实验四 基本RS触发器和D触发器

合集下载

触发器功能实验报告

触发器功能实验报告

触发器功能实验报告触发器功能实验报告引言:触发器是数字电路中常见的重要元件,它能够在特定的输入条件下产生稳定的输出信号。

本实验旨在通过构建不同类型的触发器电路,探究触发器的基本原理和功能。

实验一:RS触发器RS触发器是最简单的一种触发器,由两个交叉连接的非门组成。

实验中我们使用了两个与非门来构建RS触发器电路,其中一个与非门的输出连接到另一个与非门的输入,反之亦然。

通过设置不同的输入状态,我们可以观察到RS触发器的两种稳定状态:置位和复位。

实验二:D触发器D触发器是一种常用的触发器,它具有单一输入和双输出。

实验中我们使用了两个与非门和一个或非门来构建D触发器电路。

通过输入信号的变化,我们可以观察到D触发器的工作原理:当输入信号为高电平时,输出保持之前的状态,当输入信号为低电平时,输出根据之前的状态进行切换。

实验三:JK触发器JK触发器是一种多功能的触发器,它具有两个输入和两个输出。

实验中我们使用了两个与非门和一个或非门来构建JK触发器电路。

通过设置不同的输入状态,我们可以观察到JK触发器的四种工作模式:置位、复位、切换和禁用。

实验四:T触发器T触发器是一种特殊的JK触发器,它只有一个输入和两个输出。

实验中我们使用了两个与非门和一个或非门来构建T触发器电路。

通过输入信号的变化,我们可以观察到T触发器的工作原理:当输入信号为高电平时,输出状态翻转,当输入信号为低电平时,输出保持不变。

实验五:应用实例在实验的最后,我们通过一个简单的应用实例来展示触发器的实际应用。

我们构建了一个二进制计数器电路,使用了多个D触发器和与非门。

通过输入脉冲信号,我们可以观察到计数器的工作原理:每次接收到脉冲信号,计数器的输出状态按照二进制规律进行变化。

结论:通过本次实验,我们深入了解了不同类型的触发器的功能和工作原理。

触发器在数字电路中具有重要的应用价值,能够实现各种逻辑功能和时序控制。

进一步的研究和实践将有助于我们更好地理解和应用触发器,提高数字电路设计的能力。

触发器实验报告

触发器实验报告

触发器实验报告引言:触发器是数字电路中常见的基本组件之一,它能够存储和转换电信号,广泛应用于各种电子设备和系统中。

本实验旨在通过实际操作,深入理解触发器的工作原理和应用。

实验原理:触发器是一种双稳态电路,能够固定保存输入信号的状态。

常见的触发器包括RS触发器、D触发器、JK触发器等。

本实验将以D触发器为例进行演示。

实验步骤:1. 准备实验器材:D触发器芯片、电源、示波器以及适配器等。

2. 连接电路:将D触发器芯片插入适配器,并按照实验电路图连接相关引脚。

3. 提供输入信号:通过开关或信号源向D触发器提供输入信号。

4. 观察输出信号:使用示波器监测D触发器的输出信号,并记录相关数据。

5. 测量实验数据:改变输入信号的频率和幅值,测量触发器的输出变化,并记录数据。

6. 分析实验结果:根据观察到的数据,分析D触发器的工作原理和特性。

实验结果与分析:通过实验观察和实际数据记录,我们可以得出以下结论:1. D触发器具有边沿触发和电平触发两种模式。

在边沿触发模式下,触发器仅在输入信号上升沿(或下降沿)时才进行状态转换;而在电平触发模式下,输入信号处于高电平(或低电平)时触发器状态保持不变。

2. D触发器的输出状态受到输入信号和时钟信号的控制。

输入信号为逻辑高电平时,若时钟信号为上升沿触发,则输出信号将与上一时钟周期的输入信号一致;若时钟信号为下降沿触发,则输出信号将与上一时钟周期的输入信号相反。

3. 改变输入信号的频率和幅值,我们发现触发器的输出信号频率和幅值也发生了相应的变化。

当输入信号频率较低时,触发器能够稳定存储和输出输入信号;而当输入信号频率较高时,触发器可能无法及时反应输入信号的状态变化,导致输出信号不准确。

实验应用:触发器作为数字电路中的重要组件,在现代电子技术中有着广泛的应用:1. 存储器芯片中广泛使用的触发器技术,使得计算机能够对数据进行有效地存储和读取。

