6 微积分的创立

合集下载

微积分的创立过程

微积分的创立过程

微积分的创立过程微积分,这可是数学世界里的一座巍峨高峰啊!它的创立就像是一场波澜壮阔的冒险之旅,众多伟大的数学家如同勇敢的探险家,在未知的数学领域披荆斩棘。

在微积分诞生之前,数学就像是一个装满各种工具的大箱子,但缺少一种能够处理变化和动态问题的超级工具。

当时的数学家们,就像一群在迷宫里摸索的人,知道目的地就在前方,却找不到那条直达的路。

这时候,牛顿出现了。

牛顿可是个天才,他对物理世界充满了好奇。

他想弄明白物体是怎么运动的,速度是怎么变化的。

你想啊,一个物体从静止开始运动,它的速度在不断地改变,这可不像简单的加减乘除那么容易搞清楚。

牛顿就想,能不能找到一种方法,准确地描述这种速度的变化呢?他就开始了自己的探索。

有一天,牛顿看着树上掉落的苹果,他心里可能就在想:“这苹果下落的速度可是一直在变啊,我怎么才能算出它每个瞬间的速度呢?”他就像一个执着的猎人,紧盯着这个问题不放。

他想到了一个办法,用一种极限的思想。

比如说,要算某个时刻的速度,就看这个时刻前后很短很短时间内的平均速度,这个很短很短的时间越接近零,算出来的平均速度就越接近那个时刻的瞬时速度。

这就像是在黑暗中看到了一丝曙光。

几乎在同一时期,莱布尼茨也在欧洲大陆上进行着类似的探索。

莱布尼茨是个充满想象力的家伙。

他对几何图形和曲线特别感兴趣。

他看着那些弯弯绕绕的曲线,心里琢磨着:“这些曲线下面的面积该怎么求呢?”这可不像求矩形的面积那么简单。

他突发奇想,要是把曲线分成很多很多小段,每一小段近似看成直线,然后把这些小的近似长方形的面积加起来,当分的小段足够多的时候,不就接近曲线下的面积了吗?这就像是把一块奇形怪状的拼图,分成很多小碎片,然后拼起来。

牛顿和莱布尼茨虽然身处不同的地方,但是他们的想法却有着惊人的相似之处。

这就像是两颗在不同地方同时发芽的种子,都向着微积分的大树生长。

他们俩的成果一出来,可在数学界引起了轩然大波。

就像平静的湖面上突然投进了两颗大石头,泛起了层层巨浪。

微积分的创立、发展及意义【最新】

微积分的创立、发展及意义【最新】

微积分的创立、发展及意义摘要该文主要论述了微积分的创立过程、微积分的发展历程,以及微积分的重要意义。

在微积分的创立过程中,主要说明了创立背景、微积分的两位创始人独立创立微积分的过程以及微积分的基本内容及基本方法;其次,以欧拉为主要代表介绍了微积分的发展历程;最后论述了微积分对科学、社会、工业、航空等方面的影响及其深远意义。

关键词:微积分数学史创立发展意义论文1、微积分的创立1.1 微积分的创立背景[1]克莱因(M.Klein)认为:微积分的创立,首先是处于17世纪主要两科学问题,即有四种主要类型的问题有待用微积分去解决。

第一类:已知物体移动的距离表示为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表示为时间的函数的公式,求速度和距离。

第二类:问题是求曲线的切线,这是一个几何问题,但对科学的应用有巨大的影响。

第三类:问题是求函数的极大极小值。

第四类:问题包括求曲线的长度,曲线围成的面积等等。

首先对微积分的创造作出贡献的是开普勒和伽利略。

用无数个无穷小之和计算面积和体积是开普勒的基本思想,而这一思想的精华是从阿基米德的著作中吸收的,伽利略则奠定了实验和理论协调的近代科学精神,这对于微积分的形成是至关重要的。

对于微积分的孕育有重要影响的是1635 年卡瓦列利(B.Cavalieri意大利)的《不可分连续量的几何学》的发表,他对前人的微积分结果作了初步系统的综合,并创立了一种简易形式的积分法——不可分量法,使卡瓦列利的不可分量更接近于定积分计算的,是法国的帕斯卡(B.Pascal)和英国的瓦里士(J.Wallis)。

瓦里士是牛顿、莱布尼茨之前把分析方法引入微积分的工作做得最多的人。

对微积分的孕育具有重要影响的人物是法国的费马(Fermat),最迟在1636年他已达到求积分方法上的算术化程度,微积分的另一个重要课题——求极值的方法也是费马创造的。

