教程(圆曲线缓和曲线计算公式
圆曲线、缓和曲线计算方法
● 圆曲线方法一:sin (1cos )180i i i i i i x R y R l R ϕϕϕπ⎧⎪=⎪=-⎨⎪︒⎪=⋅⎩——i l 为待定点i P 至起点间的弧长i ϕ为i l 所对的圆心角R 为曲线半径方法二:11802l A R π︒=⋅⋅ 2sin l R A =⋅00cos(/)sin(/)x x l A y y l A =+⋅+-⎧⎨=+⋅+-⎩起点方位角左减右加起点方位角左减右加——00(,)x y 为圆曲线起点坐标方法三:180l A R π︒=⋅ 00cos(/)sin(/)x x R B A y y R B A =+⋅+-⎧⎨=+⋅+-⎩——l 为圆曲线上任意一点距起点距离00(,)x y 为圆曲线圆心坐标B 为圆心到圆曲线起点的方位角,A 为任意点对应的圆心角● 缓和曲线522030406l x l R l ly Rl ⎧=-⎪⎪⎨⎪=⎪⎩——l 为曲线上任一点至起点的曲线长R 曲线半径0l 为缓和曲线全长圆曲线、缓和曲线计算方法1、直线段:先由JD1以及JD2的坐标算出JD1到JD2的方位角,即直线段方位角A ,故可算出HZ 、ZH 坐标及其直线段各点坐标。
2、缓和曲线:以HZ 、ZH 为起点,缓和曲线上任意一点离HZ 、ZH 距离为l ,利用公式522003040()6l x l R l l R ly Rl ⎧=-⎪⎪⎨⎪=⎪⎩为缓和曲线全长,为圆曲线半径算出该点的相对起点坐标,利用arctan y x算出该点相对起点的方位角B ,再根据线路走向及直线段方位角可算出该点的方位角C (顺时针加,逆时针减),用可求出该点相对起点的距离D ,最后用00cos sin x x D C y y D C =+⎧⎨=+⎩可求出该点的坐标。
(00(,)x y 为缓和曲线起点的坐标)3、圆曲线:用上述方法求出圆曲线两端点HY 、YH 坐标,算出HY 到YH 的方位角F ,以及两点间的距离E ,用12arccos ER可算出两端点连线与起点到圆心连线的夹角G ,根据线路走向求出起点到圆心的方位角H (H=F+/-G ),00(,)x y 圆曲线为起点坐标,根据00cos sin x x R H y y R H=+⎧⎨=+⎩,求出圆心坐标。
缓和曲线计算公式
180 i (中桩点里程 HY里程 ) 0 R
X xZH x cos y sin Y xZH x sin y sin
(α为两坐标系旋转角)
4.原始坐标计算 (1)左偏情况: ★ 若该点在缓和曲线上,计算公式:
ZH 里程 =JD里程 -T
xXB yXB
li3 6 Rl0 li5 li 40 R 2l02
li 中桩点里程-ZH 里程
★ 若该点在圆曲线上,计算公式:
xXB R(1 cos i ) P yXB R sin i m
2
m
曲线长度: L R ( 2 0 ) 切曲差: D 2T L
180
2l0 R
180
l0
2
R
HY里程 =ZH 里程 +l0 QZ里程 =HY里程 ( L 2 l0 ) YH里程 =QZ里程 +( L 2 l0 ) HZ里程 =JD里程 +T D
1.曲线常数计算 缓和曲线倾角: 0=
l 0 180 2R
切线外移量(切垂距) : m=
l0 l3 0 2 2 240 R
l02 l04 圆曲线内移值: P= 24 R 2688R 3
2.曲线要素计算 切线长度: T ( R P ) tg 外矢距: E ( R P) sec 3.主点里程推算
i
180 (中桩点里程 HY里程 ) 0 R
(2)右偏情况: ★ 若该点在缓和曲线上,计算公式:
xXB yXB
li5 li 40 R 2l02 l3 i 6 Rl0
曲线计算公式
2、缓和曲线偏角公式:
δn=30Ln2/RπLs
3、切线长T=m+(R+P)tan(β/2)
4、曲线长:
L=(Rπ(β-2β0))/180+2Ls
5、外矢距E=(R+P)/cos(β/2Βιβλιοθήκη -R6、切曲差q=2T-L
7、切垂距m=Ls/2-Ls3/240R2
8、内移距P=Ls2/24R-Ls4/2688R3
一、圆曲线范围公式
已知:半径R.转向角β
1、切线长T=Rtan(β/2)
2、曲线长L=(Rπβ)/180
3、外矢距E=R(1/cos(β/2)-1)
4、切曲差q=2T-L
偏角公式δ=180C/2Rπ注C为所点弧长
二、缓和曲线范围公式
1、缓和曲线切线角βn=90Ln2/RπLs
Ln为所点n到直缓或缓直点曲线长
9、缓和曲线数学坐标公式:
X=Ls-Ln5/40R2Ls2
Y=Ln3/6RLs-Ln7/336R3Ls3
10、缓和曲线偏角公式:
δn=tan-1(y/x)
11、缓和曲线弦长公式:Ci=√(x2+y2)
Cc=Ln-Ln3/90R2+Ln5/3888R4(代数式
综合曲线中圆曲线范围坐标公式:
Xi=m+Li-Ls/2-(Li-Ls/2)3/6R2
Yi=p+(Li-Ls/2)2/2R-(Li-Ls/2)4/24R3
注:Li为圆曲线上任意点到ZH或HZ的曲线长(用于计算偏移值)
三、竖曲线计算公式
Y=X2/2R
缓和曲线)计算公式