2. 触发器在时序电路中的应用,能够实现时钟同步、状态变化检测等功能。

数字电路实验报告触发器

数字电路实验报告触发器

一、实验目的1. 理解触发器的概念、原理和功能。

2. 掌握触发器的分类、结构和逻辑功能。

3. 通过实验,验证触发器的逻辑功能,加深对触发器原理的理解。

二、实验原理触发器是一种具有记忆功能的电路,可以存储1个二进制位的信息。

它有两个稳定的状态:SET(置位)和RESET(复位)。

触发器的基本结构是RS触发器,由两个与非门组成,其逻辑功能可用真值表表示。

触发器按触发方式可分为同步触发器和异步触发器;按逻辑功能可分为RS触发器、D触发器、JK触发器和T触发器等。

三、实验仪器与材料1. 74LS74双D触发器芯片2. 74LS02四2输入与非门芯片3. 74LS00四2输入或非门芯片4. 74LS20四2输入或门芯片5. 74LS32四2输入与门芯片6. 74LS86四2输入异或门芯片7. 74LS125八缓冲器芯片8. 74LS126八缓冲器芯片9. 电源10. 示波器11. 信号发生器12. 逻辑笔四、实验内容1. RS触发器实验(1)搭建RS触发器电路:将74LS74芯片的Q1端与Q2端连接,Q1端接与非门74LS02的输入端,Q2端接与非门74LS02的输入端。

将74LS02的输出端分别连接到74LS20的输入端和74LS32的输入端。

(2)观察RS触发器逻辑功能:通过逻辑笔观察Q1端和Q2端的输出状态,记录下不同输入端S和R的值。

(3)分析RS触发器逻辑功能:根据真值表分析RS触发器的逻辑功能,得出结论。

2. D触发器实验(1)搭建D触发器电路:将74LS74芯片的Q1端接与非门74LS02的输入端,Q2端接与非门74LS02的输入端。

将74LS02的输出端分别连接到74LS20的输入端和74LS32的输入端。

(2)观察D触发器逻辑功能:通过逻辑笔观察Q1端和Q2端的输出状态,记录下不同输入端D的值。

(3)分析D触发器逻辑功能:根据真值表分析D触发器的逻辑功能,得出结论。

3. JK触发器实验(1)搭建JK触发器电路:将74LS74芯片的Q1端接与非门74LS02的输入端,Q2端接与非门74LS02的输入端。

基本RS触发器原理

基本RS触发器原理

基本RS 触发器原理图4-1(a)是由两个“与非”门构成的基本R-S 触发器,(b)是其逻辑符号。

RD 、SD 是两个输入端,Q 及y 是两个输出端。

正常工作时,触发器的Q 和y 应保持相反,因而触发器具有两个稳定状态:1)Q=1,y=0。

通常将Q 端作为触发器的状态。

若Q 端处于高电平,就说触发器是1状态;2)Q=0,y=1。

Q 端处于低电平,就说触发器是0状态;Q 端称为触发器的原端或1端,y 端称为触发器的非端或0端。

由图4-1可看出,如果Q 端的初始状态设为1,RD 、SD 端都作用于高电平(逻辑1),则y 一定为0。

如果RD 、SD 状态不变,则Q 及y 的状态也不会改变。

这是一个稳定状态;同理,若触发器的初始状态Q 为0而y 为1,在RD 、SD 为1的情况下这种状态也不会改变。

这又是一个稳定状态。

可见,它具有两个稳定状态。

输入与输出之间的逻辑关系可以用真值表、状态转换真值表及特征方程来描述。

图4(一)真值表R-S 触发器的逻辑功能,可以用输入、输出之间的逻辑关系构成一个真值表(或叫功能表)来描述。

1、当RD =0,SD=1时,不论触发器的初始状态如何,y 一定为1,由于“与非”门2的输入全是1,Q 端应为0。

称触发器为0状态,RD 为置0端。

2、当RD =1,SD=0时,不论触发器的初始状态如何,Q 一定为1,从而使y 为0。

称触发器为1状态,SD 置1端。

3、当RD =1,SD =1时,如前所述,Q 及y 状态保持原状态不变。

4、当RD =0,SD =0时,不论触发器的初始状态如何,Q=y=1,若RD 、SD 同时由0变成1,在两个门的性能完全一致的情况下, Q 及y 哪一个为1,哪一个为0是不定的,在应用时不允许RD 和SD 同时为0。