在17世纪,至少有10多位大数学家探索过微积分,而牛顿(Newton)、莱布尼茨(Laeibniz),则处于当时的顶峰。

微积分创立的背景与过程

微积分创立的背景与过程

微积分创立的背景与过程微积分是一门综合性的数学学科,它是由牛顿、莱布尼茨等数学家在17世纪末发明的。

微积分的发明是为了解决物理学中的一些问题,如速度、加速度等,因此,它是在物理学的研究中发展起来的。

微积分是研究函数和它们的变化率、极限、积分等的一门数学学科。

微积分的创立过程、背景和发展历程是非常复杂的,这篇文章将从以下几个方面进行介绍。

1. 微积分的背景微积分的发展背景是欧洲文艺复兴时期的科学繁荣。

在这个时期,人们开始追求自由和民主,同时也开始研究自然界和宇宙的规律。

牛顿、莱布尼茨等数学家在这个时期提出了微积分的概念,为物理学和其他科学领域的研究提供了新的数学工具。

2. 微积分的发展过程微积分的发展过程非常漫长,它由牛顿、莱布尼茨等数学家在不同的时间、不同的地方进行研究。

牛顿在1665年至1666年间,在农村避瘟疫的时候,开始研究运动的规律。

他发现物体的速度在不断变化,而速度的变化率就是加速度。

牛顿发明了微积分的基本概念,即导数和积分,从而解决了运动学中的很多问题。

莱布尼茨则在牛顿之后,于1675年左右独立发明了微积分。

他发现导数和积分是可以互相转换的,从而大大简化了微积分的运算。

莱布尼茨还发明了微积分符号,这使得微积分的表达更加简单和精确。

3. 微积分的应用微积分的应用非常广泛,它是物理学、工程学、经济学、生物学、化学等学科中不可或缺的工具。

在物理学中,微积分可以用来研究物体的运动、力学、电磁学等问题。

在工程学中,微积分可以用来设计建筑物、桥梁、道路等。

在经济学中,微积分可以用来研究市场供求关系、价格变动等。

在生物学中,微积分可以用来研究动植物的生长、繁殖等。

在化学中,微积分可以用来研究化学反应的速率、平衡等。

微积分的发明是人类智慧的结晶,它在解决物理学和其他科学领域的问题中发挥了重要作用。

微积分的发展历程是一个漫长而复杂的过程,但它对人类的进步和发展做出了巨大的贡献。

微积分发展简史

微积分发展简史

微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。

在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。

在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。

但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。

他的"割圆术"开创了圆周率研究的新纪元。

刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。

用他的话说,就是:"割之弥细,所失弥少。

割之又割,以至于不可割,则与圆合体,而无所失矣。

"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。

大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。

其次明确提出了下面的原理:"幂势既同,则积不容异。

"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。

并应用该原理成功地解决了刘徽未能解决的球体积问题。

欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。

较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。

他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。

但他的方法并没有被数学家们所接受。

后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。

之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。

微积分发展历程

微积分发展历程

微积分发展历程微积分的发展历程是数学史上一个充满辉煌成就的章节。

微积分为我们提供了一种强大的工具,用于理解和描述自然界的各种现象,从运动的轨迹到电磁场的行为,从物质的变化到概率的推断,微积分无处不在。

在下面的文章中,我们将探讨微积分的发展历程,包括其起源、关键人物和里程碑事件。

1. 古希腊时期:微积分的历史可以追溯到古希腊时期。

古希腊数学家阿基米德(Archimedes)被认为是微积分的奠基人之一。

他在计算曲线下的面积和体积时使用了无限小的方法,这可以看作微积分的初步尝试。

2. 牛顿和莱布尼兹:微积分的真正发展始于17世纪末。

英国科学家艾萨克·牛顿和德国数学家戈特弗里德·莱布尼兹独立地开发了微积分的基本原理。

牛顿的工作集中在运动和力学方面,而莱布尼兹则更侧重于符号表示法。

他们的成就为微积分的未来发展奠定了坚实的基础。

3. 分析学的建立:18世纪,微积分逐渐成为一门独立的学科,被称为"分析学"。

法国数学家奥古斯丁·路易·柯西(Augustin-Louis Cauchy)和卡尔·威尔斯特拉斯(Karl Weierstrass)等人在微积分中引入了极限概念,从而解决了一些问题的严格性。

4. 黎曼几何和复分析:19世纪中期,德国数学家伯纳尔·黎曼的工作将微积分与几何学相结合,创立了黎曼几何,为曲线和曲面的研究提供了新的工具。

复分析的发展也为微积分的应用领域提供了更多可能性。

5. 泛函分析和分布理论:20世纪,微积分领域进一步扩展,引入了泛函分析和分布理论等新的数学工具,用于研究函数空间和广义函数。

这些理论在数学、物理学、工程学和经济学等领域的应用中发挥了重要作用。

6. 现代微积分的应用:现代微积分广泛应用于科学、工程、计算机科学、经济学和社会科学等各个领域。

它不仅有助于解决实际问题,还推动了数学自身的发展。

微积分的方法和概念也在其他数学分支中找到了应用,如微分方程、积分方程和泛函分析。

微积分发展史简述

微积分发展史简述

微积分发展史简述微积分是数学中的重要分支,广泛应用于自然科学、工程学、经济学等领域。

它的发展历史可以追溯到古希腊时期,但直到17世纪才得到了系统的发展和完善。

本文将简要介绍微积分的发展史。

1. 古希腊时期:微积分的雏形在古希腊时期,数学家们对于几何学有着深入的研究。

亚里士多德和欧几里得等人提出了许多与微积分相关的概念,如无穷小量和极限。

然而,由于当时的数学工具和观念的限制,微积分的发展受到了很大的阻碍。

2. 牛顿和莱布尼茨:微积分的创始人17世纪,牛顿和莱布尼茨几乎同时独立地发展出微积分学。

牛顿创立了微积分的主要思想和方法,他提出了差分和积分的概念,并建立了微分方程和牛顿运动定律等基本理论。

莱布尼茨独立地发展出了微积分的符号表示法,引入了微积分中的极限和导数的概念。

牛顿和莱布尼茨的工作为微积分的发展奠定了基础。

3. 微积分的完善:极限与连续性18世纪,欧拉和拉格朗日等数学家对微积分进行了深入的研究和发展。

欧拉进一步完善了微积分的符号表示法,并提出了欧拉公式等重要结果。

拉格朗日则对微积分中的极限和连续性进行了系统的研究,提出了拉格朗日中值定理和泰勒展开等重要定理。

这些工作使微积分的理论更加严谨和完备。

4. 微积分的应用:物理学和工程学19世纪,微积分的应用开始扩展到物理学和工程学等实际问题中。

拉普拉斯和傅里叶等数学家使用微积分的方法解决了一系列的物理学问题,为微积分的应用奠定了基础。

同时,微积分也在工程学中得到了广泛的应用,如力学、电磁学和流体力学等领域。

微积分的应用使得工程学的发展取得了重大的突破。

5. 微积分的发展与现代数学的关系20世纪,微积分的发展与现代数学的发展密切相关。

在集合论和数理逻辑的基础上,数学家们对微积分的理论进行了深入的研究和推广。

勒贝格和黎曼等数学家提出了测度论和黎曼积分等新的概念和方法,为微积分的发展带来了新的思路和工具。

同时,微积分也成为了现代数学的重要组成部分,在数学的其他分支中得到了广泛的应用。

微积分的创立

微积分的创立

微积分的创立,被誉为“人类精神的最高胜利”。

在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。

在数学史上,18世纪可以说是分析的时代,也是向现代数学过渡的重要时期。

18世纪微积分最重大的进步是由欧拉(Leonard Euler ,1707—1783)作出的。

欧拉在1748年出版的《无限小分析引论》(Introductio in Anclysin infinitorum )以及他随后发表的《微分学》(Institutionis Calculi differentialis ,1755)和《积分学》(Institutiones Calculi integralis ,共3卷,1768—1770)是微积分史上里程碑式的著作,它们在很长时间里被当作分析课本的典范而普遍使用着。