高速公路的线路(缓和曲线)计算公式一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R 2——曲线终点处的半径P——曲线起点处的曲率1——曲线终点处的曲率P2α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i(上坡为“+”,下坡为“-”)1(上坡为“+”,下坡为“-”)②第二坡度:i2③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K③曲线终点桩号:K1④曲线起点坐标:x0,y⑤曲线起点切线方位角:α⑥曲线起点处曲率:P(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:。
缓和曲线坐标计算公式
缓和曲线坐标计算公式:
S=L-(L5)/(90×R2×K2)◢ B= L2×180/(6×R×K×π)◢ Q=W+B◢X=U+S×CosQ◢ Y=V+S×SinQ◢
其中:L为缓和曲线起点至计算桩号的弧长,R为缓和曲线后接圆曲线的半径,K为缓曲线总长,W为缓和曲线起点的切线方位角,U为缓和曲线起点的X坐标,V为缓和曲线起点的Y坐标。
左转角半径为负,右转角为正。
圆曲线坐标计算公式:
B=K×90/(R×π)+L×180/(R×π)◢ Q=K/2-(K×K2)/(240×R2)◢P=K2/(24×R)◢ M=R×SinB+Q◢N= R×(1- CosB)+P◢
E=tan-1 (N/M)◢ F=∫(M2+N2 )◢ T=W+E◢X=U+F×CosT◢Y=V+F×SinT◢∫:开根号
K为缓和曲线总长,R为圆曲线半径,L为圆曲线起点至计算点的弧长,W为缓和曲线起点的切线方位角,U为缓和曲线起点的坐标,V 为缓和曲线起点的坐标.
左转角半径为负,右转角为正。
缓和曲线的计算公式概要
查看文章高速公路线路(缓和曲线、竖曲线、圆曲线、匝道坐标计算公式2009年06月29日星期一21:57高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:丨②圆曲线的半径:R③缓和曲线的长度:10④转向角系数:K(1或一1⑤过ZH点的切线方位角:a⑥点ZH的坐标:xZ, yZ计算过程:〔14 = (——)X吩3361SI?⑵一丄十」^40RH 3456R%(3]dt = arctg —+n-180[4)-------------------------- S= J盂十y:匸[血二①+口-河(SJ KJ= Scosci^⑺齐=Ssin(\旧丘=Xt+Xr[9]y=说明:当曲线为左转向时,K=1,为右转向时,K=-1 ,公式中n的取值如下:<0弧<0>0n = 0n = 2n=1n = 1当计算第二缓和曲线上的点坐标时,贝U: l为到点HZ的长度a为过点HZ的切线方位角再加上180K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:I②圆曲线的半径:R③缓和曲线的长度:I0④转向角系数:K(1或一1⑤过ZH点的切线方位角:a⑥点ZH的坐标:xZ , yZ计算过程:尺兀24R 2688R3[3]m=^-- +―弐—2 240R E Z34560R'阮湎口砂用K15)叭二RsiiiU'十m[6H = arctg —+n- LEO⑺E= J奩+y:[8]a = q+a—go旧]爲=ScosC^(IO]y j—SsinCl^[I U K=石+心0的=班+圻说明:当曲线为左转向时,K=1,为右转向时,K=-1 , 公式中n的取值如下:也:^<0业<oW A 0凭<0y,>o 1y»n = 0n = 2n = 1n = 1当只知道HZ点的坐标时,贝V:l为到点HZ的长度a为过点HZ的切线方位角再加上180K值与知道ZH点坐标时相反xZ, yZ为点HZ的坐标三、曲线要素计算公式1超曲馬任畜占转角fit P 2KM⑵«4段任;■点特用值B ・阻也L. 乂p 严丹)L 2 Rife 2⑶戛一建曲段恳转角跖K ■互 2R⑷第二集曲段总特角仙內•卫 山.里—圧珪II 师口重;阻=!!_ 斗+ _2 240E £ 3456OR⑹第卫對惧秽重5?-里-- +」一2 昭 OK 34b60R阿平移畫5・——\24R 26BBR 3—十—(P L+ P ?卡HR't.—十 mi -4 22 oo®二切线恰n -里卫 止如+p,+2JUt e 5+>2 2M- 2 203晦逅k 慶:Lo =嗣弓(】严®站陡段长度* 1 ■丄L ■仝些Br Pi+p ; Ri+R?⑭雇需曲D 的边缘曲裟檢度:1- Al + Dp公式中各符号说明: l ――任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)11 ――第一缓和曲线长度12 ――第二缓和曲线长度10 ――对应的缓和曲线长度R ――圆曲线半径R1 ――曲线起点处的半径⑻第二平移■眩■ ——5-如 2688K ⑼第一切SiKiT]- ^_5>1R2 ――曲线终点处的半径P1 ――曲线起点处的曲率P2 ――曲线终点处的曲率a ――曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为牛”, ② 第二坡度:i2(上坡为 牛”,下坡为③ 变坡点桩号:SZ④ 变坡点高程:HZ⑤ 竖曲线的切线长度:T下坡为-a v[SIR.= 五、超高缓和过渡段的横坡计算⑥待求点桩号:S 计算过程:2T1+—〔[3]H 二吐十L _丄-扌尺仁長已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1(1-3d2+2d3+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:xO, y0⑤曲线起点切线方位角:a0⑥曲线起点处曲率:P0(左转为•”,右转为牛⑦曲线终点处曲率:P1(左转为•”,右转为牛求:①线路匝道上点的坐标:x,y②待求点的切线方位角:aT计算过程:S=K-K,[I ]当已=P J= 0吋IK = Xfl-FScOS^ y=y c+Ssin^ —q.⑵当p严p冲。
