例题与习题1
第一章 量子力学基础 例题与习题
第一章量子力学基础例题与习题一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。
解:(C)。
2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。
解:(E)。
3.计算能量为100eV光子、自由电子、质量为300g小球的波长。
( )解:光子波长自由电子300g小球。
4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。
解:。
5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。
解:6.设体系处于状态中,角动量和有无定值。
其值是多少?若无,求其平均值。
解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。
(2s+1) (1)二维方势箱中的9个电子。
(2)二维势箱中的10个电子。
(3)三维方势箱中的11个电子。
解:(1)2,(2)3,(3)4。
9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。
当,几率P怎样变?解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。
求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。
取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。
解:13.在什么条件下?解:14.已知一维运动的薛定锷方程为:。
和是属于同一本征值得本征函数,证明常数。
数值分析--典型例题与习题1ppt课件
x ***L *** .**L ***
从左向右看第 一个非零数 11:36
误差限不超过该 位的半个3/3单6 位
如果一个规格化浮点数
x 0.a1a2 an 10m
其绝对误差满足: | e( x) | x x 1 10mn 2
则称近似数x具有n位有效数字。
103
6/36
例2.已知近似数x有两位有效数字,试求其相对 误差限。 解:| er(x)|<5*10-2
7/36
例3.如下近似值的绝对误差限均为0.005,问各 近似值有几位有效数值 x1=1.38, x2=-0.0312, x3=0.00086。
8/36
例4.二次方程 x2 – 16 x + 1 = 0, 取 63 7.937
的三位有效数字近似值应取多少项求和。
解: 由部分和 Sn
|
Sn
4
|
1 2n 1
n
(1)k1
1
k 1
2k 1
只需
1 1 103 2n 1 2
n > 1000时, Sn有三位有效数。
13/36
d[arctan( x)] 1
dx
1 x2
x1
0 1 x2 dx arctan( x) arctan(0) arctan( x)
lim
n
(
xn
)
x*
Iterate: To say or do again or again and again5/36
11:36
例1.经过四舍五入得出x1=6.1025和x2=80.100, 试问它们分别具有几位有效数字?
结构化学第5章例题与习题
解之, 解之,得:c1= c2=c3 根据归一化条件, 根据归一化条件,有:
c12 + c 22 + c 32 = 1
由此求得: 由此求得: c1= c2=c3= 1 / 3 ψ1= 1 / 3 φ1+φ2+φ3) ( )
利用分子的镜面对称性,可简化计算工作: 利用分子的镜面对称性,可简化计算工作:若考虑分子对过 C2的镜面对称,则有:c1= c3 c2=-2c1 的镜面对称,则有: - 根据归一化条件可得: 根据归一化条件可得: c = c = 1 / 6 , c = −2 / 6 波函数为: 波函数为: ψ2= 1 / 6(φ1-2φ2+φ3)
0 1 x 1 0 0
0 0 1 x 1 0
1 0 0 1 x 1
0 0 0 =0 0 1 x
5 4 3 2 1
已知丁二烯的四个分子轨道为: 例3. 已知丁二烯的四个分子轨道为:
ψ1 = Aφ1 + Bφ2 + Bφ3 + Aφ4 ψ 2 = Bφ1 + Aφ2 − Aφ3 − Bφ4 ψ3 = Bφ1 − Aφ2 − Aφ3 + Bφ4 ψ 4 = Aφ1 − Bφ2 + Bφ3 − Aφ4
H2
+
-
(σ﹡1s)0 ﹡ )
+
(σ1s)2 )
图(a)CO和H2的前线轨道轮廓图 ) 和 的前线轨道轮廓图
接近时, 由图可见, 分子的HOMO和H2分子的 接近时 由图可见,当CO分子的 分子的 和 分子的LUMO接近时, 彼此对称性不匹配; 分子的LUMO和H2分子的 彼此对称性不匹配;当CO分子的 分子的 和 分子的HOMO接近 接近 彼此对称性也不匹配。因此,尽管在热力学上CO加H2 (生 时,彼此对称性也不匹配。因此,尽管在热力学上 加 成烃或含氧化合物)反应能够进行,但实际上,在非催化条件下, 成烃或含氧化合物)反应能够进行,但实际上,在非催化条件下, 该反应难以发生。 该反应难以发生。 C CO O H2 Ni +
例题与习题1
例题:1.计算含有施主杂质浓度N D =9×1015cm -3及受主杂质浓度为1.1×1016cm -3的硅在300k 时的电子和空穴浓度以及费米能级的位置。
[解]对于硅材料:N D =9×1015cm -3;N A =1.1×1016cm -3;T =300k 时 n i =1.5×1010cm -3: 3150102-⨯=-=cm N N p D A ;353162100010125.1cm 102.0)105.1(--⨯=⨯⨯==cm p n n i ∵D A N N p -=0且)(exp Nv 00TK E E p F V -⋅= ∴)exp(0Tk E E Nv N N F V D A -=- ∴eV Ev eV Ev Nv N N T k Ev E D A F 224.0)(101.1102.0ln 026.0ln 19160+=⨯⨯-=--=2.制造晶体管一般是在高杂质浓度的n 型衬底上外延一层n 型的外延层,再在外延层中扩散硼、磷而成。
设①n 型硅单晶衬底是掺锑的,锑的电离能为0.039eV ,300k 时的E F 位于导带底下面0.026eV 处,计算锑的浓度和导带中电子浓度。
②设n 型外延层杂质均匀分布,杂质浓度为4.6×1015 cm −3,计算300K 时的E F 位置和电子空穴浓度。
③在外延层中扩散硼后,硼的浓度分布随样品深度变化。
设扩散层某一深度处硼的浓度为5.2×1015 cm −3,计算300K 时E F 位置和电子空穴浓度。
