动能定理机械能守恒定律知识点例题

合集下载

专题09动能定理、机械能守恒定律和功能关系(原卷版)

专题09动能定理、机械能守恒定律和功能关系(原卷版)

2023年高三物理二轮高频考点冲刺突破专题09 动能定理、机械能守恒定律和功能关系【典例专练】一、高考真题1.如图所示,轻质弹簧一端固定,另一端与物块A连接在一起,处于压缩状态,A由静止释放后沿斜面向上运动到最大位移时,立即将物块B轻放在A右侧,A、B由静止开始一起沿斜面向下运动,下滑过程中A、B始终不分离,当A回到初始位置时速度为零,A、B与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则()A.当上滑到最大位移的一半时,A的加速度方向沿斜面向下B.A上滑时、弹簧的弹力方向不发生变化C.下滑时,B对A的压力先减小后增大D.整个过程中A、B克服摩擦力所做的总功大于B的重力势能减小量2.固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P 点由静止开始自由下滑,在下滑过程中,小环的速率正比于( )A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积3.风力发电已成为我国实现“双碳”目标的重要途径之一。

如图所示,风力发电机是一种将风能转化为电能的装置。

某风力发电机在风速为9m /s 时,输出电功率为405kW ,风速在5~10m /s 范围内,转化效率可视为不变。

该风机叶片旋转一周扫过的面积为A ,空气密度为ρ,风场风速为v ,并保持风正面吹向叶片。

下列说法正确的是( )A .该风力发电机的输出电功率与风速成正比B .单位时间流过面积A 的流动空气动能为212A ρv C .若每天平均有81.010kW ⨯的风能资源,则每天发电量为92.410kW h ⨯⋅D .若风场每年有5000h 风速在6~10m /s 范围内,则该发电机年发电量至少为56.010kW h ⨯⋅4.某节水喷灌系统如图所示,水以015m/s v =的速度水平喷出,每秒喷出水的质量为2.0kg 。

喷出的水是从井下抽取的,喷口离水面的高度保持H=3.75m不变。

水泵由电动机带动,电动机正常工作时,输入电压为220V,输入电流为2.0A。

第七章机械能_守恒_动能定理_知识点_例题详解

第七章机械能_守恒_动能定理_知识点_例题详解

机械能知识点总结一、功1、概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。

2、条件:. 力和力的方向上位移的乘积3、公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N )S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4、功是标量,但它有正功、负功。

某力对物体做负功,也可说成“物体克服某力做功”。

功的正负表示能量传递的方向,即功是能量转化的量度。

当)2,0[πθ∈时,即力与位移成锐角,力做正功,功为正; 当2πθ=时,即力与位移垂直,力不做功,功为零; 当],2(ππθ∈时,即力与位移成钝角,力做负功,功为负; 5、功是一个过程所对应的量,因此功是过程量。

6、功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。

7、几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。

即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ二、功率1、概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。

2、公式:t W P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3、单位:瓦特W4、分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。

5、应用:(1)、机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力fF =时,速度不再增大达到最大值max υ,则f P /m ax =υ。

(2)、机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度max υ,则f P /m ax =υ。

6动能定理机械能守恒定律功能关系

6动能定理机械能守恒定律功能关系

专题6机械能、功能关系(2012上海)15.质量相等的均质柔软细绳A 、B 平放于水平地面,绳A 较长。

分别捏住两绳中点缓慢提起,直到全部离开地面,两绳中点被提升的高度分别为h A 、h B ,上述过程中克服重力做功分别为W A 、W B 。

若()(A )h A =h B ,则一定有W A =W B(B )h A >h B ,则可能有W A <W B(C )h A <h B ,则可能有W A =W B (D )h A >h B ,则一定有W A >W B15.【考点】本题考查物体的重心和重力做功【解析】两绳子中点被提升从而使绳子全部离开地面,考虑此时绳子重心上升的高度,绳子的重心在绳子中点两边绳子的中心处。

若绳子总长为l ,则细绳A 重心上升的高度为4A AA l h h '=-,细绳B 重心上升的高度为4B BB lh h '=-。

由题意可知A B l l >,因而选项A 、C 、D 错误,选项B 正确。

【答案】B(2012上海)16.如图,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 有光滑圆柱,A 的质量为B 的两倍。

当B 位于地面时,A 恰与圆柱轴心等高。

将A 由静止释放,B 上升的最大高度是() (A )2R(B )5R /3 (C )4R /3 (D )2R /316.【考点】本题考查机械能守恒【解析】设A 、B 的质量分别为2m 、m ,当A 落到地面,B 恰运动到与圆柱轴心等高处,以A 、B 整体为研究对象,机械能守恒,故有212(2)2mgR mgR m m v -=+,当A 落地后,B 球以速度v 竖直上抛,到达最高点时又上升的高度为22v h g '=,故B 上升的总高度为43R h R '+=,选项C 正确。

【答案】C【误区警示】本题需要注意两个方面:一个是A 和B 的质量关系不要搞错或者混淆;二是B 上升的高度应该是从地面开始计算。

动能和动能定理,机械能守恒典型例题和练习

动能和动能定理,机械能守恒典型例题和练习

学习目标1. 能够推导并理解动能定理知道动能定理的适用X 围2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和〞的含义。

3. 确立运用动能定理分析解决具体问题的步骤与方法类型一 .常规题型例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ例2. 质量为m 的物体静止在粗糙的水平地面上,假设物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过一样位移s ,它的动能为E2,如此:A. E2=E1B. E2=2E1C. E2>2E1D. E1<E2<2E1针对训练 材料一样的两个物体的质量分别为m1和m2,且m m 124=,当它们以一样的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比t t 12:分别是多少?〔两物体与水平面的动摩擦因数一样〕类型二、应用动能定理简解多过程问题例3:质量为m 的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S 后撤去外力,物体还能运动多远?例4、一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数一样.求动摩擦因数μ.针对训练2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

〔g 取10m/s2〕针对训练3 质量为m 的球由距地面高为h 处无初速下落,运动过程中空气阻力恒为重力的0.2倍,球与地面碰撞时无能量损失而向上弹起,球停止后通过的总路程是多少?类型三、应用动能定理求变力的功例5. 质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。