综合以上四种情况,可建立R-S 触发器的真值表于表1。

应注意的是表中RD = SD =0的一行中Q 及y 状态是指RD 、SD 同时变为1后所处的状态是不定的,用Ф表示。

基本RS触发器

基本RS触发器
CP J K
状态表
Qn+1 功能
1 1 1 1
0 0 1 1
0 1 0 1
Qn 0 1 Qn
保持 置0 置1 翻转(计数)
从表5.3.2中可知: (1) 当J=0,K=1时,Qn+1=JQn+KQn , 置“0”。 (2) 当J=1, K=0时, Qn+1 =JQn+KQn ,置“1”。
(3) 当J=0,K=0时,Qn+1=Qn,保持不变。 (4) 当J=1,K=1时,Qn+1=Qn ,翻转或称计数。 所谓计数就是触发器状态翻转的次数与CP脉冲输 入的个数相等,以翻转的次数记录CP的个数。波 形图如图5.3.3所示。
(b) D 触发器的简化电路
将S=D、R=D代入同步RS触发器的特性方程,得 同步D触发器的特性方程:
Q
n +1
= S + R Q = D + DQ = D
n n
CP=1期间有效 期间有效
D=1/
状 态 图 波 形 图
0/
0 0/
1
1/
CP D Q Q
在数字电路中, 时钟脉冲控制下, 在数字电路中,凡在CP时钟脉冲控制下, 情况的不同,具有置0 根据输入信号D情况的不同,具有置0、置 功能的电路, 触发器。 1功能的电路,都称为D触发器。
四、同步触发器 存在的问题 空翻现象。空翻现象就是在CP=1期间,触发器 CP=1期间, CP=1期间 的输出状态翻转两次或两次以上的现象。 如图 5.3.4所示,第一个CP=1期间Q状态变化的情况
CP J K Q “0” “1” “0”
图 5.3.4 空翻波形图
§5.4 边沿触发器 一、TTL边沿 触发器 边沿JK触发器 边沿 触发器

实验四 基本RS触发器和D触发器

实验四   基本RS触发器和D触发器

实验四基本RS触发器和D触发器一、实验目的1.熟悉并验证触发器的逻辑功能;2.掌握RS和D触发器的使用方法和逻辑功能的测试方法。

二、实验预习要求1.预习触发器的相关内容;2.熟悉触发器功能测试表格。

三、实验原理触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序电路的最基本逻辑单元。

触发器具有两个稳定状态,即“0”和“1”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态。

1.基本RS触发器图实验4.1为由两个与非门交叉耦合构成的基本RS触发器。

基本RS触发器具有置“0”、置“1”和“保持”三种功能。

通常称S为置“1”端,因为S=0时触发器被置“1”;R端为置“0”端,因为R=0时触发器被置“0”;当S =R =1时,触发器状态保持。

基本RS触发器也可图实验4.1 基本RS触发器以用两个“或非门”组成,此时为高电平有效置位触发器。

2. D触发器D触发器的状态方程为:Q n+1=D。

其状态的更新发生在CP脉冲的边沿,74LS74(CC4013)、74LS175(CC4042)等均为上升沿触发,故又称之为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D端的状态。

D触发器应用很广,可用做数字信号的寄存、移位寄存、分频和波形发生器等。

四、实验仪器设备1、TPE-AD数字实验箱1台2、双D触发器74LS74 2片3、四两输入集成与非门74LS00 1片4、双通道示波器 1台五、实验内容及方法1.测试基本RS 触发器的逻辑功能按图实验4.1连接电路,用两个与非门组成基本RS 触发器,输入端S 、R 接逻辑开关的输出口,输出端Q 、Q 接逻辑电平显示灯输入接口,按表实验4.1的要求测试并记录。