④如温度升高到500,计算③中电子空穴的浓度(已知本征载流子浓度T=300K 时,ni=7.8 ×1015 cm −3, T=500K 时,ni=2 ×1015 cm −3. )[解] ①根据下面讨论知Ti 为高掺杂,未完全电离:T k E E F C 02052.0026.00=<=-<,即此时为弱简并 ∵)exp(2100Tk E E N n n D F D D -+=≈+ )(013.0026.0039.0)()(eV E E E E E E F C D C D F =-=---=-)(1007.4)1()]026.0039.0exp()1exp(21[108.22)()]exp()exp(21[2319211902100-⨯≈-⨯-+⨯⨯=-∆⨯-+=cm F T k E E F T k E T k Ec E Nc N C F D F D ππ 其中3.0)1(21=-F)(105.9)026.0026.0(10198.22)0(231921210-⨯≈-⨯⨯=-=cm F T k E E F Ncn C F ππ作业布置1.教材p.162第15题。
习题一.doc
1第一章 习题解答与问题一、习题解答1 设x >0,x 的相对误差限为δ,求 ln x 的误差。
解:设 x 的准确值为x *,则有( | x – x * | /|x *| ) ≤ δ所以e (ln x )=| ln x – ln x * | =| x – x * | ×| (ln x )’|x=ξ·≈ ( | x – x * | / | x *| ) ≤ δ另解:e (ln x )=| ln x – ln x * | =| ln (x / x *) | = | ln (( x – x * + x *)/ x *) |= | ln (( x – x * )/ x * + 1) |≤( | x – x * | /|x *| ) ≤ δ2 设 x = – 2.18 和 y = 2.1200 都是由准确值经四舍五入而得到的近似值。
求绝对误差限ε( x ) 和 ε( y ) 。
解:| e (x ) | = |e (– 2.18)|≤ 0.005,| e (y ) | = |e ( 2.1200)|≤ 0.00005,所以ε( x )=0.005, ε( y ) = 0.00005。
3 下近似值的绝对误差限都是 0.005,问各近似值有几位有效数字x 1=1.38,x 2= –0.0312,x 3= 0.00086解:根据有效数字定义,绝对误差限不超过末位数半个单位。
由题设知,x 1,x 2, x 3有效数末位数均为小数点后第二位。
故x 1具有三位有效数字,x 2具有一位有效数字,x 3具有零位有效数字。
4 已知近似数x 有两位有效数字,试求其相对误差限。
解:| e r (x ) | ≤5 × 10– 2 。
5 设 y 0 = 28,按递推公式 y n = y n-1 –783/ 100 ( n = 1,2,…) 计算到y 100。
若取≈78327.982 (五位有效数字),试问,计算 y 100 将有多大的误差?解:由于初值 y 0 = 28 没有误差,误差是由≈78327.982所引起。
最全函数值域的12种求法(附例题,习题)[1]
12一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
力学题库1(例题与作业)
第一章质点运动学例1、质点沿x轴正向运动,加速度a=-kv,k为常数。
设从原点出发时速度为v0,求运动方程x=x(t)与速度—位移关系v=v(x)。
例2、已知斜抛运动的抛射角为θ,初速度为v0。
求其轨迹方程。
例3、如图,小船在绳子的匀速v0牵引下运动,已知h。
求θ位置时船的速度与加速度大小。
(两种方法)例4、有一轮以匀角速ω旋转,一质点自轮心沿水平轮轴以匀速v0向轮边移动。
求质点的轨迹方程,以及t时刻质点的速度和加速度大小。
*例5、一只狼沿着半径为R的圆形岛边缘按逆时针方向匀速跑动,当狼经过某点时,一只猎犬以相同的速率从岛中心出发追逐狼。
设追逐过程中犬、狼、岛中心始终在一直线上,求猎犬的轨迹和追上狼时的位置。
*例6、(上海高考题改编)下图为平静海面上拖船A、B拖着驳船C运动的示意图。
已知A、B的速度分别沿缆绳CA、CB方向,且A、B、C不共线。
以下说法正确的是()(多选)(A)C的速度大小可能介于A、B的速度大小之间(B)C的速度一定不小于A、B的速度(C)C的速度方向可能在CA、CB的夹角之外(D)C的速度方向一定在CA、CB的夹角之内**例7、已知点P0(l,0)处有一小船,以长为l的线,拉着小船从原点向上走,小船沿着绳运动,PQ为P点切线,Q点恒在y轴上。
(1)以图中θ为参数,求P点的轨迹方程。
(曳物线)(2)若Q 点以匀速u 向上运动,求θ位置处P 点的加速度。
练习题1、一质点沿x 轴运动,其速度—时间关系为⎪⎭⎫ ⎝⎛+=t t v 6sin 23ππ,式中各量均取国际单位。
已知当t =0时质点在x =-2m 处。
求:(1)2s 时质点的位置;(2)0s 至2s 质点的位移;(3)0s 和2s 两时刻质点的加速度。
2、一质点以初速度v 0=5i 开始离开原点,其运动加速度为a =-i -j 。
求:(1)质点到达x 坐标最大值时的速度;(2)上述时刻质点的位置。
3、如图所示,长为l 的棒的一端A 靠在墙上,另一端B 搁在地面上,A 端以恒定速率u 向下运动。
中级微观例题与练习题第一章 供求行为与市场均衡
第一章 供求行为与市场均衡【例题1-1】已知消费者1 :M=1500,Py=10,且在价格Px=25时预算线与无差异曲线2250==XY U 相切,在X 价格Px=25时,新预算线与无差异曲线5.2812/==XY U相切。
问题:(1)根据希克斯分解法分解价格变化的替代效应和收入效应,作图表示(参考下表1-1已知数据并求空格数据);(2)另一消费者2效用函数为3.07.0Y X U =,M=1800,设市场只有消费者1和2,作消费者1、2和市场的马歇尔需求曲线图(参考下表1-2已知数据并求空格数据);(3)根据表1-2数据用统计软件或Excel 软件作市场线性需求回归图并从图中直接估计线性需求方程。
(1)表1-1消费者1对价格变化的最优反应预算线1:Px=25,Py=10,M=1500无差异线1:U=47.4,XY=2250 预算线2:Px=20,Py=10,M=1500 无差异线2:U=53,XY=2812.5 X Y X Y M X Y X Y M 0 1500 15010 125 10 225.0 2500.0 10 130 10 281.3 3012.5 20 100 20 112.5 1625.0 20 110 20 140.6 1806.3 30 75 30 75.0 1500.0 30 90 37.5 75.0 1500.0 40 50 40 56.3 1562.5 40 70 40 70.3 1503.1 50 25 50 45.0 1700.0 50 50 50 56.3 1562.5 606037.5 1875.0756046.9 1668.8价格变化前:MUx/MUy=Px/Py →Y/X=25/10→Y=2.5X (XY)0.5=47.40.5→XY=2250 解出:X1=30,Y1=75 价格变化后:MUx/MUy=Px/Py →Y/X=20/10→Y=2X (XY)0.5=53.0330.5→XY=2812.5 解出:X2=37.5,Y2=75 价格变化效应分解:MUx/MUy=Px/Py →Y/X=20/10→Y=2X 原来的无差异曲线的效用: (XY)0.5=47.40.5→XY=2250 解得:X3=33.54,Y3=67.08→M ’=20×33.54+10×67.08=1341.6 IE=(X3-X1)=(33.54-30)=3.54 