动能定理和机械能守恒定律

动能定理和机械能守恒定律

动能定理和机械能守恒定律一、动能定理【例1】如图所示,半径R =1m 的1/4圆弧导轨与水平面相接,从圆弧导轨顶端A ,静止释放一个质量为m =20g 的小木块,测得其滑至底端B 时速度V B =3m /s ,以后沿水平导轨滑行BC =3m 而停止.求:(1)在圆弧轨道上克服摩擦力做的功?(2)BC 段轨道的动摩擦因数为多少?〖跟踪练习1〗一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如右图,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【例2】从离地面H 高处落下一只小球,小球在运动过程中所受的空气阻力是它重力的k (k<1)倍,而小球与地面相碰后,能以相同大小的速率反弹,求:(1) 小球第一次与地面碰撞后,能够反弹起的最大高度是多少?(2) 小球从释放开始,直至停止弹跳为止,所通过的总路程是多少?〖跟踪练习2〗.水平铁轨上停着一辆煤车,煤矿工人用水平力F 推动矿车从静止开始运动了位移s 后停止推车,煤车在轨道上又滑行了3s 后停下来,那么矿车受到的阻力为 ( )A.FB.F /2C.F /3D.F /4【例3】如下图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点衔接,导轨半径为R ,一个质量为m 的物块以某一速度向右运动,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,而后向上运动恰能完成半圆周运动到C 点,求物块从B 到C 点克服阻力所做的功?〖跟踪练习3〗质量为m 质点在半径为R 的半球形容器中从上部边缘由静止下滑,滑到最低点时对容器底部的压力为2mg ,则在下滑的过程中,物体克服阻力做的功是多少?【例4】如图所示,质量为M =0.2 kg 的木块放在水平台面上,台面比水平地面高出h =0.20 m ,木块离平台的右端L =1.7 m .质量为m =0.10M 的子弹以v 0=180 m/s 的速度水平射向木块,当子弹以v =90 m/s 的速度水平射出时,木块的速度为v 1=9 m/s(此过程作用时间极短,可认为木块的位移为零).若木块落到水平地面时的落地点到台面右端的水平距离为l =1.6 m ,求:(1)木块对子弹所做的功W 1和子弹对木块所做的功W 2;(2)木块与台面间的动摩擦因数μ.[答案] (1)-243 J 8.1 J (2)0.50〖跟踪联习4〗如图所示,质量为m 的小物块在粗糙水平桌面上做直线运动,经距离l 后以速度v 飞离桌面,最终落在水平地面上。

动能定理和机械能守恒定律的应用(解析版)

动能定理和机械能守恒定律的应用(解析版)

动能定理和机械能守恒定律的应用目录一.练经典---落实必备知识与关键能力................................................................................... 错误!未定义书签。

二.练新题---品立意深处所蕴含的核心价值 ........................................................................... 错误!未定义书签。

一、选择题1.如图所示,在质量为M 的电梯地板上放置一质量为m 的物体,钢索拉着电梯由静止开始向上做加速运动,当上升高度为H 时,速度达到v ,则( ) A .地板对物体的支持力做的功等于12mv 2B .地板对物体的支持力做的功等于mgHC .钢索的拉力做的功等于12Mv 2+MgHD .合力对电梯做的功等于12Mv 2【答案】D【解析】: 对物体由动能定理得:W F N -mgH =12mv 2,故W F N =mgH +12mv 2,A 、B 均错误;钢索拉力做的功W F 拉=(M +m )gH +12(M +m )v 2,C 错误;由动能定理知,合力对电梯做的功应等于电梯动能的变化12Mv 2,D 正确。

2.(2022·上海交大附中期中)一块木板水平放在某装置底部,装置从地面开始向上运动的速度—时间图像如图所示,g 取10 m/s 2,则下列分析正确的是( )A .0~0.5 s 木板的机械能守恒B .0.5~1.0 s 木板的机械能守恒C .1.0~1.5 s 木板的机械能守恒D .0~1.5 s 木板的机械能一直在增加 【答案】C【解析】: 0~0.5 s 木板加速上升,木板动能和重力势能均增大,木板的机械能不守恒,A 错误; 0.5~1.0 s 木板匀速上升,动能不变,重力势能增大,机械能不守恒,B 错误;1.0~1.5 s 木板的加速度大小为a =5-01.5-1.0m/s 2=10 m/s 2=g ,木板的加速度方向竖直向下,只受重力作用,做自由落体运动,只有重力做功,机械能守恒,C 正确,D 错误。

动能定理及机械能守恒(有答案)

动能定理及机械能守恒(有答案)

一、功与功率W=Flcosɑ P=Fvcosɑ例题1. 如图,一长为L的轻杆一端固定在光滑铰链上,另一端固定一质量为m的小球.一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速转动,当杆与水平方向成60°时,拉力的功率为()A.mgLωB. 3 /2 mgLωC. 1/2 mgLωD. √3/6 mgLω答案:C例题2.(机车启动问题):一汽车的额定功率P0=6×104W,质量m=5×103kg,在水平直咱面上行驶时阻力是车重的0.1倍,若汽车从静止开始以加速度a=0.5m/s2做匀加速直线运动,求:(1)汽车保持加速度不变的时间;(2)汽车实际功率随时间变化的关系;(3)此后汽车运动所能达到的最大速度。

解析:汽车开始做匀加速运动,牵引力F和阻力恒定,随着速度增加,它的实际功率逐渐增大,直到F v等于额定功率为止;此后汽车保持额定功率不变,速度增大,牵引力减小,做加速度减小的加速运动,直到牵引力等于阻力为止。