表实验4.1 RS 触发器的逻辑功能2.测试D(1)测试D R 、D S 的复位、置位功能。

在D R =0,D S =1作用期间,改变D 与CP 的状态,观察 Q 、Q 状态。

在D R =1,D S =0作用期间,改变D 与CP 的状态,观察Q 、Q 状态。

基本RS触发器实验

基本RS触发器实验

基本RS触发器实验第5章基本RS触发器5.同步触发器(同步RS触发器)⽬的与要求:1 掌握时序电路的定义、分类、触发器的特点。

2 掌握基本RS触发器的电路结构、⼯作原理、逻辑功能。

3 掌握同步RS触发器的⼯作原理、逻辑功能。

4 掌握触发器逻辑功能的表⽰⽅法。

5 掌握时序电路的⼀些基本概念。

重点与难点:1 基本概念要正确建⽴。

难点:现态、次态、不定状态的正确理解。

2 基本RS触发器的逻辑功能、触发⽅式。

5.1概述⼀、触发器的概念复习:组合电路的定义?构成其电路的门电路有何特点?组合电路与时序电路的区别?门电路:在某⼀时刻的输出信号完全取决于该时刻的输⼊信号,没有记忆作⽤。

触发器:具有记忆功能的基本逻辑电路,能存储⼆进制信息(数字信息)。

触发器有三个基本特性:(1)有两个稳态,可分别表⽰⼆进制数码0和1,⽆外触发时可维持稳态;(2)外触发下,两个稳态可相互转换(称翻转),已转换的稳定状态可长期保持下来,这就使得触发器能够记忆⼆进制信息,常⽤作⼆进制存储单元。

(3)有两个互补输出端,分别⽤Q和Q⼆、触发器的逻辑功能描述:特性表、激励表(⼜称驱动表)、特性⽅程、状态转换图和波形图(⼜称时序图)三、触发器的分类:根据逻辑功能不同:RS触发器、D触发器、JK触发器、T触发器和触发器等。

触发⽅式不同:电平触发器、边沿触发器和主从触发器等。

电路结构不同:基本RS触发器,同步触发器、维持阻塞触发器、主从触发器和边沿触发器等。

5.2 触发器的基本形式5.2.1 基本RS触发器⼀、由与⾮门组成的基本RS触发器1.电路结构电路组成:两个与⾮门输⼊和输出交叉耦合(反馈延时)。

逻辑图如图(a)所⽰。

逻辑符号如图(b)所⽰。

与⾮门组成的基本RS触发器的特性表⼆、由或⾮门组成的基本RS触发器电路构成:两个或⾮门的输⼊和输出交叉耦合⽽成,如下图所⽰。

逻辑符号:图(b)所⽰。

⼯作原理在与⾮门实现的基本RS触发器的基础上稍作变化。

或⾮门组成的基本RS触发器的特性表5.2.2 同步触发器基本RS触发器的触发⽅式:端的输⼊信号直接控制。

实验4触发器及其应用

实验4触发器及其应用

实验四 触发器及其应用一、实验目的1、 掌握基本RS 、JK 、D 、T 触发器的逻辑功能;2、 熟悉集成触发器的逻辑功能及使用方法;3、 学会不同逻辑功能触发器之间的转换方法。

二、实验仪器及设备1、 EEL-II 型电工电子实验台2、 数字电路实验箱3、 万用表4、 直流稳压电源5、 参考元件 三、实验内容1、 基本RS 触发器逻辑功能测试,元件用74LS00QDDQQ(a)(b)图5.1基本RS 触发器结构图2、 D 触发器逻辑功能测试,元件用74LS74(双上升沿触发D 触发器) (1) 直接复位端R D 和直接置位端S D 的功能测试 (2) D 触发器的逻辑功能测试直接复位、置位端R D 、S D 接模拟电位开关,CP 接单脉冲发生器,并改变D 的状态,将测试结果填入表5.2中。

3、 JK 触发器功能测试,选用74LS112直接复位、置位端R D 、S D 接模拟电位开关,CP 接单脉冲发生器,并改变J 、K 的状态,将测试结果填入表5.3中。

4、用D触发器构成T’触发器Q 将D触发器的D端与Q端相连,构成T’触发器。

其逻辑功能为:Q n+1=n表示每来一个CP脉冲翻转一次。

有计数功能。

(1)在CP加入单脉冲观察翻转次数和CP输入正脉冲个数间的关系。

(2)CP端加连续脉冲,用示波器观察Q与Q波形,记录填表5.4,并画出波形图。

如图5.4所示。

CPQQ图5.3波形图5、用JK触发器接T和T’触发器(1)设计电路(2)测试功能并观察CP和Q的同步波形,体会触发器的分频作用。

四、实验报告1、整理实验数据,结果填入各表格,画出要求的有关电路图;2、依实验结果总结触发器的逻辑功能。

五、思考题1、何谓基本RS触发器的记忆功能?2、D触发器翻转条件及特点是什么?3、*D触发器实现可靠计数的基本思想是什么?六、器件介绍1、D触发器74LS74图5.2上升沿触发D 触发器74LS74符号2、 JK 触发器74LS11274LS112是双主从下降沿触发JK 触发器,其逻辑符号和管脚引线排列如图5.5所示。