SE=(X2-X3)=(37.5-33.54)=3.96 TE=3.54+3.96=7.5=(X2-X1)(2)根据MU(X)/MU(Y)=Px/Py →Y/X=Px/Py →PyY=PxX ,代入预算线方程整理得:X=(1/2)M/Px=(1/2)*1500/Px,Y=(1500-PxX)/Py当Px 发生如下表变化,可得下表1-2消费者1均衡及价格效应E 0(30,75)(37.5,75)E 105010015020025030001020304050607080XY表1-2消费者1消费者2市场需求Px X1=0.5*1500/Px Y1=(1500-XPx)/Py X2=0.7*1800/Px Y2=(1800-XPx)/Py Q=X1+X2 25 30 75 50.4 54 80.4 20 37.5 75 63 54 100.5 15 50.0 75 84.00 54 134.0 10757512654201(3)用Excel 软件回归得:市场线性需求方程Qx= -7.906Px+ 267.33R 2 = 0.9320501001502002500102030PxQx【例题1-2】已知线性需求方程为Qxd=25-2Px+0.01M+2.5Py-1.25Pz ,其中,Px=10,Py=8,Pz=12,M=3000,求:(1)需求价格弹性、收入弹性和交叉弹性; (2)消费者总剩余(CS ); (3)其他因素不变,分别求Py ’=10,Pz ’=16,M ’=4000的线性需求方程。
财管所有习题(1)
财管第二章1、胡先生以零存整取的方式每年年底在银行账户上存入5000元,存款利率8%,第5年年底胡先生可以从银行取出的金额为:F=5000×(F/A ,8%,5)=5000×5.8666 = 29333(元)2、某人在5年间每年年底存入银行100元,存款利率为8%,则第5年末该笔存款的本息总额为F=100×(F/A,8%,5)=100×5.8666=586.66(元)3、伍女士要在8年后偿还一笔金额为50000元的债务,她计划每年年末存入一笔款项,如果年利率为6%,那么每次应该存入多少钱才能在8年后有足够的资金还债?A=50000×=50000×=5051.78(元)所以伍女士每次应存入5015.78元,才能在8年后还清50000元的债务。
4、拟在五年后还清10000元债务,从现在起每年等额存入一笔款项,设i=10%,则每年需存入多少元?A=10000×[1/(F/A,10%,5)]=10000×1/6.1051=1637.80(元)5、甲某出国3年,请朋友乙代付房租,甲某应按合同规定每年年末支付租金5000元,如果银行利率为6%,甲某在出国前应交给乙的金额为:P=5000×(P/A,6%,3)=5000×2.6730=13365(元)6、某人考虑到在未来4年每年年末需支出500元,打算现在存入银行一笔款用于上述支出,设存款利率为8%,则现在应存入多少元为好?P=500×(P/A,8%,4)=500×3.3121=1656.05(元)7、假设以10%的利率借款20000元,投资于某个寿命为10年的项目,每年至少要收回多少现金才有利?由于:P=A(P/A,i,n)故:A=P[1/(P/A,i,n)]=20000×[1/(P/A,10%,10)]=20000×0.1627=3254(元)8、某人从20岁开始参加工作,其间每年年末存入养老保险费500元,直至60岁退休。
【英语】名词性从句总复习经典例题、习题经典1
【英语】名词性从句总复习经典例题、习题经典1一、名词性从句1. ---- Let's send him home. Do you know _________?---- I have no idea.A. where does he liveB. where he livesC. he where livesD. he lives where【答案】 B【解析】【分析】句意:----让我们把他送回家。
你知道他住在哪里吗?----我不知道。
宾语从句就是一个句子作动词或介词的宾语。
宾语从句由特殊疑问句变来就用原来的疑问词作引导。
在宾语从句中只能使用陈述句语序,不能用疑问句语序。
所以选B。
2.While some behaviors may seem strange to you, remember you consider normal probably seems just as unusual to others.A. it; thatB. what; thatC. that; whatD. which; that【答案】 C【解析】【分析】句意:虽然有些行为对你来说可能很奇怪,但请记住,你认为正常的行为对别人来说可能也不寻常。
第一空为宾语从句,从句结构完整用that起连接作用,第二空为主语从句,从句中consider缺少宾语,应该用what,故选C。
【点评】考查名词性从句,本题涉及that引导的宾语从句和what引导的主语从句。
3. is even more important is the earth cooled down, water began to appear on its surface.A. When; that; whenB. What; whether; asC. What; that; asD. lt; whether; as 【答案】 C【解析】【分析】这题考查从句的用法,第一空填what引导主语从句,在主语从句中what做主语,第二空填that引导表语从句,在表语从句中,as是引导时间状语从句,句意是:甚至更重要的是:随着地球的冷却,水开始出现在表面。
(完整)初中数学一题多解题
初中数学一题多解题例题一、两个连续奇数的积是323,求出这两个数方法一、设较小的奇数为x,另外一个就是x+2x(x+2)=323解方程得:x1=17,x2=-19所以,这两个奇数分别是:17、19,或者-17,-19方法二、设较大的奇数x,则较小的奇数为323/x则有:x-323/x=2解方程得:x1=19,x2=-17同样可以得出这两个奇数分别是:17、19,或者-17,-19方法三、设x为任意整数,则这两个连续奇数分别为:2x-1,2x+1(2x-1)(2x+1)=323即4x^2-1=323x^2=81x1=9,x2=-92x1-1=17,2x1+1=192x2-1=-19,2x2+1=-17所以,这两个奇数分别是:17、19,或者-17,-19方法四、设两个连续奇数为x-1,x+1则有x^2-1=323x^2=324=4*81x1=18,x2=-18x1-1=17,x1+1=19x2-1=-19,x2+1=-17所以,这两个奇数分别是:17、19,或者-17,-19例题二、某人买13个鸡蛋、5个鸭蛋、9个鹌鹑蛋,共用去9.25元;如果买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋,则共用去3.20元,试问只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需多少钱?解:设鸡、鸭、鹌鹑三种蛋的单价分别为x 、y 、z 元,则根据题意,得135992512433202x y z x y z ++=<>++=<>⎧⎨⎩.. 分析:此方程组是三元一次方程组,由于只有两个三元一次方程,因而要分别求出x 、y 、z 的值是不可能的,但注意到所求的是x y z ++的代数和,因此,我们可通过变形变换得到多种解法。