这三部著作包含了欧拉本人在分析领域的大量创造,同时引进了一批标准的符号如:()f x e i --∑------函数符号求和号自然对数底虚数号等等,对分析表述的规范化起了重要作用。

欧拉出生于瑞士巴塞尔一个牧师家庭,13岁就进入巴塞尔大学,数学老师是约翰。

伯努利。

师生之间建立了极亲密的关系,伯努利后来在给欧拉的一封信中这样赞许自己这位学生在分析方面的青出于兰:“我介绍高等分析时,它还是个孩子,而您正在将它带大成人。

” 欧拉主要的科学生涯是在俄国圣彼德堡科学院(1727—1741;1766—1783)和德国柏林科学院(1741—1766)度过的。

他对彼德堡科学院怀有特殊的感情,曾将自己的科学成就归功于“在那儿拥有的有利条件”。

欧拉是历史上最多产的数学家。

他生前发表的著作与论文有560余种,死后留下了大量手稿。

欧拉自己说他未发表的论文足够彼德堡科学院用上20年,结果是直到1862年即他去世80年后,彼德堡科学院院报上还在刊登欧拉的遗作。

第六章 微积分的创立

第六章 微积分的创立

笛卡儿的代数方法在推动微积分的早期发展方面有很大 的影响,牛顿就是以笛卡儿圆法为起跑点而踏上研究微积分 的道路的.
(四)费马求极大值与极小值的方法
笛卡儿圆法记载于他1637年发表的《几何学》中.就在同 一年,费马在一份手稿中提出了求极大值与极小值的代数的方 法. 按费马的方法,设函数 f (x) 在点 a 处取极值,费马用 a + e 代替原来的未知量 a ,并使 f ( a + e) 与 f (a ) “逼 近”(adequatio), 即
(六)沃利斯“无穷算术”
沃利斯(J.Wallis,1616—1703)是在牛顿和莱布尼茨以前, 将分析方法引入微积分贡献最突出的数学家.沃利斯最重要 的著作是《无穷算术》(1655),其书名就表明了他用本质上 是算术的也就是牛顿所说“分析”Байду номын сангаас途径发展积分法. 沃利斯利用他的算术不可分量方法获得了许多重要结果, 其中之一就是将卡瓦列里的幂函数积分公式 a a n +1 n ∫0 x dx = n + 1 推广到分数幂情形.
1638年,伽利略(Galileo Galilei,1564—1642)《关于两门 新科学的对话》出版.伽利略建立了自由落体定律、动量定律 等,为动力学奠定了基础;他认识到弹道的抛物线性质,并断 言炮弹的最大射程应在发射角为45’时达到,等等. 45’
凡此一切,标志着自文艺复兴以来在资本主义生产力刺激下 蓬勃发展的自然科学开始迈入综合与突破的阶段,而这种综合与 突破所面临的数学困难,使微分学的基本问题空前地成为人们关 注的焦点:
6.2 牛顿的“流数术”
牛顿(1saac Newton,1642—1727)于伽利略去世那年(1642 年)的圣诞出生于英格兰林肯郡伍尔索普村一个农民家庭 .少 年牛顿不是神童,成绩并不突出,但酷爱读书与制作玩具.17 岁时,牛顿被母亲从格兰瑟姆中学召回田庄务农。史托克斯校 长竭力劝说牛顿的母亲:“在繁杂的农务中埋没这样一位天才, 对世界来说将是多么巨大的损失!” 这恐怕是科学史上最幸运的 预言。

微积分发展史

微积分发展史
牛顿就将自古希腊以来求解无限小问题的各种 特殊技巧统一为两类普遍的算法——正、反流 数术亦即微分与积分,并证明了二者的互逆关 系而将这两类运算进一步统一成整体。这是他 超越前人的功绩,正是在这样的意义下,我们
说牛顿发明了微积分。
莱布尼茨的微积分
莱布尼茨当时还没有微积分 的符号,他用语言陈述他的 特征三角形导出的第一个重
微积分的现代发展
在Riemann将Cauchy的积分含义扩展之后, Lebesgue又引进了测度的概念,进一步将 Riemann积分的含义扩展。例如著名的 Dirichilet函数在Riemann积分下不可积,而在 Lebesgue积分下便可积。
我国的数学泰斗陈省身先生所研究的微分几何领域, 便是利用微积分的理论来研究几何,这门学科对 人类认识时间和空间的性质发挥的巨大的作用。 并且这门学科至今仍然很活跃。前不久由我国数 学家朱熹平、曹怀东完成最后封顶的庞加莱猜想 便属于这一领域。
1715年数学家泰勒在著作《正的和反的增量 方法》中陈述了他获得的著名定理,即现 在以他的名字命名的泰勒定理。后来麦克 劳林重新得到泰勒公式的特殊情况,现代 微积分教材中一直将这一特殊情形的泰勒 级数称为“麦克劳林”级数。
18世纪的数学家还将微积分算法推广到多元 函数而建立了偏导数理论和多重积分理论。 这方面的贡献主要应归功于尼古拉·伯努利、 欧拉和拉格朗日等数学家。
第第二一类类是是,,望已远知镜物的体光的程移设动计的使距得离求表曲为线时 间的函数的公式的,切求线物问体题在任意时刻的速 度第第和三四加类类速是问度,题使确是瞬定求时炮行变弹星化的沿率最轨问大道题射运程动以的及路求 行程星、离行开星太矢阳径的扫最过远的和面最积近以距及离物等体涉重及 心与引的力函等数,极使大面值积、、极体小积值、问曲题线长、