触发器_实验报告

触发器_实验报告

一、实验目的1. 理解和掌握触发器的基本原理和功能。

2. 熟悉基本RS、JK、D和T触发器的逻辑功能及其应用。

3. 学习触发器之间相互转换的方法。

4. 通过实验,加深对触发器在数字电路中的应用理解。

二、实验原理触发器是一种具有记忆功能的电子器件,它可以根据输入信号和时钟脉冲的变化,在两个稳定状态之间进行切换。

触发器在数字电路中有着广泛的应用,如计数器、寄存器、时序电路等。

触发器根据时钟脉冲的触发方式分为同步触发器和异步触发器。

同步触发器在时钟脉冲的上升沿或下降沿发生状态转换,而异步触发器则不受时钟脉冲的限制,可以在任何时刻发生状态转换。

三、实验仪器与设备1. 双踪示波器2. 数字万用表3. 数字电路实验箱4. 74LS00(二输入端四与非门)5. 74LS74(双D触发器)6. 74LS76(双J-K触发器)四、实验内容与步骤1. 基本RS触发器功能测试(1)搭建基本RS触发器电路,连接实验箱中的与非门。

(2)按照实验要求,在S、R端加信号,观察并记录触发器的Q、端状态。

(3)分析实验结果,总结RS触发器的逻辑功能。

2. JK触发器功能测试(1)搭建JK触发器电路,连接实验箱中的与非门。

(2)按照实验要求,在J、K端加信号,观察并记录触发器的Q、端状态。

(3)分析实验结果,总结JK触发器的逻辑功能。

3. D触发器功能测试(1)搭建D触发器电路,连接实验箱中的与非门。

(2)按照实验要求,在D端加信号,观察并记录触发器的Q、端状态。

(3)分析实验结果,总结D触发器的逻辑功能。

4. T触发器功能测试(1)搭建T触发器电路,连接实验箱中的与非门。

(2)按照实验要求,在T端加信号,观察并记录触发器的Q、端状态。

(3)分析实验结果,总结T触发器的逻辑功能。

5. 触发器之间相互转换(1)分析基本RS触发器与JK触发器之间的转换方法。

(2)分析基本RS触发器与D触发器之间的转换方法。

(3)分析基本RS触发器与T触发器之间的转换方法。

RS JK触发器

RS JK触发器

S称为置 输入端 称为置1输入端 称为置 低电平有效
功能表 _ _
Q Q
R S Qn Qn+1 功能
0
G1 & &
1
G2
0 1 1 0 0 1 0 1 0 0 1 1 置0
置1
1 _
R
1
0
_ 0
S
(2)逻辑功能 ) 触发器有两个互补的输出端, 触发器有两个互补的输出端,
=1, =0时 称为触发器的1状态。 当Q=1,Q =0时,称为触发器的1状态。 =1 =1, =0 =0时 称为触发器的0状态。 当 Q =1,Q=0时,称为触发器的0状态。
(4)波形图 ) 已知同步RS触发器的输入波形,画出输出波形图。 已知同步 触发器的输入波形,画出输出波形图。 触发器的输入波形
CP S R
Q
Q
Q
Q
4.同步触发器存在的问题——空翻 .同步触发器存在的问题 空翻
Q Q
1R C1 1S
CP
G1 & & G2
CP
S R
G3 &
&
G4
Q
R
CP
S
有效翻转
0
S
Qn 0 1 0 1 0 1 0 1
Qn+1 0 1 1 1 0 0 × ×
功能 保持 输出状态 同S状态 输出状态 同S状态 不定
G6 1
0
G8
0 0 0 0 0 1 0 1 1 1 0 0
0
R CP
1
S
1
1 1 1 1
主从触发器的特点: 主从触发器的特点: 上升沿到CP= 期间主触发器工作,接收RS CP=1 RS输 ( 1 ) 上升沿到 CP= 1期间主触发器工作 , 接收 RS输 入信号;从触发器保持。 入信号;从触发器保持。 下降沿期间从触发器工作,接收主触发器 主触发器Q`Q (2)下降沿期间从触发器工作,接收主触发器Q`Q 输出信号;主触发器保持。 输出信号;主触发器保持。 (3)从根本上解决了直接控制作用,提高了抗干 )从根本上解决了直接控制作用, 扰能力。 扰能力。 (4)缺点是存在约束。 )缺点是存在约束。