1. 凑整法解1:<>+<>123,得5344153x y z ++=<>.<>+<>23,得7735().x y z ++=∴++=x y z 105. 答:只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需1.05元(下面解法后的答均省略) 解2:原方程组可变形为134292522320()().()().x y z y z x y z y z ++-+=++++=⎧⎨⎩ 解之得:x y z ++=105.2. 主元法解3:视x 、y 为主元,视z 为常数,解<1>、<2>得x z =-0505..,y z =-05505.. ∴++=+-+=x y z z z 05505105...解4:视y 、z 为主元,视x 为常数,解<1>、<2>得y x z x =+=-00512.,∴++=+-+=x y z x x x 1052105..解5:视z 、x 为主元,视y 为常数,解<1>、<2>得x y z y =-=-005112.., ∴++=-++-=x y z y y y 005112105...3. “消元”法解6:令x =0,则原方程组可化为5992543320051y z y z y z +=+=⎧⎨⎩⇒==⎧⎨⎩... ∴++=x y z 105.解7:令y =0,则原方程组可化为1399252332000511x z x z x z +=+=⎧⎨⎩⇒=-=⎧⎨⎩.... ∴++=x y z 105.解8:令z =0,则原方程组可化为1359252432005055x y x y x y +=+=⎧⎨⎩⇒==⎧⎨⎩.... ∴++=x y z 105.4. 参数法解9:设x y z k ++=,则1359925124332023x y z x y z x y z k ++=<>++=<>++=<>⎧⎨⎪⎩⎪..∴<>-<>⨯123,得x y -=-<>0054.<>⨯-<>332,得x y k -=-<>3325.∴由<4>、<5>得332005k -=-..∴=k 105.即x y z ++=105.5. 待定系数法解10. 设x y z a x y z b x y z a b x a b y a b z ++=+++++=+++++<>()()()()()135924313254931则比较两边对应项系数,得1321541931121421a b a b a b a b +=+=+=⎧⎨⎪⎩⎪⇒==⎧⎨⎪⎪⎩⎪⎪ 将其代入<1>中,得x y z ++=⨯+⨯=⨯=121925421321212205105....附练习题1. 有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨。
类比习题1
每道题给出一对相关的词,然后要求考生在备选答案中找出一对与之在逻辑关系上最为贴近或相似的词。
【例题】努力∶成功A.生根∶发芽B.耕耘∶收获C.城市∶乡村D.原告∶被告【解答】此题的正确答案为B。
题干中的两个词具有某种条件(或因果)关系,即只有努力才能成功或者说努力是成功必不可少的原因之一。
请开始答题:1.义工∶职员A.球迷∶球员B.学生∶教师C.初学者∶生手D.志愿者∶雇员2.努力∶成功A.生根∶发芽B.耕耘∶收获C.城市∶乡村D.原告∶被告3.锯子∶木头A.窗户∶玻璃B.刀片∶铅笔C.剪刀∶布匹D.牙膏∶牙刷4.售货员∶顾客A.董事长∶经理B.作家∶读者C.政府∶官员D.江苏∶园林5.风俗∶习惯A.男生∶女生B.青年∶男人C.江苏∶泰州D.跳跃∶动作6.温度计:气温A.南京∶江苏B.饮料∶矿泉水C.愉快∶高兴D.磅秤∶重量7.射击∶手枪A.投掷∶石头B.个性∶温和C.小桥∶流水D.追求∶光明8.熊猫∶动物A.中国∶国家B.植物∶药材C.楚国∶赵国D.数学∶几何9.杀人∶犯罪A.书法∶艺术B.美丽∶漂亮C.鲁迅∶周树人D.历史∶通史10. 番茄∶西红柿A.泰州∶南京B.亚洲∶欧洲C.菠萝∶凤梨D.果酱∶柑桔11. 自行车∶公路A.河流∶芦苇B.飞机∶天空C.城市∶农村D.家具∶灯具12. 聊斋志异∶蒲松龄A.吴承恩∶西游记B.水浒∶施耐庵C.黄飞虎∶封神演义D.王勃∶长恨歌13. 红薯∶地瓜A.铅笔∶钢笔B.土豆∶马铃薯C.苹果∶水果D.扬子江∶黄河14. 老师∶学生A.水杯∶玻璃杯B.医生∶病人C.电脑∶计算机D.苏州∶常州15. 面粉∶小麦A.大米∶稻谷B.桔子∶葡萄C.饼干∶面粉D.罐头∶菠萝16. 雨果∶法国A.园林∶苏州B.德国∶希特勒C.马克?吐温∶美国D.长城∶中国17. 勤奋∶成功A.失败∶胜利B.破坏∶损坏C.懒惰∶灾难D.耕耘∶收获18. 书籍∶纸张A.毛笔∶宣纸B.文具∶文具盒C.菜肴∶萝卜D.飞机∶大炮19. 红孩儿∶西游记A.水浒传∶林冲B.薄松龄∶聊斋志异C.黄飞虎∶封神演义D.红楼梦∶林黛玉20. 馒头∶食物A.食品∶饼干B.头∶身体C.手∶食指D.钢铁∶金属21. 水∶龙头A.电∶电线B.电∶开关C.电∶发电D.电∶电灯22. 稠密∶稀疏A.宽敞∶明亮B.词语∶词汇C.伟大∶平凡D.酷热∶炎热23. 节约∶浪费A. 成功∶失败B. 进∶让C. 软∶弱D.复杂∶深奥24. 比尔盖茨∶微软A.爱因斯坦∶相对论B.法拉第∶汽车C.牛顿∶蒸汽机D.史蒂芬孙∶蒸汽机车25. 三令五申∶孙武A.以卵击石∶孔子B.欺世盗名∶班固C.鹿死谁手∶曹操D.退避三舍∶重耳26. 茄子∶蔬菜A.马铃薯∶土豆B.工人∶农民C.猫∶动物D.花菜∶大白菜27. 画圣∶吴道子A.武圣∶张飞B.医圣∶华佗C.酒圣∶杜康D.茶圣∶陆游28. 《静夜思》∶李白A.《示儿》∶辛弃疾B.《春日》∶朱熹C.《清明》∶王安石D.《题西林壁》∶苏彻29. 世界环境日∶6月5日A.地球日∶4月22日B.中国植树节∶3月1日C.世界无烟日∶5月30日D.世界艾滋病日∶2月1日30. 上海∶沪A.河南∶豫B.福建∶鲁C.江西∶皖D.河北∶赣31. 马∶牲畜A.蜘蛛∶琥珀B.南瓜∶瓜农C.铁∶金属D.布∶纺织32.面粉∶馒头A.鱼∶池塘B.鸡蛋∶母鸡C.米∶米饭D.茶叶∶茶水33.黑龙江∶哈尔滨A.湖北∶湖南B.海南∶海口C.四川∶重庆D.青海∶银川34. 杭州∶西湖A.长城∶北京B.无锡∶太湖影视城C.杭州∶留园D.青岛∶趵突泉35. 聪明∶愚笨A.强壮∶瘦弱B.新鲜∶健康C.黑暗∶亮光D.水∶土36. 温暖∶暖和A.镇定∶冷默B.夸奖∶批评C.珍贵∶贵重D.愉快∶烦恼37. 士别三日∶吕蒙A.窃符救赵∶信陵君B.奇货可居∶张骞C.纸上谈兵∶关羽D.一发千钧∶王安石38. 车厢∶火车A. 手指∶身体B. 花架∶花盆C. 课本∶书包D. 茶叶∶开水39. 资治通鉴∶司马光A.史记∶司马迁B. 汉书∶班超C.论语∶孔子D. 春秋∶老子40. 本是同根生,相煎何太急∶曹植A. 儿童相见不相识,笑问客从何处来:贺知章B. 羌笛何须怨杨柳,春风不度玉门关:李白C. 野旷天低树,江清月近人:孟浩然D. 空山不见人,但闻人语响:白居易41. 山城:重庆A. 羊城∶银川B.泉城∶青岛C. 雾城∶伦敦D. 成都∶花城42. 水∶火A. 大∶强B.苦∶辣C. 多∶少D. 