第六章微积分的创立(下】)

第六章微积分的创立(下】)

在这篇积分学论文中,莱布尼茨给出了摆线方程为 :
y = 2x − x + ∫
2
dx 2x − x
2
,
目的是要说明他的方法和符号,可以将一些被其他 方法排斥的超越曲线表为方程.而正是在这篇论文 中,积分号第一次出现于印刷出版物上 .他所创设 的微积分符号,远远优于 牛顿 的符号,这对微积 分的发展有极大的影响。现在我们使用的微积分 通 用符号 就是当时莱布尼茨精心选用的
莱布尼茨首先着眼于求和,并从简单的情形 y=x开始.因为x表示相邻两项的次序,莱布 尼茨取序数差为1,设L为两相邻项的实际差. 莱布尼茨用拉丁文omnia的缩写omn.表示和, 则有:omn. =L=y.
在y=x的条件下,如图所示,对于无限小的x 1 来说,ly(矩形的面积)的和等于 2 y(三角形 的面积).莱布尼茨在这里认为:“从0起增 长的直线,每一个用与它相应的增长的元素 相乘,组成一个三角形”.所以可以写出: omn. yl = 1 y 2
牛顿与莱布尼茨之争无损于莱布尼茨的名声, 对英国的科学事业却是一场灾难。虽然说 科学没有国界,但是科学家有祖国” “科学没有国界,但是科学家有祖国”(巴 斯德语),但是让民族主义干扰了科学研究, 就很容易变成了科学也有国界,被排斥于国 际科学界之外,反而妨碍了本国的科学发展。
中西文化交流之倡导者
莱布尼茨对中国的 科学 、 文化 和 哲学思想 十分关注,他是最早研究 中国文化 和 中国 哲学 的德国人。他向 耶稣会 来华传教士 格 里马尔迪 了解到了许多有关中国的情况,包 括养蚕纺织、造纸印染、冶金矿产、天文地 理、数学文字等等,并将这些资料编辑成册 出版。他还曾经通过传教士,建议 中国 清朝 的康熙皇帝在 北京 建立科学院。

微积分发展简史

微积分发展简史

微积分建立以后,出现了两个极不协调的情景:
一方面是微积分广泛应用于各个领域,取得了辉煌
的成就;另一方面是人们对于微积分基本概念的合
理性提出了强烈的质疑。19世纪以前,无穷小量概
念始终缺少一个严格的ห้องสมุดไป่ตู้学定义,因此导致了相当
严重的混乱。
特别地,1734年英国哲学家、红衣主教贝克莱对
微积分基础的可靠性提出的强烈质疑,引发了第二次
14
3.微积分的建立
终于十七世纪后半叶,牛顿和莱布尼兹,在不 同的国家,几乎在同时总结前人研究成果的基础上, 各自独立的创建了划时代的微积分。
15
牛顿在1665年11月发明“正流数术”(微分法),
次年5月又建立了“反流数术”(积分法).1666年10
月,牛顿将前两年的研究成果整理成一篇总结性论
文,但他没有拿去发表。
莱布尼茨
莱布尼茨(Gottfried Wilhelm Leibniz),德国哲学家、数学 家。涉及的领域及法学、力学、 光学、语言学等40多个范畴, 被誉为十七世纪的亚里士多德。 和牛顿并称为微积分的创立者。
3
微积分学是微分学(Differential Calculs)和积 分学(Integral Calculs)统称,英文简称Calculs,意为 计算。这是因为早期微积分主要用于天文、力学、几 何中的计算问题。后来人们也将微积分学称为分析学 或无穷小分析。
18
微积分诞生以后,数学迎来了一次空前的繁荣时 期。18世纪被称为数学史上的英雄世纪。数学家们把微 积分应用于天文学、力学、光学、热学等各个领域,获 得了丰硕的成果;在数学本身,他们把微积分作为工具, 又发展出微分方程、微分几何、无穷级数等理论分支, 大大扩展了数学研究的范围。

微积分的创立

微积分的创立

三、例题与练习
e.g.1 求极限
e.g.2 求导数
e.g.3 求微分
e.g.4 圆柱形工件直径
,长

的铜, 现在工件侧面涂上一层厚 0.001cm 的铜,问需 要多少铜( 要多少铜(铜的密度为 e.g.5 求极值 )? ?
e.g.6 作出函数
的图形
e.g.7 计算积分
e.g.8 已知曲线在任一点 ,又曲线经过点 的方程。 的方程。
b
3.第二次数学危机与微积分的 发展和完善
N-L的微积分逻辑基础不严密,特别是在无穷 的微积分逻辑基础不严密, 小概念上的混乱,引起不少科学家的批评。 小概念上的混乱,引起不少科学家的批评。 英国哲学家、牧师 G.Berkeley(1685-1753): G.Berkeley(1685-1753): 英国哲学家、 分析学家,或致一位不信神的数学家》 《分析学家,或致一位不信神的数学家》矛头直指 牛顿的流数法。 牛顿的流数法。——— Berkeley悖论
这就导致了第二次数学危机 这就导致了第二次数学危机
由于微积分的方法和结论与实际是如此吻合, 由于微积分的方法和结论与实际是如此吻合, 所以即使基础不牢,人们还是乐意去用它,直到19 所以即使基础不牢,人们还是乐意去用它,直到19 世纪,才开始真正解决问题。 世纪,才开始真正解决问题。 第一个为补救第二次数学危机提出真正有见地 意见的是达朗贝尔( Alembert)。但他未提供理论 Alembert)。但他未提供理论。 意见的是达朗贝尔(D’Alembert)。但他未提供理论。 达朗贝尔 Lagrange,Bolzano(捷克), ),Cauchy 后经 Lagrange,Bolzano(捷克),Cauchy 等人的努力, (分析学奠基人),Weirstrass(法)等人的努力, 分析学奠基人),Weirstrass( ),Weirstrass 奠定了微积分严格的基础,解决了第2次数学危机。 奠定了微积分严格的基础,解决了第2次数学危机。

