∠ABC=60°,∠D+∠DEB=∠ABC,∴∠DEB=30°,∴BD=BE,∵AE=BE,∴AE=BD;(2)解:AE=BD,理由如下:如图,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠ACB=∠ABC=60°,∵EF∥BC,∴∠AEF=∠ABC=∠AFE=∠ACB=60°,∴△AEF为等边三角形,∴AB=AC,∴BE=CF,∴∠DBE=∠EFC=120°,在△DBE 和△EFC 中,DE EC DBE EFC BE FC =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EFC (SAS ),∴EF=DB ,∵AE=EF ,∴AE=DB ;故答案为:=;(3)当点E 在BA 的延长线上时,如图③,作EF ∥BC 交CA 的延长线于F ,则△AEF 为等边三角形,∴AF=AE=EF=2,∠BEF=60°,∴∠CEF=60°+∠BEC ,∵∠EDC=∠ECD=∠B+∠BEC=60°+∠BEC ,∴∠CEF=∠EDB ,在△CEF 和△EDB 中,603CEF EDB F B EB CF ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴△CEF ≌△EDB (AAS ),∴BD=EF=2,∴CD=BD-BC=1,当点E 在AB 的延长线上时,如图,作EF ∥BC 交AC 的延长线于F ,则△AEF 为等边三角形,∴AF=AE=EF=2,∠AEF=60°,∴∠CEF=60°-∠AEC ,∵∠D=∠ECD=∠ABC+∠AEC=60°+∠AEC ,∴∠CEF=∠D ,在△CEF 和△EDB 中,601CEF D F DBE EB CF ∠=∠⎧⎪∠=∠=︒⎨⎪==⎩,∴△CEF ≌△EDB (AAS ),∴BD=EF=2,∴CD=BD+BC=3,综上所述,CD=1或3.【点睛】本题考查了等边三角形的性质、三角形全等的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(1)6 cm ;(2)5 cm ;(3)∠DAE =60°【分析】(1)根据线段垂直平分线的性质得到DA =DB ,EA =EC ,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质得到OA =OB ,OA =OC ,根据三角形的周长公式计算即可;(3)根据∠BAC =120°,得到∠ABC +∠ACB =60°,根据线段垂直平分线的性质得到DA =DB ,EA =EC ,从而得到∠BAD =∠ABC ,∠EAC =∠ACB ,继而求得∠DAE 的度数.【详解】解:(1)∵l 1是AB 边的垂直平分线,∴DA =DB ,∵l 2是AC 边的垂直平分线,∴EA =EC ,∴BC =BD +DE +EC =DA +DE +EA =6 cm .(2)连接OA ,∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=16 cm,BC=6 cm,∴OA=OB=OC=5 cm.(3)∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC-∠BAD-∠EAC=60°.【点睛】本题考查了线段垂直平分线的性质.线段垂直平分线上的点到线段的两个端点的距离相等.26.(1)见解析;(2)BD=2CE,理由见解析;(3)FM=2CE.【分析】(1)由BD平分∠AB C,可得∠ABE=∠FBE,可证△ABE≌△FBE(SAS),可得AE=FE,∠AEB=∠FEB=12×180°=90°即可;(2)延长CE,交BA的延长线于G,由CE⊥BD,∠ABE=∠FBE,可得GE=2CE=2GE,可证△BAD≌△CAG(ASA),可得BD=CG=2CE;(3)作FM的中垂线NH交CF于N,交FM于H,由FN=MN,MH=FH=12FM,可得∠NMH=∠NBH,由∠EFC=12∠ABC=22.5°,可求∠ABC=∠ACB=∠MNC=45°,可得NM=CM=FN,由外角∠EMC=∠MFC+∠MCF=22.5°+45°=67.5°,可求∠ECM=90°-∠EMC=22.5°,可证△FNH≌△CME(AAS),可得FH=CE即可.【详解】证明(1)∵BD平分∠AB C,∴∠ABE=∠FBE,∵BA=BF,BE=BE,∴△ABE≌△FBE(SAS),∴AE=FE,∠AEB=∠FEB=1× 180°=90°,2∴BD垂直平分AF.(2)BD=2CE,理由如下:延长CE,交BA的延长线于G,∵CE⊥BD,∠ABE=∠FBE,∴GE=2CE=2GE,∵∠CED=90°=∠BAD,∠ADB=∠EDC,∴∠ABD=∠GCA,又AB=AC,∠BAD=∠CAG,,∴△BAD≌△CAG(ASA),∴BD=CG=2CE,(3)FM=2 CE,理由如下:作FM的中垂线NH交CF于N,交FM于H,∴FN=MN,MH=FH=1FM,2∴∠NMH=∠NBH,∵∠EFC=1∠ABC=22.5°,2∠ABC=∠ABC,∴∠MNC=2∠NFH=2×12∵AB=AC,∠BAC=90,∴∠ABC=∠ACB=∠MNC=45°,∴NM=CM=FN,∵∠EMC=∠MFC+∠MCF=22.5°+45°=67.5°,∴∠ECM=90°-∠EMC=22.5°,∴∠NFH=∠MCE,又∵∠FHN=∠E=90°,∴△FNH≌△CME(AAS),∴FH=CE,∴FM=2FH=2CE.【点睛】本题考查角平分线性质,三角形全等判定与性质,直角三角形两锐角互余,线段垂直平分线,三角形外角性质,掌握角平分线性质,三角形全等判定与性质,直角三角形两锐角互余,线段垂直平分线是解题关键.。
北师大版八年级数学下册第一章三角形的证明单元测试题(答案及解析)
北师大版八年级下册第一章三角形的证明测试题一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°2.一个等腰三角形的两边长分别为3,6,则它的周长为()A.9 B.12 C.15 D.12或153.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.37.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm²,则S阴影等于()A.2cm²B.1cm²C.cm²D.cm²二.填空题(共5小题)11.等边三角形是一个轴对称图形,它有______条对称轴.12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为______.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为______.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?北师大版八年级下册第一章三角形的证明测试题参考答案与试题解析一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选B.2.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.7.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°.故选B.8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠A=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ABC=∠ACB,∠1=∠2,∴∠PBA=∠PCB,∴∠1+∠ABP=∠PCB+∠2=140°×=70°,∴∠BPC=180°﹣70°=110°.故选A.9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°.故选:C.10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.cm2 D.cm2【解答】解:根据三角形的面积公式,知:等底等高的两个三角形的面积相等.即有:S阴影=S△BCE=S△ABC=1cm2.故选:B.二.填空题(共10小题)11.等边三角形是一个轴对称图形,它有 3 条对称轴【解答】解:等边三角形是轴对称图像,它有三个顶点,所以对应3条对称轴故答案为:312.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为32a .【解答】解:∵△A1B1A2是等边三角形∴∠B1A1A2=60°,A1B1=B1A2=A1A2∵∠MON=30°∴∠OB1A1=30°(三角形的一个外角等于和它不相邻的两个外角和∠OB1A1=∠B1A1A2-∠MON)∴OA1=A1B1(等边对等角)∴OA1=A1A2=a同理,根据∠MON=∠OB2A2,可得:A2A3=A2B2=OA1+A1A2=2A1A2=2a同理,可推出:A3A4=2A2A3=4a同理,可推出:A4A5=2A3A4=8a同理,可推出:A5A6=2A4A5=16a同理,可推出:A6A7=2A5A6=32a 即题目所求另外我们不难发现,第n个(△A1B1A2为第一个)等边三角形的边长为AnAn+1=(2^n-1)a 注:2的n-1次方倍的a三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.另外一种证法:证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°在Rt△ABD和Rt△BAC中∴Rt△ABD≌Rt△BAC(HL)∴AD=BC,在△AOD和△BOC中,∴△AOD≌△BOC(AAS),∴OA=OB,即△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【解答】解:(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C,∴△ABC为等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.。
(必考题)初中数学八年级数学下册第一单元《三角形的证明》检测卷(有答案解析)
一、选择题1.如图,在Rt ABC △中,90,ACB AC BC ∠=︒≠.点P 是直角边所在直线上一点,若PAB △为等腰三角形,则符合条件的点P 的个数最多为( )A .3个B .6个C .7个D .8个2.如图,在△ABC 中,AB =AC ,∠BAC =64°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点E 、F 分别在BC 、AC 上,点C 沿EF 折叠后与点O 重合,则∠BEO 的度数是( )A .26°B .32°C .52°D .58°3.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,AD 是ABC ∆的中线,且6AD =,AE 是BAD ∠的角平分线,//DF AB 交AE 的延长线于点F ,则DF 的长为( )A .3B .4C .5D .6 4.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠A =30°,BD =1,则AD 的长为( )A .3B .2C .3D .235.如图,在平面直角坐标系中,点A 1在x 轴的正半轴上,B 1在第一象限,且△OA 1B 1是等边三角形.在射线OB 1上取点B 2,B 3,…,分别以B 1B 2,B 2B 3,…为边作等边三角形△B 1A 2B 2,△B 2A 3B 3,…使得A 1,A 2,A 3,…在同一直线上,该直线交y 轴于点C .若OA 1=1,∠OA 1C =30°,则点B 9的横坐标是( )A .2552B .5112C .256D .51326.在下列命题中,真命题是( )A .同位角相等B .到线段距离相等的点在线段垂直平分线上C .三角形的外角和是360°D .角平分线上的点到角的两边相等7.如图,在ABC 中,以点A 为圆心,AC 的长为半径作弧,与BC 交于点E ,分别以点E 和点C 为圆心、大于12EC 的长为半径作弧,两弧相交于点P ,作射线AP 交BC 于点D .若45B ∠=︒,2C CAD ∠=∠,则BAE ∠的度数为( )A .15︒B .25︒C .30D .35︒ 8.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB ∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 9.如图AD 是ABC 的角平分线,DE AB ⊥于E ,点F ,G 分别是AB ,AC 上的点,且DF DG =,ADG 与DEF 的面积分别是10和3,则ADF 的面积是( )A .4B .5C .6D .710.如图,ABC ∆中,AB AC =,3BC =,6ABC S ∆=,AD BC ⊥于点D ,EF 是AB 的垂直平分线,交AB 于点E ,交AC 于点F ,在EF 上确定一点P ,使PB PD +最小,则这个最小值为( )A .3.5B .4C .4.5D .511.如图,每个小正方形的边长都相等,A,B,C是小正方形的顶点,则ABC∠的度数为()A.45︒B.50︒C.55︒D.60︒12.如图,以△ABC的边AB、AC为边向外作等边△ABD与等边△ACE,连接BE交DC于点F,下列结论:①CD=BE;②FA平分∠DFE;③∠BFC=120°;④AFEEFCS AFS FC∆∆=.其中正确的有()A.4个B.3个C.2个D.1个二、填空题13.在平面直角坐标系中,一块等腰直角三角板如图放置,其中(2,0)A,(0,1)B,则点C的坐标为_______.14.如图,己知等边△ABC的边长为8cm,∠A=∠B=60°,点D为边BC上一点,且BD=3cm.若点M在线段CA上以2cm/s的速度由点C向点A运动,同时,点N在线段AB上由点A向点B运动,△CDM与△AMN全等,则点N的运动速度是______15.如图,在△ABC中,∠ACB=90°,AC=6,AB=10,点O是AB边的中点,点P是射线AC上的一个动点,BQ∥CA交PO的延长线于点Q,OM⊥PQ交BC边于点M.当CP=1时,BM 的长为_____.16.已知C ,D 两点在线段AB 的垂直平分线上,且∠ACB =50°,∠ADB =86°,则∠CAD 的度数是_____.17.如图,∠MON =33°,点P 在∠MON 的边ON 上,以点P 为圆心,PO 为半径画弧,角OM 于点A ,连接AP ,则∠APN =____.18.如图,在ABC ∆中,AB AC =,36BAC ∠=︒,BD 是ABC ∠的平分线,交AC 于点D ,E 是AB 的中点.连接ED 并延长,交BC 的延长线于点F ,连接AF .写出图中三角形中所有的等腰三角形______.19.如图,已知∠MON=30°,点123,,A A A ...在射线ON 上,点123,,B B B ...在射线OM 上,112233334,,A B A A B A A B A ∆∆∆..均为等边三角形,若11OA =,则202020202021A B A ∆的边长为_______.20.如图,点M 是等边△ABC 的边BC 的中点,AB =4,射线CD BC ⊥于点C ,点P 是射线CD 上一动点,点N 是线段AB 上一动点,当MP +NP 的值最小时,则AN 长为____.三、解答题21.如图,在ABC 中,AB BC =,90ABC ∠=︒,点E 在BC 上,点F 在AB 的延长线上,且AE CF =.(1)求证:ABE CBF △≌△;(2)若75ACF ∠=︒,求EAC ∠的度数.22.如图,在△ABC 中,∠BAC =62°,∠B =78°,AC 的垂直平分线交BC 于点D . (1)求∠BAD 的度数;(2)若AB =8,BC =11,求△ABD 的周长.23.问题提出(1)如图1,在直角△ABC 中,∠BAC =90°,AC =12,AB =5,若P 是BC 边上一动点,连接AP ,则AP 的最小值为______.问题探究(2)如图2,在等腰直角△ABC 中,∠ABC =90°,AC =m ,求边AB 的长度(用含m 的代数式表示).问题解决(3)在图3中,若AC =8,点D 是BC 边的中点,若P 是AB 边上一动点,试求PD 2AP 的最小值.24.如图,在△ABC中,AC=BC,∠ACB=90°,延长CA至点D,延长CB至点E,使AD=BE,连接AE,BD,交点为O.(1)求证:OB=OA;(2)连接OC,若AC=OC,则∠D的度数是度.25.如图1,将三角形纸片ABC,沿AE折叠,使点B落在BC上的F点处;展开后,再沿BD折叠,使点A恰好仍落在BC上的F点处(如图2),连接DF.(1)求∠ABC的度数;(2)若△CDF为直角三角形,且∠CFD=90°,求∠C的度数;(3)若△CDF为等腰三角形,求∠C的度数.26.如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.(1)求证:∠DBE=∠DCF;(2)求证:△ABC为等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分为三种情况:①BP=AB,②AP=AB,③AP=BP,再求出答案即可.【详解】解:作BC、AC所在直线,然后分别以B、A点为圆心,以AB为半径作圆分别交BC、AC 所在直线于6点,再作AB的垂直平分线与BC所在直线交于2点,总共符合条件的点P的个数最多有8个,故选:B.【点睛】本题考查了等腰三角形的判定,线段垂直平分线的性质.能求出符合的所有情况是解此题的关键.2.C解析:C【分析】连结OB,根据角平分线定义得到∠OAB=32°,再根据等腰三角形的性质得到∠ABC=∠ACB,再根据线段垂直平分线的性质得到OA=OB,则∠OBA=∠OAB,所以得出∠1,由于AB=AC,OA平分∠BAC,根据等腰三角形的性质得OA垂直平分BC,则BO=OC,所以得出∠1=∠2,然后根据折叠的性质得到EO=EC,于是∠2=∠3,再根据三角形内角和定理计算∠OEC,解答即可.【详解】解:连结OB、OC,∵∠BAC=64°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=32°,∵AB=AC,∠BAC=64°,∴∠ABC=∠ACB=58°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠OAB=32°,∴∠1=58°-32°=26°,∵AB=AC,OA平分∠BAC,∴OA垂直平分BC,∴BO=OC,∴∠1=∠2=26°,∵点C沿EF折叠后与点O重合,∴EO=EC,∴∠2=∠3=26°,∴∠BEO=∠2+∠3=52°,故选择:C.【点睛】本题考查了线段的垂直平分线的性质和等腰三角形的性质,折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.D解析:D【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,根据等角对等边求出AD=DF,即可求解.【详解】∵AB= AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°= 60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=1260°= 30°,∵DF// AB∴∠F=∠BAE= 30°,∴∠DAE=∠F= 30°,∴AD= DF=6;故答案为:D.【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质是解题的关键.4.C解析:C【分析】求出∠BCD=30°,根据含30°角的直角三角形的性质求出BC=2,求出AB=4,即可得出答案.【详解】解:∵△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=30°,∵BD=1,∴BC=2BD=2,∵在△ACB中,∠ACB=90°,∠A=30°,∴AB=2BC=4,∴AD=AB-BD=4-1=3,故选:C.【点睛】本题考查了三角形的内角和定理,含30度角的直角三角形的性质的应用,解题的关键是得出BC=2BD和AB=2BC,难度适中.5.B解析:B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴OC=3,∴点C 的坐标为(0,-,∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,,设直线A 1A 2的解析式为y kx =-∴03k =-,∴k =∴直线A 1A 2的解析式为33y x =-, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(12,∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,2),同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,∴A 2的纵坐标为2,则233x =-, 解得:52x =,∴点A 2的坐标为(52, ∴B 1A 2=2,同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=, ,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律. 6.C解析:C【分析】直接利用同位角的定义及线段垂直平分线的判定、多边形的外角和、角平分线的性质等知识分别判断得出答案.【详解】解:A.同位角相等,错误,是假命题;B.不是到线段距离相等的点在线段垂直平分线上,而是到线段两端点距离相等的点在这条线段的垂直平分线上,是假命题;C.三角形的外角和是360°,是真命题;D.角平分线上的点到角的两边的距离相等,不是角平分线上的点到角的两边相等,是假命题.故选:C .【点睛】本题主要考查了命题与定理,正确掌握相关定义是解题关键.7.A解析:A【分析】根据作图过程可得,AP是EC的垂直平分线,可得AE=AC,∠ADB=∠ADC=90°,再根据∠B=45°,∠C=2∠CAD,即可求出∠CAD的度数,进而即可求解.