道路曲线计算公式
高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式时间:2009-12-27 21:40:34 来源:本站作者:未知我要投稿我要收藏投稿指南高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
缓和曲线)计算公式
高速公路的线路(缓和曲线)计算公式一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y ②待求点的切线方位角:αT计算过程:。
缓和曲线常用计算公式
缓和曲线常用计算公式一、缓和曲线常数1、内移距P :3420268824Rl R l P n -= 2、切垂距m :2302402R l l m -= 3、缓和曲线基本角:Rl R l πβ000902== 3、缓和曲线偏角: Rl R l πδ000306== 5、缓和曲线反偏角: Rl R l b π000603== 缓和曲线常数既有线元素,又有角元素,且均为圆曲线半径R 和缓和曲线长0l 的函数。
线元素要计算到mm ,角元素要计算到秒。
二、缓和曲线综合要素切线长:()m P R T +??+=2tan α曲线长:()0022l R L +-=βα外视距:R P R E -??+=2cos 0α切曲差:L T q -=2曲线综合要素均为线元素,且均为转向角α、圆曲线半径R 和缓和曲线长0l 的函数。
曲线综合要素计算到cm 。
三、缓和曲线任意点偏角计算2020202902306Rl l Rl l Rl l Rl l t t t t t t πβπδ====0202603Rl l Rl l b t t t π==实际应用中,缓和曲线长0l 均选用10m 的倍数。
四、偏角法测设缓和曲线遇障碍 ()()T B B T l l l l Rl 2610+-=βδ()()()()T F T F T F T F F l l l l Rl l l l l Rl 23026100+-=+-=πδ—B l 为靠近ZH(HZ)点的缓和曲线长;—T l 为置镜点的缓和曲线长;—F l 为远离ZH(HZ)点的缓和曲线长。
五、直角坐标法1、缓和曲线参数方程: 5202401a a a l l R l x -= 30373033661l R l l Rl y a a a -= 2、圆曲线m R x b b +=αsin()P R y b b +-=αcos 1式中,b α为圆心O 到切线的垂线方向和到B 的半径方向所形成的圆心角,按下式计算:00βα+-=Rl l b b ()()T B B T l l l l Rl 2610+-=βδ ()()T B B T l l l l Rl 2300+-=π。
缓和曲线的计算公式
缓和曲线的计算公式
缓和曲线计算公式:y=∑{(-1)N-1×L4N-1÷[(2N-1)×(2c)2N-1×(4N-1)]}。
缓和曲线指的是平面线型中,在直线与圆曲线、圆曲线与圆曲线之间设置的曲率连续变化的曲线。
缓和曲线是道路平面线形要素之一,它是设置在直线与圆曲线之间或半径相差较大的两个转向相同的圆曲线之间的一种曲率连续变化的曲线。
《公路工程技术标准》规定,除四级路可不设缓和曲线外,其余各级公路都应设置缓和曲线。
在现代高速公路上,有时缓和曲线所占的比例超过了直线和圆曲线,成为平面线形的主要组成部分。
在城市道路上,缓和曲线也被广泛地使用。
曲线计算公式及例题
一、圆曲线坐标计算公式β=180°/π×L/R(L= βπR/180°)弧长公式β为圆心角△X=sinβ×R△Y=(1-cosβ) ×RC= 弦长X=X1+cos (α±β/2)×CY=Y1+sin (α±β/2)×Cβ代表偏角,(既弧上任一点所对的圆心角)。
β/2是所谓的偏角(弦长与切线的夹角)△X 、△Y 代表增量值。
X 、Y 代表准备求的坐标。
X1、Y1代表起算点坐标值。
α代表起算点的方位角。
R 代表曲线半径二、缓和曲线坐标计算公式β= L2/2RLS ×180°/πC= L - L5/90R2L S 2X=X1+cos (α±β/3)×CY=Y1+sin (α±β/3)×C L 代表起算点到准备算的距离。
LS 代表缓和曲线总长。
X1、Y1代表起算点坐标值。
三、直线坐标计算公式X=X1+cosα×LY=Y1+sinα×LX1、Y1代表起算点坐标值α代表直线段方位角。
L 代表起算点到准备算的距离。
1)左右边桩计算方法X 边=X中+cos(α±90°) ×LY 边=Y中+sin(α±90°) ×L在计算左右边桩时,先求出中桩坐标,在用此公式求左右边桩。
如果在线路方向左侧用中桩方位角减去90°,线路右侧加90°,乘以准备算的左右宽度。