微积分的创立数学史

微积分的创立数学史

科学的巨人——牛顿


牛顿关于微积分问题的研究起始于1664年秋,当 时他认真研究了笛卡儿的《几何学》,对笛卡儿 求曲线的切线方法产生了浓厚的兴趣并试图寻找 更好、更一般的方法。 1666年10月,牛顿写出了第一篇关于微积分的论 文《流数短论》,在该文中首次提出流数的概念, 所谓流数就是速度,在变速运动中速度的路程对 时间的微商。至于速度的变化状况就要用速度的 微商来反映,即加速度是速度的微商。

先驱们的探索

17世纪以前,人类关于数学的知识基本上还停留 在初等数学的水平上,即常量数学的阶段。从17 世纪中叶到18世纪末,欧洲工业革命的兴起,广 泛地采用了机器,为了设计和制造机器,就需要 掌握机械运动的规律;水运的改进要求了解物体 在液体中的运动规律;船只稳定性的研究促进了 质点力学的发展;为了适应对外扩张和争霸的需 要,战争中广泛使用枪炮,这就要研究抛射体的 运动,所有这些生产和技术中出现的问题迫切要 求力学、天文学等基础学科的发展,但这些学科 都是离不开数学的,因而也就推动了数学的发展。

1667年牛顿重返剑桥大学, 10月1日被选为三一学院的仲 院侣,次年3月16日选为正院 侣。巴罗对牛顿的才华非常赏 识,1669年10月27日巴罗便 让年仅26岁的牛顿接替他担任 卢卡斯讲座的教授。1672年起 他被接纳为皇家学会会员, 1703年被选为皇家学会主席直 到逝世。
剑桥大学三一学院教堂内的牛顿塑像
科学的巨人——牛顿


当时英国社会渗入基督教新教思想,牛顿家里有 两位都以神父为职业的亲戚,这可能影响牛顿晚 年的宗教生活。 从这些平凡的环境和活动中,看不出幼年的牛顿 是一个才能出众异于常人的儿童。然而格兰瑟姆 中学的校长J.斯托克斯,还有牛顿的一位当神父 的叔父W.艾斯库别具慧眼,鼓励牛顿上大学读书。 在他们的鼓励下,牛顿于1661年以减费生的身份 进入剑桥大学三一学院,1664年成为奖学金获得 者,1665年获学士学位。

微积分的发展史简述

微积分的发展史简述

微积分的发展史简述作者:周锐来源:《当代人(下半月)》2018年第04期摘要:微积分是数学的一个分支,在数学史上占有重要地位。

本文根据时间进程阐述了微积分的发展史及其简要应用。

关键词:微积分;发展史;牛顿;莱布尼兹微积分是数学中的基础学科,也是近现代数学中的重要基石和起点。

它在物理、化学、生物等自然学科中被普遍利用,在社会、经济、人文等范畴也是重要的研究工具之一。

本文将沿着微积分学的发展时间历程,简要论述微积分的发展史。

一、微积分的萌芽之初微积分学发展得最早的是积分学的思想,可以追溯到古希腊时期[1]。

其中做出重要贡献的有古希腊数学家芝诺提出的四大悖论。

古希腊哲学家德谟克利特斯的原子论则充分体现了近代积分的思想,他认为任意事物都是由原子构成。

古希腊诡辩家安提丰提出的“穷竭法”是极限理论最早的表现形式。

古希腊数学家欧多克斯进一步研究原子论和穷竭法,使这两个理论得以稳健前进。

古希腊著名数学家阿基米德所提出的“平衡法”实质上是一种较原始的“积分法”。

他在著作《抛物线求积法》一书中运用穷竭法求出了抛物线构成的弓形的面积。

二、微积分创立之前的酝酿由于种种影响,微积分的概念在15世纪之前一直处于萌芽阶段[2]。

推动欧洲崛起的新航路开辟和文艺复兴是15世纪的大事件。

从14世纪到16世纪的文艺复兴在意大利各城市兴起,之后推广到西欧各国,带来了一场关于科学与艺术的革命。

随着文艺复兴的兴起,生产的发展带动了科学的发展。

与此同时希腊的著作大量进入欧洲,随着活板印刷的发明,知识的传播更加迅速,自然学科开始活跃,自然学科中的数学得以有进一步发展的机会。

在时代背景下,数学成为唯一被公认的真理得以推广。

天文学、光学、力学等自然学科的发展被生产力的发展所推动,为数学带来了大量的研究问题[3],许多学者开始考虑研究微积分的思想[4]。

开普勒是德国杰出的天文学家、物理学家、数学家和哲学家。

他在《测量酒桶的新立体几何》一书中主要对如何求解旋转体体积的方法进行研究。

微积分发展简史(借鉴类别)

微积分发展简史(借鉴类别)

微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。

大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。

这四个问题是:1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。

第一、二、三问题导致微分的概念,第四个问题导致积分的概念。

微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。

开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。

1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。

这个比较接近于微积分基本定理。

牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。

可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。

微积分基本定理的建立标志着微积分的诞生。

牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。

微积分的发明历程

微积分的发明历程

微积分的发明历程如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。

微积分堪称是人类智慧最伟大的成就之一。

从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。

整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨.微积分的思想从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。

公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。

作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇"中,著有“一尺之棰,日取其半,万世不竭"。

三国时期的高徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。

他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。

圆的面积就是无穷多的三角形面积之和,这些都可视为黄型极限思想的佳作。

意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。

这些都为后来的微积分的诞生作了思想准备。

解析几何为微积分的创立奠定了基础由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景.到了17世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作.笛卡尔1637年发表了《科学中的正确运用理性和追求真理的方法论》(简称《方法论》),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来发现几何性质,证明几何性质。