【详解】解:由作图过程可知:AP是EC的垂直平分线,也是∠CAE的角平分线,∴AE=AC,∠ADB=∠ADC=90°,∵∠B=45°,∴∠BAD=45°,∵∠C=2∠CAD,∴3∠CAD=90°,∴∠CAD=30°,∴∠EAD=30°,=45°-30°=15°.∴BAE故选:A.【点睛】本题考查了作图−基本作图,直角三角形的性质,解决本题的关键是掌握基本作图方法.8.B解析:B【分析】由△ABC为等边三角形,可求出∠BOA=90°,由△ADO是等腰三角形求出∠ADO=∠AOD=30°,即可求出∠BOD的度数.【详解】解:∵△ABC为等边三角形,BO为中线,∴∠BOA=90°,∠BAC=60°∴∠CAD=180°﹣∠BAC=180°﹣60°=120°,∵AD=AO,∴∠ADO=∠AOD=30°,∴∠BOD=∠BOA+∠AOD=90°+30°=120°,故选:B.【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.9.A解析:A【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,然后根据S △ADF =S △ADH 列出方程求解即可.【详解】解:如图,过点D 作DH ⊥AC 于H ,∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC∴DF=DH ,在Rt △DEF 和Rt △DGH 中,DE DG DF DH ⎧⎨⎩== , ∴Rt △DEF ≌Rt △DGH (HL ),∴S △EDF =S △GDH =3,同理Rt △ADF ≌Rt △ADH ,∴S △ADF =S △ADH =ADG GDH △△S -S =10-3=7∴S △AED = =7-3=4ADF EDF SS -,故选:A .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键. 10.B解析:B【分析】根据三角形的面积公式得到AD=4,由EF 垂直平分AB ,得到点A ,B 关于直线EF 对称,于是得到AD=PB+PD 的最小值,即可得到结论.【详解】解:∵AB=AC ,BC=3,S △ABC =6,AD ⊥BC 于点D ,∴AD=4,∵EF 垂直平分AB ,∴点A ,B 关于直线EF 对称,∴EF 与AD 的交点P 即为所求,如图,连接PB ,此时PA=PB ,PB+PD=PA+PD=AD ,AD=PB+PD 的最小值,即PB+PD 的最小值为4,故选:B .【点睛】本题考查了轴对称-最短路线问题,线段的垂直平分线的性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.11.A解析:A【分析】由勾股定理及其逆定理可得三角形ABC是等腰直角三角形,从而得到∠ABC 的度数.【详解】解:如图,连结AC,由题意可得:222222+==+==+=AB AC BC1310,125,125,∴AC=BC,222=+,AB AC BC∴△ABC是等腰直角三角形,∴∠ABC=∠BAC=45°,故选A .【点睛】本题考查勾股定理的应用,熟练掌握勾股定理及其逆定理、等腰直角三角形的性质是解题关键.12.A解析:A【分析】过点A作AM⊥CD于M,AN⊥BE于N,过点C作CH⊥BE于H,证明△ADC≌△ABE,可判断①,再证明AM=AN,结合AM⊥CD于M,AN⊥BE于N,可判断②,证明∠ACF+∠BEC+∠ACE=120°,结合三角形的外角的性质可判断③,证明∠FAN=∠FCH=30°,利用含30的直角三角形的性质与勾股定理可得: 33,,22AN AF HC FC == 再利用三角形的面积公式可判断④.【详解】 解:过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,∵△ABD ,△ACE 都是等边三角形,∴AD =AB ,AE =AC ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE .在△ADC 和△ABE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ABE (SAS ),∴CD =BE ,∠AEB =∠ACD ,故①正确∵△ADC ≌△ABE ,∴AM =AN .∵AM ⊥CD 于M ,AN ⊥BE 于N ,∴AF 平分∠DFE ,故②正确.∵∠AEB =∠ACD ,∴∠AEC +∠ACE =120°=∠AEB +∠BEC +∠ACE ,∴∠ACF +∠BEC +∠ACE =120°,∴∠BFC =∠ACF +∠BEC +∠ACE =120°,故③正确,∴∠DFE =120°, ∴∠DFA =∠EFA =60°=∠CFE .∵AN ⊥BE ,CH ⊥EF ,∴∠FAN =∠FCH =30°, ∴22222,3,2,3,AF FN AN AF FN FN FC FH HC FC FH FH ==-===-= ∴33,,22AN AF HC FC ==∴13 22.132AEFEFCEF AN AFS AN AFS CH FCEF CH FC⨯⨯====⨯⨯故④正确.故选:A.【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,角平分线的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.二、填空题13.【分析】如图过点C作CH⊥x轴于H证明△AHC≌△BOA(AAS)可得结论【详解】解:如图过点C作CH⊥x轴于H∵∠AHC=∠CAB=∠AOB=90°∴∠BAO+∠CAH=90°∠CAH+∠ACH=解析:(3,2)【分析】如图,过点C作CH⊥x轴于H.证明△AHC≌△BOA(AAS),可得结论.【详解】解:如图,过点C作CH⊥x轴于H.∵∠AHC=∠CAB=∠AOB=90°,∴∠BAO+∠CAH=90°,∠CAH+∠ACH=90°,∴∠ACH=∠BAO,在△AHC和△BOA中,AHC AOBACH OABAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AHC≌△BOA(AAS),∴AH=OB,CH=OA,∵A(2,0),B(0,1),∴OA=CH=2,OB=AH=1,∴OH=OA+AH=3,∴C(3,2).故答案为:(3,2).【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.14.cm/s或cm/s【分析】由于∠C=∠A所以当△CDM与△AMN全等时分两种情况:①△CDM≌△AMN;②△CDM≌△ANM根据全等三角形的对应边相等求出AN再根据速度=路程÷时间求解即可【详解】解解析:cm/s或52cm/s【分析】由于∠C=∠A,所以当△CDM与△AMN全等时,分两种情况:①△CDM≌△AMN;②△CDM≌△ANM.根据全等三角形的对应边相等求出AN,再根据速度=路程÷时间求解即可.【详解】解:设点M、N的运动时间为ts,则CM=2tcm.∵三角形ABC是等边三角形,∴∠C=∠A=60°,∴当△CDM与△AMN全等时,分两种情况:①如果△CDM≌△AMN,那么AN=CM=2tcm,∴点N的运动速度是2tt=2(cm/s);②如果△CDM≌△ANM,那么CM=AM=12AC=4cm,AN=CD=BC-BD=5cm,∴点M的运动时间为:42=2(s),∴点N的运动速度是52cm/s.综上可知,点N的运动速度是2或52cm/s.故答案为:2 cm/s或52cm/s.【点睛】本题考查了全等三角形的对应边相等的性质,等边三角形的性质,路程、速度与时间之间的关系,进行分类讨论是解题的关键.15.5或1【分析】如图设BM=x首先证明BQ=AP分两种情形利用勾股定理构建方程求解即可【详解】解:如图设BM=x在Rt△ABC中AB=10AC=6∴BC===8∵QB∥AP∴∠A=∠OBQ∵O是AB的解析:5或1【分析】如图,设BM=x,首先证明BQ=AP,分两种情形,利用勾股定理,构建方程求解即可.【详解】解:如图,设BM =x ,在Rt △ABC 中,AB =10,AC =6,∴BC =22AB AC -=22106-=8,∵QB ∥AP ,∴∠A =∠OBQ ,∵O 是AB 的中点,∴OA =OB ,在△OAP 和△OBQ 中,A OBQ OA OBAOP BOQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAP ≌△OBQ (ASA ),∴PA =BQ =6﹣1=5,OQ =OP ,∵OM ⊥PQ,∴MQ =MP ,∴52+x 2=12+(8﹣x )2,解得x =2.5.当点P 在AC 的延长线上时,同法可得72+x 2=12+(8﹣x )2,解得x =1,综上所述,满足条件的BM 的值为2.5或1.故答案为:2.5或1.【点睛】本题考查勾股定理,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题. 16.18°或112°【分析】分点C 与点D 在线段AB 两侧点C 与点D 在线段AB 同侧两种情况根据线段垂直平分线的性质等腰三角形的性质解答【详解】解:如图∵CD 两点在线段AB 的中垂线上∴CA =CBDA =DB ∵C解析:18°或112°【分析】分点C 与点D 在线段AB 两侧、点C 与点D 在线段AB 同侧两种情况,根据线段垂直平分线的性质、等腰三角形的性质解答.【详解】解:如图,∵C、D两点在线段AB的中垂线上,∴CA=CB,DA=DB,∵CD⊥AB,∴∠ACD=12∠ACB=12×50°=25°,∠ADC=12∠ADB=12×86°=43°,当点C与点D在线段AB两侧时,∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣25°﹣43°=112°,当点C与点D′在线段AB同侧时,∠CAD′=∠AD′C﹣∠ACD′=43°﹣25°=18°,故答案为:18°或112°.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.66°【分析】根据等腰三角形的性质可知∠MON=∠PAO再用外角的性质求解即可【详解】解:由作图可知PO=PA∴∠MON=∠PAO=33°∠APN=∠MON+∠PAO=66°故答案为:66°【点睛】解析:66°【分析】根据等腰三角形的性质可知∠MON=∠PAO,再用外角的性质求解即可.【详解】解:由作图可知,PO=PA,∴∠MON=∠PAO=33°,∠APN=∠MON+∠PAO=66°,故答案为:66°.【点睛】本题考查了等腰三角形的性质和外角的性质,解题关键是通过作图得到等腰三角形,依据等腰三角形的性质熟练计算.18.△ABD△BCD△ABC△ACF△ABF【分析】分别求出所有的角度即可求解【详解】解:∵AB=AC∠BAC=36°∴∠ABC=∠ACB=72°△ABC是等腰三角形∵BD是∠ABC 的平分线∴∠ABD=解析:△ABD ,△BCD ,△ABC ,△ACF ,△ABF【分析】分别求出所有的角度,即可求解.【详解】解:∵AB=AC ,∠BAC=36°,∴∠ABC=∠ACB=72°,△ABC 是等腰三角形,∵BD 是∠ABC 的平分线,∴∠ABD=∠CBD=36°=∠BAC ,∴AD=BD ,∠BDC=∠BAC+∠ABD=72°=∠ACB ,∴△ABD 是等腰三角形,BD=BC ,∴△BDC 是等腰三角形,∵AD=BD ,E 是AB 的中点,∴DE 是AB 的中垂线,∴AF=BF ,∴∠ABF=∠BAF=72°,△ABF 是等腰三角形,∴∠CAF=36°=∠AFB ,∴AC=CF ,∴△ACF 是等腰三角形,故答案为:△ABD ,△BCD ,△ABC ,△ACF ,△ABF .【点睛】本题考查了等腰三角形的判定和性质,掌握等腰三角形的性质是本题的关键. 19.【分析】根据等边三角形的性质等腰三角形的性质以及含角的直角三角形得出得出以此类推进而得到答案【详解】∵是等边三角形∴∴∵∴∴∵∴∴∵是等边三角形同理可得:∴∴以此类推∴的边长故答案为:【点睛】本题考 解析:20192【分析】根据等边三角形的性质、等腰三角形的性质以及含30角的直角三角形得出22122A B B A =,得出331244A B B A ==,441288A B B A ==,551216A B B A =,以此类推,进而得到答案.【详解】∵112A B A ∆是等边三角形,∴1121A B A B =,11211212160A B A B A A A A B ∠=∠=∠=︒,∴11120OA B ∠=︒,∵30MON ∠=︒,∴11111801801203030OB A OA B MON ∠=︒-∠-∠=︒-︒-︒=︒,∴1211112306090OB A OB A A B A ∠=∠+∠=︒+︒=︒,∵1130MON OB A ∠=∠=︒,∴1111OA A B ==,∴211A B =,∵233A B A ∆、334A B A ∆是等边三角形,同理可得:∴22122A B B A =,33232A B B A =,∴3123312242A B B A -===,4134412282A B B A -===,51455122162A B B A -===,以此类推,∴202020202021A B A ∆的边长20192=,故答案为:20192.【点睛】本题考查了规律性-图形的变化类,等边三角形的性质、等腰三角形的性质,30角的锐角三角函数,解答本题的关键是通过观察图形的变化寻找出规律.20.1【分析】作点M 关于直线CD 的对称点G 过G 作于N 交CD 与P 再根据等边三角形的性质计算即可;【详解】作点M 关于直线CD 的对称点G 过G 作于N 交CD 与P ∵△ABC 是等边三角形AB=4∴AB=BC=AC=4解析:1【分析】作点M 关于直线CD 的对称点G ,过G 作GN AB ⊥于N ,交CD 与P ,再根据等边三角形的性质计算即可;【详解】作点M 关于直线CD 的对称点G ,过G 作GN AB ⊥于N ,交CD 与P ,∵△ABC 是等边三角形,AB =4,∴AB=BC=AC=4,30G ∠=︒,∵M 是BC 的中点,∴2BM CM CG ===,∴6BG =,在Rt △BNG 中,30G ∠=︒,6BG =,∴3BN =,∴431AN =-=;故答案是1.【点睛】本题主要考查了轴对称最短路径问题,准确计算是解题的关键.三、解答题21.(1)见详解;(2)15°【分析】(1)由AB =CB ,∠ABC =90°,AE =CF ,即可利用HL 证得Rt △ABE ≌Rt △CBF ;(2)由AB =CB ,∠ABC =90°,即可求得∠CAB 与∠ACB 的度数,即可得∠FCB 的度数,又由Rt △ABE ≌Rt △CBF ,即可求得∠EAB 的度数,再得出∠EAC 的度数即可.【详解】(1)证明:∵∠ABC =90°,∴△ABE 与△CBF 为直角三角形.∵在Rt △ABE 与Rt △BCF 中,AB BC AE CF⎧⎨⎩==, ∴Rt △ABE ≌Rt △CBF (HL );(2)∵AB =BC ,∠ABC =90°,∴∠BAC =∠ACB =45°,∵∠ACF =75°,∴∠FCB =30°,∵Rt △ABE ≌Rt △CBF ,∴∠EAB =∠FCB =30°,∴∠EAC =45°-30°=15°.【点睛】此题考查了直角三角形全等的判定与性质,等腰直角三角形的性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(1)22°;(2)19.【分析】(1)利用三角形内角和求得∠C =40°,利用垂直平分线的性质,求得∠DAC =40°,最后计算∠BAD 的度数即可;(2)利用周长的定义,垂直平分线的性质计算即可.【详解】解:(1)∵∠BAC =62°,∠B =78°,∴∠C =180°﹣∠BAC ﹣∠B =180°﹣62°﹣78°=40°,∵DE 垂直平分AC ,∴AD =CD ,∴∠CAD =∠C =40°,∴∠BAD =∠BAC ﹣∠CAD =62°﹣40°=22°;(2)∵AD =CD ,AB =8,BC =11,∴△ABD 的周长=AB+AD+BD =AB+CD+BD =AB+BC =8+11=19.【点睛】本题考查了三角形的内角和定理,线段垂直平分线的性质,熟练运用定理和性质是解题的关键.23.(1)6013;(2)AB =22m ;(3)DP +22PA 的最小值为6 【分析】(1)过A 作AE ⊥CB 于E ,根据点到直线的距离垂线段最短,则AE 即为所求,根据勾股定理求出BC ,再利用等积面积法即可求出AE ,即可解答(2)利用等腰三角形性质,再利用勾股定理即可解答(3)连接PD ,作PE ⊥AC 于点E ,作点D 关于AB 的对称点D ,连接PD ’,则PD PD '=.作D F '⊥AC 于点F ,PD +PE =PD '+PE ≥D F ',当且仅当D 、P 、F 三点共线时,PD +PE 最短,即PF 的长,利用勾股定理求出BC 的长,即可得到D C '的长,再利用勾股定理即可求得D F '的长,即可解答【详解】解:(1)如图1,过A 作AE ⊥CB 于E ,在Rt △ABC 中,∵∠BAC =90°,AB =5,AC =12,∴BC 2212513+=∵1111512132222ABC S AB AC BC AE AE =⋅=⋅=⨯⨯=⨯⨯△, ∴AE =6013(2)∵∠ABC =90°,∴AB 2+BC 2=AC 2,∵AB =AC ,AC =m∴2AB 2=m 2,∴AB 2 (3)如图3,连接PD ,作PE ⊥AC 于点E ,由(2)得PE =22AP ∴PD +22PA =PD +PE 作点D 关于AB 的对称点D ,连接PD ',则PD =PD '.作D F '⊥AC 于点F , PD +PE =PD ' +PE ≥D F ',当且仅当D 、P 、F 三点共线时,PD +PE 最短,∵AC =8,∠A =∠C =45°∴BC =28422= ∵D 是BC 中点,∴BD =DC =22∵点D 与点D 关于直线AB 对称,∴D B '=22即CD '=62又∵D F '⊥AC ,∠C =45°,∴D F FC '=222CD D F FC D F '''=+=∴D F '226= 22PD AP +的最小值为6. 【点睛】本题考查了勾股定理,等腰三角形的性质,以及垂线段最短求线段和最小值,知道线段最短是点的位置并能确定出最小值时点的位置是解题关键.24.(1)见解析;(2)22.5【分析】(1)根据全等三角形的判定和性质得出△ABD ≌△BAE ,进而得出OB=OA ;(2)根据全等三角形的判定和性质以及三角形内角和解答.【详解】证明:(1)∵AC=BC ,∠ACB=90°,∴∠ABC=∠BAC=45°.∴∠EBA=∠DAB=135°.在△ABD 与△BAE 中,135BE AD EBA DAB AB AB =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BAE (SAS ),∴∠DBA=∠EAB ,∴OB=OA ;(2)由(1)得:OB=OA ,在△OBC 与△OAC 中,OB OA OC OC BC AC =⎧⎪=⎨⎪=⎩,∴△OBC ≌△OAC (SSS ),∴∠OCB=∠OCA=12∠ACB=12×90°=45°, ∵AC=BC ,AC=OC ,∴OC=BC , ∴∠CBO=∠COB 1801804567.522OCB ︒︒︒︒-∠-===, 在Rt △BCD 中,∠D=180°-90°-∠CBO=22.5°.故答案为:22.5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,关键是根据全等三角形的判定和性质解答.25.(1)60°;(2)30°;(3)20°或40°.【分析】(1)由折叠的性质可知△ABF 是等边三角形,即可得出结论;(2)根据折叠的性质及三角形内角和定理即可得出结论;(3)根据折叠的性质、三角形外角的性质及等腰三角形的性质表示出∠AFD ,根据平角的定义表示出∠DFC ,然后分三种情况讨论即可得出结论.【详解】解:(1)由折叠的性质可知:AB=AF,BA=BF,∴AB=BF=AF,∴△ABF是等边三角形,∴∠ABC=∠AFB=60°;(2)∵∠CFD=90°,∴∠BFD=90°.由折叠的性质可知:∠BAD=∠BFD,∴∠BAC=∠BAD=90°,∴∠C=180°-∠BAC-∠ABC=180°-90°-60°=30°;(3)设∠C=x°.由折叠的性质可知,AD=DF,∴∠FAD=∠AFD.∵∠AFB=∠FAD+∠C,∴∠FAD=∠AFB-∠C=60°-x,∴∠AFD=60°-x,∴∠DFC=180°-∠AFB-∠AFD=180°-60°-(60°-x)=60°+x.∵△CDF为等腰三角形,∴分三种情况讨论:①若CF=CD,则∠CFD=∠CDF,∴60°+x+60°+x+x=180°,解得:x=20°;②若DF=DC,则∠DFC=∠C,∴60°+x=x,无解,∴此种情况不成立;③若DF=FC,则∠FDC=∠C=x,∴60°+x+x+x=180°,解得:x=40°.综上所述:∠C的度数为20°或40°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的判定与性质,折叠的性质.分三种情况讨论是解答本题的关键.26.(1)见解析(2)见解析【分析】(1)根据HL可证明Rt△DBE≌Rt△DCF;(2)由全等三角形的性质得出∠EBD=∠FCD,由等腰三角形的性质得出∠DBC=∠DCB,则可得出结论.【详解】证明:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.在Rt△BDE和Rt△CDF中,BE CF BD CD =⎧⎨=⎩, ∴Rt △BDE ≌Rt △CDF (HL );(2)∵Rt △DBE ≌Rt △DCF ,∴∠EBD =∠FCD ,∵BD =CD ,∴∠DBC =∠DCB ,∴∠DBC +∠EBD =∠DCB +∠FCD ,即∠ABC =∠ACB ,∴AB =AC .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
2020-2021学年北师大版八年级下册数学 第一章 三角形的证明 单元测试(含解析)