触发器功能测试实验报告

触发器功能测试实验报告

触发器功能测试实验报告触发器功能测试实验报告一、引言触发器是数字电路中常见的重要元件之一,其具有存储和放大信号的功能。

触发器的功能测试是电子工程师在设计和制造数字电路时必不可少的一项工作。

本实验旨在通过对不同类型的触发器进行功能测试,验证其在不同工作模式下的正确性和稳定性。

二、实验目的1. 了解触发器的基本原理和工作模式;2. 掌握触发器的功能测试方法;3. 验证不同类型触发器的工作特性。

三、实验器材和材料1. 实验板;2. 电源供应器;3. 逻辑分析仪;4. 电压表;5. 连接线。

四、实验步骤1. 准备工作:将实验板连接好电源供应器和逻辑分析仪,并确保连接正确;2. 功能测试:依次测试RS触发器、D触发器、JK触发器和T触发器的工作特性。

五、实验结果与分析1. RS触发器测试:a. 将RS触发器的S端和R端分别接入逻辑分析仪的输入端,CLK端接入逻辑分析仪的时钟信号输出端;b. 通过逻辑分析仪观察输入信号和输出信号的波形,并记录下来;c. 分析波形,验证RS触发器在不同输入情况下的工作特性。

2. D触发器测试:a. 将D触发器的D端接入逻辑分析仪的输入端,CLK端接入逻辑分析仪的时钟信号输出端;b. 通过逻辑分析仪观察输入信号和输出信号的波形,并记录下来;c. 分析波形,验证D触发器在不同输入情况下的工作特性。

3. JK触发器测试:a. 将JK触发器的J端和K端分别接入逻辑分析仪的输入端,CLK端接入逻辑分析仪的时钟信号输出端;b. 通过逻辑分析仪观察输入信号和输出信号的波形,并记录下来;c. 分析波形,验证JK触发器在不同输入情况下的工作特性。

4. T触发器测试:a. 将T触发器的T端接入逻辑分析仪的输入端,CLK端接入逻辑分析仪的时钟信号输出端;b. 通过逻辑分析仪观察输入信号和输出信号的波形,并记录下来;c. 分析波形,验证T触发器在不同输入情况下的工作特性。

六、实验结论通过对RS触发器、D触发器、JK触发器和T触发器的功能测试,我们可以得出以下结论:1. RS触发器具有存储和放大信号的功能,可以用于实现简单的存储器和时序电路;2. D触发器可以将输入信号在时钟脉冲到来时存储,并在下一个时钟脉冲到来时输出;3. JK触发器是一种带有异步清零和置位功能的触发器,可以用于实现频率分割和计数器等电路;4. T触发器是一种特殊的JK触发器,其输入端和输出端相连,可以实现频率分割和频率加倍等功能。

触发器及应用实验心得

触发器及应用实验心得

触发器及应用实验心得在触发器及应用实验中,我学习到了很多有关触发器的知识,并且通过实际操作加深了对触发器的理解和应用。

下面是我的实验心得:首先,在实验中我学习到了触发器的概念和分类。

触发器是一种内部存储器元件,能够将电子信息以某种形式保持,并在特定的时刻传递、锁存或转换。

触发器一般分为RS触发器、D触发器、JK触发器和T触发器四种类型。

RS触发器是最基本的触发器,由两个交叉反馈的比较器组成;D触发器是RS触发器的一种改进,通过添加反馈使得输出保持原状态或置反;JK触发器是D触发器的一种改进,将D输入端置高后,可以达到状态的互相转换;而T触发器是一种特殊的JK触发器,只有时钟信号为1时才能改变输出状态。