例题:直线坐标计算方法α(方位角)=18°21′47″DK184+714.029,求DK186+421.02里程坐标X1=84817.831 Y1=352.177 起始里程解:根据公式X=X1+cosα×LX=84817.831+COS18°21′47″×(86421.02—84714.029)=86437.901Y=Y1+sinα×LY=352.177+sin18°21′47″×(86421.02—84714.029)=889.943求DK186+421.02里程左右边桩, 左侧3.75m, 右侧7.05m. 解:根据公式线路左侧计算:X 边=X中+cos(α±90°) ×LX 边=86437.901+cos(18°21′47″- 90°) ×3.75=86439.082Y 边=Y中+sin(α±90°) ×LY 边=889.943+sin(18°21′47″- 90°) ×3.75=886.384线路右侧计算:X 边=X中+cos(α±90°) ×LX 边=86437.901+cos(18°21′47″+ 90°) ×7.05=86435.680Y 边=Y中+sin(α±90°) ×LY 边=889.943+sin(18°21′47″+90°) ×7.05=896.634四、例题:缓和曲线坐标计算方法α(ZH点起始方位角)=18°21′47″X1=86437.901 Y1=889.941 起始里程DK186+421.02曲线半径2500 缓和曲线长120m求HY 点坐标, 也可以求ZH 点到HY 点任意坐标解:根据公式β=L2/2RLS×180°/πβ={1202/(2×2500×120) }×(180°/π)= 1°22′30.36″C=L-L5/90R2LS2C=120-1205/(90×25002×1202)=119.997X=X1+cos(α±β/3)×CX=86437.901+cos(18°21′47″-1°22′30.36″/3)×119.997=86552.086Y=Y1+sin(α±β/3)×CY=889.941+sin(18°21′47″-1°22′30.36″/3)×119.997=926.832求DK186+541.02里程左右边桩, 左侧3.75m, 右侧7.05m. 解:根据公式线路左侧计算:X 边=X中+cos(α±90°) ×LX 边=86552.086+cos{(18°21′47″-1°22′30.36″)- 90°}×3.75=86553.182Y 边=Y中+sin(α±90°) ×LY 边=926.832+sin{(18°21′47″-1°22′30.36″)- 90°}×3.75=923.246线路右侧计算:X 边=X中+cos(α±90°) ×LX 边=86552.086+cos{(18°21′47″-1°22′30.36″)+ 90°}×7.05=86550.026Y 边=Y中+sin(α±90°) ×LY 边=926.832+sin{(18°21′47″-1°22′30.36″)+ 90°}×7.05=933.574缓和曲线方位角计算方法α=(起始方位角±β偏角)= 18°21′47″-1°22′30.36″=16°59′16.64″注:缓和曲线在计算坐标时, 此公式只能从两头往中间推, 只能从ZH 点往HY 点推,HZ 点往YH点推算, 如果YH 往HZ 点推算坐标, 公式里的β为β2/3.五、例题:圆曲线坐标计算方法α(HY点起始方位角)= 16°59′16.64″X1=86552.086 Y1=926.832曲线半径2500 曲线长748.75 起始里程DK186+541.02求YH 点坐标, 也可以求QZ 点坐标或任意圆曲线一点坐标. 解:根据公式β=180°/π×L/Rβ= 180°/π×748.75/2500=17°09′36.31″△X=sinβ×R△X=sin17°09′36.31″×2500=737.606△Y=(1-cosβ) ×R△Y=(1-cos17°09′36.31″) ×2500=111.290C= 弦长C=745.954X=X1+cos(α±β/2)×CX= 86552.086 +cos(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=87290.023 Y=Y1+sin(α±β/2)×CY=926.832+ sin(16°59′16.64″+360°-17°09′36.31″/2) ×745.954=1035.905圆曲线方位角计算方法α=(起始方位角±β偏角)= 16°59′16.64″+360°-17°09′36.31″=359°49′40.33″求DK187+289.77里程左右边桩, 左侧3.75m, 右侧7.05m. 解:根据公式线路左侧计算:X 边=X中+cos(α±90°) ×LX 边=87290.023+cos(359°49′40.33″-90°) ×3.75=87290.012 Y 边=Y中+sin(α±90°) ×LY 边=1035.905+sin(359°49′40.33″-90°) ×3.75=1032.155线路右侧计算:X 边=X中+cos(α±90°) ×LX 边=87290.023+cos(359°49′40.33″+90°) ×7.05=87290.044 Y 边=Y中+sin(α±90°) ×LY 边=1035.905+sin(359°49′40.33″+90°) ×7.05=1042.955。
缓和曲线、竖曲线、圆曲线、计算