第一章三角形的证明单元测试一.选择题1.在等腰△ABC中,∠A=70°,则∠C的度数不可能是()A.40°B.55°C.65°D.70°2.如图,在等腰三角形△ABC中,AC=BC,AC边上的垂直平分线分别交AC,BC于点D 和点E,若∠BAE=45°,DE=2,则AE的长度为()A.2B.3C.3.5D.43.如图,△ABC是等边三角形,点D是AC的中点,DE⊥BC,CE=3,则AB等于()A.11B.12C.13D.144.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC 的最大值为()A.40B.28C.20D.105.如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个6.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,则AB等于()A.2B.3C.4D.67.如图,在Rt△ABC中,∠BAC=90°,点D在BC上,过D作DF⊥BC交BA的延长线于F,连接AD,CF,若∠CFE=32°,∠ADB=45°,则∠B的大小是()A.32°B.64°C.77°D.87°8.如图,DE是△ABC中AC边的垂直平分线,若BC=4cm,AB=5cm,则△EBC的周长为()A.8cm B.9cm C.10cm D.11cm9.如图,在△ABC中,∠B=15o,∠C=30o,MN是AB的中垂线,PQ是AC的中垂线,已知BC的长为,则阴影部分的面积为()A.B.C.3D.10.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB的角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠F AG=∠FCB;③AF=AG;④BH=CH.A.①②③④B.①②③C.②④D.①③二.填空题11.如图,已知△ABC中,AB=AC,BD⊥AC于D,∠A=50°,则∠DBC的度数是.12.等腰三角形ABC中,∠A=4∠B.若∠A为底角,则∠C=°.13.如图,在△ABC中,AB=AC.AD是BC边上的中线,点E在边AB上,且BD=BE.若∠BAC=100°,则∠ADE的大小为度.14.如图,在Rt△ABC中,∠ABC=90°,CD⊥AB,垂足为点D,∠DCB=30°,BD=1,则AB的长为.15.如图,在Rt△ABC中,∠A=90°,∠B=30°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为.16.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC=6cm,则AC=,DE=.17.如图所示,在△ABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为D、M,分别交BC于E、N,且DE和MN交于点F.(1)若∠B=20°,则∠BAE=;(2)若∠EAN=40°,则∠F=;(3)若AB=8,AC=9,设△AEN周长为m,则m的取值范围为.18.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是.19.如图,AD垂直平分BC于点D,EF垂直平分AB于点F,点E在AC上,BE+CE=20cm,则AB=.20.如图,Rt△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P 为CE中点,连结PF,若CP=2,S△BFP=15,则AB的长度为.三.解答题21.如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=40°.求:(1)∠ADC的大小;(2)∠BAD的大小.22.如图,△ABC中,∠ABC=∠ACB,点D、E分别在AB、AC上,DE∥BC,BE,CD 交于点F.(1)求证:DC=EB;(2)在不添加任何辅助线的情况下,请直接写出图中所有的等腰三角形.23.如图,已知Rt△ABC中,∠ACB=90°,∠A=30°,AC边上的垂直平分线DE交AB 于点D,交AC于E.求:(1)∠BCD的度数;(2)若DE=3,求AB的长.24.如图,在Rt△ABC中,∠ACB=90°,∠CAB=2∠B,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DB=DE.25.如图,在△ABC中,∠ACB为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AC=20,求△ABC的两锐角及AD、DE、EB各为多少?26.(1)如图1,求证:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等;(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,若∠BAC=62°,则∠P AC是度.27.如图,已知四边形ABCD中,∠ABC与∠BCD的平分线交于点O,作OE⊥AB于点E,OF⊥CD于点F.求证:OE=OF.28.如图(1)将三角板ABC与∠DAE摆放在一起,射线AE与AC重合,射线AD在三角形ABC外部,其中∠ACB=30°,∠B=60°,∠BAC=90°,∠DAE=45°.固定三角板ABC,将∠DAE绕点A按顺时针方向旋转,如图(2),记旋转角∠CAE=α.(1)当α为60°时,在备用图(1)中画出图形,并判断AE与BC的位置关系,并说明理由;(2)在旋转过程中,当0°<α<180°,∠DAE的一边与BC平行时,求旋转角α的值;(3)在旋转过程中,当0°<α≤90°时,探究∠CAD与∠BAE之间的关系.(温馨提示:对于任意△ABC,都有∠A+∠B+∠C=180°)参考答案一.选择题1.解:当∠A=∠C时,∠C=70°;当∠A=∠B=70°时,∠C=180°﹣∠A﹣∠B=40°;当∠B=∠C时,∠C=∠B=(180°﹣∠A)=55°;即∠C的度数可以是70°或40°或55°,故选:C.2.解:设∠C=x.∵DE垂直平分线段AC,∴EA=EC,∴∠EAC=∠C=x,∴∠AEB=∠EAC+∠C=2x,∵CA=CB,∴∠B=∠CAB=45°+x,在△ABE中,∵∠BAE+∠B+∠AEB=180°,∴45°+45°+x+2x=180°,∴x=30°,∵∠EDC=90°,DE=2,∴AE=EC=2DE=4,故选:D.3.解:∵△ABC是等边三角形,∴AB=AC,∠C=60°,∵DE⊥BC,∴∠DEC=90°,∴CD=2CE=6,∵点D是AC的中点,∴AC=2CD=12,∴AB=AC=12,故选:B.4.解:如图:延长AB,CD交于点E,∵AD平分∠BAC,∴∠CAD=∠EAD,∵CD⊥AD,∴∠ADC=∠ADE=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴AC=AE,DE=CD;∵AC﹣AB=4,∴AE﹣AB=4,即BE=4;∵DE=DC,∴S△BDC=S△BEC,∴当BE⊥BC时,S△BDC最大,即S△BDC最大=××10×4=10.故选:D.5.解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.6.解:∵在Rt△ABC中,∠A=30°,BC=2,∴AB=2CB=4,故选:C.7.解:如图,取CF的中点T,连接DT,AT.∵∠BAC=90°,FD⊥BC,∴∠CAF=∠CDF=90°,∴AT=DT=CF,∴TD=TC=TA,∴∠TDA=∠TAD,∠TDC=∠TCD,∵∠ADB=45°,∴∠ADT+∠TDC=135°,∴∠ATC=360°﹣2×135°=90°,∴AT⊥CF,∵CT=TF,∴AC=AF,∴∠AFC=45°,∴∠BFD=45°﹣32°=13°,∵∠BDF=90°,∴∠B=90°﹣∠BFD=77°,故选:C.8.解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=AB=5cm,∴△EBC的周长=BC+BE+CE=5+4=9(cm).故选:B.9.解:∵MN是AB的中垂线,PQ是AC的中垂线,AN=BN,AQ=CQ,∴∠BAN=∠B=15°,∠CAQ=∠C=30°,∴∠ANQ=∠B+∠BAN=30°,∠AQN=∠C+∠CAQ=60°,∴∠NAQ=90°,∴BN=AN=NQ,AQ=CQ=NQ,∵BC=,∴NQ+NQ+NQ=3+,∴NQ=2,∴AN=,AQ=1,∴阴影部分的面积=AN•AQ==,故选:B.10.解:∵BE是AC边的中线,∴AE=CE,∵△ABE的面积=,△BCE的面积=AB,∴△ABE的面积=△BCE的面积,故①正确;∵AD是BC边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠F AG+∠DAC=90°,∴∠F AG=∠ACB,∵CF是∠ACB的角平分线,∴∠ACF=∠FCB,∠ACB=2∠FCB,∴∠F AG=2∠FCB,故②错误;∵在△ACF和△DGC中,∠BAC=∠ADC=90°,∠ACF=∠FCB,∴∠AFG=180°﹣∠BAC﹣∠ACF,∠AGF=∠DGC=180°﹣∠ADC﹣∠FCB,∴∠AFG=∠AGF,∴AF=AG,故③正确;根据已知不能推出∠HBC=∠HCB,即不能推出HB=HC,故④错误;即正确的为①③,故选:D.二.填空题11.解:∵AB=AC,∴∠C=∠ABC,∵∠A=50°.∴∠C=∠ABC===65°,∵BD⊥AC,∴∠BDC=90°,∴∠DBC=90°﹣∠C=90°﹣65°=25°.故答案为:25°.12.解:设∠B=x°,当∠A是底角时,∠A=∠C=4∠B=4x°,∵∠A+∠B+∠C=180°,∴4x+x+4x=180,解得x=20,∴∠C=80°故答案为:80.13.解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣∠BAC)=40°,∵BD=BE,∴∠BDE=∠BED=(180°﹣∠B)=70°,∵AB=AC,AD⊥BC,∴∠ADB=90°,∴∠ADE=∠ADB﹣∠BDE=90°﹣70°=20°,故答案为:20.14.解:在Rt△ABC中,∠ABC=90°,∠DCB=30°,∴2BD=BC,∵CD⊥AB,∴∠A=∠DCB=30°,∴2BC=AB,∴AB=4BD,∵BD=1,∴AB=4.故答案为:4.15.解:在Rt△ABC中,∠A=90°,∠B=30°,∴∠ACB=60°,∵MN∥BC,∴∠AMN=∠B=30°,∵∠A=90°,AN=1,∴MN=2AN=2,∵MN平分∠AMC,∠AMN=30°,∴∠AMC=∠NMC=60°,∵CM平分∠ACB,∠ACB=60°,∴∠ACM=ACB=30°,∴∠ACM=∠NMC,∴MNCN=2,∴AC=AN+CN=1+2=3,∵在Rt△ABC中,∠A=90°,∠B=30°,∴BC=2AC=2×3=6,16.解:∵BC=6cm,∴BD=DC=3(cm),∵AD⊥BC,BD=DC,AB=5cm,∴AC=AB=5(cm),∵点C在AE的垂直平分线上,∴EC=AC=5(cm),∴DE=DC+EC=8(cm),故答案为:5cm;8cm.17.解:(1)∵DE是线段AB的垂直平分线,∴EA=EB,∴∠BAE=∠B=20°;(2))∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴∠BAE=∠B,∠CAN=∠C,∵∠EAN=40°,∠B+∠BAE+∠EAN+∠CAN+∠C=180°,∴∠BAE+∠CAN=70°,∴∠BAC=∠BAE+∠CAN+∠EAN=110°,∵∠ADF=∠AMF=90°,∴∠F=360°﹣∠ADF﹣∠AMF﹣∠BAC=360°﹣90°﹣90°﹣110°=70°;(3)∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴△AEN的周长=AE+EN+AN=BE+EN+CN=BC,在△ABC中,AB=8,AC=9,∴9﹣8<BC<9+8,∴1<m<17.故答案为:(1)20°;(2)70°;(3)1<m<17.18.解:∵DE是AB的垂直平分线,∴EA=EB,∴△ACE的周长=AC+CE+EA=AC+CE+EB=AC+CB=11,19.解:∵EF垂直平分AB于点F,∴AE=BE,∵BE+CE=20cm,∴AE+CE=20cm,即AC=20cm,∵AD垂直平分BC于点D,∴AB=AC=20cm,故答案为:20cm.20.解:过E作EG⊥AB于G,连接CF,∵P为CE中点,∵S△EFP=S△CFP,设S△EFP=S△CFP=y,∵BD是AC边上的中线,∴设S△CDF=S△AFD=z,∵S△BFP=15,∴S△BCD=15+y+z,∴S△ABC=2S△BCD=30+2y+2z,∵S△ACE=S△ACF+S△CEF=2y+2z,∴S△ABE=S△ABC﹣S△ACE=30+2y+2z﹣(2y+2z)=30,∵AE是∠CAB的角平分线,∴EG=CE=2CP=4,∴S△ABE=AB•EG=30,∴AB=15,故答案为:15.三.解答题21.解:(1)∵AB=AC,D是BC边上的中点,∴AD⊥BC,即∠ADC=90°;(2)∵∠B=40°,∴∠BAD=50°.22.(1)证明:∵∠ABC=∠ACB,∴AB=AC,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴AB=AD=AC=AE,即BD=CE,在△DBC和△ECB中,,∴△DBC≌△ECB(SAS),∴DC=EB;(2)解:图中所有的等腰三角形为△ABC、△ADE、△DEF、△BCF,理由如下:由(1)得:AB=AC,AD=AE,△DBC≌△ECB,∴△ABC、△ADE是等腰三角形,∠BCD=∠CBE,∴△BCF是等腰三角形,BF=CF,∵DE∥BC,∴∠FDE=∠BCD,∠FED=∠CBE,∴∠FDE=∠FED,∴△DEF是等腰三角形,FE=FD.23.解:(1)∵AC边上的垂直平分线是DE,∴CD=AD,DE⊥AC,∴∠A=∠DCA=30°,∵∠ACB=90°,∴∠BCD=∠ACB﹣∠DCA=90°﹣30°=60°,(2)∵∠B=60°∴∠BCD=∠B=60°∴BD=CD,∴BD=CD=AD=AB,∵DE=3,DE⊥AC,∠A=30°,∴AD=2DE=6,∴AB=2AD=12.24.证明:(1)∵∠ACB=90°,∴∠CAB+∠B=90°,又∵∠CAB=2∠B,∴∠B=30°,∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°;(2)∵∠DAB=30°=∠B,∴AD=DB,∵AC=EC,∠ACB=90°,∴AD=DE,∴DE=DB.25.解:∵△ABC中,∠C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,∴∠ACD=∠DCE=∠ECB=30°,又∵CD⊥AB,AC=20,∴∠A=60°,AD=10,∵∠ACB为直角,∴∠B=30°∵AC=20,∴AB=40,∵CE是△ABC中线,∴AE=BE=20,∴DE=10.26.解:(1)已知:△ABC.求证:∠ABC、∠BCA、∠ACB三个角的平分线相交于点F,且点F到三边的距离相等.证明:如图,作∠ABC的角平分线FB,作∠BCA的角平分线FC,两条线相交于点F,作FG⊥AB于点G,FD⊥BC边于点D,FE⊥AC于点E,∵点F是∠ABC平分线上的一点,∴FG=FD,同理可得,FD=FE,∴FG=FD=FE(等量代换),∴点F在∠BAC的平分线上,∴三角形的三条角平分线相交于一点,并且这一点到三边的距离相等;(2)解:延长BA,作PN⊥BD于N,PF⊥BA于F,PM⊥AC于M,∵CP平分∠ACD,∴∠ACP=∠PCD,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∴∠F AP=∠P AC,∴∠F AC=2∠P AC,∵∠F AC+∠BAC=180°,∴2∠P AC+∠BAC=180°,∴∠P AC=(180°﹣∠BAC)=(180°﹣62°)=59°.故答案为:59.27.证明:作OG⊥BC,∵∠ABC的平分线,OE⊥AB,OG⊥BC,∴OE=OG,∵∠BCD的平分线,OF⊥CD,OG⊥BC,∴OF=OG,∴OE=OF.28.解:(1)当α为60°时,AE⊥BC,如图(1),设AE与BC交于点F,∵∠CAE=α=60°,∠ACB=30°,∴∠AFC=90°,∴AE⊥BC;(2)当AD∥BC时,如图(2),∠DAC=∠C=30°,∵∠DAE=45°,∴∠CAE=α=15°;当AE∥BC时,如图(3),∠B=∠EAB=60°,∴∠CAE=α=∠BAC+∠EAB=150°,故旋转角α的值为15°或150°;(3)①如(2),当α≤45°时,α+∠BAE=90°,α+∠CAD=45°,∴∠BAE﹣∠CAD=45°;②如图(1),当45°<α<90°时,∵∠DAE+∠CAD+∠BAE=90°,∠DAE=45°,∴∠CAD+∠BAE=45°.。
北师大版八年级下册数学第一章三角形的证明单元测试题(含详细解析)
北师大版八年级下册数学第一章三角形的证明单元测试题一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.52.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= _________.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= _________度.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.参考答案与试题解析一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36考点:线段垂直平分线的性质.分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.专题:几何图形问题.分析:连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= 4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= 72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。
初中数学-三角形的证明单元测试题(有答案)
初中数学•三角形的证明单元测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配.A.①B.②C.③D.①和②图 12.下列说法中,正确的是().A.两腰对应相等的两个等腰三角形全等B.两角及其夹边对应相等的两个三角形全等C.两锐角对应相等的两个直角三角形全等D.面积相等的两个三角形全等3.如图2ABLCD^ABD.△BCE都是等腰三角形,如果CD=8cm.BE=3cm,那么AC长为().A. 4cmB. 5cmC. 8cmD. V34 cm4.如图3,在等边/XABC中,分别是BC,AC±.的点,且BD = CE.AD与BE相交于点P,则Z1 + Z2的度数是().A. 45°B. 55°C. 60°D. 75°5.如图4,在AABC中.AB=AC,匕4 = 36°,BD和CE分别是ZABC和匕4C8的平分线,且相交于点P.在图4中,等腰三角形(不再添加线段和字母)的个数为().A. 9个B. 8个C. 7个D. 6个6.如图表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().7.如图6.A、C、E三点在同一条直线上,ADAC和AEBC都是等边三角形.AE、BD分别与CD、CE交于点M、N,有如下结论:①左ACE竺△DCB;②CM=CN:③AC = DN・其中,正确结论的个数是()・A. 3个B. 2个C. 1个D. 0个8.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C.D,使CD=BC,再作出BF的垂线DE,使A.C.E在同一条直线上(如图7),可以证明^ABC^NEDC,得ED=AB.因此,测得DE的长就是AB的长,在这里判定4ABC # AEDC的条件是().C. SSSD. HLA. ASAB. SAS9.如图8,将长方形ABCD沿对角线BD翻折,点C落在点E的位置,BE交AD于点F.求证:重叠部分(即ABDF )是等腰三角形.证明:.••四边形ABCD是长方形,.••AD〃BC又油DE与NBDC关于BD对称,AZ2 = Z3. :.^BDF是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().®Z1 = Z2:®Z1 = Z3: @Z3 = Z4;®ABDC = ABDEA. ®®B. ®@C. ®®D.③④® 810.如图9,己知线段/?作等腰zMBC,使AB=AC,且BC=u, BC边上的高AD=h.张红的作法是:(1)作线段BC=m (2)作线段8C的垂直平分线MN, MN与BC相交于点。
第十一章-三角形》单元测试卷含答案(共5套)
第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间: 120分钟满分: 120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。
2.3.6.B。
2.4.6C。
2.2.4.D。
6、6、62.如图, 图中∠1的大小等于()A。
40°。
B。
50°。
C。
60°。
D。
70°3.一个多边形的每一个内角都等于140°, 则它的边数是() A。
7.B。
8.C。
9.D。
104.如图, △ABC中, ∠A=46°, ∠C=74°, BD平分∠XXX于点D, 那么∠XXX的度数是()A。
76°。
B。
81°。
C。
92°。
D。
104°5.用五根木棒钉成如下四个图形, 具有稳定性的有()A。
1个。
B。
2个。
C。
3个。
D。
4个6.如图, 点A, B, C, D, E, F是平面上的6个点, 则∠A+∠B +∠C+∠D+∠E+∠F的度数是()A。
180°。
B。
360°。
C。
540°。
D。
720°二、填空题7.已知三角形两条边长分别为3和6, 第三边的长为奇数, 则第三边的长为9.8.若n边形内角和为900°, 则边数n为10.9.将一副三角板按如图所示的方式叠放, 则∠α的度数为30°。
10.如图, 在△ABC中, ∠ACB=90°, ∠A=20°。
若将XXX沿CD所在直线折叠, 使点B落在AC边上的点E处, 则∠XXX的度数是70°。
11.如图, 在△ABC中, E、D.F分别是AD.BF、CE的中点。
若△DEF的面积是1cm², 则S△ABC=3cm²。