(1)设汽车做匀加速直线运动时的牵引力为F,阻力为f,匀加速过程的最大为v t,有F-f=ma ①f=μmg ②P0=Fv t③由以上各式可求得,匀加速过程持续的时间(2)汽车在匀加速直线运动过程中的实际功率与时间的关系是P1=F v=m(μg+a)at(3)汽车达到额定功率后,将保持额定功率不变,随着速度的增加,牵引力减小,但只在牵引力大于阻力,汽车就做加速运动,只是加速度要减小,汽车做加速度逐渐减小的加速直线运动,直到牵引力F=f,加速度为零,汽车所能达到的最大速度练习:1.水平面上静止放置一质量为m=0.2kg的物块,固定在同一水平面上的小型电动机通过水平细线牵引物块,使物块由静止开始做匀加速直线运动,2秒末达到额定功率,其v-t图线如图5-1-20所示,物块与水平面间的动摩擦因数为μ=0.1,g=10m/s2,电动机与物块间的距离足够远.求(1)物块做匀加速直线运动时受到的牵引力大小;(2)电动机的额定功率;(3)物块在电动机牵引下,最终能达到的最大速度.解析 (1)由图知物块在匀加速阶段加速度大小:a==0.4m/s2物块受到的摩擦力大小Ff=μmg设牵引力大小为F,则有:F-Ff=ma得F=0.28N(2)当v=0.8m/s时,电动机达到额定功率,则P=Fv=0.224W[来源:数理化网](3)物块达到最大速度vm时,此时物块所受的牵引力大小等于摩擦力大小,有F1=μmgP=F1vm解得vm=1.12m/s.答案 (1)0.28N (2)0.224W (3)1.12m/s二、动能定理及其应用例题3. 如图所示,粗糙水平地面AB与半径R=0.4m的光滑半圆轨道BCD相连接,且在同一竖直平面内,O 是BCD的圆心,BOD在同一竖直线上。

动能定理机械能守恒定律知识点例题精

动能定理机械能守恒定律知识点例题精

动能定理机械能守恒定律知识点例题(精)————————————————————————————————作者: ————————————————————————————————日期:ﻩ动能定理机械能守恒定律知识点例题(精) 1. 动能、动能定理2. 机械能守恒定律【要点扫描】动能 动能定理-、动能如果-个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能.E k =m v2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。

二、动能定理做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W 2+W 3+……=?mv t 2-?mv 021、反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。