速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R 2——曲线终点处的半径P——曲线起点处的曲率1——曲线终点处的曲率P2α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i(上坡为“+”,下坡为“-”)1(上坡为“+”,下坡为“-”)②第二坡度:i2③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K③曲线终点桩号:K1④曲线起点坐标:x0,y⑤曲线起点切线方位角:α⑥曲线起点处曲率:P(左转为“-”,右转为“+”)⑦曲线终点处曲率:P(左转为“-”,右转为“+”)1求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
缓和曲线、 圆曲线计算方法
缓和曲线计算方法(ZH~HY)中线首先计算直线段坐标方位角(即ZH~JD坐标方位角),及ZH点坐标。
备用偏角公式:{30*L/(π*RLS)缓和曲线}1、计算待求点偏角=((L/10)2*(57296/(RLS))/60。
其中L=待求点至ZH距离、R=圆曲线半径、LS=缓和曲线长。
2、待求点方位角=直线方位角±待求点偏角。
(曲线左转-偏角,曲线右转+偏角)3、待求点至ZH点弦长=L—L5/(90*R2*LS 2),其中L=待求点至ZH距离(里程)、R=圆曲线半径。
4、待求点坐标:X=ZH点X坐标+COS(待求点方位角)*弦长Y= ZH点Y坐标+SIN(待求点方位角)*弦长缓和曲线计算左右边线坐标(ZH~HY)1、左侧方位角=(待求点方位角±2倍偏角=直线方位角±3倍偏角)—边线与中线夹角。
2、右侧方位角=(待求点方位角±2倍偏角=直线方位角±3倍偏角)+边线与中线夹角。
3、左侧边线坐标:X=该点中线X坐标+COS(左侧方位角)*边线至中线距离Y=该点中线Y坐标+SIN(左侧方位角)*边线至中线距离4、右侧边线坐标:X=该点中线X坐标+COS(右侧方位角)*边线至中线距离Y=该点中线Y坐标+SIN(右侧方位角)*边线至中线距离圆曲线计算方法(HY~YH)中线注:(ZY-YZ)同理,方位角=用直线方位角-待求点偏角首先计算直线段坐标方位角(即ZH~JD坐标方位角),及HY点坐标。
1、求出缓圆点(HY)偏角=(LS*90)/(π* R)。
2、求待求点偏角=(L*90)/(π* R)。
其中:L=待求点至HY距离(里程)、R=圆曲线半径、LS=缓和曲线长。
3、待求点至HY点弦长=2* R*SIN(待求点偏角)。
4、待求点方位角=直线方位角±HY点偏角±待求点偏角,(曲线左转-偏角,曲线右转+偏角)。
5、待求点坐标:X=HY点X坐标+COS(待求点方位角)*弦长Y=HY点Y坐标+SIN(待求点方位角)*弦长圆曲线计算左右边线坐标1、左侧方位角=(待求点方位角±偏角—边线与中线夹角)。
缓和曲线)计算公式
高速公路的线路(缓和曲线)计算公式一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R 2——曲线终点处的半径P——曲线起点处的曲率1——曲线终点处的曲率P2α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i(上坡为“+”,下坡为“-”)1(上坡为“+”,下坡为“-”)②第二坡度:i2③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K③曲线终点桩号:K1④曲线起点坐标:x0,y⑤曲线起点切线方位角:α⑥曲线起点处曲率:P(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:。
圆曲线和缓和曲线坐标推算公式(附带例题)
圆曲线和缓和曲线坐标推算公式(附带例题)本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算圆曲线和缓和曲线坐标推算公式一、直线上的坐标推算Xi=Xm Licosa0 Y=Y Lsinami0 i式中:Xm、Ym――直线段起点M坐标Li――直线段上任意点i到线路起点M的距离a0――直线段起点M到JD1的方位角二、圆曲线上任一点的坐标推算①、圆曲线上任一点i相对应的圆心角:i=180Li R式中:Li――圆曲线上任一点i离开ZY或YZ点的弧长Xi=Rsin i②、圆曲线上任一点i的直角坐标:(可不计算).Y=R(1 cos )i i本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算③、圆曲线ZY或YZ点到任一点i的偏角:i=i2=90Li R④、圆曲线ZY或YZ点到任一点i的弦长:Ci=2Rsin(i2) 2Rsin( i)⑤、圆曲线ZY或YZ点到任一点i的弦长的方位角:ai=azy jd或yz jd iXi=XZY或YZ Cicosai⑥、所以圆曲线上任意点i的坐标为:Y=Y CsinaiiZY或YZ i例题:已知一段圆曲线,R=3500m,Ls=553.1m,交点里程K50+154.734,ZY点到JD方向方位角为A=129°23′18.3″,右偏9°3′15.8″,ZY点里程K49+877.607,YZ点里程K50+430.707,起点坐标为x=__.196,y=__.251,求K50+200处中点坐标及左右各偏12.5m的坐标。