12.当三角形中一个内角β是另一个内角α的时, 我们称此三角形为“希望三角形”, 其中角α称为“希望角”。
如果一个“希望三角形”中有一个内角为54°, 那么这个“希望三角形”的“希望角”的度数为27°。
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷(含答案)
北师大版八年级数学下册第一章《三角形的证明》单元过关测试卷一.选择题(共8小题,满分24分)1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE的周长为()A.4B.30C.18D.122.已知实数a,b满足|a﹣2|+(b﹣4)2=0,则以a,b的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对3.如图,在△ABC中,∠ACB=90°,∠A=30°,CE=2,边AB的垂直平分线交AB于点D,交AC于点E,那么AE的为()A.6B.4C.3D.24.如图,OP平分∠MON,P A⊥ON,PB⊥OM,垂足分别为A、B,若P A=3,则PB=()A.2B.3C.1.5D.2.55.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58°B.32°C.36°D.34°6.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C8.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根二.填空题(共8小题,满分24分)9.在Rt△ABC中,∠B=90°,∠A=30°,AB=3,则AC=.10.如图,已知△ABC中,BC=4,AB的垂直平分线交AC于点D,若AC=6,则△BCD 的周长=.11.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.12.如图,Rt△ABC中,∠C=90°,AB=10,AD平分∠BAC,交BC于点D,CD=4,则S△ABD=.13.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的平分线,过点O作EF∥BC,分别与边AB、AC相交于点E、F,AB=8,AC=7,那么△AEF的周长等于.14.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.15.如图,△ABC是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有个等边三角形.16.如图,△ABC是边长为8的等边三角形,D为AC的中点,延长BC到E,使CE=CD,DF⊥BC于点F,求线段BF的长,BF=.三.解答题(共7小题,满分52分)17.用反证法证明等腰三角形的底角必为锐角.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图:△ABC中,∠ACB=90°,点D在AB上,CE是斜边AB上的高,且AC=AD.(1)若∠DCE=15°,求∠B的度数;(2)若∠B﹣∠A=20°,求∠DCB的度数.20.如图,在△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于点E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为43cm,BC的长为11cm,求△BCE的周长21.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连结CD,DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,BD=2时,求EB的长.22.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案一.选择题(共8小题)1.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB﹣BD=10﹣6=4,∴△ADE的周长为12.故选:D.2.【解答】解:根据题意得a﹣2=0,b﹣4=0,解得a=2,b=4,①a=2是底长时,三角形的三边分别为4、4、2,∵4、4、2能组成三角形,∴三角形的周长为10,②a=2是腰边时,三角形的三边分别为4、2、2,2+2=4,不能组成三角形.综上所述,三角形的周长是10.故选:A.3.【解答】解:连接BE,∵DE是边AB的垂直平分线,∴BE=AE,∴∠EBA=∠A=30°,∴∠CBE=180°﹣90°﹣30°﹣30°=30°,∴BE=2CE=4,∴AE=BE=4,故选:B.4.【解答】解:∵OP平分∠MON,P A⊥ON,PB⊥OM,∴PB=P A=3,故选:B.5.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.6.【解答】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.7.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.8.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠EDF=∠EFD=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.二.填空题(共8小题)9.【解答】解:如图,∵∠B=90°,∠A=30°,∴设BC=x,则AC=2BC=2x,∵AB=3,∴x2+32=(2x)2解得:x=或﹣(舍去),∴AC=2x=2,故答案为:2.10.【解答】解:∵DE是线段AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+DB=BC+CD+DA=BC+AC=10,故答案为:10.11.【解答】解:∵秋千旋转了80°,小林的位置也从A点运动到了A'点,∴AOA′=80°,OA=OA′,∴∠OAA'=(180°﹣80°)=50°.故答案为50°.12.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB•DE=×10×4=20,故答案为20.13.【解答】解:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=EB,FO=FC,∵AB=8cm,AC=7cm,∴△AEF的周长为:AE+EF+AF=AE+EO+FO+AF=AE+EB+FC+AF=AB+AC=8+7=15(cm).故△AEF的周长为15,故答案为:15.14.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.15.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BCA=∠CAB=60°,∵DF∥BC,∴∠F AC=∠ACB=60°,∠DAB=∠ABC=60°,同理:∠ACF=∠BAC=60°在△AFC中,∠F AC=∠ACF=60°∴△AFC是等边三角形,同理可证:△ABD△BCE都是等边三角形,因此∠E=∠F=∠D=60°,△DEF是等边三角形,故有5个等边三角形,故答案为:5.16.【解答】解:连接BD,∵△ABC是边长为8的等边三角形,D为AC的中点,∴AC=BC=8,AD=DC=4,∠DBF=ABC==30°,由勾股定理得:BD==4,∵DF⊥BC,∴∠DFB=90°,∴DF=BD==2,在Rt△DFB中,由勾股定理得:BF===6,故答案为:6.三.解答题(共7小题)17.【解答】证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.19.【解答】解:(1)∵CE⊥AB,∴∠CED=90°,∵∠ECD=15°,∴∠ADC=75°,∵AC=AD,∴∠ACD=∠ADC=75°,∵∠ACD=90°,∴∠DCB=15°,∵∠ADC=∠B+∠DCB,∴∠B=75°﹣15°=60°.(2)设∠DCB=x,则∠ADC=∠ACD=∠B+x=90°﹣x,∴2x=90°﹣∠B,∵∠A+∠B=90°,∠B﹣∠A=20°,∴∠B=55°,∴2x=35°,∴x=17.5°,∴∠DCB=17.5°20.【解答】解:(1)∵DE垂直平分AB∴∠A=∠ABE=50°,又∵AB=AC,∴∠ABC=∠ACB,而∠A+∠ABC+∠ACB=180°,∴∠ABC=×(180°﹣50°)=65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵△ABC的周长为43cm,BC=11cm∴AB=AC=16cm,又∵DE垂直平分AB∴EA=EB,∴△BCE的周长为:BC+BE+CE=BC+AE+CE=BC+AC=16+11=27cm.21.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠E+∠EDB=∠ABC=60°,∠ACD+∠DCB=60°,∠EDB=∠ACD,∴∠E=∠DCE,∴△DEC是等腰三角形;(2)解:设∠EDB=α,则∠BDC=5α,∴∠E=∠DCE=60°﹣α,∴6α+60°﹣α+60°﹣α=180°,∴α=15°,∴∠E=∠DCE=45°,∴∠EDC=90°,过D作DH⊥CE于H,∵BD=2,∠DBH=60°,∴BH=BD=1,DH==,DH=EH=,∴BE=EH﹣BH=﹣1.22.【解答】解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x∴∠DAE=∠BAC.23.【解答】解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试卷(包含答案解析)(2)
一、选择题1.已知点P 是ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120︒的ABC 中,当120APBAPC BPC 时,P 就是ABC 的费马点.若点P 是腰长为6的等腰直角三角形DEF 的费马点,则PD PE PF ++=( ) A .6 B .33+C .63D .9 2.如图,在ABC 中,AB =AC =6,且15ABC S =△,AD ,BE 是ABC 的两条高线,P 是AD 上一动点,则PC PE +的最小值是( )A .4B .5C .6D .83.下面说法中正确的是( )A .ABC ∆中BC 边上的高线,是过顶点A 向对边所引的垂线B .ABC ∆中BC 边上的高线,是过顶点A 向对边所引的垂线段C .三角形的角平分线不是射线D .等腰三角形的对称轴和底边上的高线、中线以及顶角的平分线,互相重合 4.如图,ABC 中,D 、E 为线段BE 上两点,且AC DC =,BA BE =,若52DAE BAC ∠=∠,则DAE ∠的度数为( )A .40︒B .45︒C .50︒D .60︒ 5.等腰三角形的一个角为40︒,则其底角的度数为( ). A .40︒ B .70︒ C .40︒或70︒ D .50︒或70︒ 6.如图所示,O 为直线AB 上一点,OC 平分∠AOE ,∠DOE =90°,则①∠AOD 与∠BOE 互为余角;②OD 平分∠COA ;③若∠BOE =56°40',则∠COE =61°40';④∠BOE =2∠COD .结论正确的个数为( )A .4B .3C .2D .17.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .68.如图,在Rt ABC △中,90BAC ︒∠=,AD BC ⊥于点D ,AE 平分BAD ∠交BC 于点E ,则下列结论一定成立的是( )A .AC AE =B .EC AE = C .BE AE =D .AC EC = 9.如图,在ABC 中,90C ∠=︒,以点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交BC 于点D ,若1CD =,4AB =,则ABD △的面积是( )A .2B .4C .6D .810.如图,在ABC 中,以点A 为圆心,AC 的长为半径作弧,与BC 交于点E ,分别以点E 和点C 为圆心、大于12EC 的长为半径作弧,两弧相交于点P ,作射线AP 交BC 于点D .若45B ∠=︒,2C CAD ∠=∠,则BAE ∠的度数为( )A .15︒B .25︒C .30D .35︒11.若以Rt ABC △的一边为边画一个等腰三角形,使它的第三个顶点也在Rt ABC △的其他边上,则这样的等腰三角形最多能画出( )A .3个B .5个C .6个D .7个12.如图,A ,B 两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且ABC 为等腰三角形,在图中所有符合条件的点C 的个数为( )A .7B .8C .9D .10二、填空题13.如图,在等边ABC 中,点D 在AC 边上,点E 在ABC 外部,若ACE ABD ∠=∠,CE BD =,连接AE ,DE ,则ADE 的形状是______.14.如图,线段AB ,BC 的垂直平分线l 1,l 2相交于点O ,若∠B =50°,则∠AOC =_____.15.如图,在ABC 中,6,,BC AD DC =分别平分,BAC ACB ∠∠,点E 为BC 上一点,若105ADC ︒∠=,则CD DE +的最小值为________.16.如图,在等腰直角三角形ABC 中,90,1BAC AB AC ∠=︒==.点P 在边BC 上(不与B ,C 重合),连结AP .按以下步骤作图:①以点B 为圆心,适当长为半径作弧,分别交,BC BA 于点D ,E .②以点P 为圆心,BD 长为半径作弧l ,交PA 于点G ,③以点G 为圆心,DE 长为半径作弧,交弧l 于点F ,④过点P ,F 作射线PF 交AC 于点Q .若APQ 为等腰三角形,则BP 的长为________.17.如图,在ABC 中,90ACB ∠=︒,AD 是它的角平分线,若:3:2AB AC =,且2BD =,则点D 到直线AB 的距离为______.18.如图所示,在ABC 中,AB AC =,BAD ∠=α,且AE AD =,则EDC ∠=______.19.如图,在△ABC 中,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,下面四个结论:①∠AFE=∠AEF ;②AD 垂直平分EF ;③BFD CED S BF S CE∆∆=;④EF//BC ;一定成立的结论是______(请将正确结论的序号填在横线上)20.如图,AD 是ABC 的角平分线,DE 、DF 分别是ABD △和ACD △的高.若83AB AC +=,24ABC S =,120EDF ∠=︒,则AD 的长为______.三、解答题21.在ABC ∆中,AB AC =,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作ADE ∆,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图1,当点D 在线段BC 上,如果90BAC ∠=︒,则BCE ∠=__度;(2)如图2,如果60BAC ∠=︒,求BCE ∠的度数是多少?(3)设BAC α∠=,BCE β∠=.①如图3,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.22.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)△ACD≌△AED;(2)若AB=2AC,且AC=3,求BD的长.23.数学模型学习与应用:(1)学习:如图1,∠BAD=90°,AB=AD,BC⊥AC于点C,DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D;又∠ACB=∠AED=90°,可以通过推理得到△ABC≌△DAE,进而得到AC=,BC=.我们把这个数学模型称为“一线三等角”模型.(2)应用:如图2,在△ABC中,AB=AC,点D,A,E都在直线l上,并且∠BAD=∠AEC=∠BAC=α.若DE=a,BD=b,求CE的长度(用含a,b的代数式表示);(3)拓展:如图3,在(2)的条件下,若α=120°,且△ACF是等边三角形,试判断△DEF的形状,并说明理由.24.在等腰直角三角形ABC中,∠ACB=90°,CD⊥AB于点D,点E是平面内任意一点,连接DE.(1)如图1,当点E在边BC上时,过点D作DF⊥DE交AC于点F.i )求证:CE =AF ;ii )试探究线段AF ,DE ,BE 之间满足的数量关系.(2)如图2,当点E 在△BDC 内部时,连接AE ,CE ,若DB =5,DE =32,∠AED =45°,求线段CE 的长.25.如图,在平面直角坐标系xOy 中,已知点A (﹣1,5),B (1,0),C (3,1),连接BC .(1)在图中画出点A 关于y 轴的对称点A ',连接,A B A C '',并直接写出点A '的坐标; (2)在(1)的基础上,试判断△A BC '的形状,并说明理由.26.如图,在ABC 中,D 为BC 上一点,BD CD =,AD AC ⊥于点A ,30BAD ∠=︒.(1)求证:12AC AB =; (2)当4AB =,3AD =时,求ABD S .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意首先画出图形,过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,求出PE ,PF ,DP 的长即可解决问题.【详解】解:如图:过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,在等腰Rt DEF △中,6DE DF ==DM EF ⊥,223EF DE ∴==3EM DM ∴=∵∠PEM =30°,∠PME =90°,∴EP =2PM ,则()2222PM EM PM +=,解得:1PM =,则2PE =, 故31DP ,同法可得2PF =, 则312233PD PE PF ++++=故选:B .【点睛】此题主要考查了等腰三角形的性质,正确画出图形进而求出PE 的长是解题关键. 2.B解析:B【分析】连接PB ,根据等腰三角形的性质和垂直平分线的性质计算即可;【详解】连接PB ,∵AB AC =,BD CD =,∴AD 是等腰△ABC 底边BC 边的中垂线,∴PB PC =,∴PC PE PB PE +=+,又PB PE BE +≥,∴B ,P ,E 三点共线时,PB PE +最小,即等于BE 的长,又∵△1152ABC S AC BE ==,6AC =, ∴5BE =;故答案选B .【点睛】本题主要考查了等腰三角形的性质、垂直平分线的性质,结合轴对称的性质计算是解题的关键. 3.C解析:C【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.据此分析判断即可.【详解】解:A .ABC ∆中BC 边上的高线,是过顶点A 向对边所引的垂线段,原说法错误,故本选项不符合题意;B .当∠B 或∠C 是钝角时,过A 不存在到线段BC 的垂线,故本选项说法错误,不符合题意;C .三角形的角平分线就是三角形的内角平分线与这个内角的对边的交点与这个内角的顶点之间的线段,故本选项正确,符合题意;D .对称轴是直线,不能与线段重合,本故选项说法错误,不符合题意;故选:C .【点睛】本题主要考查了三角形的角平分线、中线以及高线,三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.4.A解析:A【分析】根据等腰三角形的性质可得出∠BAE =∠BEA ,∠ADC =∠DAC ,然后分别用外角的知识表示出这个关系,进而结合5∠DAE =2∠BAC 可得出∠DAE 的值.【详解】解:∵AC =DC ,BA =BE ,∴∠DAE +∠EAC =∠ADE =∠B +∠BAD ①,∠EAD +∠BAD =∠AED =∠C +∠EAC ②,①+②可得:∠DAE +∠EAC +∠EAD +∠BAD =∠B +∠BAD +∠C +∠EAC ,整理,得∠DAE +∠BAC =180°﹣∠DAE ,又5∠DAE =2∠BAC ,设∠DAE =2x ,则∠BAC =5x ,上式即为2x +5x =180°-2x ,解得:x =20°,即∠DAE =40°.故选:A .【点睛】本题考查等腰三角形的性质及三角形的内角和定理,有一定的难度,解答本题需用到等腰三角形的两底角相等、三角形的内角和等于180°.5.C解析:C【分析】结合题意,根据等腰三角形、三角形内角和的性质计算,即可得到答案.【详解】当40︒角为等腰三角形顶角时,其底角的度数为18040702;当40︒角为等腰三角形底角时,其底角的度数为40︒;故选:C .【点睛】 本题考查了等腰三角形、三角形内角和的性质;解题的关键是熟练掌握等腰三角形的性质,从而完成求解.6.B解析:B【分析】由平角的定义与90DOE ∠=︒,即可求得AOD ∠与∠BOE 互为余角;又由角平分线的定义,可得22AOE COE AOC ∠=∠=∠,即可求得2BOE COD ∠=∠,若5640BOE ∠=︒',则6140COE ∠=︒'.【详解】解:90DOE ∠=︒,90COD COE ∴∠+∠=︒,90EOB DOA ∴∠+∠=︒,故①正确; OC 平分AOE ∠,22AOE COE AOC ∴∠=∠=∠;1801802BOE AOE COE ∴∠=︒-∠=︒-∠,90COD COE ∠=︒-∠,2BOE COD ∴∠=∠,90AOD BOE ∠=︒-∠,故②不正确,④正确;若5640BOE ∠=︒',180AOE BOE ∠+∠=︒, 11(180)(1805640)614022COE BOE ∴∠=︒-∠=︒-︒'=︒'. 故③正确;∴①③④正确.故答案为:B .【点睛】此题考查了平角的定义与角平分线的定义.