笨∶拙43. 思考∶思索A.支持∶反对B.谦虚∶谨慎C.鄙视∶赞许D.奔跑∶奔走44. 衣服∶人A.羽毛∶鸟B.捕食∶动物C.水∶鱼D.勋章∶军服45. 负荆请罪∶廉颇A.天涯海角∶李白B.中饱私囊∶和绅C.一丘之貉∶曹操D.洛阳纸贵∶左思46. 老三界∶陆定一A.巴黎圣母院∶大仲马B.红与黑∶雨果C.人间喜剧∶马克?吐温D.安娜?卡列尼娜∶列夫?托尔斯泰47. 张家界∶湖南A.九寨沟∶贵州B.黄果树瀑布∶贵州C.黄山∶海南D.华山∶北京48. 鲁智深∶《水浒传》A.红娘∶《白蛇传》B.姜子牙∶《西游记》C.刘备∶《三国演义》D.司马迁∶《史记》49.瓷都∶景德镇A.陶都∶宜兴B.煤都∶大同C.钢都∶宝山D.盐都∶商丘50. 苏东坡∶宋代A.韩愈∶唐代B.王安石∶唐代C.白居易∶宋代D.杨万里∶唐代51. 春分∶谷雨A. 小满∶芒种B. 处暑∶秋分C. 大暑∶立秋D. 大雪∶大寒52. 但丁∶《神曲》A. 拉伯雷∶《巨人传》B. 屠挌涅夫∶《猎人笔记》C. 惠特曼∶《草叶集》D. 雨果∶《巴黎圣母院》53. 鱼∶卵A. 师傅∶徒弟B.鸟∶蛋C. 狮子∶母狮D.机枪∶子弹54. 孔乙己∶鲁迅A. 水浒传∶鲁智深B.鲁迅∶闰土C. 红粉世家∶张恨水D.贾宝玉∶曹雪芹55. 丝线∶刺绣A. 中国∶国家B.瓷砖∶镶嵌C. 山脉∶山峦D. 书∶书籍56. 紫竹∶物学家A. 金属∶非金属B.直接经验∶间接经验C. 动物∶植物D. 蝴蝶∶昆虫学家57. 瓷器∶黏土A. 花朵∶芳香B.喜讯∶开心C. 米酒∶粮食D. 名人∶默默无闻58. 普陀山∶浙江A. 龙虎山∶江西B.衡山∶湖南C. 泰山∶山东D. 九华山∶安徽59. 春秋∶孔子A. 南明∶朱熹B.南宋∶程颐C. 南唐∶董仲舒D. 南汉∶黄宗羲60. 森林∶树林A. 头∶身体B.花∶菊花C. 山脉∶山D. 身体∶身躯61. 皮带∶带扣A. 鞋子∶鞋带B.子弹∶步枪C. 手套∶围巾D. 帽子∶头发62. 啤酒:杯子A. 漏斗:木桶B.电灯:插座C. 眼镜:镜盒D. 象棋:棋盘63.售货员∶顾客A.学校∶学生B.奶奶∶孙子C.医生∶病人D.工人∶机器64. 李时珍∶《本草纲目》A.孔子∶《论语》B.孙武∶《孙子兵法》C.周瑜∶《公羊传》D.诸葛亮∶《东周列国志》65. 出席∶缺席A.左∶右B.敌人∶邻居C.悲观∶悲伤D.朝气∶傍晚66.抱怨∶埋怨A.胆怯∶怯弱B.真挚∶虚假C.精确∶近似D.隐蔽∶公开67. 完璧归赵∶蔺相如A.勾践∶卧薪尝胆B.身在曹营∶周瑜C.高枕无忧∶孙权D.呆若木鸡∶秦王68.家祭无忘告乃翁∶陆游A.每逢佳节倍思亲∶王维B.一片冰心在玉壶∶冰心C.不知明镜里∶李白D.润物细无声∶杜牧69. 长江∶亚洲A.尼罗河∶非洲B.亚马逊河∶北美洲C.莱茵河∶澳洲D.阿尔卑斯山∶北美洲70.自然灾害∶海啸A.生物∶牛B.省会城市∶重庆C.篮球∶比赛D.轻工业∶采矿业71. 猪∶猪腿树:()A.果树B.绿色C.草地D.树枝72. 中国∶北京A.日本∶东京B.美国∶纽约C.泰国∶老挝D.西班牙∶海牙73. 香蕉∶水果A.高山∶天山B.树枝∶树木C.黄梨∶香梨D.桌子∶家具74. 荷花∶芙蕖A.嫦娥∶月亮B.住宅∶高楼C.兄弟∶姐妹D.寺庙∶伽蓝75. 面条∶食物A.苹果∶水果B.手指∶身体C.菜肴∶萝卜D.食品∶巧克力76.香瓜∶木瓜A.绿豆∶豌豆B.松鼠∶树林C.鲨鱼∶鲸鱼D.家具∶灯具77. 铅笔∶笔A.馒头∶食物B.食品∶饼干C.头∶身体D.金属∶钢铁78. 售货员∶顾客A. 董事长∶经理B. 作家∶读者C. 政府∶官员D. 江苏∶园林79. 南京∶江苏A. 石家庄∶河北B. 渤海∶中国C. 泰州∶江苏D. 秦岭∶淮河80. 易卜生∶玩偶之家A. 堂吉诃德∶塞万提斯B. 闰土∶鲁迅C. 欧?亨利∶麦琪的礼物D. 宋江∶水浒传81. 兄弟∶手足A. 父母∶昆仲B. 夫妻∶配偶C. 妇女∶须眉D. 男子∶巾帼82. 锯子∶木头A. 窗户∶玻璃B. 刀片∶铅笔C. 剪刀∶布匹D. 牙膏∶牙刷83. 佛教∶印度A. 基督教∶罗马B. 儒教∶中国C. 伊斯兰教∶古兰经D. 锡克教∶瑞士84. 火把节∶风俗A. 泼水节∶傣族B. 端午节∶屈原C. 元旦∶节日D. 国庆∶祝福85. 马铃薯∶土豆A. 地瓜∶红薯B. 西红花∶玫瑰C. 甘蓝∶大白菜D. 杨花∶柳絮86. 逗号∶中止A. 拂晓∶黎明B. 节省∶吝啬C. 回车∶换行D. 好像∶好比87. 红楼梦∶林黛玉A. 孙悟空∶西游记B. 罗贯中∶三国演义C. 水浒传∶宋江D. 聊斋志异∶蒲松龄类比推理(判断推理)答案:1.D2.B3.C4.B5.D6.D7.A8.A9.A 10. C 11. B 12. B 13. B 14. B 15. A 16. C17. D 18. C 19. C 20. D 21. B 22. C 23. A 24. A 25. D 26. C 27. C 28. B 29. A 30. A31. C 32. C 33. B 34. B 35. A 36. C 37. A 38. A 39. A 40. A41. C42. C43. D44. A45. D 46. D 47. B 48. C 49. A 50. A 51. B 52. A 53. B 54. D 55. B 56. D57. C 58. D 59. B 60. C 61. A 62. C 63. C 64. B 65. A 66. A 67. A 68. A 69. A 70. A71. D 72. A 73. D 74. D 75. A 76. A 77. A 78.B 79.A 80.C 81.B 82.C 83.B 84.C 85.C 86.C 87.C。
习题课1 货币时间价值
【答案】 答案】 方案1的终值 的终值: 方案 的终值:S=120万元 万元 方案2的终值 的终值: 方案 的终值:S=20×(S/A,7,5) × , , ) =20×5.7507=115.014(万元) × (万元) 应选择方案2。 应选择方案 。
货币时间价值的计算
4.普通年金现值 普通年金现值 每期期末收入或支出等额款项的复利现值 之和,一般用PVA表示,A为每期的收付 表示, 为每期的收付 之和,一般用 表示 额。 期数为n的年金现值系数 的年金现值系数( 期数为 的年金现值系数(P/A,i,n) ,, )
A A A A A A A A
1000 万元
每年还本付息的金额=1 000/ (P/S,10%,8) 每年还本付息的金额 , , ) =1 000/5.3349 =187万元 万元
货币时间价值习题
课后作业 1.2题和 题 题和4题 题和 2.某饭店集团公司投资一个项目,资本成本为 某饭店集团公司投资一个项目, 某饭店集团公司投资一个项目 资本成本为10% 以后每年获得投资收益,第一年获得1000万元, 万元, ,以后每年获得投资收益,第一年获得 万元 第二年为2000万元,第三年为 万元, 万元, 第二年为 万元 第三年为3000万元,此项目 万元 相当于期初投入多少万元? 相当于期初投入多少万元? 3.某餐厅的一笔贷款将于 年后到期,到期值为 某餐厅的一笔贷款将于4年后到期 某餐厅的一笔贷款将于 年后到期,到期值为100 万元。若存款年复利为10%,则该餐厅期初向银行借 万元。若存款年复利为 则该餐厅期初向银行借 了多少款项? 了多少款项?