2、“增量”是末动能减初动能.ΔE K>0表示动能增加,ΔE K <0表示动能减小. 3、动能定理适用于单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等.4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求各力做的功,然后求代数和.5、力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理-些问题时,可在某-方向应用动能定理.6、动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于外力为变力及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用.7、对动能定理中的位移与速度必须相对同-参照物.三、由牛顿第二定律与运动学公式推出动能定理,设物体的质量为m,在恒力F作用下,通过位移为s,其速度由v0变为vt则:根据牛顿第二定律F=ma……①2―v02……②根据运动学公式2as=vt由①②得:Fs=mv t2-mv02四、应用动能定理可解决的问题恒力作用下的匀变速直线运动,凡不涉及加速度和时间的问题,利用动能定理求解-般比用牛顿定律及运动学公式求解要简单得多.用动能定理还能解决-些在中学应用牛顿定律难以解决的变力做功的问题、曲线运动的问题等.机械能守恒定律-、机械能1、由物体间的相互作用和物体间的相对位置决定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.(1)物体由于受到重力作用而具有重力势能,表达式为 E P=mgh.式中h是物体到零重力势能面的高度.(2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高 h处其重力势能为EP=mgh,若物体在零势能参考面下方低h处其重力势能为 E P=-mgh,“-”不表示方向,表示比零势能参考面的势能小,显然零势能参考面选择的不同,同-物体在同-位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的情况下,都是以地面为零势面的.但应特别注意的是,当物体的位置改变时,其重力势能的变化量与零势面如何选取无关.在实际问题中我们更会关心的是重力势能的变化量.(3)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系利用其他形式能量的变化来求得弹性势能的变化或某位置的弹性势能.2、重力做功与重力势能的关系:重力做功等于重力势能的减少量WG=ΔEP减=EP初-EP末,克服重力做功等于重力势能的增加量W克=ΔEP增=E P末—EP初应特别注意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变化.3、动能和势能(重力势能与弹性势能)统称为机械能.二、机械能守恒定律1、内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.2、机械能守恒的条件(1)对某-物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.(2)对某-系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.3、表达形式:EK1+E pl=Ek2+EP2(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中E P是相对的.建立方程时必须选择合适的零势能参考面.且每-状态的E P都应是对同-参考面而言的.(2)其他表达方式,ΔE=-ΔE K,系统重力势能的增量等于系统动能的减少P量.(3)ΔE a=-ΔE b,将系统分为a、b两部分,a部分机械能的增量等于另-部分b的机械能的减少量,三、判断机械能是否守恒首先应特别提醒注意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.(1)用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.(3)对-些绳子突然绷紧,物体间非弹性碰撞等除非题目的特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒【规律方法】动能动能定理【例1】如图所示,质量为m的物体与转台之间的摩擦系数为μ,物体与转轴间距离为R,物体随转台由静止开始转动,当转速增加到某值时,物体开始在转台上滑动,此时转台已开始匀速转动,这过程中摩擦力对物体做功为多少?解析:物体开始滑动时,物体与转台间已达到最大静摩擦力,这里认为就是滑动摩擦力μmg.根据牛顿第二定律μmg=mv2/R……①由动能定理得:W=?mv2……②由①②得:W=?μmgR,所以在这-过程摩擦力做功为?μmgR点评:(1)-些变力做功,不能用W=Fscos求,应当善于用动能定理.(2)应用动能定理解题时,在分析过程的基础上无须深究物体的运动状态过程中变化的细节,只须考虑整个过程的功量及过程始末的动能.若过程包含了几个运动性质不同的分过程.既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同情况分别对待求出总功.计算时要把各力的功连同符号(正负)-同代入公式.【例2】-质量为m的物体.从h高处由静止落下,然后陷入泥土中深度为Δh后静止,求阻力做功为多少?提示:整个过程动能增量为零,则根据动能定理mg(h+Δh)-Wf=0所以Wf=mg(h+Δh)答案:mg(h+Δh)(一)动能定理应用的基本步骤应用动能定理涉及-个过程,两个状态.所谓-个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能E k1及EK2④列方程 W=-,必要时注意分析题目的潜在条件,补充方程进行求解.【例3】总质量为M的列车沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶了L的距离,于是立即关闭油门,除去牵引力,设阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?解析:此题用动能定理求解比用运动学结合牛顿第二定律求解简单.先画出草图如图所示,标明各部分运动位移(要重视画草图);对车头,脱钩前后的全过程,根据动能定理便可解得.FL-μ(M-m)gs1=-?(M-m)v022对末节车厢,根据动能定理有-μmgs2=-mv0而Δs=s1-s2由于原来列车匀速运动,所以F=μMg.以上方程联立解得Δs=ML/(M-m).说明:对有关两个或两个以上的有相互作用、有相对运动的物体的动力学问题,应用动能定理求解会很方便.最基本方法是对每个物体分别应用动能定理列方程,再寻找两物体在受力、运动上的联系,列出方程解方程组.(二)应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这-过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)-般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是-种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3)用动能定理可求变力所做的功.在某些问题中,由于力F的大小、方向的变化,不能直接用W=Fscosα求出变力做功的值,但可由动能定理求解.【例4】如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F时,转动半径为R,当拉力逐渐减小到F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功的大小是:A.B. C. D.零解析:设当绳的拉力为F时,小球做匀速圆周运动的线速度为v1,则有F=mv12/R……①当绳的拉力减为F/4时,小球做匀速圆周运动的线速度为v2,则有F/4=mv22/2R……②在绳的拉力由F减为F/4的过程中,绳的拉力所做的功为W=?mv22-?mv2=-?FR1所以,绳的拉力所做的功的大小为FR/4,A选项正确.说明:用动能定理求变力功是非常有效且普遍适用的方法.【例5】质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为L时,它的上升高度为h,求(1)飞机受到的升力大小?(2)从起飞到上升至h高度的过程中升力所做的功及在高度h处飞机的动能?解析:(1)飞机水平速度不变,L=v0t,竖直方向的加速度恒定,h=?at2,消去t即得由牛顿第二定律得:F=mg+ma=(2)升力做功W=Fh=在h处,vt=at=,(三)应用动能定理要注意的问题注意1:由于动能的大小与参照物的选择有关,而动能定理是从牛顿运动定律和运动学规律的基础上推导出来,因此应用动能定理解题时,动能的大小应选取地球或相对地球做匀速直线运动的物体作参照物来确定.【例6】如图所示质量为1kg的小物块以5m/s的初速度滑上-块原来静止在水平面上的木板,木板质量为4kg,木板与水平面间动摩擦因数是0.02,经过2s以后,木块从木板另-端以1m/s相对于地面的速度滑出,g取10m/s,求这-过程中木板的位移.解析:设木块与木板间摩擦力大小为f1,木板与地面间摩擦力大小为f2.对木块:-f1t=mvt-mv0,得f1=2N对木板:(f l-f2)t=Mv,f2=μ(m+ M)g得v=0.5m/s对木板:(f l-f2)s=?Mv2,得 s=0.5 m答案:0.5 m注意2:用动能定理求变力做功,在某些问题中由于力F的大小的变化或方向变化,所以不能直接由W=Fscosα求出变力做功的值.此时可由其做功的结果——动能的变化来求变力F所做的功.【例7】质量为m的小球被系在轻绳-端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用.设某-时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为()A、mgR/4 B、mgR/3 C、mgR/2 D、mgR解析:小球在圆周运动最低点时,设速度为v1,则7mg-mg=mv12/R……①设小球恰能过最高点的速度为v2,则mg=mv22/R……②设过半个圆周的过程中小球克服空气阻力所做的功为W,由动能定理得:-mg2R-W=?mv22-?mv12……③由以上三式解得W=mgR/2. 答案:C说明:该题中空气阻力-般是变化的,又不知其大小关系,故只能根据动能定理求功,而应用动能定理时初、末两个状态的动能又要根据圆周运动求得不能直接套用,这往往是该类题目的特点.机械能守恒定律(一)单个物体在变速运动中的机械能守恒问题【例1】如图所示,桌面与地面距离为H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)()A、mgh;B、mgH;C、mg(H+h);D、mg (H-h)解析:这-过程机械能守恒,以桌面为零势面,E初=mgh,所以着地时也为mgh,有的学生对此接受不了,可以这样想,E初=mgh ,末为E末=?mv2-mgH,而?mv2=mg(H+h)由此两式可得:E末=mgh 答案:A【例2】如图所示,-个光滑的水平轨道AB与光滑的圆轨道BCD连接,其中圆轨道在竖直平面内,半径为R,B为最低点,D为最高点.-个质量为m的小球以初速度v0沿AB运动,刚好能通过最高点D,则()A、小球质量越大,所需初速度v0越大B、圆轨道半径越大,所需初速度v0越大C、初速度v0与小球质量m、轨道半径R无关D、小球质量m和轨道半径R同时增大,有可能不用增大初速度v0解析:球通过最高点的最小速度为v,有mg=mv2/R,v=这是刚好通过最高点的条件,根据机械能守恒,在最低点的速度v0应满足?m v02=mg2R+?mv2,v0=答案:B(二)系统机械能守恒问题【例3】如图,斜面与半径R=2.5m的竖直半圆组成光滑轨道,-个小球从A 点斜向上抛,并在半圆最高点D水平进入轨道,然后沿斜面向上,最大高度达到h=10m,求小球抛出的速度和位置.解析:小球从A到D的逆运动为平抛运动,由机械能守恒,平抛初速度v D为mgh—mg2R=?mv D2;所以A到D的水平距离为由机械能守恒得A点的速度v0为mgh=?mv02;由于平抛运动的水平速度不变,则vD=v0cosθ,所以,仰角为【例4】如图所示,总长为L的光滑匀质的铁链,跨过-光滑的轻质小定滑轮,开始时底端相齐,当略有扰动时,某-端下落,则铁链刚脱离滑轮的瞬间,其速度多大?解析:铁链的-端上升,-端下落是变质量问题,利用牛顿定律求解比较麻烦,也超出了中学物理大纲的要求.但由题目的叙述可知铁链的重心位置变化过程只有重力做功,或“光滑”提示我们无机械能与其他形式的能转化,则机械能守恒,=这个题目我们用机械能守恒定律的总量不变表达式E2=E l,和增量表达式ΔEP-ΔE K分别给出解答,以利于同学分析比较掌握其各自的特点.(1)设铁链单位长度的质量为P,且选铁链的初态的重心位置所在水平面为参考面,则初态E1=0=-PLgL/4滑离滑轮时为终态,重心离参考面距离L/4,EPE k2=Lv2即终态E2=-PLgL/4+PLv2由机械能守恒定律得E2=E1有-PLgL/4+PLv2=0,所以v=(2)利用ΔE P=-ΔE K,求解:初态至终态重力势能减少,重心下降L/4,重力势能减少-ΔE P= PLgL/4,动能增量ΔE K=PLv2,所以v=点评:(1)对绳索、链条这类的物体,由于在考查过程中常发生形变,其重心位置对物体来说,不是固定不变的,能否确定其重心的位置则是解决这类问题的关键,顺便指出的是均匀质量分布的规则物体常以重心的位置来确定物体的重力势能.此题初态的重心位置不在滑轮的顶点,由于滑轮很小,可视作对折来求重心,也可分段考虑求出各部分的重力势能后求出代数和作为总的重力势能.至于零势能参考面可任意选取,但以系统初末态重力势能便于表示为宜.(2)此题也可以用等效法求解,铁链脱离滑轮时重力势能减少,等效为-半铁链至另-半下端时重力势能的减少,然后利用ΔE P=-ΔEK求解,留给同学们思考.【模拟试题】如果把通过横1、某地强风的风速约为v=20m/s,设空气密度ρ=1.3kg/m3,截面积=20m2风的动能全部转化为电能,则利用上述已知量计算电功率的公式应为P=_________,大小约为_____W(取-位有效数字)2、两个人要将质量M=1000kg的小车沿-小型铁轨推上长L=5 m,高h=1 m的斜坡顶端.已知车在任何情况下所受的摩擦阻力恒为车重的0.12倍,两人能发挥的最大推力各为800 N。