微积分基本公式的创始人

微积分基本公式的创始人

微积分基本公式的创始人
微积分是莱布尼兹、牛顿创立的。

牛顿从研究物理问题出发创立了微积分,牛顿称之为“流数术理论”。

莱布尼兹从几何角度出发独立创立了微积分,莱布尼兹把微积分称之为“无穷小算法”。

十七世纪以来,微积分的概念和技巧不断扩展并被广泛应用来解决天文学、物理学中的各种实际问题,取得了巨大的成就。

但直到十九世纪以前,在微积分的发展过程中,其数学分析的严密性问题一直没有得到解决。

十八世纪中,包括牛顿和莱布尼兹在内的许多大数学家都觉察到这一问题并对这个问题作了努力,但都没有成功地解决这个问题。

整个十八世纪,微积分的基础是混乱和不清楚的,许多英国数学家也许是由于仍然为古希腊的几何所束缚,因而怀疑微积分的全部工作。

这个问题一直到十九世纪下半叶才由法国数学家柯西得到了完整的解决,柯西极限存在准则使得微积分注入了严密性,这就是极限理论的创立。

极限理论的创立使得微积分从此建立在一个严密的分析基础之上,它也为20世纪数学的发展奠定了基础。

微积分的创立

微积分的创立

微积分的创立微积分的诞生,是全部数学史中的一个伟大的创举.追溯一下历史就可发现,早在微积分诞生之前的2000多年,就已经有了它的萌芽.比如,古代的人民用方砖砌圆,我国庄子的“一尺之棰,日取其半,万世不竭”,魏晋时刘徽的“割圆术”,祖恒原理,等等,都涉及到以“直”代“曲”的极限观念,属于微积分的朴素思想.阿基米德更可称为是微积分学的先驱,他不仅成功地将“穷竭法”应用于求像抛物线弓形那样复杂的曲边形的面积中,而且在求积时应用了级数有限项之和所成序列的近似法、还首次提出了现在所谓的上积分与下积分的概念等.但是真正形成微积分思想是17世纪后半叶,牛顿—莱布尼兹总结和发展了前人的工作,几乎同时建立了微积分的方法和理论微积分的起源,主要是力学与几何两大类问题.已知变速运动的路程为时间的函数,求瞬时速度及加速度;求曲线的切线等,这类问题的数学抽象化,即微分学.已知变速运动的速度为时间的函数,求运动物体通过的路程,求曲线围成的面积等.这类问题的数学抽象化,即积分学.牛顿和莱布尼茨用各自不同的方法,创立了微积分学。

如果说牛顿接近最后的结论比莱布尼茨早一些,那么莱布尼茨发表自己的结论要早于牛顿。

虽然牛顿的微积分应用远远超过莱布尼茨的工作,刺激并决定了几乎整个十八世纪分析的方向,但是莱布尼茨成功的建立起更加方便的符号体系和计算方法。

两位微积分的奠基人,一位具有英国式的处事严谨,治学严谨的风度,一位具有德国人的哲理思辨心态,热情大胆。

下面分别讲述两位数学家在微积分方面的研究。

英国著名数学家、物理学家牛顿(Newton,1643—1727),一贯坚持唯物论的经验论,特别重视实验和归纳推理的他,从研究物理问题出发创立了微积分(1665—1666),牛顿称之为“流数术理论”.他的微积分的思想最早出现在1665年5月20日的一份手稿中提到“流数术”.这一天可以作为微积分诞生的日子,而微积分的思想公开发表于1687年他的巨著《自然哲学的数学原理》中.牛顿的“流数术”中,有三个重要的概念:流动量、流动率、瞬.牛顿的流数术以力学中的点的连续运动为原型,把随时问连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为导数.所谓“瞬”这个概念,如牛顿所说是一种刚刚产生的无限小的量,如一个无限小的时间间隔称为一个瞬.牛顿把全部微积分问题分为两大类,他用运动学上的术语表达为:“速度”与“路程”.“速度”相当于现在的导函数,“路程”相当于现在的原函数,“时间”被简单地作为所有变量的公共自变量,流数术所提出的中心问题是:①已知连续运动的路程,求给定时刻的速度(即微分法);②已知运动速度,求给定时间内经过的路程(即积分法).牛顿专论微积分的著作有两部,第一部正式的、系统的论述流数术的重要著作是《流数术和无穷级数》,于1671年写成,在1736年才正式出版.另一部著作是《曲线求积论》,于1676—1691年写成,在1704年出版.用字母x,y,z…表示流动量,简称为流量,用加点字母x,y,z…表示流动率,称为流数,或称为速度,用字母。

微积分创始人(莱布尼茨)课件

微积分创始人(莱布尼茨)课件
场所
莱布尼茨的故居和博物馆也是重要的 纪念场所,吸引了大量学者和游客前 来参观。
对现代数学的贡献与影响
微积分学的发展
莱布尼茨对微积分学的发展做出了卓越贡献,他引入了微 分符号(d)和积分符号(∫),并提出了微积分的基本定理。
对数学其他领域的影响
莱布尼茨的工作对数学的其他领域也产生了深远影响,如 代数学、几何学和概率论等。
莱布尼茨深入研究了微分学,包括 微分符号、微分法则和微分方程等。
与牛顿的微积分理论的比较
1 2
符号系统
牛顿的微积分理论使用的是文字叙述,相对而言 不如莱布尼茨的符号系统简洁明了。
连续性观念
牛顿对连续性的理解较为直观,而莱布尼茨则从 数学角度对连续性进行了严格的定义。
3
发展进程
牛顿的微积分理论是在其力学研究中逐渐形成的, 而莱布尼茨的微积分理论则是在对无穷小量的研 究中独立发展出来的。
03
莱布尼茨的其他数学成就
符号逻辑学
总结词
莱布尼茨在符号逻辑学领域做出了杰出贡献,他发明了二进制数系,为计算机科学和信息技术奠定了基础。
详细描述
莱布尼茨认为,任何科学都应使用统一的符号系统来表示,他致力于发展一套通用的符号逻辑语言,以简化科学 交流和推理过程。他发明的二进制数系成为计算机科学中数据存储和运算的基础,对现代信息技术产生了深远影 响。
莱布尼茨的思想与哲学
理性主义思想
理性主义强调人类的认识只能来源于纯粹的理性,而经验只是对 理性的一种辅助。莱布尼茨认为,数学和逻辑学可以通过理性得 到证明,而不需要依赖于经验。
莱布尼茨认为,人类的认识应该基于普遍的真理和原则,而不是 个别的观察和经验。他强调,普遍的真理和原则可以通过推理和 演绎得到,而不需要依赖于感觉经验。