在实验中,我通过对这四种触发器的逻辑门电路建模及仿真,深入理解了它们的实现原理和区别。

其次,在实验中我通过搭建触发器电路,实际操作与观察了触发器的工作过程及特性。

我根据实验指导书上的电路图和元器件接线图,一步一步搭建了四种触发器电路,并通过示波器观察了触发器输出波形。

通过实际操作,我更加直观地感受到了触发器的功能和特点,例如RS触发器可记忆前一次输入;D触发器可以实现数据的锁存,而JK触发器可以实现数据的转换;T触发器可以实现特定的计数功能。

同时,我也注意到了触发器的时序问题,例如在时钟边沿触发和电平触发时,输出的状态会有所差别。

通过实际操作,我更加深入地理解了触发器的工作原理和实际应用。

最后,在实验中我还学习到了触发器的应用及电路设计。

触发器是数字电路中重要的元件,被广泛应用于时序逻辑电路、计算机存储器、计数器等电路中。

在实验中,我通过设计计时器和状态寄存器两个电路,并实际搭建并测试了它们的功能。

通过这两个设计实验,我更加了解了触发器的实际应用场景和电路设计方法,同时也加深了对触发器性能参数的理解。

并且,在实验中我还遇到了一些问题,例如如何正确选择触发器类型、如何合理选择电路元器件等,通过思考和实践,我逐渐解决了这些问题,提高了自己的设计能力。

触发器(基本的SR触发器、同步触发器、D触发器)

触发器(基本的SR触发器、同步触发器、D触发器)

触发器(基本的SR触发器、同步触发器、D触发器)⼀、能够存储1位⼆值信号的基本单元电路统称为触发器(Filp-Flop) 触发器是构成时序逻辑电路的基本逻辑部件。

它有两个稳定状态:“0”和“1”。

在不同的输⼊情况下,它可以被置0状态或1状态,当输⼊信号消失后,所置成的状态能够保持不变。

所以触发器可以记忆1位⼆值的信号。

根据逻辑功能的不同,触发器可以分为SR触发器、D触发器、JK触发器、T和T'触发器。

按照结构形式的不同,⼜可分基本SR触发器、同步触发器、主从触发器和边沿触发器。

其状态图:a、当触发器处在0状态,即Q = 0,若S'R' = 10或11时,触发器仍为0状态。

若S'R' = 01,触发器翻转成为1状态。

b、当触发器处在1状态,即Q = 1,若S'R' = 01或11时,触发器仍为1状态。

若S'R' = 10,触发器翻转成为0状态。

约束条件是S’R’不能同时为0。

代码实现:module RS(rst_n,r,s,q,qn);input rst_n;input r;input s;output q;output qn;reg q;reg i;always @(rst_n or q)if(!rst_n)i = 0;else if(!q)i = 0;elsei = 1;always @(rst_n or r or s)if(!rst_n)q = 0;elsecase(i)0://置0if(({r,s} == 2'b01) || ({r,s} == 2'b11))q = 0;else if(({r,s} == 2'b10))q = 1;1://置1if(({r,s} == 2'b10) || ({r,s} == 2'b11))q = 1;else if(({r,s} == 2'b01))q = 0;endcaseassign qn = ~q;endmoduleView Code仿真代码:`timescale 1ns/1nsmodule RS_top;reg rst_n;reg r;reg s;wire q;wire qn;initial beginrst_n = 0;#10;rst_n = 1;beginr = 0;s = 1;#20;r = 1;s = 1;#20;r = 1;s = 0;#20;r = 1;s = 1;#20;endendRS rs1(.rst_n(rst_n),.r(r),.s(s),.q(q),.qn(qn));endmoduleView Code仿真波形:可以看到仿真结果是对的。

基本RS触发器

基本RS触发器

4. 应用
二、主从触发器
每一个CP下降沿,都会使Q的状态变化,Q4Q3Q2Q1代表四 位二进制数,故称该电路为四位二进制计数器。
CP信号频率每经过一个触发器频率减半, Q4输出信号的 频率是输入脉冲的十六分之一,这种频率之间的关系称为“分
频”。Q1是CP信号的二分频,Q4是CP信号的十六分频。
(三)主从JK触发器 1. 逻辑符号
RS
Qn+1
00
Qn
01
1
10
0
11
X
3. 特征方程
Qn1
S
RQn
SR 0
一、基本RS触发器
CP=1: S=0,R=0:Qn+1=Qn S=1,R=0:Qn+1=1 S=0,R=1:Qn+1=0 S=1,R=1:Qn+1= X
约束条件:输入不能同时为1。
4. 同步RS触发器波形图分析
一、基本RS触发器
&
G2
&
QQ
CP=1:
1
1
R
S
S=0,R=0:Qn+1=Qn G4
S=1,R=0:Qn+1=1
&
G3
&
1R C1 1S
S=0,R=1:Qn+1=0 R
R CP S S
S=1,R=1:Qn+1=输X入端R、S通过CP非门作
符号:
用于基本RS触发器。 动作特点:P190-191
(三)同步RS触发器 2. 特征表
输入信号:J、K 时钟输入:CP 异步置0、置1:RD、SD
(不受CP限制,低有效) 输出信号:Q、Q
二、主从触发器