专题二第7练动能定理机械能守恒定律能量守恒定律

专题二第7练动能定理机械能守恒定律能量守恒定律

第7练动能定理机械能守恒定律能量守恒定律[保分基础练]1.(2023·江苏盐城市三模)物体从离地高H处的M点开始做自由落体运动,下落至离地高度为13H处的N点,不计空气阻力,下列能量条形图表示了物体在M和N处的动能E k和重力势能E p的相对大小关系,可能正确的是()2.义乌国际商贸城的跳跳杆玩具广受孩子们的喜爱。

如图甲所示,跳跳杆底部装有一根弹簧,某次小孩从最低点弹起,以小孩运动的最低点为坐标原点,竖直向上为x轴正方向,小孩与杆整体的动能与其坐标位置的关系如图乙所示,图像0~x3之间为曲线,x2为其最高点,x3~x4为直线,不计空气阻力的影响。

则下列说法正确的是()A.x1位置时小孩处于超重状态B.x2位置时小孩不受弹簧弹力作用C.x3位置时小孩所受合外力为零D.x1~x4过程小孩的机械能始终守恒3.如图所示,质量m1=0.2 kg的物体P穿在一固定的光滑水平直杆上,直杆右端固定一光滑定滑轮。

一绕过两光滑定滑轮的细线的一端与物体P相连,另一端与质量m2=0.45 kg的物体Q相连。

开始时物体P在外力作用下静止于A点,绳处于伸直状态,已知OA=0.3 m,AB=0.4 m ,取重力加速度大小g =10 m/s 2,两物体均视为质点,不计空气阻力。

某时刻撤去外力、同时给P 一水平向左的速度v ,物体P 恰能运动到B 点,则v 的大小为( )A .3 m/sB .4 m/sC .5 m/sD .6 m/s4.(2023·江苏省模拟)如图所示,在竖直平面内有一半径为2.0 m 的四分之一圆弧形光滑导轨AB ,A 点与其最低点C 的高度差为1.0 m ,今由A 点沿导轨无初速度释放一个小球,若取g =10 m/s 2,则( )A .小球过B 点的速度v B = 5 m/s B .小球过B 点的速度v B =25(3-1) m/sC .小球离开B 点后做平抛运动D .小球离开B 点后继续做半径为2.0 m 的圆周运动直到到达与A 点等高的D 点5.(2023·江苏省苏锡常镇二模)如图为某水上乐园设计的水滑梯结构简图。

动能定理-机械能守恒定律专题

动能定理-机械能守恒定律专题

动能定理-机械能守恒定律专题【动能定理内容】总功等于动能的变化量【表达式】【机械能守恒定律内容】在只有重力做功(弹力做功)的系统内,物体的动能与势能之间可以相互转化,而总的机械能保持不变。

【表达式】【列机械能守恒定律方程的两个依据】1. 在研究的过程中,初位置的机械能等于末位置的机械能2. 在研究的过程中,减少的动能(势能)等于增加的势能(动能)【判断机械能是否守恒的方法】1. 从做功的角度:只有重力或弹力做功,或者只有这两种力同时做功,除了这两种力,还有其他的力,但其他力不做功。

2. 从能量转换的角度:只有动能和势能之间的转化,而总的机械能保持不变【解题的一般方法】动能定理的用法:1. 选过程选定研究过程,明确此过程的初、末速度,初、末动能,写出动能的变化量(末动能—初动能);2. 求总功受力分析,画出示意图,明确哪些力做正功、负功,哪些力不做功;求出各个力做功的代数和;3. 列方程根据动能定理表达式列出方程什么情况下考虑使用动能定理?1. 求变力做功;2. 曲线运动;3. 非匀变速直线运动;4. 匀变速直线运动也可以使用对于匀变速直线运动,既可以使用“牛顿定律结合运动学公式”,也可以使用动能定理的话,优先使用动能定理机械能守恒定律的用法:1. 做判断判断机械能是否守恒,如果守恒,进入第2步;否则,考虑使用动能定理;2. 选过程选定研究过程,明确初位置的动能和势能,末位置的动能和势能,判断动能和势能如何变化;3. 列方程根据机械能守恒定律列出方程【例题分析】例1. 一架喷气式飞机,质量m=5x103kg,起飞过程中从静止开始滑跑。