微积分的创立——卡瓦列利、笛卡尔

微积分的创立——卡瓦列利、笛卡尔

*例1:求y= x2 上任意一点P(x ,f (x))的切线斜率?
解: f (x)2 (v x)2 r2 (x e)2 Ci X i
x4 v2 2vx x2 r2 (x e)2 (x2 ax b)
左右同次幂相等:
v x 2x3
切线斜率=
vx f (x)
2x3 x2
2x
x
C(X)
P(X)
h
r
1
1
*
*
Q SC (X)
(r• x )2
h
r2,
S P (X)
( x )2
h
V圆锥 = r 2
V四棱锥
C(X)
r
x P(X)
h
1 1
*
卡瓦列利应用不可分量原理的应用 ——推理出幂函数的积分公式:
a
0
xndx
a n 1 (n
n 1
1、2、3、4、5、6、7、8、9)
2 x3 6 x2 y
(1)
另外:
a3 a a2 a (x y)2 a(2 x2 2 xy)
2 3
a3
2
(x
y)xy
2 3
a3
4
x2
y
x2
y
1 12
a3
(2)
将(1)代入(2)式中 x3 1 a4
4
*
*生平简介:
1596年3月31日生于法国安德尔-卢 瓦尔省的图赖讷拉海(现改名为笛 卡尔以纪念这位伟人),1650年2月 11日逝世于瑞典斯德哥尔摩。笛卡 尔是法国著名的哲学家、物理学家、 数学家、神学家,他对现代数学的 发展做出了重要的贡献,因将几何 坐标体系公式化而被认为是解析几 何之父。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

孕育
1609、1619年行星运动三大定律
• 开普勒(德,1571-1630)的 旋转体体积(1615)
无穷小求和思想
6.1 半个世纪的酝酿
二 卡瓦列里不可分量原理 卡瓦列里(Cavalieri,1598—1647)著 《用新方法促进的连续不可分量的几何学》 (1635),发展了系统的不可分量方法。 卡瓦列里原理: 两个等高的立体,如果它们的平行于底 面而且离开底面有相等距离的截面面积 之间总有给定的比,那么这两个立体的 体积之间也有相应的比。
6 微积分的创立 解析几何出现后不久,微积分也 被发现了。
解析几何的创立是变量数学的 第一个里程碑。 微积分(牛顿、莱布尼兹)的 创立则是变量数学发展中第二个决 定性的步骤。
6 微积分的创立
微积分不仅是数学的伟大发现,也为近 代科学开辟了光明的道路;微积分不仅是 17世纪的伟大发现,而且是世界人类文明 史上最为光辉灿烂的发现。 “在一切理论成就中,未必再有什么像 17世纪下半叶微积分的发现那样被看作人 类精神的最高胜利了,如果在某个地方我 们看到人类精神的纯粹的和唯一的功绩, 那正是在这里。” ——恩格斯
案例 曲线的切线

二是曲线运动的速度问题。对于直线运动,速度 方向与位移方向相同或相反,但如何确定曲线运 动的速度方向呢?这就需要确定曲线的切线。

三是曲线的交角问题。曲线的交角是一个古老的 难题。自古希腊以来,人们对圆弧和直线构成的 角——牛头角(图10中AB弧与AC构成的角)和弓 形角(图 11 中 AB 与 ACB 弧所构成的角)即有过很 多争议。17世纪数学家遇到的更一般的问题是: 如何求两条相交曲线所构成的角呢?这就需要确 定曲线在交点处的切线。
矩形长条分割曲边形并求和
案例
曲线的切线
• 洛必达《无穷小分析》
曲线的切线是曲线的内接
“无穷边形”一边的延长线。
G. L’ Hospital(1661-1704)
6.1 半个世纪的酝酿
五 巴罗“微分三角形”
巴罗(Barrow,1630—1677)著 《几何讲义》(1669),使用几何 法求切线。
六 沃利斯“无穷算术”
沃利斯(Wallis,1616—1703) 著《无穷算术》(1655),用算术 (分析)的途径发展积分法。
孕育
• 巴罗(英, 16301677)的特征三角 形与曲线切线 (1664,1669)
Δy/Δx对于决定切线的重要性
孕育
• 沃利斯(英, 1616-1703) 的分数幂积分(1656)
6.2 牛顿的“流数术” 牛顿微积分理论研究的三个阶段:

第一阶段,像他的前人那样使用静态的无 穷小量观点,凭借二项式定理的推广形式, 使微积分的计算方法变得程序化; 第二阶段,用变量流动生成法,创造了流 数术基本概念体系; 第三阶段则用“最初比与最末比”方法完 善其流数术的思想。在不断的发展和变化 中形成了其特有的微积分理论
案例 曲线的切线
费马的方法
y y=f ( x ) Q P f(x ) e A O B C Q' R f ( x+e ) x T
孕育
费尔马(法, 1601-1665)的极 大极小方法(1629)和曲边梯形 面积(1636)

f(a e) - f(a) 0 e e
增量方法
光的折射
牛顿是以笛卡儿圆法为起跑点而踏上 研究微积分的道路
案例
曲线的切线
• 笛卡儿:切线问题“是我所知道的、 甚至也是我一直想要知道的最有用
的、最一般的问题”。
6.1 半个世纪的酝酿