题目中要注意各角之间的关系,解题时要仔细识图.7.C解析:C【分析】连接OC ,过点O 作OF BC ⊥于F ,求得212CE DE ==,60CED ∠=︒,再根据条件得出9030EOF OEF ∠=︒-∠=︒,得到122EF OE ==,即可得解; 【详解】连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=,在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒,∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥, ∴12CF BF BC ==, 在Rt △OEF 中,∵60OEF ∠=︒, ∴9030EOF OEF ∠=︒-∠=︒, ∴122EF OE ==, ∴10CF CE EF =-=,∴8BE BC CE =-=;故答案选C .【点睛】本题主要考查了等腰三角形的判定与性质,准确分析计算是解题的关键.8.D解析:D【分析】根据角平分线的性质得出∠BAE=∠DAE ,再根据∠CEA=∠B+∠BAE ,∠CAE=∠CAD+∠DAE 得出∠CAE=∠CEA 即可得出答案.【详解】解:∵90BAC ∠=︒,∴∠BAE+∠DAE+∠CAD=90°,∠B+∠C=90°∵AD ⊥BC∴∠BAE+∠DAE+∠B=90°,∠DAE+∠DEA=90°,∠CAD+∠C=90°∵AE 平分BAD ∠∴∠DAE=∠BAE∵∠B+∠C=90°∴∠CAD=∠B∵∠CEA=∠B+∠BAE∴∠CEA=∠DAE+∠CAD=∠CAE∴AC=EC ,其他选项均缺少条件,无法证明一定相等,故选:D .【点睛】本题考查直角三角形两锐角和为90°,角平分线的定义以及等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题.9.A解析:A【分析】由作图可知AD 平分∠CAB ,点D 到AB 的距离就等于DC=1,根据公式可求面积.【详解】解:由作图可知AD 平分∠CAB ,点D 到AB 的距离就等于DC ,1CD =,4AB =, 所以,ABD △的面积为:141=22⨯⨯, 故选:A .【点睛】本题考查了角平分线的画法和性质,解题关键是知道AD 是角平分线,并根据角平分线的性质求出高. 10.A解析:A【分析】根据作图过程可得,AP 是EC 的垂直平分线,可得AE =AC ,∠ADB =∠ADC =90°,再根据∠B =45°,∠C =2∠CAD ,即可求出∠CAD 的度数,进而即可求解.【详解】解:由作图过程可知:AP 是EC 的垂直平分线,也是∠CAE 的角平分线,∴AE =AC ,∠ADB =∠ADC =90°,∵∠B =45°,∴∠BAD =45°,∵∠C =2∠CAD ,∴3∠CAD =90°,∴∠CAD =30°,∴∠EAD =30°,∴BAE ∠=45°-30°=15°.故选:A .【点睛】本题考查了作图−基本作图,直角三角形的性质,解决本题的关键是掌握基本作图方法. 11.D解析:D【分析】先以Rt △ABC 三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点,也可以作三边的垂直平分线确定等腰三角形的第三个顶点.【详解】解:如图1,以B 为圆心,BC 长为半径画弧,交AB 于点D ,连接CD ,则△BCD 是等腰三角形;如图2,以A为圆心,AC长为半径画弧,交AB于点D,连接CD,则△ACD是等腰三角形;如图3,作AB的垂直平分线,交AC于点D,连接BD,则△BCD是等腰三角形;如图4,以C为圆心,BC长为半径画弧,交AC于点D,交AB于点F,连接BD,CF 则△BCD、△BCF是等腰三角形;如图5,作BC的垂直平分线,交AB于点D,连接CD,则△BCD是等腰三角形;如图6,作AC的垂直平分线,交AB于点D,连接CD,△ACD是等腰三角形,∴符合题意的等腰三角形最多能画7个,故选:D.【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.12.B解析:B【分析】分两种情况:①AB为等腰三角形的底边;②AB为等腰三角形的一条腰;画出图形,即可得出结论.【详解】解:如图所示:①AB为等腰三角形的底边,符合条件的点C的有5个;②AB为等腰三角形的一条腰,符合条件的点C的有3个.所以符合条件的点C共有8个.故选:B.【点睛】此题考查了等腰三角形的判定,熟练掌握等腰三角形的判定是解题的关键,注意数形结合的解题思想.二、填空题13.等边三角形【分析】由等边三角形的性质可以得出AB=AC ∠BAD=60°由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°AD=AE 就可以得出△ADE 为等边三角形【详解】解:的形状是等边解析:等边三角形【分析】由等边三角形的性质可以得出AB=AC , ∠BAD=60°,由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°,AD=AE ,就可以得出△ADE 为等边三角形.【详解】解:ADE 的形状是等边三角形,理由:∵ABC 为等边三角形,∴AB=AC , ∠BAD=60°,在∆ABD 和∆CAE 中 AB AC ACE ABD CE BD =⎧⎪∠=∠⎨⎪=⎩, ∴∆ABD ≌∆ACE ,∴∠CAE=∠BAD=60°,AD=AE ,∴∆ADE 为等边三角形,故答案为:等边三角形.【点睛】本题考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是灵活运用相关性质.14.100°【分析】根据线段垂直平分线的性质和等边对等角可得∠OBA=∠A ∠OBC=∠C 根据三角形外角的性质可得∠AOP=∠A+∠ABO=2∠ABO ∠COP=∠C+∠CBO=2∠CBO 再利用角的和差即可 解析:100°【分析】根据线段垂直平分线的性质和等边对等角可得∠OBA=∠A ,∠OBC=∠C ,根据三角形外角的性质可得∠AOP=∠A+∠ABO=2∠ABO ,∠COP=∠C+∠CBO=2∠CBO ,再利用角的和差即可得出∠AOC .【详解】解:如图,连接BO 并延长至P ,∵线段AB 、BC 的垂直平分线l 1、l 2相交于点O ,∴OA=OB ,OB=OC ,∴∠OBA=∠A ,∠OBC=∠C ,∵∠AOP=∠A+∠ABO=2∠ABO ,∠COP=∠C+∠CBO=2∠CBO ,∴∠AOC=∠AOP+∠COP =2(∠ABO+∠CBO)=2∠ABC=100°,故答案为:100°.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.也考查了等腰三角形的性质.15.3【分析】如图过作于连接先说明平分当时可得可得所以当三点共线时此时最短再求解结合从而可得答案【详解】解:如图过作于连接分别平分平分当时则所以当三点共线时此时最短分别平分即的最小值是故答案为:【点睛】 解析:3【分析】如图,过D 作DP AB ⊥于,P 连接,BD 先说明BD 平分,ABC ∠ 当DE BC ⊥时,可得,DP DE = 可得,CD DE CD DP +=+ 所以当,,C D P 三点共线时,,CD DP CP += 此时最短,再求解30ABC ∠=︒,结合,CP AB ⊥ 从而可得答案. 【详解】解:如图,过D 作DP AB ⊥于,P 连接,BD,AD DC 分别平分,BAC ACB ∠∠,BD ∴平分,ABC ∠当DE BC ⊥时,则,DP DE =,CD DE CD DP ∴+=+所以当,,C D P 三点共线时,,CD DP CP += 此时最短,105ADC ∠=︒,18010575DAC DCA ∴∠+∠=︒-︒=︒,,AD DC 分别平分,BAC ACB ∠∠,()2150,BAC BCA DAC DCA ∴∠+∠=∠+∠=︒18015030ABC ∴∠=︒-︒=︒,,CP AB ⊥116322CP BC ∴==⨯=, 即CD DE +的最小值是3,故答案为:3.【点睛】本题考查的是三角形的内角和定理,三角形的角平分线的性质,含30的直角三角形的性质,垂线段最短,掌握以上知识是解题的关键.16.或【分析】根据尺规作图可知∠APQ=∠B=45°因为为等腰三角形因此有三种情况(1)当AP=AQ 时(2)当AP=PQ 时(3)当AQ=PQ 时进而利用等量关系得出答案;【详解】解:∵∴∠C=∠B=45° 解析:2221 【分析】根据尺规作图可知∠APQ=∠B=45°,因为APQ 为等腰三角形,因此有三种情况,(1)当AP=AQ 时,(2)当AP=PQ 时,(3)当AQ=PQ 时,进而利用等量关系得出答案;【详解】解: ∵90,1BAC AB AC ∠=︒==∴∠C=∠B=45°22112AB AC +=+由作图步骤可得:∠APQ=∠B=45°,∵APQ 为等腰三角形∴有三种情况(1)当AP=AQ 时∵AP=AQ ,∠APQ=∠B=45°∴∠APQ=∠AQP=45°∴∠PAQ=90°∵∠BAC=90°∴P 和B 点重合不符合题意;(2)当AP=PQ 时,∠APQ=∠B=45°∴∠PAQ=∠AQP=(180°-45°)÷2=67.5°∵∠C=45°再△APC 中,∠APC=180°-∠C-∠PAQ=67.5°∴∠PAQ=∠APC=67.5°∴AC=PC=1∴1(3) )当AQ=PQ 时,∠APQ=∠B=45°∴∠APQ=∠PAQ=45°∴∠BAP=∠PAQ=45°∴AP 为BC 的垂直平分线∴BP=12BC=21 【点睛】 本题考查作图-基本作图,等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【分析】根据角平分线的性质利用面积比求出BD:DC=3:2代入求值即可【详解】解:∵平分∠BACDC ⊥ACDE ⊥AB ∴DC=DE ∵∴即点到直线的距离为故答案为:【点睛】本题考查了角平分线的性质解题关 解析:43【分析】根据角平分线的性质,利用面积比求出BD:DC=3:2,代入2BD =求值即可.【详解】解:∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB ,∴DC=DE ,12ABD S AB DE =⨯⨯,12ACD S AC CD =⨯⨯, 132122ABD ACD AB DE S S AC CD ⨯⨯==⨯⨯, 12ABD S DB AC =⨯⨯,1212ABD ACD DB AC S S AC CD ⨯⨯=⨯⨯, 32BD CD =, ∵2BD =,∴43CD =, 43ED = 即点D 到直线AB 的距离为43, 故答案为:43. 【点睛】 本题考查了角平分线的性质,解题关键是利用面积公式,通过角平分线的性质得出面积比,再根据面积比求出边长比.18.【分析】根据等边对等角和三角形的外角性质列出等式整理即可得出结论【详解】解:根据题意:在△ABC 中AB=AC ∴∠B=∠C ∵AE=AD ∴∠ADE=∠AED ∴∠B+∠α-∠EDC=∠C+∠EDC 化简可得解析:12α 【分析】根据等边对等角,和三角形的外角性质列出等式整理即可得出结论.【详解】解:根据题意:在△ABC 中,AB=AC ,∴∠B=∠C ,∵AE=AD ,∴∠ADE=∠AED ,∴∠B+∠α-∠EDC=∠C+∠EDC ,化简可得:∠α=2∠EDC ,∴∠EDC=12α, 故答案为:12α.【点睛】本题考查了等腰三角形的性质,三角形外角定理,关键是熟悉三角形的一个外角等于与它不相邻的两个内角的和的知识点.19.①②③【分析】由三角形ABC 中∠BAC 的平分线交BC 于点D 过点D 作DE ⊥ACDF ⊥AB 根据角平分线的性质可得DE=DF ∠ADE=∠ADF 然后根据全等三角形的性质可得AF=AE 继而证得①∠AFE=∠A解析:①②③【分析】由三角形ABC 中,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AC ,DF ⊥AB ,根据角平分线的性质,可得DE=DF ,∠ADE=∠ADF ,然后根据全等三角形的性质,可得AF=AE ,继而证得①∠AFE=∠AEF ;又由线段垂直平分线的判定,可得②AD 垂直平分EF ;然后利用三角形的面积公式求解即可得③BFD CED S BF S CE∆∆=,EF 平行BC 不能判断,于是可得④ . 【详解】解:①∵三角形ABC 中,∠BAC 的平分线交BC 于点D ,DE ⊥AC ,DF ⊥AB ,∴∠ADE=∠ADF ,DF=DE ,∵AD=AD ,∴Rt △ADF ≌Rt △ADE (HL ),∴AF=AE ,∴∠AFE=∠AEF ,故正确;②∵DF=DE ,AF=AE ,∴点D 在EF 的垂直平分线上,点A 在EF 的垂直平分线上,∴AD 垂直平分EF ,故正确;③∵12BFD DF S BF ∆=•,S △CDE =12CE DE •,DF=DE , ∴BFD CED S BF S CE∆∆=;故正确; ④∵∠EFD 不一定等于∠BDF ,∴EF 不一定平行BC .故错误.故答案为:①②③.【点睛】此题考查了角平分线的性质、线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.20.【分析】先证明△ADE ≌△ADF 可得:DE =DF ∠ADE =∠ADF ==×120°=60°再利用面积法求出DE 的值再根据直角三角形的性质即可解决问题【详解】解:∵DEDF 分别是△ABD 和△ACD 的高∴解析:【分析】先证明△ADE ≌△ADF ,可得:DE =DF ,∠ADE =∠ADF =12EDF ∠=12×120°=60°,再利用面积法求出DE 的值,再根据直角三角形的性质即可解决问题.【详解】解:∵DE 、DF 分别是△ABD 和△ACD 的高,∴∠AED =∠AFD =90°,∵AD 是△ABC 的角平分线,∴∠DAE =∠DAF ,∵AD =AD ,∴△ADE ≌△ADF (AAS ),∴DE =DF ,∠ADE =∠ADF =12EDF ∠=12×120°=60°, ∴S △ABC =12•AB•DE +12•AC•DF =12•DE (AB +AC )=24, ∵AB AC +=∴DE=∵∠ADE =∠ADF =60°,∴∠DAE =30°,∴AD =2DE =故答案是:【点睛】本题考查全等三角形的判定和性质,直角三角形的性质,角平分线等知识,解题的关键是正确寻找全等三角形解决问题,学会利用面积法解决问题,属于中考常考题型.三、解答题21.(1)90;(2)120°;(3)①180αβ+=︒;见解析;②180αβ+=︒或αβ=【分析】(1)由等腰直角三角形的性质可得∠ABC =∠ACB =45°,由“SAS ”可证△BAD ≌△CAE ,可得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)由条件可得△ABC 为等边三角形,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE =60°,则可得出结论;(3)①由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;②分两种情况画出图形,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【详解】解:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS )∴∠ABC =∠ACE =45°,∴∠BCE =∠ACB +∠ACE =90°,故答案为:90;(2)∵∠BAC =60°,AB =AC ,∴△ABC 为等边三角形,∴∠ABD =∠ACB =60°,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,∵∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE =60°,∴∠BCE =∠ACE +∠ACB =60°+60°=120°,故答案为:120.(3)①α+β=180°,理由:∵∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC .即∠BAD =∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∵∠ACE +∠ACB =β,∴∠B +∠ACB =β,∵α+∠B +∠ACB =180°,∴α+β=180°.②如图1:当点D 在射线BC 上时,α+β=180°,连接CE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,在△ABC 中,∠BAC +∠B +∠ACB =180°,∴∠BAC +∠ACE +∠ACB =∠BAC +∠BCE =180°,即:∠BCE +∠BAC =180°,∴α+β=180°,如图2:当点D 在射线BC 的反向延长线上时,α=β.连接BE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,∴∠ABD =∠ACE =∠ACB +∠BCE ,∴∠ABD +∠ABC =∠ACE +∠ABC =∠ACB +∠BCE +∠ABC =180°,∵∠BAC =180°﹣∠ABC ﹣∠ACB ,∴∠BAC =∠BCE .∴α=β;综上所述:点D 在直线BC 上移动,α+β=180°或α=β.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,三角形的内角和定理,证明△ABD ≌△ACE 是解本题的关键.22.(1)见解析;(2)2【分析】(1)由角平分线的性质可推出CD =DE ,再利用“HL ”即可证明Rt △ACD ≌Rt △AED .(2)由(1)得AC =AEAB =AE BE ==由勾股定理可求出BC 的长,设BD =x ,则DE =CD =3-x ,在Rt △DEB 中,由勾股定理可列出关于x 的方程,求出x 即可.【详解】(1)∵AD 平分∠CAB ,DC ⊥AC ,DE ⊥AB ,∴CD =DE ,∵AD =AD ,∴Rt △ACD ≌Rt △AED (HL );(2)∵△ACD ≌△AED ,∴AC =AE,∵AB =2AC ,∴AB =AE BE ==在Rt △ABC中,3BC ===,设BD =x ,则DE =CD =3-x , 在Rt △DEB 中,由勾股定理得:222DE BE BD +=,即()2223x x -+=,解得x =2,即BD =2.【点睛】本题考查角平分线的性质、全等三角形的判定和性质以及勾股定理,根据角平分线的性质找出使三角形全等的条件是解答本题的关键.23.(1)DE ,AE ;(2)CE =a ﹣b ;(3)等边三角形,理由见解析【分析】(1)由“AAS ”可证△ABC ≌△DAE ,可得AC =DE ,BC =AE ;(2)由“AAS ”可证△ABD ≌△CAE ,可得AD =CE ,BD =AE ,即可求解;(3)由“SAS ”可证△BDF ≌△AEF ,可得DF =EF ,∠BFD =∠AFE ,可得结论.【详解】解:(1)∵∠1+∠2=∠2+∠D =90°,∴∠1=∠D ,在△ABC 和△DAE 中, 1==90D ACB DEA AB DA ∠∠⎧⎪∠∠=︒⎨⎪=⎩, ∴△ABC ≌△DAE (AAS ),∴AC =DE ,BC =AE ,故答案为:DE ,AE ;(2)∵∠BAD =∠BAC =α,∴∠DBA +∠BAD =180°﹣α=∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,==ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,∵DE =a ,BD =b ,∴CE =DE ﹣BD =a ﹣b ;(3)△DEF 是等边三角形,理由如下:由(2)知:△ABD ≌△CAE ,∴BD =AE ,∠ABD =∠CAE ,∵△ACF 是等边三角形,∴∠CAF =60°,AB =AF ,∴△ABF 是等边三角形,∴∠ABD +∠ABD =∠CAE +∠CAF ,即∠DBF =∠FAE ,在△BDF 和△AEF 中,==FB FA FBD FAE BD AF ∠⎧⎪∠∠⎨⎪=⎩,∴△BDF ≌△AEF (SAS ),∴DF =EF ,∠BFD =∠AFE ,∴∠DFE =∠AFD +∠AFE =∠AFD +∠BFD =60°,∴△DEF 是等边三角形.【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,根据题意找到全等三角形并证明是解题关键.24.(1)i )证明见解析;ii )2222DE AF BE =+,证明见解析;(2) 1.CE =【分析】(1)i )由等腰直角三角形ABC ,∠ACB =90°,,CD AB ⊥ 证明,45,CD AD DCE A =∠=∠=︒ 由,,CD AB DF DE ⊥⊥ 证明,ADF CDE ∠=∠ 可得,CDE ADF ≌ 从而可得结论;ii )如图,连接,EF 由,CDE ADF ≌,DE DF = 证明,CF BE = 222,EF DE = 结合222,EF CF CE =+ 从而可得答案;(2)过点D 作DH AE ⊥于点H ,过点D 作DG DE ⊥交AE 于点G ,根据SAS 证明CDE ADG ≅△△,进而利用全等三角形的性质和勾股定理即可得出答案.【详解】证明:(1)i ) 等腰直角三角形ABC ,∠ACB =90°,,CD AB ⊥,45,,AC BC ACD BCD A B AD BD ∴=∠=∠=︒=∠=∠=,CD AD BD ∴==,,CD AB DF DE ⊥⊥90,ADF CDF CDF CDE ∴∠+∠=︒=∠+∠,ADF CDE ∴∠=∠在DAF △与DCE 中,45CDE ADF CD ADDCE A ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩(),CDE ADF ASA ∴≌.CE AF ∴=ii )2222.DE AF BE =+理由如下:如图,连接,EF,CDE ADF ≌,DE DF ∴=,,AC BC AF CE ==,CF BE ∴=,DE DF ⊥22222,EF DE DF DE ∴=+=22222,EF CF CE BE AF =+=+2222.DE AF BE ∴=+(2)如图,过点D 作DH AE ⊥于点H ,过点D 作DG DE ⊥交AE 于点G ,90ACB AC BC CD AB ∠=︒=⊥,,,45ACD BCD A ∴∠=∠=∠=︒,∴CD=AD ,,45DG DE AED ⊥∠=︒,45DGE AED ∴∠=︒=∠,∴DG=DE ,在CDE △和ADG 中AD CD ADG CDE DG DE =⎧⎪∠=∠⎨⎪=⎩CDE ADG ∴≅△△(SAS )∴CE=AG在Rt DEG △中,32DE DG ==6EG ∴=DH AE ⊥3DH GH EH ∴===在Rt ADH 中,AD=52222534AH AD DH ∴=-=-=1CE AG AH GH ∴==-=.【点睛】本题考查的是三角形全等的判定与性质,等腰直角三角形的性质,勾股定理的应用,利用平方根解方程,方程组思想,掌握以上知识是解的关键.25.(1)画图见解析,A '(1,5);(2)△A BC '是直角三角形,理由见解析【分析】(1)根据关于y 轴对称的点y 值不变,x 值互为相反数,先画出点A 关于y 轴的对称点A ',连接,A B A C '';(2)由图可以判断△A BC '是直角三角形,根据点的坐标计算线段的长,再根据勾股定理逆定理计算验证即可.【详解】解:(1)如图,由点A (﹣1,5)易得A '(1,5),连接,A B A C '';(2)△A BC '是直角三角形,理由如下:由(1)易得5A B '=, ()()22311525'=-+-=A C ,()()2231105=-+-=BC ,∵222''+=A C BC A B ,∴△A BC '是直角三角形.【点睛】本题考查的是轴对称以及勾股定理逆定理,解题的关键是掌握相关的知识点. 26.(1)见详解;(2)3【分析】(1)延长AD 到E ,使DE =AD ,然后利用“边角边”证明△ACD 和△EBD 全等,根据全等三角形对应边相等可得BE =AC ,全等三角形对应角相等可得∠E =∠CAD ,再根据直角三角形30°角所对的直角边等于斜边的一半证明;(2)求出BE ,然后利用三角形的面积公式列式计算即可得解.【详解】(1)证明:如图,延长AD 到E ,使DE =AD ,在△ACD 和△EBD 中,AD DE ADC EDB BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△EBD (SAS ),∴BE =AC ,∠E =∠CAD =90°,∵∠BAD =30°,∴BE =12AB , ∴12AC AB =; (2)解:∵AB =4,∴BE =12×4=2, ∴S △ABD =12AD•BE =1233. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,全等三角形的判定与性质,“遇中线,加倍延”作辅助线,构造出全等三角形是解题的关键.。