当位移达到L=5.3x102m时,速度达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍。

求飞机受到的牵引力。

例2. 一辆质量为m,速度为v的汽车,关闭发动机后在水平地面上滑行了距离L后停下来,求汽车受到的阻力。

(用两种方法解答)例3. 如图所示,质量相同的物体分别自斜面AC和BC的顶端由静止开始下滑,物体与斜面间的动摩擦因素都相同,物体滑到斜面底部C点时的动能分别为E K1 和E K2,下滑过程中克服摩擦力所做的功分别为W1和W2,则:()A. E K1 > E K2W1< W2 B. E K1 > E K2W1=W2C. E K1 = E K2W1 > W2D. E K1 < E K2W1 >W2A B例4. 如图所示,将半径为R 的14光滑圆弧轨道AB 固定在竖直平面内,轨道末端与水平地面相切。

机械能守恒定律和动能定理练习题大题

机械能守恒定律和动能定理练习题大题

1、质量为m的铅球以速度u竖直向下抛出,抛出点距离地面的高度为H,落地后,铅球下陷泥土中的距离为s,求泥土地对铅球的平均阻力?2、如图所示,AB是倾角为B的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧半径为R.一个质量为m的物体(可以看做质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动•已知P点与圆弧的圆心0等高,物体与轨道AB间的动摩擦因数为卩求:(1)物体做往返运动的整个过程中在AB轨道上通过的总路程;⑵ 当物体恰能通过D点时,求在AB上的高度。

3、已知m A 2m B 2m,忽略一切摩擦,此时物体A、B距地面高度均为H,释放A,求当物体A刚到达地面时的速度多大(设物体B到滑轮的距离大于H)4、如图所示,质量m=2kg的物体,从光滑斜面的顶端A点以v0=5m/s的初速度滑下,在D点与弹簧接触并将弹簧压缩到B点时的速度为零,已知从A到B的竖直高度h=5m,求弹簧的弹力对物体所做的功。

某兴趣小组设计了如图所示的玩具轨道,其中“2008”四个等高数字用内壁光滑的薄壁细圆管弯成,固定在竖直平面内(所有数字均由圆或半圆组成,圆半径比细管的内径大得多),底端与水平地面相切•弹射装置将一个小物体(可视为质点)以va=5 m/s的水平初速度由a点弹出,从b点进入轨道,依次经过“8002” 后从p点水平抛出。

小物体与地面ab段间的动摩擦因数卩=0.3,不计其他机械能损失.已知ab 段长L=1.5 m数字“0”的半径R=0.2 m物体质量m=0.01 kg,g=10m/s2求:(i)小物体从p点抛出后的水平射疋©*(2)小物体经过数字“ 0”的最高点时管道对小物体作用力的大小和方向5、如图所示,在竖直方向上A、B物体通过劲度系数为k的轻质弹簧相连,A放在水平地面上,B C两物体通过细绳绕过光滑轻质定滑轮相连,C放在固定的光滑斜面上,斜面倾角为30。

,用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行,已知B的质量为m, C的质量为4m, A的质量远大于m,重力加速度为g,细线与滑轮之间的摩擦力不计,开始时整个系统处于静止状态,释放C后它沿斜面下滑,斜面足够长,求:(1) 当B物体的速度最大时,弹簧的伸长量;(2) B物体的最大速度。

动能定理与机械能守恒

动能定理与机械能守恒

动能定理与机械能守恒类型一:功和功率问题W=Fs cosθ 物理含义:功是能量转化的量度。

功率的定义式:,求出的是平均功率。

功率的计算式:P=Fv cosθ1 若v取瞬时值,对应的是瞬时功率;②若v取平均速度,对应的是平均功率。

例1:质量为0.5kg的物体从高处自由下落,在下落的前2s内重力对物体做的功是多少?这2s内重力对物体做功的平均功率是多少?2s末,重力对物体做功的即时功率是多少?(g取)变式练习1:同一恒力按同样方式施于物体上,使它分别沿着粗糙水平地面和光滑水平抛面移动相同一段距离时,恒力的功和平均功率分别为、和、,则二者的关系是()A.、B.、C.、D.、类型二:机车启动问题1 恒定功率的加速由公式P=Fv和F-f=ma知,由于P恒定,随着v的增大,F必将减小,a 也必将减小,汽车做加速度不断减小的加速运动,直到F=f,a=0,这时v达到最大值2 恒定牵引力的加速由公式P=Fv和F-f=ma知,由于F恒定,所以a恒定,汽车做匀加速运动,而随着v的增大,P也将不断增大,直到达到额定功率P m。

例2.电动机通过一绳子吊起质量为8 kg的物体,绳的拉力不能超过120 N,电动机的功率不能超过1200 W,要将此物体由静止起用最快的方式吊高90 m(已知此物体在被吊高接近90 m时,已开始以最大速度匀速上升)所需时间为多少?在匀加速运动过程中加速度为a=m/s2=5 m/s2,末速度V t==10 m/s上升的时间t1=s=2 s,上升高度为h==10 m在功率恒定的过程中,最后匀速运动的速率为V m==15 m/s外力对物体做的总功W=P m t2-mgh2,动能变化量为ΔE k=mV2m-mV t2由动能定理得P m t2-mgh2=mV m2-mV t2代入数据后解得t2=5.75 s,所以t=t1+t2=7.75 s所需时间至少为7.75 s.变式训练2:汽车的质量为m,发动机的额定功率为P,汽车由静止开始沿平直公路匀加速启动,加速度为a,假定汽车在运动中所受阻力为f(恒定不变),求汽车能保持作匀加速运动的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能定理机械能守恒定律知识点例题(精)1. 动能、动能定理2. 机械能守恒定律【要点扫描】动能动能定理-、动能如果-个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能.E k=mv2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。

二、动能定理做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量.W1+W2+W3+……=?mv t2-?mv021、反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。