货币时间价值的计算
【例题4】某人拟购房,开发商提出两种方案,一 例题 】某人拟购房,开发商提出两种方案, 是现在一次性付80万元 万元, 是现在一次性付 万元,另一方案是从现在起 每年末付20万元 连续支付5年 万元, 每年末付 万元,连续支付 年,若目前的银行 贷款利率是7%,应如何付款? 贷款利率是 ,应如何付款? 【答案】 答案】 方案1的现值 的现值: 万元 方案 的现值:80万元 方案2的现值 的现值: 方案 的现值:P=20×(P/A,7%,5) × , , ) =20×4.100=82(万元) × (万元) 应选择方案1。 应选择方案 。
函数的连续性的例题和习题[一]
函数的连续性的例题与习题函数连续性这个内容所涉及到的练习与考试题目,大致有3大类。
第一类是计算或证明连续性;第二类是对间断点(或区间)的判断,包括间断点的类型;第三类是利用闭区间上的连续函数的几个性质(最值性质,零点存在性质),进行理论分析。
下面就这三大类问题,提供若干例题和习题。
还是那句老话:看到题目不要看解答,而是先思考先试着做!这是与看文学小说的最大区别。
要提醒的是,例题里有不少是《函数连续性(一)(二)》中没有给出解答的例题,你事先独立做了吗?如果没有做,是不会做好是根本不想做,还是没有时间?一.函数的连续例1.1(例1.20(一),这个序号值的是《函数连续性(一)中的例题号,请对照)设()f x 满足()()()f x y f x f y +=+,且()f x 在0x =连续。
证明:()f x 在任意点x 处连续。
分析:证明题是我们很多同学的软肋,不知道从何下手。
其实,如果你的基本概念比较清晰,证明题要比计算题号做,因为它有明确的方向,不像计算题,不知道正确的答案是什么在本题里,要证的是“()f x 在任意点x 处连续”,那么我们就先固定一个点x ,用函数连续的定义来证明在x 处连续。
你可能要问:函数连续的定义有好几个,用哪一个? 这要看已知条件,哪个容易用,就用那一个。
在本题中,提供了条件()()()f x y f x f y +=+,也就是()()()f x y f x f y +-=,你的脑海里就要想到,如果设y x =∆,那么就有 ()()()y f x x f x f x ∆=+∆-=∆;这个时候,你应该立即“闪过”,要用题目给的第二个条件了:()f x 在0x =连续!它意味着:0lim (0)(0)x f x f ∆→+∆=。
证明的思路就此产生!证明:因为 ()()()f x y f x f y +=+,取0y =,则有 ()()(0)f x f x f =+,所以(0)0f =。
最新小学六年级奥数精选例题加习题编排(1)
1 1 +2 1 +3 1 +4 1 ++20 1
2 6 12 20
420
1
3 6 5 7 9 11 13 5 7 6 12 20 30 42
1 1
1
1
2
1
1 2
3
1
2
3
1
100
12 13
12 13
22 23
12 13
22 23
人既有英语作业又有数学作业,2 人既有数学作业又有语文作业,3 人既有英语作业又
有语文作业,1 人语、数、英三门功课都要做,问只有一门功课的人比一门功课都没有
的人多多少?
A.1
B.2
C.3
D.4
3.2000 盏亮着的电灯,各有一个拉线开关控制,按顺序编号为 1、2、…2000 将编号为 2
的倍数的灯各拉一下,再将编号为 3 倍数的灯各拉一下,最后将编号为 5 倍数的灯各拉
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
例 1.
计算: 22 42 62 2002
A.1353400
B.1343500
C.1353000
D.1363460
例
2.计算:1
1 2
1 22
1 23
1 24
1 25
1 26
1 27
A. 127 128
B. 2 1 128
C. 1127 128
一下,最后亮着的灯有多少盏?
A.1000
B.998
C.1004
D.1002
4.五年级 3 班有 46 名学生参加三项课外活动,其中 24 人参加了绘画小组,20 人参加了合
工程热力学(第五版)第1章练习题
第1章基本概念1.1 本章基本要求深刻理解热力系统、外界、热力平衡状态、准静态过程、可逆过程、热力循环的概念,掌握温度、压力、比容的物理意义,掌握状态参数的特点。
1.2 本章难点1.热力系统概念,它与环境的相互作用,三种分类方法及其特点,以及它们之间的相互关系。
2.引入准静态过程和可逆过程的必要性,以及它们在实际应用时的条件。
3.系统的选择取决于研究目的与任务,随边界而定,具有随意性。
选取不当将不便于分析。
选定系统后需要精心确定系统与外界之间的各种相互作用以及系统本身能量的变化,否则很难获得正确的结论。
4.稳定状态与平衡状态的区分:稳定状态时状态参数虽然不随时间改变,但是靠外界影响来的。
平衡状态是系统不受外界影响时,参数不随时间变化的状态。
二者既有所区别,又有联系。
平衡必稳定,稳定未必平衡。
5.注意状态参数的特性及状态参数与过程参数的区别。
1.3 例题例1:绝热刚性容器内的气体通过阀门向气缸充气。
开始时气缸内没有气体,如图 1.1所示。
气缸充气后,气体推动气缸内的活塞向上移动,如图1.2所示。
设管道阀门以及气缸均可认为是绝热的。
若分别选取开口系统与闭口系统,试说明它们的边界应该如何划定?这些系统与外界交换的功量与热量又如何?解:(1)若以容器内原有的气体作为分析对象,属于闭口系统。
容器放气前,边界如图1.1中的虚线所示。
放气后边界如图1.2中的虚线所示。
气体对活塞作的功W是闭口系统与外界交换的功量。
气体通过活塞与外界交换的热量Q是此闭口系统的传热量。
图1.1 图1.2图1.3 图1.4(2)若以容器放气后残留在容器内的气体作为分析对象,同样也是闭口系统。
这时放气前的边界如图1.3中的虚线所示。
放气后的边界如图1.4的虚线表示。
残留气体对离开容器的那部分放逸气体所作的功,是本闭口系统与外界交换的功,残留气体与放逸气体之间交换的热量是本系统的传热量。
(3)类似地若以放逸气体为分析对象,同样也是闭口系统。
财务管理例题1-8章
财务管理例题第三章 价值、收益与风险例1:某公司于年初存入银行10000元,期限为5年,年利率为5%,则到期时的本利和为:F=10000×(1+5%×5) =12500(元)单利终值)1(n i P F ⋅+⨯=例2:某公司打算在3年后用60000元购置新设备,目前的银行利率为5%,则公司现在应存入:P=60000/(1+5%×3)=(元)单利现值)1/(n i F P ⋅+= n i P I ⋅⋅=例:某人拟在3年后获得本利和50000元,假设投资报酬率为5%,他现在应投入多少元(43192)例3:某公司将100000元投资于一项目,年报酬率为6%,1年后的本利和为:F=100000 ×(1+6%×1)=106000(元)若一年后公司并不提取现金,将106000元继续投资于该项目,则第2年年末的本利和为:F=100000×(1+6%)×(1+6%) =100000×2%)61(+=112360(元)例4:某人存入银行1000元,年利率8%,则5年后可取出多少钱F=58%)(11000+⨯)(3.1469元=例5:某人为了5年后能从银行取出10000元,求在年利率2%的情况下当前应存入的金额。
F=5%)21/(10000+)(9057元= 例6:将例4改为每季复利一次,求FF=45)4/%81(1000⨯+⨯20%)21(1000+⨯=)(9.1485元= 如果要得到相当于这个金额的F 值,在每年复利一次的条件下年利率应该是多少F=5)1(1000i +⨯= →=+5i)(1=查表可知:假定i 和(F/P,i,5)之间呈线性关系,则4693.14859.1%84693.15386.1%8%9--=--x%24.8≈x课堂即时练习之一1.张先生要开办一个餐馆,于是找到十字路口的一家铺面,向业主提出要承租三年。