三角形的证明测试题(有标准答案)
三角形的证明测试题(有答案)————————————————————————————————作者:————————————————————————————————日期:2第3页(共12 页)三角形的证明测试题1一、选择题(共11小题;共55分)1. 已知 △ABC 的三边长分别为 5,13,12,则 △ABC 的面积为 ( ) A. 30B. 60C. 78D. 不能确定2. 如图,△ABC 中,AB =AC ,∠A =36∘,AB 的垂直平分线 DE 交 AC 于 D ,交 AB 于 E ,则 ∠BEC 的度数为 ( )A. 72∘B. 36∘C. 60∘D. 82∘3. 如图,一棵大树在一次强台风中于离地面 5 米处折断倒下,倒下部分与地面成 30∘ 夹角,这棵大树在折断前的高度为 ( )A. 10 米B. 15 米C. 25 米D. 30 米4. 如图所示,已知 AD 是 △ABC 的高,AB =10,AD =8,BC =12,则 △ABC 为 ( )A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 不能确定5. 如图,在 CD 上求一点 P ,使它到 OA 、 OB 的距离相等,则 P 点是 ( )A. 线段 CD 的中点B. OA 与 OB 的中垂线的交点C. OA 与 CD 的中垂线的交点D. CD 与 ∠AOB 的平分线的交点6. 如图所示,E 是等边 △ABC 中 AC 边上的点,∠1=∠2,BE =CD ,则对 △ADE 的形状判断准确的是 ( )第4页(共12 页)A. 等腰三角形B. 等边三角形C. 不等边三角形D. 不能确定形状7. 在 △ABC 中,下列说法正确的有 ( )①如果 ∠A:∠B:∠C =3:4:5,则 △ABC 是直角三角形 ②如果 ∠A +∠B =∠C ,则 △ABC 是直角三角形③如果 △ABC 的三边之比为 6:8:10,则 △ABC 是直角三角形④如果 △ABC 的三边长分别是 n 2−1,2n,n 2+1(n >1),则 △ABC 是直角三角形A. 1 个B. 2 个C. 3 个D. 4 个8. 如图,已知直角三角形的两直角边分别为 5 和 12,则斜边上的高是 ( )A.125B. 6013C. 5D.1359. 如图,△ABC 中边 AB 的垂直平分线分别交 BC ,AB 于点 D ,E ,AE =3 cm ,△ADC 的周长为 9 cm ,则 △ABC 的周长是 ( ).A. 10 cmB. 12 cmC. 15 cmD. 17 cm10. 如图所示,在 △ABC 中,∠A =90∘,BD 平分 ∠ABC ,AD =2,AB +BC =8,S △ABC 的值为 ( )A. 8B. 4C. 2D. 111. 下列说法正确的是 ( )A. 等腰三角形的高线、中线、角平分线互相重合B. 顶角相等的两个等腰三角形全等C. 等腰三角形一边不可以是另一边的 2 倍D. 等腰三角形的两个底角相等第5页(共12 页)二、填空题(共6小题;共30分)12. 如图,△ABC 中,AB +AC =6 cm ,BC 的垂直平分线 l 与 AC 相交于点 D ,则 △ABD 的周长为 cm .13. 如图,∠AOE =∠BOE =15∘,EF ∥OB ,EC ⊥OB ,若 EC =1,则 EF = .14. 如图,△ABC 是等边三角形,点 D 为 AC 边上一点,以 BD 为边作等边 △BDE ,连接 CE .若CD =1,CE =3,则 BC = .15. 如图,在 Rt △ABC 中,D ,E 为斜边 AB 上的两个点,且 BD =BC ,AE =AC ,则 ∠DCE的大小为 .16. 如图,在 △ABC 和 △EDB 中,∠C =∠EBD =90∘,点 E 在 AB 上.若 △ABC ≌∠EDB ,AC =4,BC =3,则 AE = .17. 如图所示,CD 为 Rt △ABC 斜边上的高,∠BAC 的平分线分别交 CD ,CB 于点 E ,F ,FG ⊥AB ,垂足为 G ,则图中与 CF 相等的线段是 .第6页(共12 页)三、解答题(共8小题;共104分)18. 如图,在 Rt △ABC 中,∠B =90∘,分别以 A ,C 为圆心,大于 12AC 长为半径画弧,两弧相交于点 M ,N ,连接 MN ,与 AC ,BC 分别交于点 D ,E ,连接 AE .Ⅰ ∠ADE =∘;Ⅱ AE CE (填“ >,<,= ”)Ⅲ AB =3,AC =5 时,△ABE 的周长是 .19. 如图,在 Rt △ABC 中,∠B =90∘,分别以点 A ,C 为圆心,大于 12AC 长为半径画弧,两弧相交于点 M ,N ,连接 MN ,与 AC ,BC 分别交于点 D ,E ,连接 AE .Ⅰ 求 ∠ADE ;(直接写出结果)Ⅱ 当 AB =3,AC =5 时,求 △ABE 的周长.20. 如图,在四边形 ABCD 中,∠B =90∘,AB =BC =2,AD =1,CD =3. 求 ∠DAB 的度数.21. 如图所示,在 △ABC 中,∠ABC =∠ACB .第7页(共12 页)Ⅰ 尺规作图:过顶点 A 作 △ABC 的角平分线 AD ;(不写作法,保留作图痕迹) Ⅱ 在 AD 上任取一点 E ,连接 BE,CE .求证:△ABE ≌△ACE .22. 如图,在 △ABC 中,∠BAC =90∘,BD 平分 ∠ABC ,AE ⊥BC 于 E .求证:AF =AD .23. 如图,点 A 为线段 BD 上一点,△ABC ,△ADE 都是等边三角形,BE 交 AC 于点 M ,CD交 AE 于点 N .求证:Ⅰ BE =CD ; Ⅱ AM =AN ;Ⅲ MN ∥BD .24. 一船在灯塔 C 的正东方向 8 海里的 A 处,以 20海里/时 的速度沿北偏西 30∘ 方向行驶.Ⅰ 多长时间后,船距灯塔最近?Ⅱ 多长时间后,船到灯塔的正北方向?此时船距灯塔有多远?(其中 162−82≈13.92)25. 如图,AD 是 △ABC 的角平分线,点 F ,E 分别在边 AC ,AB 上,且 FD =BD .Ⅰ 求证 ∠B +∠AFD =180∘;Ⅱ 如果 ∠B +2∠DEA =180∘,探究线段 AE ,AF ,FD 之间满足的等量关系,并证明.第8页(共12 页)第9页(共12 页)答案第一部分 1. A 2. A 3. B 4. A 5. D 6. B 7. C 8. B9. C10. A11. D 第二部分 12. 6 13. 2 14. 4 15. 45∘ 16. 1 17. FG ,CE 第三部分 18. (1) 90 (2) = (3) 719. (1) ∠ADE =90∘.(2) ∵ 在 Rt △ABC 中,∠B =90∘,AB =3,AC =5, ∴BC =√52−32=4 .∵MN 是线段 AC 的垂直平分线, ∴AE =CE .∴△ABE 的周长为 AB +(AE +BE )=AB +BC =3+4=7. 20. 连接 AC ,在 Rt △ABC 中,∠B =90∘,AB =BC =2, 所以 ∠BAC =∠ACB =45∘, 所以 AC 2=AB 2+BC 2. 所以 AC =2√2. 因为 AD =1,CD =3, 所以 AC 2+AD 2=CD 2.在 △ACD 中,AC 2+AD 2=CD 2.所以 △ACD 是直角三角形,即 ∠DAC =90∘.第10页(共12 页)因为 ∠BAD =∠BAC +∠DAC , 所以 ∠BAD =135∘.21. (1) 如图 AD 即为所求.(2)∵AD 是 △ABC 的角平分线,∴∠BAD =∠CAD . ∵∠ABC =∠ACB , ∴AB =AC .在 △ABE 和 △ACE 中, {AB =AC,∠BAE =∠CAE,AE =AE,, ∴△ABE ≌△ACE (SAS ). 22. ∵ ∠BAC =90∘, ∴ ∠ADF =90∘−∠ABD . ∵ AE ⊥BC 于 E ,∴ ∠AFD =∠BFE =90∘−∠DBC . ∵ BD 平分 ∠ABC , ∴ ∠ABD =∠DBC , ∴ ∠AFD =∠ADF , ∴ AF =AD .23. (1) ∵△ABC ,△ADE 都是等边三角形, ∴AB =AC ,AE =AD ,∠BAC =∠DAE =60∘ . ∴∠CAE =180∘−∠BAC −∠DAE =60∘ . ∴∠BAE =∠CAD =120∘ . 在 △BAE 和 △CAD 中, {AB =AC,∠BAE =∠CAD,AE =AD.∴△BAE ≌△△CAD (SAS ) . ∴BE =CD .(2) ∵△BAE ≌△CAD , ∴∠EBA =∠DCA.在 △BAM 和 △CAN 中,{∠EBA =∠DCA,∠BAM =∠CAN =60∘,BA =CA,∴△BAM ≌△CAN .∴AM =AN .(3) ∵∠CAE =60∘,AM =AN ,∴△AMN 为等边三角形.∴∠AMN =60∘=∠BAC .∴MN ∥BD .24. (1) 由题意可知,当船航行到 D 点时,距灯塔最近,此时 CD ⊥AB . 因为 ∠BAC =90∘−30∘=60∘,所以 ∠ACD =30∘.所以 AD =12AC =8×12=4(海里). 而 4÷20=0.2(小时)=12(分),所以 12 分后,船距灯塔最近.(2) 当船到达灯塔的正北方向的 B 点时,BC ⊥AC ,此时 ∠B =30∘, 所以 AB =2AC =2×8=16(海里),所以 BC 2=AB 2−AC 2=162−82≈13.92,即 BC ≈13.9(海里).而 16÷20=0.8(小时)=48(分),故 48 分钟后,船到达灯塔的正北方向,此时船距灯塔约 13.9 海里.25. (1) 在 AB 上截取 AG =AF .∵AD 是 △ABC 的角平分线,∴∠FAD =∠DAG .∵AD =AD ,∴△AFD ≌△AGD .∴∠AFD =∠AGD ,FD =GD .∵FD =BD ,∴BD =GD .∴∠DGB =∠B .∴∠B +∠AFD =∠DGB +∠AGD =180∘.(2) AE =AF +FD .过点 E 作 ∠DEH =∠DEA ,点 H 在 BC 上.∵∠B+2∠DEA=180∘,∴∠HEB=∠B.∵∠B+∠AFD=180∘,∴∠AFD=∠AGD=∠GEH,∴GD∥EH.∴∠GDE=∠DEH=∠DEG.∴GD=GE.∵AF=AG,∴AE=AG+GE=AF+FD.。
《第1章三角形的证明》单元测试题-北师大版八年级数学下册(含答案) (4)
第1章三角形的证明单元测试考试范围:第1章三角形的证明;考试时间:90分钟;总分:120分一、选择题(每小题3分,共36分)1.(2022·天津市第七中学八年级期末)等腰三角形的顶角是50︒,则这个三角形的一个底角的大小是()A.65︒B.40︒C.50︒D.80︒2.(2021·黑龙江五常·八年级期末)已知一个等腰三角形的两边长分别是4,5,则它的周长是()A.13B.14C.13或14D.9或12=,3.(2021·辽宁铁岭·八年级期末)如图,E是等边ABC∆中AC边上的点,12∠=∠,BE CD ∆是()则ADEA.等腰三角形B.等边三角形C.不等边三角形D.无法确定4.(2021·浙江省衢州市衢江区实验中学八年级阶段练习)满足下列条件的△ABC,不是直角三角形的是()A.△A:△B:△C=5:12:13B.a:b:c=3:4:5C.△C=△A﹣△B D.b2=a2﹣c25.(2021·浙江瑞安·八年级期中)如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个6.(2021·湖南·永州市剑桥学校八年级期中)已知△A,△B为直角△ABC两锐角,△B=54°,则△A=()A.60°B.36°C.56°D.46°7.(2021·黑龙江平房·八年级期末)到三角形三个顶点距离相等的点是此三角形()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边中垂线的交点8.(2021·广西三江·八年级期中)如图,AB垂直平分CD,若AC=2cm,BC=3cm,则四边形ACBD的周长是()A.5 cm B.8 cm C.9 cm D.10 cm9.(2021·湖南·株洲市天元区雷打石学校八年级期末)如图,在△ABC中,AB=AC,△A=36°,AC的垂直平分线交AB于E,点D为垂足,连接EC.如果BC=6,△BCE的周长是17,那么AB的长为()A .12B .11C .10D .510.(贵州省黔东南苗族侗族自治州2020-2021学年八年级上学期期末数学试题)如图,在ABC 中,90C ∠=︒,DE 是AB 的垂直平分线,AD 恰好平分BAC ∠.若3DE =,则BC 的长是( )A .9B .6C .7D .511.(2021·四川南充·八年级期末)如图,在Rt △ABC 中,△ACB =90°,BD 平分△ABC 交AC 于点D ,过点D 作DE △BC 交AB 于点E ,△ABC =30°,DC =2.动点P 从点B 出发,沿着B →C →A 运动,当S △PBE =4时,则△PEB 度数是( )A .105°B .75°或105°C .150°D .75°或150° 12.(2022·全国·八年级)如图所示,,AB CD O ∥为BAC ∠与ACD ∠平分线的交点,OE AC ⊥于,E 若2OE =,则AB 与CD 之间的距离是( )A .2B .4C .8D .无法确定二、填空题(每小题4分,共24分)13.(2022·广东东莞·八年级期末)若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .14.(2021·广东南沙·八年级期末)如图,△ABC 中,AB =AC =DC ,D 在BC 上,且AD =DB ,则△BAC =_____.15.(2021·江苏赣榆·八年级期末)如图,点P 是等边△ABC 内的一点,PA =6,PB =8,PC =10,若点P ′是△ABC 外的一点,且△P ′AB △△PAC ,则△APB 的度数为___.16.(2021·辽宁铁岭·八年级期末)如图,△80A ︒=,O 是AB ,AC 垂直平分线的交点,则BOC ∠的度数是________︒.17.(辽宁省抚顺市2021-2022学年八年级上学期期末数学试题)如图,ABC 中,90C ∠=︒,AC BC =,AD 是CAB ∠的平分线,DE AB ⊥于点E ,已知8cm AC ,则BD DE +=______cm .18.(2021·广西隆安·八年级期中)如图,已知ABC 的周长是23,,OB OC 分别平分ABC ∠和,ACB OD BC ∠⊥于D ,且4,OD ABC =的面积是_______.三、解答题一(每小题8分,共16分)19.(2021·广东南沙·八年级期末)如图,在△ABC 中,AD △BC ,垂足为D .(1)尺规作图:作线段AC 的垂直平分线EF ,分别交BC 、AC 于点E 、F .(保留作图痕迹,不写作法)(2)若AB =EC ,AC =6,CD =5,求△ABC 的周长.20.(2021·陕西临渭·八年级期中)如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点B,动点Q从点B出发沿BC方向以6cm/s 的速度运动至点C,P、Q两点同时出发.(1)求△B的度数;(2)连接PQ,若运动2s时,求P、Q两点之间的距离.21.(2021·湖北·监利市朱河镇初级中学.八年级期中)已知:如图,在△ABC中,△ABC和△ACB 的角平分线相交于点P,且PE△AB,PF△AC,垂足分别为E、F.(1)求证:PE=PF;(2)连接AP,若△ACB=80°,求△APB的度数.BC,22.(2022·辽宁大石桥·八年级期末)如图,△ABC是等边三角形,延长BC到点E,使CE=12若D是AC的中点,连接ED并延长交AB于点F.(1)若AF=3,求AD的长;(2)求证:DE=2DF.23.(2021·湖北·监利市朱河镇初级中学.八年级期中)如图,△ABC中,AB=AC,BF△AE于E 交AF于点F,连结CF.△BAC;(1)如图1所示,当EF=BE+CF,求证△EAF=12△BAC,求证:CF=BF+2BE.(2)如图2所示,△EAF=1224.(2022·四川仁寿·八年级期末)如图,已知△ABC中,△C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.答案及解析一、选择题(每小题3分,共36分)1.(2022·天津市第七中学八年级期末)等腰三角形的顶角是50︒,则这个三角形的一个底角的大小是( )A .65︒B .40︒C .50︒D .80︒ 【答案】A【分析】根据等腰三角形的两底角相等,即可求解.【详解】解:△等腰三角形的顶角是50︒,△这个三角形的一个底角的大小是()118050652︒-︒=︒ . 故选:A【点睛】本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的两底角相等是解题的关键. 2.(2021·黑龙江五常·八年级期末)已知一个等腰三角形的两边长分别是4,5,则它的周长是( )A .13B .14C .13或14D .9或12【答案】C【分析】等腰三角形的性质是两腰长相等,需进行分类讨论:当腰长为5,底边长为4时;当腰长为4,底边长为5时,分别计算三角形周长即可.【详解】解:等腰三角形的性质是两腰长相等,需进行分类讨论:当腰长为5,底边长为4时,周长为:25414⨯+=;⨯+=;当腰长为4,底边长为5时,周长为:24513故选:C.【点睛】题目主要考查等腰三角形的性质,对等腰三角形进行分类讨论是解题关键.=,3.(2021·辽宁铁岭·八年级期末)如图,E是等边ABC∆中AC边上的点,12∠=∠,BE CD ∆是()则ADEA.等腰三角形B.等边三角形C.不等边三角形D.无法确定【答案】B【分析】先证得△ABE△△ACD,可得AE=AD,△BAE=△CAD=60°,即可证明△ADE是等边三角形.【详解】解:△△ABC为等边三角形△AB=AC,△BAE=60°,△△1=△2,BE=CD,△△ABE△△ACD(SAS),△AE=AD,△BAE=△CAD=60°,△△ADE是等边三角形.故选B.【点睛】此题考查等边三角形的性质与判定,全等三角形的判定与性质,解题关键在于掌握等边三角形的判定定理.4.(2021·浙江省衢州市衢江区实验中学八年级阶段练习)满足下列条件的△ABC,不是直角三角形的是()A.△A:△B:△C=5:12:13B.a:b:c=3:4:5C.△C=△A﹣△B D.b2=a2﹣c2【答案】A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、△△A:△B:△C=5:12:13,△△C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、△32+42=52,△是直角三角形,故此选项不合题意;C、△△A﹣△B=△C,△△A=△B+△C,△△A+△B+△C=180°,△△A=90°,△是直角三角形,故此选项不合题意;D、△b2=a2﹣c2,△a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.5.(2021·浙江瑞安·八年级期中)如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个【答案】C【分析】根据题意,结合图形,分两种情况讨论:①AB为直角△ABC斜边;②AB为等腰直角△ABC 其中的一条直角边.【详解】解:如图,分情况讨论:①AB为直角△ABC斜边时,符合条件的格点C点有2个;②AB为直角△ABC其中的一条直角边时,符合条件的格点C点有1个.故共有3个点,故选:C.【点睛】本题考查了直角三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.6.(2021·湖南·永州市剑桥学校八年级期中)已知△A,△B为直角△ABC两锐角,△B=54°,则△A=()A.60°B.36°C.56°D.46°【答案】B【分析】根据直角三角形中,两锐角互余计算即可.【详解】解:△△A,△B为直角△ABC两锐角,△9036∠=︒-∠=︒,A B故选:B.【点睛】本题考查的是直角三角形的性质,掌握直角三角形中,两个锐角互余是解题的关键.7.