解:K50+200处的曲线长度为Li=322.393m180 180 Li=322.393=5 16 39.52 K50+200相对应的方位角:a=R 3500K50+200相对应的偏角:i=i2=90 90Li=322.393=2 38 19.76 R 3500K50+200到zy点的弦长:Ci=2Rsin i=2 3500 sin2 38 19.76 =322.279m zy点到K50+200中桩的方位角:ai=azy jd i=129 23 18.3 2 38 19.76 =132 1 38.06K50+200左、右偏12.5m的方位角:a左=Ai a 90 =134 39 57.82 90 =44 39 57.82 a右=Ai a 90 =134 39 57.82 90 =134 39 57.82 所以K50+200处的坐标为:.196 322.279 cos132 1 38.06 =__.4354 Xi=XZY Cicosai=__ Y=Y Csina=__.251 322.279 sin132 1 38.06 =__.6484ZYii i 本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算K50+200左偏12.5m的坐标为:.4354 12.5 cos44 39 57.82 =__.3256 X左=Xi 12.5cosa左=__Y=Y 12.5sina=__.6484 12.5 sin44 39 57.82 =__.4656i左左K50+200右偏12.5m的坐标为:.4354 12.5 cos134 39 57.82 =__.6482 X右=Xi 12.5cosa右=__ Y=Y 12.5sina=__.6484 12.5 sin134 39 57.82 =__.5386i右右三、缓和曲线上任一点的坐标推算L2i180=切线角:i2RLsL2i180缓和曲线上任意点i的偏角:i==36RLsi缓和曲线ZH或HZ点到任意点i的方位角为:ai=aZH jd或HZ jd iL5i xi=Li40R2L2s3缓和曲线上任意点i的坐标为:L y=ii 6RLs22缓和曲线ZH或HZ点到任意点i的弦长:Cix yXi=XZH或HZ Cicosai所以缓和曲线上任意点i的坐标为:Y=Y CsinaiiZH或HZ i本文为圆曲线和缓和曲线的推算公式,包括直线、缓和曲线、圆曲线上的坐标推算例题:已知一段缓和曲线,ZH点到JD方向方位角为A=183°17′08.9″,线路左偏43°31′02″,ZH点里程为K52+001.615,ZH点坐标x=__.927,y=__.089,R=960m,Ls=120m,求K52+100处的中点坐标及左右各偏12.5m的坐标。
缓和曲线要素及公式介绍
11.2.1 带缓和曲线的圆曲线的测设为了保障车辆行驶安全,在直线与圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。
目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ与曲线长度l成反比。
数学表达为:ρ∝1/l 或ρ·l = k ( k为常数)若缓和曲线长度为l0,与它相连的圆曲线半径为R,则有:ρ·l = R·l0 = k目前我国公路采用k = 0.035V3(V为车速,单位为km/h),铁路采用k = 0.09808V3,则公路缓和曲线的长度为l0 = 0.035V3/R ,铁路缓和曲线的长度为:l0 = 0.09808V3/R 。
11.2.2 带缓和曲线的圆曲线的主点及主元素的计算带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。
带缓和曲线的圆曲线的主元素及计算公式:切线长 T h = q+(R+p)·tan(α/2)曲线长 L h = 2l0+R·(α-2β0)·π/180°外矢距 E h = (R+p)·sec(α/2)-R切线加长 q = l0/2-l03/(240R2)圆曲线相对切线内移量 p = l02/(24R)切曲差 D h = 2T h -L h式中:α 为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。
11.2.3 缓和曲线参数推导dβ = dl/ρ = l/k·dl两边分别积分,得:β= l2/(2k) = l/(2ρ)当ρ = R时,则β =β0β0 = l0/(2R)若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则:dx = dl·cosβ = cos[l2/(2k)]·dldy = dl·sinβ = si n[l2/(2k)]·dl考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线长度l为参数的缓和曲线方程式:X = l-l5/(40R2l02)+……Y = l3/(6Rl0)+……通常应用上式时,只取前一、二项,即:X = l-l5/(40R2l02)Y = l3/(6Rl0)另外,由图可知,q = X HY-R·sinβ0p = Y HY-R(1-cosβ0)以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2)p = l02/(24R)若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为:Xi = R·sinψi+qYi = R·(1-cosψi)+p11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核ZH桩号 = JD桩号-T hHY桩号 = ZH桩号+l0QZ桩号 = HY桩号+L/2YH桩号 = QZ桩号+L/2 = HY桩号+L = ZH桩号+l0+LHZ桩号 = YH桩号+l0 = ZH桩号+L hJD桩号 = ZY桩号-T h+D h(检核)11.2.5 带缓和曲线的圆曲线的主点的测设过程:(1)在JD点安置经纬仪(对中、整平),用盘左瞄准直圆方向,将水平度盘的读数配到0°00′00″,在此方向量取T h,定出ZH点;(2)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出HY点;(3)倒转望远镜,转动照准部到度盘读数为α,量取T h,定出HZ点;(4)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出YH点;(5)继续转动照准部到度盘读数为(α+180°)/2,量取E h,定出QZ点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[教程]第九章道路工程测量(圆曲线缓和曲线计算公式)未知2009-12-09 19:04:30 广州交通技术学院第九章道路工程测量 (road engineering survey)内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。
重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。
§ 9.1 交点转点转角及里程桩的测设一、道路工程测量概述分为:路线勘测设计测量 (route reconnaissance and design survey) 和道路施工测量 (road construction survey) 。
(一)勘测设计测量 (route reconnaissance and design survey)分为:初测 (preliminary survey) 和定测 (location survey)1、初测内容:控制测量 (control survey) 、测带状地形图 (topographical map of a zone) 和纵断面图 (profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。
2、定测内容:在选定设计方案的路线上进行路线中线测量 (center line survey) 、测纵断面图 (profile) 、横断面图 (cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。
(二)道路施工测量 (road construction survey)按照设计图纸恢复道路中线、测设路基边桩和竖曲线、工程竣工验收测量。
本章主要论述中线测量和纵、横断面测量。
二、中线测量 (center line survey)1、平面线型:由直线和曲线(基本形式有:圆曲线、缓和曲线)组成。
2、概念:通过直线和曲线的测设,将道路中心线的平面位置测设到地面上,并测出其里程。
即测设直线上、圆曲线上或缓和曲线上中桩。
三、交点 JD(intersecting point) 的测设(一)定义:路线的转折点,即两个方向直线的交点,用 JD 来表示。
(二)方法:1、等级较低公路:现场标定2、高等级公路:图上定线——实地放线。
(三)实地放线的方法分类1、放点穿线法放直线点——穿线——定交点(1)放点可用支距法(垂直于导线边的距离)、导线相交法及极坐标法进行。
如下图:1、2、4、6 点——用支距法; 3 点——用导线相交法; 5 点——用极坐标法(2)穿线如图,定出一条尽可能多的穿过或靠近直线上点 P1 、 P2 、 P3 的直线 AB 。
(3)定交点将穿出的直线延长,得交点 JD 。
正倒镜分中法:1)在 B 点架仪,盘左瞄准 A ,倒镜定 a1 , b1 点;盘右瞄准 A 点,倒镜定 a2 , b2 点;取 a1 、 a2 点中点 a , b1 、 b2 点的中点 b 。
2)同理可定出 CD 方向可定出 c 、d 两点。
(骑马桩)。
3)将线段 ab 、 cd 相交,得交点 JD 。
2、拨角放线法——极坐标法如图,在利用导线点或已测设的 JD ,计算测设元素(β, S )——拨角,量边,定出JD 位置。
四、转点 ZD(turning point) 的测设1、定义:当相邻两交点互不通视时,需要在其连线测设一些供放线、交点、测角、量距时照准之用的点。
2、分为:在两交点间测设转点、在两交点延长线上测设转点。
(1)在两交点间测设转点:1)在 JD5 、 JD6 的大致中间位置 ZD' 架仪。
瞄准 JD5 ,用正倒镜分中法定出 JD'6 。
2)测量出 a 、 b 距离。
有:3)计算 e 值,在实地量取 e 值,得 ZD 点。
有:4)在 ZD 点架仪,检查三点在一直线上。
有:(2)在两交点延长线上测设转点如图,有:五、转角 (turning angle) 和分角线的测设1、定义:指路线由一个方向偏向另一个方向时,偏转后的方向与原方向的夹角。
当偏转后的方向在原方向的左侧,称为左转角;反之为右转角。
2、转角的测定当β左 > 180°时,为右转角,有:αy= β左 -180°当β左 <180°时,为左转角,有:αz=180°- β左当β右 <180°时,为右转角,有:αy=180°- β右当β右 >180°时,为左转角,有:αz= β右 - 180°3、分角线的测定若角度的 2 个方向值为 a 、 b ,则分角线方向 c=(a+b)/2六、里程桩 (mileage peg) 的设置又称中桩,表示该桩至路线起点的水平距离。