2、“增量”是末动能减初动能.ΔE K>0表示动能增加,ΔE K<0表示动能减小.3、动能定理适用于单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等.4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求各力做的功,然后求代数和.5、力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理-些问题时,可在某-方向应用动能定理.6、动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于外力为变力及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用.7、对动能定理中的位移与速度必须相对同-参照物.三、由牛顿第二定律与运动学公式推出动能定理设物体的质量为m,在恒力F作用下,通过位移为s,其速度由v0变为v t,则:根据牛顿第二定律F=ma……①根据运动学公式2as=v t2―v02……②由①②得:Fs=mv t2-mv02四、应用动能定理可解决的问题恒力作用下的匀变速直线运动,凡不涉及加速度和时间的问题,利用动能定理求解-般比用牛顿定律及运动学公式求解要简单得多.用动能定理还能解决-些在中学应用牛顿定律难以解决的变力做功的问题、曲线运动的问题等.机械能守恒定律-、机械能1、由物体间的相互作用和物体间的相对位置决定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.(1)物体由于受到重力作用而具有重力势能,表达式为 E P=mgh.式中h 是物体到零重力势能面的高度.(2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高 h处其重力势能为E P=mgh,若物体在零势能参考面下方低h处其重力势能为 E P=-mgh,“-”不表示方向,表示比零势能参考面的势能小,显然零势能参考面选择的不同,同-物体在同-位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的情况下,都是以地面为零势面的.但应特别注意的是,当物体的位置改变时,其重力势能的变化量与零势面如何选取无关.在实际问题中我们更会关心的是重力势能的变化量.(3)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系利用其他形式能量的变化来求得弹性势能的变化或某位置的弹性势能.2、重力做功与重力势能的关系:重力做功等于重力势能的减少量W G=ΔE P减=E P初-E P末,克服重力做功等于重力势能的增加量W克=ΔE P增=E P末—E P初应特别注意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变化.3、动能和势能(重力势能与弹性势能)统称为机械能.二、机械能守恒定律1、内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.2、机械能守恒的条件(1)对某-物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.(2)对某-系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.3、表达形式:E K1+E pl=E k2+E P2(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中E P是相对的.建立方程时必须选择合适的零势能参考面.且每-状态的E P都应是对同-参考面而言的.(2)其他表达方式,ΔE P=-ΔE K,系统重力势能的增量等于系统动能的减少量.(3)ΔE a=-ΔE b,将系统分为a、b两部分,a部分机械能的增量等于另-部分b的机械能的减少量,三、判断机械能是否守恒首先应特别提醒注意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.(1)用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.(3)对-些绳子突然绷紧,物体间非弹性碰撞等除非题目的特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒【规律方法】动能动能定理【例1】如图所示,质量为m的物体与转台之间的摩擦系数为μ,物体与转轴间距离为R,物体随转台由静止开始转动,当转速增加到某值时,物体开始在转台上滑动,此时转台已开始匀速转动,这过程中摩擦力对物体做功为多少?解析:物体开始滑动时,物体与转台间已达到最大静摩擦力,这里认为就是滑动摩擦力μmg.根据牛顿第二定律μmg=mv2/R……①由动能定理得:W=?mv2……②由①②得:W=?μmgR,所以在这-过程摩擦力做功为?μmgR点评:(1)-些变力做功,不能用 W=Fscos求,应当善于用动能定理.(2)应用动能定理解题时,在分析过程的基础上无须深究物体的运动状态过程中变化的细节,只须考虑整个过程的功量及过程始末的动能.若过程包含了几个运动性质不同的分过程.既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同情况分别对待求出总功.计算时要把各力的功连同符号(正负)-同代入公式.【例2】-质量为m的物体.从h高处由静止落下,然后陷入泥土中深度为Δh后静止,求阻力做功为多少?提示:整个过程动能增量为零,则根据动能定理mg(h+Δh)-W f=0所以W f=mg(h+Δh)答案:mg(h+Δh)(一)动能定理应用的基本步骤应用动能定理涉及-个过程,两个状态.所谓-个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能E k1及E K2④列方程 W=-,必要时注意分析题目的潜在条件,补充方程进行求解.【例3】总质量为M的列车沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶了L的距离,于是立即关闭油门,除去牵引力,设阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?解析:此题用动能定理求解比用运动学结合牛顿第二定律求解简单.先画出草图如图所示,标明各部分运动位移(要重视画草图);对车头,脱钩前后的全过程,根据动能定理便可解得.FL-μ(M-m)gs1=-?(M-m)v02对末节车厢,根据动能定理有-μmgs2=-mv02而Δs=s1-s2由于原来列车匀速运动,所以F=μMg.以上方程联立解得Δs=ML/(M-m).说明:对有关两个或两个以上的有相互作用、有相对运动的物体的动力学问题,应用动能定理求解会很方便.最基本方法是对每个物体分别应用动能定理列方程,再寻找两物体在受力、运动上的联系,列出方程解方程组.(二)应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这-过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)-般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是-种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3)用动能定理可求变力所做的功.