(2021·黑龙江平房·八年级期末)到三角形三个顶点距离相等的点是此三角形()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边中垂线的交点【答案】D【分析】由题意根据线段的垂直平分线上的性质,则有三角形三边中垂线的交点到三角形的三个顶点距离相等.【详解】解:△垂直平分线上任意一点,到线段两端点的距离相等,△到三角形三个顶点的距离相等的点是三角形三边中垂线的交点.故选:D.【点睛】本题考查了线段的垂直平分线的性质,解题的关键是注意掌握线段的垂直平分线上的点到线段的两个端点的距离相等.8.(2021·广西三江·八年级期中)如图,AB垂直平分CD,若AC=2cm,BC=3cm,则四边形ACBD的周长是()A.5 cm B.8 cm C.9 cm D.10 cm【答案】D【分析】由AB垂直平分CD,根据线段垂直平分线的性质,可得AD=AC=2cm,BD=BC=3cm,继而求得答案.【详解】解:△AB垂直平分CD,△AD=AC=2cm,BD=BC=3cm,△四边形ABCD的周长是:AC+BC+BD+AD=10(cm).故选:D.【点睛】本题考查了线段垂直平分线的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.9.(2021·湖南·株洲市天元区雷打石学校八年级期末)如图,在△ABC中,AB=AC,△A=36°,AC的垂直平分线交AB于E,点D为垂足,连接EC.如果BC=6,△BCE的周长是17,那么AB的长为()A.12B.11C.10D.5【答案】B【分析】根据线段垂直平分线的性质得CE=AE,从而得出答案.【详解】解:△AC的垂直平分线交AB于E,点D为垂足,△CE=AE,△BE+AE=BE+CE=AB,△△BCE的周长是17,△BC+CE+BE=17,△BC=6,△BE+CE=17﹣6=11,△AB=11,故选B.【点睛】本题主要考查了线段垂直平分线的性质,熟知性质是解题的关键:线段垂直平分线上的点到线段两端的距离相等.10.(贵州省黔东南苗族侗族自治州2020-2021学年八年级上学期期末数学试题)如图,在ABC 中,90C ∠=︒,DE 是AB 的垂直平分线,AD 恰好平分BAC ∠.若3DE =,则BC 的长是( )A .9B .6C .7D .5【答案】A【分析】 根据角平分线上点到角两边的距离相等可得AD BD =,再根据等边对等角的性质求出DAB B ∠=∠,然后根据角平分线的定义与直角三角形两锐角互余,求出30B ∠=︒,再根据直角三角形30角所对的直角边等于斜边的一半求出BD ,然后求解即可.【详解】解:AD 平分BAC ∠,且DE AB ⊥,90C ∠=︒,3CD DE ∴==,DE 是AB 的垂直平分线,AD BD ∴=,B DAB ∴∠=∠,DAB CAD ∠=∠,CAD DAB B ∴∠=∠=∠,90C ∠=︒,90CAD DAB B ∴∠+∠+∠=︒,30B ∴∠=︒,26BD DE ∴==,639BC BD CD ∴=+=+=,故选:A【点睛】本题主要考查了角平分线的性质定理,直角三角形的性质,等腰三角形的性质等知识,熟练掌握角平分线上点到角两边的距离相等;等边对等角;直角三角形30角所对的直角边等于斜边的一半是解题的关键.11.(2021·四川南充·八年级期末)如图,在Rt △ABC 中,△ACB =90°,BD 平分△ABC 交AC 于点D ,过点D 作DE △BC 交AB 于点E ,△ABC =30°,DC =2.动点P 从点B 出发,沿着B →C →A 运动,当S △PBE =4时,则△PEB 度数是( )A .105°B .75°或105°C .150°D .75°或150°【答案】D【分析】 分两种情况:当点P 在BC 边上时,连接EP ,过点E 作EF BC ⊥于F ,根据平行线之间距离相等可得:2EF CD ==,由含30°角的直角三角形性质可得:24BE EF ==,再结合三角形面积即可得出BP BE =,最后运用三角形内角和定理及等腰三角形性质即可;当点P 在AC 边上时,过点P 作PG AB ⊥于点G ,利用角平分线判定定理可得出:BP 平分ABC ∠,即点P 与点D 重合,再利用平行线性质即可.【详解】解:当点P 在BC 边上时,如图1,连接EP ,过点E 作EF BC ⊥于F ,△∥DE BC ,EF BC ⊥,DC BC ⊥,△2EF CD ==,在Rt BEF 中,90BFE ∠=︒,30ABC ∠=︒,△24BE EF ==,△4PBE S =,△1242BP ⨯⨯=,△4BP =, △BP BE =,△()()11180180307522PEB ABC ∠=⨯︒-∠=⨯︒-︒=︒;当点P 在AC 边上时,如图2,过点P 作PG △AB 于点G ,△4PBE S =,△142BE PG ⨯⨯=,即1442PG ⨯⨯=, △2PG =,△PC BC ⊥,PG AB ⊥,2PG PC ==,△BP 平分△ABC ,即点P 与点D 重合,△∥DE BC ,△180********DEB ABC ∠=︒-∠=︒-︒=︒,即150PEB ∠=︒,综上所述,75PEB ∠=︒或150︒,故选:D .【点评】本题考查了直角三角形性质,角平分线性质和判定定理,平行线性质,等腰三角形性质等,添加辅助线构造直角三角形是解题关键.12.(2022·全国·八年级)如图所示,,AB CD O ∥为BAC ∠与ACD ∠平分线的交点,OE AC ⊥于,E 若2OE =,则AB 与CD 之间的距离是( )A .2B .4C .8D .无法确定【答案】B【分析】 过点O 作MN AB ⊥于M ,交CD 于N ,利用角平分线的性质求出OM 、ON ,最后即可求出AB 与CD 之间的距离.【详解】如图,过点O 作MN AB ⊥于M ,交CD 于N ,//AB CD ,MN CD ∴⊥,AO BAC ∠是的平分线,,,2OM AB OE AC OE ⊥⊥=,2∴==OM OE ,CO 是ACD ∠的平分线,OE AC ⊥,ON CD ⊥,2∴==ON OE ,4∴=+=MN OM ON ,即AB CD 与之间的距离是4.故选:B .【点睛】本题主要是考查了角平分线的性质,熟练地应用角平分线的性质:角平分线上的点到角的两边相等,求出对应相等的边,是解决本题的关键.二、填空题(每小题4分,共24分)13.(2022·广东东莞·八年级期末)若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .【答案】9或7.5或9【分析】分9是底边和腰长两种情况,分别列出方程,求解即可得到结果.【详解】解:若9cm为底时,腰长应该是12(24-9)=7.5cm,故三角形的三边分别为7.5cm、7.5cm、9cm,△7.5+7.5=15>9,故能围成等腰三角形;若9cm为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm、9cm、6cm,△6+9=15>9,△以9cm、9cm、6cm为三边能围成三角形,综上所述,腰长是9cm或7.5cm,故答案为:9或7.5.【点睛】本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键.14.(2021·广东南沙·八年级期末)如图,△ABC中,AB=AC=DC,D在BC上,且AD=DB,则△BAC=_____.【答案】108°108度【分析】先设△B=x,由AB=AC可知,△C=x,由AD=DB可知△B=△DAB=x,由三角形外角的性质可知△ADC=△B+△DAB=2x,根据DC=CA可知△ADC=△CAD=2x,再在△ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解.【详解】设△B=x,△△C=△B=x,△AD=DB,△△B=△DAB=x,△△ADC=△B+△DAB=2x,△DC=CA,△△ADC=△CAD=2x,在△ABC中,x+x+2x+x=180°,解得:x=36°.△△BAC=108°.故答案为:108°.【点睛】此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理15.(2021·江苏赣榆·八年级期末)如图,点P是等边△ABC内的一点,PA=6,PB=8,PC =10,若点P′是△ABC外的一点,且△P′AB△△PAC,则△APB的度数为___.【答案】150°【分析】如图:连接PP′,由△PAC△△P′AB可得PA=P′A、△P′AB=△PAC,进而可得△APP′为等边三角形易得PP′=AP=AP′=6;然后再利用勾股定理逆定理可得△BPP′为直角三角形,且△BPP′=90°,最后根据角的和差即可解答.解:连接PP′,△△PAC△△P′AB,△PA=P′A,△P′AB=△PAC,△△P′AP=△BAC=60°,△△APP′为等边三角形,△PP′=AP=AP′=6;△PP′2+BP2=BP′2,△△BPP′为直角三角形,且△BPP′=90°,△△APB=90°+60°=150°.故答案为:150°.【点睛】本题主要考查了全等三角形的性质、等边三角形的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键.∠16.(2021·辽宁铁岭·八年级期末)如图,△80=,O是AB,AC垂直平分线的交点,则BOCA︒的度数是________︒.【答案】160【分析】首先需要根据条件作出辅助线OA,根据垂直平分线得性质:线段垂直平分线上任意一点到∠和该线段两端点的距离相等,可以构造等腰三角形,即可进行角度转换求解,解得BCO∠的度数为10︒,最终根据三角形的内角和求得BOC∠的度数为160︒.CBO【详解】解:如图所示:连接OA,△△A=80°,△△ABC+△ACB=180°-△A =100°,△O是AB,AC垂直平分线的交点,△OA=OB,OA=OC,△△OAB =△OBA ,△OCA =△OAC ,OB =OC ,△△OBA +△OCA =△OAB +△OAC =△A =80°,△△OBC +△OCB =100°﹣80°=20°,△OB =OC ,△△BCO =△CBO =10°,△△BOC=180°-△BCO -△CBO =180°-10° - 10°=160°故答案为:160°.【点睛】本题重点考查的是线段垂直平分线的性质的运用,利用性质进行构造等腰三角形,并进行求解是解本题的关键. 17.(辽宁省抚顺市2021-2022学年八年级上学期期末数学试题)如图,ABC 中,90C ∠=︒,AC BC =,AD 是CAB ∠的平分线,DE AB ⊥于点E ,已知8cm AC ,则BD DE +=______cm .【答案】8【分析】由角平分线的性质可得CD =DE ,则BD +DE =BD +CD =BC ,由此进行求解即可.【详解】解:△DE △AB ,△C =90°,AD 是△BAC 的角平分线,△CD =DE ,△BD +DE =BD +CD =BC ,又△AC =BC =8cm ,△BD +DE =8cm ,故答案为:8.【点睛】本题主要考查了角平分线的性质,解题的关键在于能够熟记角平分线上的点到角两边的距离相等.18.(2021·广西隆安·八年级期中)如图,已知ABC 的周长是23,,OB OC 分别平分ABC ∠和,ACB OD BC ∠⊥于D ,且4,OD ABC =的面积是_______.【答案】46【分析】连接AO ,过点O 作OE △AB 于点E ,OF △AC 于点F ,根据角平分线的性质定理,可得OD =OE ,OD =OF =4,再由ABC AOB BOC AOC S S S S =++△△△△,即可求解.【详解】解:如图,连接AO ,过点O 作OE △AB 于点E ,OF △AC 于点F ,△,OB OC 分别平分ABC ∠和,ACB OD BC ∠⊥,4OD =,△OD =OE ,OD =OF =4,△111222ABC AOB BOC AOC S S S S AB OE CB OD AC OF =++=⋅+⋅+⋅ ()114234622OD AB BC AC =⨯⨯++=⨯⨯= . 故答案为:46【点睛】本题主要考查了角平分线的性质定理,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.三、解答题一(每小题8分,共16分)19.(2021·广东南沙·八年级期末)如图,在△ABC 中,AD △BC ,垂足为D .(1)尺规作图:作线段AC 的垂直平分线EF ,分别交BC 、AC 于点E 、F .(保留作图痕迹,不写作法)(2)若AB =EC ,AC =6,CD =5,求△ABC 的周长.【答案】(1)见解析;(2)16;【分析】(1)利用基本作图,作AC的垂直平分线即可;(2)根据线段垂直平分线的性质得到EA=EC,则AB=AE,根据等腰三角形的性质得到BD =ED,然后利用等线段代换得到△ABC的周长=2CD+AC.【详解】解:(1)如图,EF为所作;(2)连接AE,如图,△EF垂直平分AC,△EA=EC,△AB=CE,△AB=AE,△AD△BC,△BD=ED,△△ABC的周长=AB+BD+CD+AC=CE+DE+CD+AC=2CD+AC=2×5+6=16.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了线段垂直平分线的性质.20.(2021·陕西临渭·八年级期中)如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点B,动点Q从点B出发沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求△B的度数;(2)连接PQ,若运动2s时,求P、Q两点之间的距离.【答案】(1)△B=90°;(2)P、Q两点之间的距离为13cm【分析】(1)如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.依据勾股定理的逆定理进行判断即可;(2)依据运动时间和运动速度,即可得到BP和BQ的长,再根据勾股定理进行计算,即可得到PQ的长.【详解】解:(1)△AB=7cm,AC=25cm,BC=24cm,△AB2+BC2=625=AC2,△△ABC是直角三角形且△B=90°;(2)运动2s时,AP=1×2=2(cm),BQ=2×6=12(cm),△BP=AB﹣AP=7﹣2=5(cm),Rt△BPQ中,2222+=+=,PQ BP BQ51213cm△P、Q两点之间的距离为13cm.【点睛】本题主要考查了勾股定理的逆定理和勾股定理,解题的关键在于能够根据题意求出△B=90°.四、解答题二(每小题10分,共20分)21.(2021·湖北·监利市朱河镇初级中学.八年级期中)已知:如图,在△ABC中,△ABC和△ACB 的角平分线相交于点P,且PE△AB,PF△AC,垂足分别为E、F.(1)求证:PE=PF;(2)连接AP,若△ACB=80°,求△APB的度数.【答案】(1)见解析;(2)130°【分析】(1)过点P作PD△BC于D,可得PD=PE=PF;(2)根据三角形内角和求出△BAC+△ABC=100°,再根据角平分线的定义得到AP平分△BAC,从而得出△PAB+△PBA,再次根据三角形内角和求出△APB.【详解】解:(1)过点P作PD△BC于D,△△ABC和△ACB的角平分线相交于点P,且PE△AB,PF△AC,△PD=PE,PD=PF,△PE=PF;(2)△△ACB=80°,△△BAC+△ABC=180°-80°=100°,△△ABC和△ACB的角平分线相交于点P,△AP平分△BAC,△△PAB+△PBA=1(△BAC+△ABC)=50°,2△△APB=180°-50°=130°.【点睛】本题考查了角平分线的定义和性质,三角形内角和,熟记定理是解题的关键.22.(2022·辽宁大石桥·八年级期末)如图,△ABC是等边三角形,延长BC到点E,使CE=12 BC,若D是AC的中点,连接ED并延长交AB于点F.(1)若AF=3,求AD的长;(2)求证:DE=2DF.【答案】(1)6;(2)见解析【分析】(1)根据等边三角形的性质得出AC=BC,△A=△ACB=60°,求出△E=△CDE,根据三角形外角性质和等腰三角形的性质求出BD=DE,求出AD的长即可;(2)连接BD,求出BD=DE,根据含30°角的直角三角形的性质得出BD=2DF,即可得出答案.【详解】解:(1)△△ABC为等边三角形,△AC=BC,△A=△ACB=60°,△D为AC中点,△CD=AD=12 AC,△CE=12 BC,△CD=CE,△△E=△CDE,△△ACB=△E+△CDE,△△E=△CDE=30°,△△ADF=△CDE=30°,△△A=60°,△△AFD=180°-△A-△ADF=90°,△AF=3,△AD=2AF=6,(2)连接BD,△△ABC为等边三角形,D为AC中点,△BD平分△ABC,△ABC=60°,△△DBC=△ABD=12△ABC=30°,△△BFD=90°,△BD=2DF,△△DBC=△E=30°,△BD=DE,△DE=2DF,【点睛】本题考查了等边三角形的性质,含30°角的直角三角形的性质,等腰三角形的判定,三角形的外角性质,三角形的内角和定理等知识点,能综合运用定理进行推理是解此题的关键.五、解答题三(每小题12分,共24分)23.(2021·湖北·监利市朱河镇初级中学.八年级期中)如图,△ABC中,AB=AC,BF△AE于E 交AF于点F,连结CF.△BAC;(1)如图1所示,当EF=BE+CF,求证△EAF=12△BAC,求证:CF=BF+2BE.(2)如图2所示,△EAF=12【答案】(1)见解析;(2)见解析【分析】(1)在EF上截取EH=BE,由“SSS”可证△ACF△△AHF,可得△CAF=△HAF,可得结论;(2)在BE的延长线上截取EN=BE,连接AN,由“SAS”可证△ACF△△ANF,可得CF=NF,可得结论.【详解】解:(1)如图,在EF上截取EH=BE,连接AH,△EB=EH,AE△BF,△AB=AH,△AB=AH,AE△BH,△△BAE=△EAH,△AB=AC,△AC=AH,△EF =EH +HF =BE +CF ,△CF =HF ,在△ACF 和△AHF 中,AC AHAF AF CF HF=⎧⎪=⎨⎪=⎩,△△ACF △△AHF (SSS ),△△CAF =△HAF ,△△BAE +△CAF =△EAH +△FAH =△EAF ,即△EAF =12△BAC ;(2)如图,在BE 的延长线上截取EN =BE ,连接AN ,△AE △BF ,BE =EN ,AB =AC ,△AN =AB =AC ,△AN =AB ,AE △BN ,△△BAE =△NAE ,△△EAF =12△BAC ,△△EAF +△NAE =12(△BAC +2△NAE )△△FAN =12△CAN ,△△FAN =△CAF ,在△ACF 和△ANF 中,AC AN CAF NAF AF AF =⎧⎪∠=∠⎨⎪=⎩,△△ACF △△ANF (SAS ),△CF =NF ,△CF =BF +2BE .【点睛】本题考查了全等三角形的判定和性质,垂直平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.24.(2022·四川仁寿·八年级期末)如图,已知△ABC 中,△C =90°,AC =5cm ,BC =12cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿AC 运动,且速度为每秒1cm ,点Q 从点C 开始沿CB 运动,且速度为每秒2cm ,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t 秒.(1)当t =2秒时,求PQ 的长;(2)求运动时间为几秒时,△PQC 是等腰三角形?(3)P 、Q 在运动的过程中,用含t(0<t <5)的代数式表示四边形APQB 的面积.【答案】(1)PQ =5cm ;(2)t =53;(3)S 四边形APQB =30﹣5t +t 2.【分析】(1)先分别求出CQ 和CP 的长,再根据勾股定理解得即可;(2)由△C =90°可知,当△PCQ 是等腰三角形时,CP =CQ ,由此求解即可;(3)由S 四边形APQB =S △ACB ﹣S △PCQ 进行求解即可.【详解】解:(1)由题意得,AP =t ,PC =5﹣t ,CQ =2t ,△△C =90°,△PQ 2222(5)(2)PC CQ t t +-+,△t =2,△PQ 22345cm +,(2)△△C =90°,△当CP =CQ 时,△PCQ 是等腰三角形,△5﹣t =2t ,解得:t =53,△t =53秒时,△PCQ 是等腰三角形;(3)由题意得:S 四边形APQB =S △ACB ﹣S △PCQ=1122AC CB PC CQ ⋅-⋅=11512(5)222t t ⨯⨯-⨯-⨯=30﹣5t +t 2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解。
(最新)数学八年级下册《 三角形的证明》单元综合检测试题(含答案)