如: K7+814.19 表示该桩距路线起点的里程为 7814.19m 。
分为整桩和加桩。
1、整桩。
一般每隔 20m 或 50m 设一个。
2、加桩分为地形加桩、地物加桩、人工结构物加桩、工程地质加桩、曲线加桩和断链加桩。
(如:改 K1+100=K1+080 ,长链 20m 。
)§ 9.2 单圆曲线 (circle curve) 的测设圆曲线测设的传统方法:主点测设——详细测设一、主点 (major point) 的测设1、曲线要素的计算若已知:转角α及半径 R ,则:切线长:;曲线长:外距:;切曲差:2、主点的测设(1)主点里程的计算ZY 里程 =JD 里程 -T ; YZ 里程 =ZY 里程 +LQZ 里程 =YZ 里程 -L/2 ; JD 里程 =QZ 里程 +D/2 (用于校核)(2)测设步骤:1) JDi 架仪,照准 JDi-1 ,量取 T ,得 ZY 点;照准 JDi+1 ,量取 T ,得 YZ 点。
2)在分角线方向量取 E ,得 QZ 点。
二、单圆曲线详细测设有整桩号法和整桩距法。
一般采用整桩号法。
1、切线支距法 (tangent off-set method)(1) 以 ZY 或 YZ 为坐标原点,切线为 X 轴,过原点的半径为 Y 轴,建立坐标系。
(2) 计算出各桩点坐标后,再用方向架、钢尺去丈量。
特点:测点误差不积累;宜以 QZ 为界,将曲线分两部分进行测设。
[ 例题 ] 设某单圆曲线偏角α =34°12′00″, R=200m ,主点桩号为 ZY : K4+906.90 ,QZ :K4+966.59 , YZ :K5+026.28 ,按每 20m 一个桩号的整桩号法,计算各桩的切线支距法坐标。
(一)主点测设元素计算= 61.53m ;=119.38m ;=9.25m ;=3.68m 。
(二)主点里程计算ZY=K4+906.90 ; QZ=K4+966.59 ; YZ=K5+026.28 ; JD= K4+968.43 (检查)(三)切线支距法(整桩号)各桩要素的计算表注:表中曲线长。
2、偏角法 (method of deflection angle)分为:长弦偏角法、短弦偏角法。
(1)长弦偏角法1)计算曲线上各桩点至 ZY 或 YZ 的弦线长 ci 及其与切线的偏角Δi 。
2)再分别架仪于 ZY 或 YZ 点,拨角、量边。
特点:测点误差不积累;宜以 QZ 为界,将曲线分两部分进行测设。
(2)短弦偏角法。
与长弦偏角法相比:1)偏角Δi 相同。
2)计算曲线上各桩点间弦线长 ci3)架仪于 ZY 或 YZ 点,拨角、依次在各桩点上在量边,相交后得中桩点。
此外还有极坐标法 (polar coordinate method) 、弦线支距法、弦线偏距法。
[ 例题 ] 偏角法详细测设单圆曲线(注:此题作为实习课测设内容 , 数据是假设的)已知圆曲线的 R=200m ,,交点 JD i 里程为 K10+110.88m ,试按每 10m 一个整桩号,来阐述该圆曲线的主点及偏角法整桩号详细测设的步骤。
解:(一)主点测设元素计算= 26.33m ;=52.36m ;=1.73m ;=0.3m 。
(二)主点里程计算ZY=K10+84.55 ; QZ=K10+110.73 ; YZ=K10+136.91 ; JD= K10+110.88 (检查)(三)偏角法(整桩号)各桩要素的计算表(长弦法)注:;;§ 9.3 缓和曲线 (spiral) 的测设一、概念及基本公式1、概念为缓和行车方向的突变和离心力的突然产生与消失,需要在直线(超高为 0 )与圆曲线(超高为 h )之间插入一段曲率半径由无穷大逐渐变化至圆曲线半径的过渡曲线(使超高由 0 变为 h ),此曲线为缓和曲线。
主要有回旋线、三次抛物线及双纽线等。
2、回旋型缓和曲线基本公式——缓和曲线全长。
(1)切线角公式——缓和曲线长所对应的中心角。
(2)缓和曲线角公式——缓和曲线全长所对应的中心角亦称缓和曲线角。
(3)缓和曲线的参数方程(4)圆曲线终点的坐标二、主点的测设1、测设元素的计算(1)内移距 p 和切线增长 q 的计算(2)切线长曲线长,其中圆曲线长。
外距;切曲差2、主点的测设(1)里程的计算ZH=JD-T H ; HY=ZH+l s ; QZ=ZH+L H /2 ; HZ=ZH+L H ; YH=HZ-l s(2)测设方法。
( 见例题 )例题:如下图,设某公路的交点桩号为 K10+518.66 ,右转角α y = 18°18'36 " ,圆曲线半径 R= 100m ,缓和曲线长 l s = 10m ,试测设主点桩。
(作为实习课内容)解:(一)计算测设元素p= 0.04m ; q= 5.00m ;;(二)计算里程ZH=K10+497.54 ; HY=K10+507.54 ; QZ=K10+518.52 ; HZ=K10+539.50 ; YH=K10+529.50 (三)主点测设1、架仪 JDi ,后视 JDi-1 ,量取 TH ,得 ZH 点;后视 JDi+1 ,量取 TH ,得 HZ 点;在分角线方向量取 EH ,得 QZ 点。
2、分别在 ZH 、HZ 点架仪,后视 JDi 方向,量取 x0 ,再在此方向垂直方向上量取 y0 ,得 HY 和 YH 点。