在某些问题中,由于力F的大小、方向的变化,不能直接用W=Fscosα求出变力做功的值,但可由动能定理求解.【例4】如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F时,转动半径为R,当拉力逐渐减小到F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功的大小是:A. B. C. D. 零解析:设当绳的拉力为F时,小球做匀速圆周运动的线速度为v1,则有F=mv12/R……①当绳的拉力减为F/4时,小球做匀速圆周运动的线速度为v2,则有F/4=mv22/2R……②在绳的拉力由F减为F/4的过程中,绳的拉力所做的功为W=?mv22-?mv12=-?FR所以,绳的拉力所做的功的大小为FR/4,A选项正确.说明:用动能定理求变力功是非常有效且普遍适用的方法.【例5】质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为L时,它的上升高度为h,求(1)飞机受到的升力大小?(2)从起飞到上升至h高度的过程中升力所做的功及在高度h处飞机的动能?解析:(1)飞机水平速度不变,L= v0t,竖直方向的加速度恒定,h=?at2,消去t即得由牛顿第二定律得:F=mg+ma=(2)升力做功W=Fh=在h处,v t=at=,(三)应用动能定理要注意的问题注意1:由于动能的大小与参照物的选择有关,而动能定理是从牛顿运动定律和运动学规律的基础上推导出来,因此应用动能定理解题时,动能的大小应选取地球或相对地球做匀速直线运动的物体作参照物来确定.【例6】如图所示质量为1kg的小物块以5m/s的初速度滑上-块原来静止在水平面上的木板,木板质量为4kg,木板与水平面间动摩擦因数是0.02,经过2s以后,木块从木板另-端以1m/s相对于地面的速度滑出,g取10m/s,求这-过程中木板的位移.解析:设木块与木板间摩擦力大小为f1,木板与地面间摩擦力大小为f2.对木块:-f1t=mv t-mv0,得f1=2 N对木板:(f l-f2)t=Mv,f2=μ(m+ M)g得v=0.5m/s对木板:(f l-f2)s=?Mv2,得 s=0.5 m答案:0.5 m注意2:用动能定理求变力做功,在某些问题中由于力F的大小的变化或方向变化,所以不能直接由W=Fscosα求出变力做功的值.此时可由其做功的结果——动能的变化来求变力F所做的功.【例7】质量为m的小球被系在轻绳-端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用.设某-时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为()A、mgR/4B、mgR/3C、mgR/2D、mgR解析:小球在圆周运动最低点时,设速度为v1,则7mg-mg=mv12/R……①设小球恰能过最高点的速度为v2,则mg=mv22/R……②设过半个圆周的过程中小球克服空气阻力所做的功为W,由动能定理得:-mg2R-W=?mv22-?mv12……③由以上三式解得W=mgR/2. 答案:C说明:该题中空气阻力-般是变化的,又不知其大小关系,故只能根据动能定理求功,而应用动能定理时初、末两个状态的动能又要根据圆周运动求得不能直接套用,这往往是该类题目的特点.机械能守恒定律(一)单个物体在变速运动中的机械能守恒问题【例1】如图所示,桌面与地面距离为H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)()A、mgh;B、mgH;C、mg(H+h);D、mg(H -h)解析:这-过程机械能守恒,以桌面为零势面,E初=mgh,所以着地时也为mgh,有的学生对此接受不了,可以这样想,E初=mgh ,末为E末=?mv2-mgH,而?mv2=mg(H+h)由此两式可得:E末=mgh 答案:A【例2】如图所示,-个光滑的水平轨道AB与光滑的圆轨道BCD连接,其中圆轨道在竖直平面内,半径为R,B为最低点,D为最高点.-个质量为m 的小球以初速度v0沿AB运动,刚好能通过最高点D,则()A、小球质量越大,所需初速度v0越大B、圆轨道半径越大,所需初速度v0越大C、初速度v0与小球质量m、轨道半径R无关D、小球质量m和轨道半径R同时增大,有可能不用增大初速度v0解析:球通过最高点的最小速度为v,有mg=mv2/R,v=这是刚好通过最高点的条件,根据机械能守恒,在最低点的速度v0应满足?m v02=mg2R+?mv2,v0=答案:B(二)系统机械能守恒问题【例3】如图,斜面与半径R=2.5m的竖直半圆组成光滑轨道,-个小球从A 点斜向上抛,并在半圆最高点D水平进入轨道,然后沿斜面向上,最大高度达到h=10m,求小球抛出的速度和位置.解析:小球从A到D的逆运动为平抛运动,由机械能守恒,平抛初速度v D 为mgh—mg2R=?mv D2;所以A到D的水平距离为由机械能守恒得A点的速度v0为mgh=?mv02;由于平抛运动的水平速度不变,则v D=v0cosθ,所以,仰角为【例4】如图所示,总长为L的光滑匀质的铁链,跨过-光滑的轻质小定滑轮,开始时底端相齐,当略有扰动时,某-端下落,则铁链刚脱离滑轮的瞬间,其速度多大?解析:铁链的-端上升,-端下落是变质量问题,利用牛顿定律求解比较麻烦,也超出了中学物理大纲的要求.但由题目的叙述可知铁链的重心位置变化过程只有重力做功,或“光滑”提示我们无机械能与其他形式的能转化,则机械能守恒,这个题目我们用机械能守恒定律的总量不变表达式E2=E l,和增量表达式ΔE P=-ΔE K分别给出解答,以利于同学分析比较掌握其各自的特点.(1)设铁链单位长度的质量为P,且选铁链的初态的重心位置所在水平面为参考面,则初态E1=0滑离滑轮时为终态,重心离参考面距离L/4,E P=-PLgL/4E k2=Lv2即终态E2=-PLgL/4+PLv2由机械能守恒定律得E2= E1有-PLgL/4+PLv2=0,所以v=(2)利用ΔE P=-ΔE K,求解:初态至终态重力势能减少,重心下降L/4,重力势能减少-ΔE P= PLgL/4,动能增量ΔE K=PLv2,所以v=点评:(1)对绳索、链条这类的物体,由于在考查过程中常发生形变,其重心位置对物体来说,不是固定不变的,能否确定其重心的位置则是解决这类问题的关键,顺便指出的是均匀质量分布的规则物体常以重心的位置来确定物体的重力势能.此题初态的重心位置不在滑轮的顶点,由于滑轮很小,可视作对折来求重心,也可分段考虑求出各部分的重力势能后求出代数和作为总的重力势能.至于零势能参考面可任意选取,但以系统初末态重力势能便于表示为宜.(2)此题也可以用等效法求解,铁链脱离滑轮时重力势能减少,等效为-半铁链至另-半下端时重力势能的减少,然后利用ΔE P=-ΔE K求解,留给同学们思考.【模拟试题】1、某地强风的风速约为v=20m/s,设空气密度ρ=1.3kg/m3,如果把通过横截面积=20m2风的动能全部转化为电能,则利用上述已知量计算电功率的公式应为P=_________,大小约为_____W(取-位有效数字)2、两个人要将质量M=1000 kg的小车沿-小型铁轨推上长L=5 m,高h=1 m的斜坡顶端.已知车在任何情况下所受的摩擦阻力恒为车重的0.12倍,两人能发挥的最大推力各为800 N。

相关文档
最新文档