第一章三角形的证明第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长为()A.12 B.17或19C.17 D.192.用反证法证明命题:“如图1,如果AB∥CD,AB∥EF,那么CD∥EF.”证明的第一个步骤是()图1A.假定CD∥EF B.假定CD不平行于EFC.已知AB∥EF D.假定AB不平行于EF3.已知下列命题:①若|x|=3,则x=3;②全等三角形的三组对应角相等;③直角三角形中30°角所对的直角边等于斜边的一半;④有理数与数轴上的点一一对应.其中原命题与逆命题均为真命题的个数是()A.1 B.2 C.3 D.44.如图2,在Rt△ABC中,∠ACB=90°,BC的垂直平分线交斜边AB于点D,交BC于点E,AB=7.8,AC=3.9,则图中等于60°的角有()图2A.2个B.3个C.4个D.5个5.如图3,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,设△ABD,△BCD的面积分别为S1,S2,则S1∶S2等于()图3A .2∶1 B.2∶1 C .3∶2 D .2∶ 36.如图4,在等腰三角形ABC 中,AB =AC ,ED 是AB 边的垂直平分线.若BD =BC ,则∠1的度数是( )图4A .44°B .46°C .54°D .56°7.如图5,△ABC 是等边三角形,AD ,CE 分别是BC ,AB 边上的高,且AD ,CE 相交于点O .若CE =1,则OD 的长是( )图5A.13B.12C. 2D. 3 8.如图6,在△ABC 中,AB =20 cm ,AC =12 cm ,点P 从点B 出发以每秒3 cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2 cm 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动.当△APQ 是以∠A 为顶角的等腰三角形时,运动的时间是( )图6A .2.5秒B .3秒C .3.5秒D .4秒9.如图7,P 是等边三角形ABC 内的一点,且P A =3,PB =4,PC =5,以BC 为边在△ABC 外作△BQC ≌△BP A ,连接PQ ,则以下结论错误的是( )图7A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°10.如图8,在△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下列四个结论:图8①AD上任意一点到点C,B的距离相等;②AD上任意一点到直线AB,AC的距离相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中正确的个数为()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.命题“全等三角形的面积相等”的逆命题是________命题.(填“真”或“假”)12.如图9,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠ABC的度数为________°.图913.如图10,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD的长为________.图1014.如图11,在△ABC中,AB=AC,∠A=120°,D是BC上任意一点,过点D分别作DE⊥AB于点E,DF⊥AC于点F.如果BC=20 cm,那么DE+DF=________ cm.图1115.如图12,在△ABC中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,可以判定△ABC是等腰三角形的两个条件是________(用序号写出一种情形即可).图1216.已知:如图13,O为平面直角坐标系中的坐标原点,四边形OABC为长方形,A(10,0),C(0,4),D是OA的中点,点P在BC上运动.若△ODP是腰长为5的等腰三角形,则点P的坐标为________________.图13三、解答题(共52分)17.(5分)如图14所示,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上求作点P,使点P到点A,B的距离相等(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P到AB,BC的距离相等时,求∠A的度数.图1418.(5分)如图15,在△ABC中,∠C=90°,AB的垂直平分线分别交AB,AC于点D,E,且∠A=30°,DE=1 cm.求△ABC的面积.(结果保留根号)图1519.(6分)如图16,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E.若AB=6 cm,你能求出△BDE的周长吗?若能,请求出;若不能,请说明理由.图1620.(6分)如图17,D,E分别为△ABC的边AB,AC上的点,BE与CD相交于点O.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个条件作为结论,写出一个正确..的命题:命题的条件是______和______,命题的结论是______和______(均填序号);(2)证明你写出的命题.已知:求证:证明:图1721.(7分)如图18,在△ABC中,AD平分∠BAC,AD的垂直平分线交AB于点E,交AC于点F,连接DE.求证:AF=ED.图1822.(7分)如图19,在等腰三角形ABC中,AB=AC=8,∠BAC=100°,AD是∠BAC的平分线,交BC于点D,E是AB的中点,连接DE.(1)求∠BAD的度数;(2)求∠B的度数;(3)求线段DE的长.图1923.(8分)已知∠MAN,AC平分∠MAN,试解决下列问题:(1)在图20①中,若∠MAN=120°,∠ABC=∠ADC=90°.求证:AB+AD=AC.(2)在图②中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.图2024.(8分)如图21,△ABC是边长为6的等边三角形,P是AC边上一动点,由点A向点C运动(与点A,C不重合),Q是CB延长线上一点,与点P同时以相同的速度由点B向CB延长线方向运动(点Q不与点B重合),过点P作PE⊥AB于点E,连接PQ交AB于点D.(1)当∠BQD=30°时,求AP的长.(2)运动过程中线段DE的长是否发生变化?如果不变,请求出线段DE的长;如果变化,请说明理由.图211.B 2.B 3.A 4.D 5.A 6.C 7.A 8.D 9.D 10.D 11.假 12.3013.154 cm [解析] 设CD =x cm ,则易证得BD =AD =(10-x )cm.在Rt △ACD 中,由勾股定理,得(10-x )2=x 2+52,解得x =154.14.10 [解析] 利用含30°角的直角三角形的性质得,DE +DF =12(BD +CD )=12BC .15.答案不唯一,如①③16.(2,4)或(3,4)或(8,4) [解析] 当OD =PD (点P 在点D 的右边)时,根据题意画出图形, 如图①所示:过点P 作PQ ⊥x 轴于点Q .在Rt △DPQ 中,PQ =4,PD =OD =12OA =5,根据勾股定理,得DQ =3,故OQ =OD +DQ =5+3=8,则P 1(8,4);当PD =OD (点P 在点D 的左边)时,根据题意画出图形,如图②所示:过点P 作PQ ⊥x 轴于点Q .在Rt △DPQ 中,PQ =4,PD =OD =5, 根据勾股定理,得QD =3,故OQ =OD -QD =5-3=2,则P 2(2,4); 当PO =OD 时,根据题意画出图形,如图③所示:过点P 作PQ ⊥x 轴于点Q .在Rt △OPQ 中,OP =OD =5,PQ =4,根据勾股定理,得OQ =3,则P 3(3,4).综上,满足题意的点P 的坐标为(2,4)或(3,4)或(8,4).17.解:(1)图略.提示:作线段AB 的垂直平分线交AC 于点P .(2)连接BP .∵点P 到AB ,BC 的距离相等,∴BP 平分∠ABC ,∴∠ABP =∠PBC .又∵点P 在线段AB 的垂直平分线上,∴P A =PB ,∴∠A =∠ABP ,∴∠A =∠ABP =∠PBC =13×90°=30°.18.解:∵DE 垂直平分AB ,∠A =30°,DE =1 cm ,∴AE =2 cm ,∴AD =22-12=3(cm),∴AB =2AD =2 3 cm.在Rt △ABC 中,∠A =30°,∴BC =12AB = 3 cm ,∴AC =(2 3)2-(3)2=3(cm), ∴S △ABC =12×3×3=32 3(cm 2).19.解:能.∵∠C =90°,DE ⊥AB ,AD 平分∠CAB ,∴DE =DC .在Rt △ADC 和Rt △ADE 中,∵DC =DE ,AD =AD ,∴Rt △ADC ≌Rt △ADE (HL),∴AC =AE .又∵AC =BC ,∴AE =BC ,∴△BDE 的周长为DE +DB +EB =BC +EB =AE +EB =AB .∵AB =6 cm ,∴△BDE 的周长为6 cm.20.解:答案不唯一,如:(1)① ③ ② ④(2)已知:D ,E 分别为△ABC 的边AB ,AC 上的点,BE 与CD 相交于点O ,且AB =AC ,∠ABE =∠ACD .求证:OB =OC ,BE =CD .证明:在△ABE 和△ACD 中,∵∠ABE =∠ACD ,AB =AC ,∠A =∠A ,∴△ABE ≌△ACD (ASA),∴BE =CD .∵AB =AC ,∴∠ABC =∠ACB ,∴∠BCD =∠ACB -∠ACD =∠ABC -∠ABE =∠CBE ,∴OB =OC .21.证明:∵EF 是AD 的垂直平分线,∴AE =ED .∵AD 平分∠BAC ,∴∠EAO =∠F AO .∵∠AOE =∠AOF =90°,AO =AO ,∠EAO =∠F AO ,∴△AEO ≌△AFO ,∴AE =AF ,∴AF =ED .22.解:(1)∵∠BAC =100°,且AD 是∠BAC 的平分线,∴∠BAD =50°.(2)在等腰三角形ABC 中,∠B =180°-100°2=40°. (3)∵AB =AC ,AD 平分∠BAC ,∴AD 是等腰三角形ABC 底边BC 上的中线,∴D 是BC 的中点.又∵E 是AB 的中点,∴DE 是△ABC 的中位线,∴DE =12AC =4. 23.解:(1)证明:∵∠MAN =120°,AC 平分∠MAN ,∴∠CAD =∠CAB =60°.又∠ABC =∠ADC =90°,∴∠ACD =∠ACB =30°,∴AD =12AC ,AB =12AC ,∴AB +AD =12AC +12AC =AC .(2)(1)中的结论仍然成立.证明:如图,过点C 分别作CE ⊥AM 于点E ,CF ⊥AN 于点F ,则∠CED =∠CFB =90°.∵AC 平分∠MAN ,∴CE =CF .∵∠CBF +∠ADC =180°,∠ADC +∠CDE =180°,∴∠CDE =∠CBF . 在△CDE 和△CBF 中,∵∠CDE =∠CBF ,∠CED =∠CFB ,CE =CF ,∴△CDE ≌△CBF ,∴DE =BF .∵∠MAN =120°,AC 平分∠MAN ,∴∠MAC =∠NAC =60°,∴∠ECA =∠FCA =30°.在Rt △ACE 和Rt △ACF 中,AE =12AC ,AF =12AC ,∴AD +AB =AD +AF +BF =AD +AF +DE =AE +AF =12AC +12AC =AC ,即AB +AD =AC .24.解:(1)∵△ABC 是边长为6的等边三角形,∴∠ACB =60°.∵∠BQD =30°,∴∠QPC =90°.设AP =x ,则PC =6-x ,QB =x ,∴QC =QB +BC =x +6.∵在Rt △QCP 中,∠BQD =30°,∴PC =12QC ,即6-x =12(x +6),解得x =2,∴当∠BQD =30°时,AP =2.(2)线段DE 的长不会发生变化.如图,过点Q 作QF ⊥AB ,交直线AB 于点F ,连接QE ,PF . 又∵PE ⊥AB 于点E ,∴∠DFQ =∠AEP =90°.∵点P ,Q 的运动速度相同,∴AP =BQ .∵△ABC 是等边三角形,∴∠A =∠ABC =∠FBQ =60°.在△APE 和△BQF 中,∵∠AEP =∠BFQ ,∠A =∠FBQ ,AP =BQ ,∴△APE ≌△BQF (AAS),∴AE =BF ,PE =QF ,易证△QFD ≌△PED ,∴DE =DF ,∴DE =12EF .∵EF =BE +BF =BE +AE =AB ,∴DE =12AB . 又∵等边三角形ABC 的边长为6,∴DE =3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学-三角形的证明单元测试题一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配.A . ①B . ②C .③D . ①和②2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm,BE =3cm,那么AC 长为().A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P,则12∠+∠的度数是().A .045B .055C .060D .0755.如图4,在ABC ∆中,AB=AC,036A ∠=,BD 和CE 分别是ABC ∠和ACB ∠的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为().A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N,有如下结论:①△ACE ≌△DCB ;② CM =CN ;③ AC =DN. 其中,正确结论的个数是().A .3个B .2个C . 1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C,D,使CD=BC,再作出BF 的垂线DE,使A,C,E 在同一条直线上(如图7),可以证明ABC ∆≌EDC ∆,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ∆≌EDC ∆的条件是( ). A .ASA B .SAS C .SSS D .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF ∆)是等腰三角形. 证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE ∆与BDC ∆关于BD 对称,∴23∠=∠. ∴BDF ∆是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?(). ①12∠=∠;②13∠=∠;③34∠=∠;④BDC BDE ∠=∠ A .①③ B .②③ C .②① D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h . 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形. 上述作法的四个步骤中,有错误的一步你认为是().A . (1)B . (2)C . (3)D . (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB,若不增加任何字母与辅助线,要使 △ABC ≌△DCB,则还需增加一个条件是____________.2.如图11,在Rt ABC ∆中,090,BAC AB AC ∠==,分别过点,B C 作经过点A 的直线的垂线段BD,CE,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ,则∠ABC 等于_________度. 4.如图13,在等腰ABC ∆中,AB=27,AB 的垂直平分线交AB 于点D,交AC 于点E,若BCE ∆的周长为50,则底边BC 的长为_________.5.在ABC ∆中,AB=AC,AB 的垂直平分线与AC 所在的直线相交所得的锐角为050,则 底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段 垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的 距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC 折叠,点B 与点A 重合,折痕为DE,则CD 的长为________.8.如图15,在ABC ∆中,AB=AC,0120A ∠=,D 是BC 上任意一点,分别做DE ⊥AB 于E,DF ⊥AC 于F,如果BC=20cm,那么DE+DF= _______cm. 9.如图16,在Rt △ABC 中,∠C =90°,∠B =15°,DE 是AB 的中垂线,垂足为D ,交BC 于点E ,若4BE =,则AC =_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在∆ABC 中,090ACB ∠=,CD 是AB 边上的高,030A ∠=. 求证:AB= 4BD.2.(7分)如图19,在∆ABC 中,090C ∠=,AC=BC,AD 平分CAB ∠交BC 于点D,DE ⊥AB 于点E,若AB=6cm. 你能否求出BDE ∆的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点, BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD .(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确..的命题: 命题的条件是和,命题的结论是和(均填序号). (2)证明你写出的命题. 已知: 求证: 证明:4.(8分)如图21,在ABC ∆中,090A ∠=,AB=AC,ABC ∠的平分线BD 交AC 于D,CE ⊥BD 的延长线于点E.求证:12CE BD =.5.(8分)如图22,在∆ABC 中,090C ∠=.(1)用圆规和直尺在AC 上作点P,使点P 到A 、B 的距离相等. (保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,090AOB ∠=,OM 平分AOB ∠,将直角三角板的顶 点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D,问 PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在∆ABC 中,AB=AC,AB 的垂直平分线交AB 于点N, 交BC 的延长线于点M ,若040A ∠=. (1)求NMB ∠的度数;(2)如果将(1)中A ∠的度数改为070,其余条件不变,再求NMB ∠的度数; (3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A ∠改为钝角,你对这个规律性的认识是否需要加以修改?答案:一、精心选一选,慧眼识金 1.C ; 2.B ;3.D .点拨:BC=BE=3cm,AB=BD=5cm ; 4.C .点拨:利用ABD ∆≌BCE ∆; 5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件; 7.B .点拨:①②正确; 8.A ; 9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符. 二、细心填一填,一锤定音1.答案不惟一.如ACB DBC ∠=∠; 2.7厘米. 点拨:利用ABD ∆≌CAE ∆;3.030;4.23.点拨:由27BE CE AC AB +===,可得502723BC =-=;5.070或020.点拨;当ABC ∆为锐角三角形时,070B ∠=;当ABC ∆为钝角三角形时,020B ∠=; 6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理; 7.154cm . 点拨:设CD x =,则易证得10BD AD x ==-.在Rt ACD ∆中,222(10)5x x -=+,解得154x =. 8.10.点拨:利用含030角的直角三角形的性质得,()1122DE DF BD CD BC +=+=. 9.2. 点拨:在Rt AEC ∆中,030AEC ∠=,由AE=BE= 4,则得AC=2; 10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步. 三、耐心做一做,马到成功1.∵090ACB ∠=,030A ∠=,∴AB=2BC,060B ∠=.又∵CD ⊥AB,∴030DCB ∠=,∴BC=2BD.∴AB= 2BC= 4BD. 2.根据题意能求出BDE ∆的周长.∵090C ∠=,090DEA ∠=,又∵AD 平分CAB ∠,∴DE=DC.在Rt ADC ∆和Rt ADE ∆中,DE=DC,AD=AD,∴Rt ADC ∆≌Rt ADE ∆(HL ). ∴AC=AE,又∵AC=BC,∴AE=BC.∴BDE ∆的周长DE DB EB BC EB AE EB AB =++=+=+=. ∵AB=6cm,∴BDE ∆的周长=6cm . 3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD. 求证:OB =OC ,BE =CD .证明:∵AB=AC,∠ABE =∠ACD ,∠A =∠A,∴△ABE ≌△ACD (ASA ).∴BE=CD. 又∵ABC ACB ∠=∠,∴BCD ACB ACD ABC ABE CBE ∠=∠-∠=∠-∠=∠∴BOC ∆是等腰三角形,∴OB =OC. 4.延长CE 、BA 相交于点F.∵090,90EBF F ACF F ∠+∠=∠+∠=,∴EBF ACF ∠=∠.在Rt ABD ∆和Rt ACF ∆中,∵DBA ACF ∠=∠,AB=AC, ∴Rt ABD ∆≌Rt ACF ∆(ASA ). ∴BD CF =. 在Rt BCE ∆和Rt BFE ∆中,∵BE=BE,EBC EBF ∠=∠, ∴Rt BCE ∆≌Rt BFE ∆(ASA ). ∴CE EF =. ∴1122CE CF BD ==. 5.(1)图略. 点拨:作线段AB 的垂直平分线. (2)连结BP.∵点P 到AB 、BC 的距离相等, ∴BP 是ABC ∠的平分线,∴ABP PBC ∠=∠.又∵点P 在线段AB 的垂直平分线上,∴PA=PB,∴A ABP ∠=∠. ∴00190303A ABP PBC ∠=∠=∠=⨯=. 6.过点P 作P E ⊥OA 于点E,P F ⊥OB 于点F.∵OM 平分AOB ∠,点P 在OM 上,∴PE=PF.又∵090AOB ∠=,∴090EPF ∠=. ∴EPF CPD ∠=∠,∴EPC FPD ∠=∠.∴Rt PCE ∆≌Rt PDF ∆(ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC,∴B ACB ∠=∠.∴()()000011180180407022B A ∠=-∠=-=. ∴000090907020NMB B ∠=-∠=-=. (2)解法同(1).同理可得,035NMB ∠=.(3)规律:NMB ∠的度数等于顶角A ∠度数的一半.证明:设A α∠=.∵AB=AC,∴B C ∠=∠,∴()011802B α∠=-. ∵090BNM ∠=,∴()00011909018022NMB B αα∠=-∠=--=. 即NMB ∠的度数等于顶角A ∠度数的一半.(4)将(1)中的A ∠改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.。