业主要求一次性支付3万元,张先生觉得有困难,要求缓期支付。
土力学例题与习题
1
1.1某完全饱和粘性土的含水量为
40%,土粒的相对密度ds
2.7,试按定义求土体的
孔隙比e和干密度
气*
水
解:设土粒的体积换算图可以 Nhomakorabea到:加
土粒的质量
j%
■
Vs
ms
孔隙的体积
VvVw匹
水的质量
1.08cm3
mw
孔隙比e
Vv
Vs
㈣1.08;
1
干密度
1.2试证明下式
Sr
wn
解:从基本指标的基本定义出发,
18.5 1.6
cot180
160.3k Pa
根据临界荷载
Pl/4的计算公式可以得到:
od
p1/4
1ccot-b
d
cot
2
3.14 (18.5 1.615cot1800.25 18.5 2.4)…
18.5 1.6
0
cot1818一-
180 2
179.3k Pa
4.3
某条形基础,基础宽度b 3.0m,埋深d 1.5m。地基土的重度
w2.7g;水的质量:mw叫0.0943 2.7 0.255g;
mw
2.955g
天然状态下砂样的孔隙比:
m 2.955, c3
1.78cm;
1.66
e冬J辺0.78
VsVs1
处于最密实状态下砂样体积:
处于最密实状态下砂样孔隙比:
处于最疏松状态下砂样体积:
处于最疏松状态下砂样孔隙比:
相对密实度:Dr
某土体试样体积为 的湿密度、干密度、
土粒的质量
土样的质量
含水率、孔隙比、
孔隙率和饱和度。
结构可靠性设计基础例题与习题1
(2) 求可靠指标 及设计验算点R*、 NG* 、NQ* 。 用改进的一次二阶矩法计算得, β=2.320 设计验算点
R* 142.8kN ,NG* 53.8kN ,NQ* 89.0kN
1.10
(3) 第二次迭代
R的当量正态化: R 251.0kN , R 24.1kN
1.1
钢筋抗力Rs的统计参数: μRs=Asμfy=1964×380=746.3kN σRs=μRsδfy=746.3×0.06=44.8kN
构件抗力R的统计参数: μR=μRc+ μRs=3720+746.3=4466.3kN
R
2 Rc
2 Rs
744.02 44.82 745.3kN
(3) 可靠指标β的计算。
R当量正态化:取R*的初始值为μR,则:
R
R * 1 ln R * ln
R
304.8kN
1
2 R
1.9
R R *
ln(1
2 R
)
52.2kN
NQ当量正态化:
式中
NQ
1FNQ (NQ* )
f NQ (NQ* )
,NQ NQ* 1[FNQ (NQ* )] NQ
FNQ (NQ* ) exp[exp( y)]
1.4
例3 某钢梁截面抵抗矩为W,
μW=5.5×104mm3,σW=0.3×104mm3;钢材的屈服强度为
f,μf=380.0N/mm2,σf=30.4N/mm2。钢梁在固定荷载P作用下
在跨中产生最大弯矩M,μM=1.3×107N.m,
σM=0.091×107N.mm。随机变量W、Φ和MP均为互不相关服
最新小学二年级奥数精选例题加习题编排(1)
速算与巧算下图是用大小一样的三角形搭成的“宝塔”。
仔细观察后请完成下面的问题。
⑴“宝塔”每层所包含的小三角形的个数。
⑵每个“宝塔”所包含的小三角形的个数。
⑶列式计算6 层“宝塔”小三角形的个数。
⑷列式计算7 层“宝塔”小三角形的个数。
用“配对”的思考方法,在□中填入合适的数。
让下面的算式中的数组成一个等差数列。
⑴□+□+12+□+□=60⑵12+□+□+□+□=40⑶□+□+42+58+□+□=300绝对差减法——退位减法的另一种算法!下面的算式,你能口算吗?⑴300×5=308×5=348×5=⑵700×8=706×8=736×8=⑶900×4=902×4=932×4=下面的算式,你能口算吗?⑴3746×11=8472×11=93741×11=⑵45×45=19×11=67×63=84×86=学习内容回顾1.配对求和2.等差数列求和3.减法退位巧算4.乘法巧算我会数一数请问摩比在多少个正方形里呢?图形计数问题:1.分类2.有序你会做吗?在下图的八个点中,任意取四个点画出长方形,能画出多少个不同的长方形?【拓展】下图有六个点,连接其中任意三点组成三角形,能组成多少个不同的三角形?我会做一做!新学期开始了,老师对大家说,每个同学都要互相握手,摩比一个同19 位同学握了手,请问班上一共有多少名学生,所有同学一共握了多少次手?握手问题其实就是数线段的问题:1.数出基本线段数为n。
(基本线段也就是相邻两个端点组成的线段。
)2.线段总数:n+(n-1)+(n-2)+…+2+1请你观察下面的图形,然后回答问题。
如果都按照下面的搭法,能搭几组呢?立体图形的计数方法:1.从上往下数2.每层的个数=上层数+多余数请问下图中一共有多少个正方形?图中的三角形,第一层由一个小三角形组成,第二层由3 个小三角形组成,请问若这个大三角形有十层,第十层有几个小三角形?此时,这个大三角形中有多少个这样的小三角形?图形计数:1.找规律2.列算式求和有一列数:312312312…,问第20 个数是多少?这20 个数的和是多少?周期问题:1.周而复始,重复出现的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、简答题:31、比较 H2O分子和 NH3 分子键角的大小并说明原因。
32、能否说“溶度积大的化合物其溶解度肯定大”,为什么?(p339例10-2)33、解释事实:HgCl2为白色,在水中溶解度较大;HgI2为黄色或红色,在水中溶解度较小;34、已知氮、氢、氟的电负性分别为:X N=3.04、X H=2.2、X F =3.98,NH3分子中键角∠HNH = 106.6°、NF3分子中键角∠FNF = 102°。
解释:(p102)(1)NH3分子键角大于NF3分子键角;(2)NH3分子偶极矩大于NF3分子偶极矩。
35、(1)解释SiO2的熔点高于SO2;(原子晶体与分子晶体)(2)已知离子Be2+、O2-、Li+和F-的离子半径依次为35 pm、132 pm、68 pm和133 pm。
解释BeO 的熔点高于LiF。
(晶格能、离子键能)36*、已知△f Gø(NO) = 86.6 kJ·mol-1,试判断反应N2+ O2 = 2NO在室温和101.3kPa下能否自发进行?37*. 决定化学反应自发性的因素有哪些?什么情况下温度对化学反应自发方向有影响?38*.已知反应 2C(s) + O2(g)= 2CO(g)的自由能变(∆r G∅m)与温度(T)的关系为:∆r G∅m /kJ.mol-1 = - 232600 – 168 T/K故可说,随反应温度的升高, ∆ r G∅m更负,反应会更彻底。
此说法正确吗?为什么39*.什么叫可逆反应和不可逆反应? 标准平衡常数Kø的物理意义是什么?40. 举例说明缓冲溶液是如何发挥其缓冲作用的?41. 已知O3、NO2-、CO2的键角分别为1170、1160和1800,运用所学的分子结构方面的知识,讨论它们的中心原子轨道的杂化类型和大π键的类型,并且画图表示。
(p90)42.电子能层与能级组有何不同?43. 共价键饱和性与方向性的根源是什么?(p87)44. BF3是平面三角形而NF3却是三角锥形,试用杂化轨道理论加以说明。
(p88)45.为什么He+中3S和3P轨道的能量相等,而在Ar+中的3S和3P轨道的能量却不相等? 46.用MO法判断O2+,O2,O2-,O22- 键的稳定性和磁性的大小,并说明原因。