费马求极大值与极小值的方法 如果f (x)在x点上有一个普通的极大 值或极小值,并且若e很小,则f(x+e) 的值几乎等于f(x)的值。所以,我们 暂时令f (x+e)= f (x),然后,令e取值 零,使得等式成为正确的,所得方程的 根就给出使f (x)取极大值或极小值的那 些x的值。这是现代微积分学求函数 f (x)的普通极大值或极小值的常用方法, 然而,费马只是给出了函数极值存在的 必要但不充分的条件。
曲线与该直线之间不能再插入另
外的直线。”
Apollonius (about 262 BC - about 190 BC)
6.1 半个世纪的酝酿
17世纪上半叶,随着生产、科技的发展, 下列问题急需解决:
己知距离,求速度(瞬时速度)与加
速度 或其逆问题即己知速度求距离 己知曲线求其切线 己知函数求函数的极值 求曲线的长度,平面图形的面积
C
G
A
D
案例
曲线的切线
C F E G A D B
案例
曲线的切线
C
F E G A D B
案例
曲线的切线
C
GE B F A D
案例
C B
曲线的切线
C B
A
A
案例
曲线的切线
案例 曲线的切线
17世纪数学家遇到的三类问题 一是光的反射问题。光的反射和折射在 17 世纪是一个十分盛行的研究课题,洛必达 在其《无穷小分析》中列专章加以讨论。 早在公元1世纪,古希腊数学家海伦 (Heron)就已经证明了光的反射定律:光 射向平面时,入射角等于反射角。海伦还 将该定律推广到圆弧的情形,此时,入射 光与反射光与圆弧的切线所成角相等。那 么,对于其他曲线,光又如何反射呢?这 就需要确定曲线的切线。
6.1 半个世纪的酝酿
开普勒与旋转体体积
卡瓦列里不可分量原理
笛卡尔“圆法”
费马求极大值与极小值的方法 巴罗“微分三角形”
沃利斯“无穷算术”
6.1 半个世纪的酝酿
当时几乎所有的科学大师都致力于寻 求解决这些难题的新的数学工具,特别是 描述运动和变化的无穷小算法。
一 开普勒与旋转体体积 开普勒(Kepler,1571—1630)著 《测量酒桶的新立体几何》(1615),论述 了求圆锥曲线围绕其所在平面上某直线旋 转而成立体体积的积分法,其要旨是用无 数个同维无限小元素之和确定旋转体体积。
6 微积分的创立
古代萌芽
半个世纪的酝酿
牛顿的“流数术”
莱布尼茨的微积分 牛顿与莱布尼茨 微积分的伟大意义
6 微积分的创立
6.0 古代萌芽
微积分是微分与积分的合称,微分在前积分 在后。然而在历史上,积分思想远远早于微分, 甚至可以上溯到公元前五世纪的古希腊时期。
积分的基本思想是将所求量分割成若干细小 部分找出某种关系后,再把这些细小的部分用便 于计算的形式积累起来,最后求出未知量的和。 其中的关键是积累,严格的积分只是再加上在积 累中求极限的过程。这些步骤古代均有雏形。
牛顿(英,1642-1727年)
Nature and Nature's laws lay hid in night; God said, let Newton be! and all was light.
自然和自然定律隐藏在茫茫 黑夜中。上帝说:让牛顿出 世吧!于是一切都豁然明朗。
牛顿:Isaac Newton 1661 入剑桥大学
2013高考数学湖北卷理科7题
7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车, 25 以速度 v(t ) 7 3t (t 的单位:s,v 的单位:m/s)行驶 1 t 至停止. 在此期间汽车继续行驶的距离(单位:m)是 11 A. 1 25 ln 5 B. 8 25ln 3 C. 4 25 ln 5 D. 4 50 ln 2
无穷小分析的算术化
q (p q)/q x dx a pq 0
p/q
a
背景
1 解析几何:工具 2 科学问题:
(1)古代:求积、求切线和最值 (2)近代:瞬时变化率、切线问题、函数极值、几何 求积 (3)酝酿:开普勒与旋转体体积;卡瓦列尼不可分量 原理;笛卡儿“圆法”;费马求极大值与极小值的方法 ;巴罗“微分三角形”;沃利斯“无穷算术”
1667.10三一学院成
员 1669 卢卡斯教授 1696 伦敦造币局 1672 皇家学会会员
1703 皇家学会会长
1705 封爵
44
牛顿(英,1642-1727年)

笛卡儿《几何学》(1637) 沃利斯《无穷算术》(1656)

1669-1701年任卢卡斯教授 1699年伦敦造币局局长
1665年夏至1667年春: 牛顿科学生涯的黄金岁月
孕育
• 卡瓦列里(意, 1598-1647)的不 可分量原理(1635)
无穷小方法计算面积和体积
1 2 xdx a 2 0
a
6.1 半个世纪的酝酿
三 笛卡尔的“圆法”
笛卡尔圆法(重根法),是采用 代数形式给出了求切线的方法, 它不涉及极限的概念. 圆法在本 质上将切线视为割线的极限位置, 这与现代的切线概念相一致。但 重根的计算过程十分复杂。
孕育
• 托里切利(意, 1608-1647)关于 高次抛物线和双曲线的切线
n 1 a n x dx n 1 0 a
面积比等于抛物线的幂指数比
案例
笛卡儿的方法
曲线的切线
y y=f ( x ) Q P O A x
RenéDescartes(1596 – 1650)
孕育
• 笛卡儿(法,15961650)的圆法及切线 构造(1637)
6.2 牛顿的“流数术”
牛顿(Newton,1642—1727)在数学、力学、 物理学、化学、天文学和自然哲学方面都有突出 贡献,他的影响是划时代的。仅就数学而言,他 创立的微积分己成为现代数学的主干。
自然和自然的规律 沉浸在一片混沌之中, 上帝说,生出牛顿, 一切都变得明朗。 ——英国著名诗人波普
6.0 古代萌芽
相关文档
最新文档