(p97)47.核外电子运动有哪些基本特点?(3个p64)48.已知Cd2+的半径为97pm,S2- 的半径为184pm,解释为什么CdS不是 NaCl 型晶格,而是ZnS 型晶格?二、计算题:51、在1.0 L 、0.10 mol·dm-1氨水溶液中,应加入多少克NH4Cl 固体才能使溶液的pH 值等于9.00。
(忽略固体的进入对溶液体积的影响 , K b[NH3·H2O]= 1.76×10-5 ,NH4Cl的分子量为53.50 )解:溶液的pH 值等于9.00,则 C (OH-)== 1.0×10-5 mol / L假设在1.0 L 、0.10 mol / L氨水溶液中,应加入x mol 的NH4Cl (s)则:NH3· H2O === NH4++OH-[平衡] / mol / L :0. 10-1. 0×10-5 x+1. 0×10-5 1. 0×10-5[NH4+] [ OH-]/[ NH3· H2O ] ==κb( x+1. 0×10-5 ) ( 1. 0×10-5 ) / ( 0. 10-1. 0×10-5 ) == 1.76 × 10-5X = 0.176 mol / L应加入的NH4Cl固体的质量为:0. 176 mol / L × 1L × 53. 5 g ·mol-1 = 9 . 416 g 。
52、AgI 沉淀用(NH 4)2S 溶液处理使之转化为Ag 2S 沉淀,该转化反应的平衡常数为多少?如在1.0L (NH 4)2S 溶液中转化0.010mol AgI , (NH 4)2S 溶液的最初浓度应该是多少?已知:AgI 的Ksp 为8.52×10-17 , Ag 2S 的Ksp 为6.30×10-50 解: 该转化反应可表示为2AgI(s) + S 2-(aq) Ag 2S(s) +2I -(aq)反应的平衡常数][S ][I 22--=K = 1750-2-17S Ag sp,2AgI ,sp 1015.1106.3)10(8.522⨯=⨯⨯=K K若在1.0L (NH 4)2S 溶液中转化0.010mol AgI ,则溶液中[I -]=0.010 mol·L-1所以 [S 2-]=2217221069.81015.1)010.0(][I --⨯=⨯=K ( mol·L -1)(NH 4)2S 的初始浓度为{}]I [21]S [)S (S )(NH 2224---+==c c 322100.5010.0211069.8--⨯=⨯+⨯=(mol·L -1) 53*、试由下列数据计算NH 3的△f H ø(NH 3)。
已知: 键能E (H-H )= +436.0 kJ ·mol -1 , 键能E (N-H )= +391.0kJ ·mol -1键能E (N ≡N )= +946.0 kJ ·mol-1 解: △f H ø(NH 3)=(946+3X436-6X391)/2=-46 kJ ·mol -154*. 甲醇的分解反应为:CH 3OH (l )→ CH 4(g )+ 1/2 O 2(g ),已知:∆ f H ∅m 、 ∆ f G ∅m S ∅m CH 3OH (l ) -238.7 kJ ·mol -1 –166.40 kJ ·mol -1 127.00 J ·mol -1·K -1. CH 4(g )(l ) -74.8 kJ ·mol -1 – 50.75 kJ ·mol -1 186.15 J ·mol -1·K -1. O 2(g ) 205.03 J ·mol -1·K -1.求:(1)在298K 、标准状态下该反应的∆ r H ∅m 、∆ r G ∅m 及 ∆ r S ∅m , 此反应在该情况下能否自发进行? (2)若不能自发,温度至少要升高到多少度(K )反应才能自发进行?解:∆r H ∅m =∆f H ∅m (CH 4,g )-∆ f H ∅m (CH 3OH l )=-74.8-(-238.6)=163.8(kJ/mol)∆ r S ∅m = S ∅m (CH 4,g )+1/2 S ∅m O 2(g )- S ∅m (CH 3OH l )=186.15+1/2×205.03-127.0=161.7(J/mol ·K)=0.1617(kJ/mol ·K) (4分)∆ r G ∅m =∆ f G ∅m (CH 4,g )-∆ f G ∅m (CH 3OH l )=-50.75-(166.4)=115.65(kJ/mol)>0所以反应不能自发。
… …… (2分)若要反应自发进行,需要:∆ r G ∅m =(∆ r H ∅m - T ∆ r S ∅m )<0即 T >∆ r H ∅m /∆ r S ∅m = 163.8/0.1617=1013(K )即温度超过1013K (740°C )时反应自发进行。
55、将H 2S 气体通人0.10 mol ·dm -3 的ZnCl 2 溶液中,使其达到饱和。
求Zn 2+ 开始出现沉淀的pH 值。
( 已知:K 1(H 2S )= 1.3 ×10-7 ,K 2(H 2S )= 7.1 ×10-15,Ksp (ZnS )= 1.6 ×10-23,)解:求Zn 2+ 开始出现沉淀时的pH 值[Zn 2+][S 2-] = Ksp ,(ZnS ) 又已知[Zn 2+]= 0.10 mol.dm -3∴ [S 2-] = Ksp ,(ZnS ) / [Zn 2+] = 1.6 ×10-22 (mol.dm -3 )又, H 2S (aq ) + 2H 2O == 2H 3O +(aq ) + S 2-(aq )平衡浓度(mol.dm -3 ) 0.10 x 1.6 ×10-22[H 3O +][S 2-]/[H 2S] = K a1.K a2 = 1.3 ×10-7 ×7.1 ×10-15 = 9.2 ×10-22即 1.6 ×10-22 . x 2 / 0.10 = 9.2 ×10-22x = [H 3O +]= 0.76(mol.dm -3 )pH = - Lg[H 3O +]= - Lg0.76 = 0.1256. 计算饱和H 2S 溶液(浓度为0.10 mol·dm -3)中H + 和S 2-浓度,若用HCl 调节溶液的pH为2.0,此时溶液的S 2-浓度又是多少,计算结果说明了什么。
(已知:H 2S 的 K a1,H 2S = 8.1×10-8 ,K a2,H 2S = 1.1×10-12 )解:⑴该溶液为二元酸溶液,[H +]按一元酸计算,[S 2-]则需从第二部电离计算, 8$S H ,101.821-⨯=a K ,12$S H ,101.1231-⨯=a K 。
68$,101.1101.81.021⨯=⨯=-S H a K c≥ 500 58,11054.91.0101.9]H [2--+⨯=⨯⨯=⨯=c Ka S H (mol 〃L -1) [S 2-] =12$S H ,101.1231-⨯=a K (mol 〃L -1) ⑵ H 2S =H + + HS -, ]S H []][H HS [2$S H ,21+-=a K,HS - =H + + S 2-,]HS []][H S [-2$S H ,22+-=a K 。
则 ]S H []][H S [222$S H ,$S H ,2221+-=⨯a a K K,已知[H 2S] = 0.1 mol 〃L -1, pH =2 , [H +]= 0.01 mol 〃L -1,1621272S H $SH $S H ,a 2100.1)01.0(1.0101.1101.9]H []S [22,221---+-⨯=⨯⨯⨯⨯=⨯⨯=c K K a ( mol 〃L -1)答:计算结果表明,当用HCl 调节溶液的pH 为2.0时,由于[H +]增大,抑制了H 2S 的第一步电离。