数字电路触发器实验报告

数字电路触发器实验报告

一、实验目的1. 理解触发器的原理和功能。

2. 掌握触发器的电路组成和基本工作原理。

3. 学习触发器在数字电路中的应用。

4. 提高实验操作能力和分析问题的能力。

二、实验原理触发器是一种具有记忆功能的数字电路,它能够保存一个二进制状态。

触发器的基本类型有RS触发器、JK触发器、D触发器等。

本实验以RS触发器为例,介绍触发器的原理和功能。

RS触发器由两个与非门组成,其中S为置位端,R为复位端,Q为输出端,Q'为输出端的反相端。

当S=0,R=1时,触发器被置位,Q=1,Q'=0;当S=1,R=0时,触发器被复位,Q=0,Q'=1;当S=0,R=0时,触发器保持原状态;当S=1,R=1时,触发器处于不定状态。

三、实验仪器与设备1. 数字电路实验箱2. 74LS00集成电路(与非门)3. 逻辑电平开关4. 逻辑电平显示器5. 连接线四、实验步骤1. 连接电路根据实验原理图,将两个与非门连接起来,构成RS触发器。

具体连接方式如下:(1)将与非门的输入端A1、A2分别连接到逻辑电平开关;(2)将与非门的输出端Y1、Y2分别连接到逻辑电平显示器;(3)将与非门的输出端Y1连接到与非门的输入端B1,将与非门的输出端Y2连接到与非门的输入端B2。

2. 观察触发器状态(1)打开电源,将S端置为0,R端置为1,观察Q和Q'端的状态,记录下来;(2)将S端置为1,R端置为0,观察Q和Q'端的状态,记录下来;(3)将S端置为0,R端置为0,观察Q和Q'端的状态,记录下来;(4)将S端置为1,R端置为1,观察Q和Q'端的状态,记录下来。

3. 分析实验结果根据实验步骤观察到的触发器状态,分析触发器在不同输入下的工作原理,验证触发器的功能。

五、实验结果与分析1. 观察到当S=0,R=1时,触发器被置位,Q=1,Q'=0;2. 观察到当S=1,R=0时,触发器被复位,Q=0,Q'=1;3. 观察到当S=0,R=0时,触发器保持原状态;4. 观察到当S=1,R=1时,触发器处于不定状态。

基本RS触发器

基本RS触发器
Q=Q=0或Q=Q=1为触发器的异常状态, 是不允许出现的状态(应该约束)
常用Qn表示当前状态(现态), Q n本RS触发器的逻辑功能
R
S
逻辑功能
0
0
保持(Q n+1
=Qn )
0
1
置1(Qn+1
=1 )
1
0
置0 ( Qn+1
=0 )
1
1
不定态
0
0
0
1
1
0
0
0
1
0
1
1
0
0
0
1
1
0
0
按真值表对或非门基本RS触发器的逻辑进行化简
RS Qn
00
01
11
10
0
0
0
˟
0
1
1
1
˟
0
Qn R
S
化简后得出输入信号高电平有效触发器的特性方程:
Qn+1=RQn +S ,RS=0 (约束条件)
转化为或非-或非式:
Qn+1= R+Qn+S
逻辑波形图
S
R
Q
Q
或非门的输入 输出规律:
输入有1,输出为0 输入全0,输出为1
触发器的特性方程
表达触发器的逻辑功能的表达式我们称为 触发器的特性方程
(1)高电平有效的基本RS触发器逻辑功能真 值表
n
Q 0 0 0 0 1 1 1 1
输入信号
R 0 0 1 1 0 0 1 1
输出信号
n+1
S
Q
n+1
Q
0
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四基本RS触发器和D触发器
一、实验目的
1.熟悉并验证触发器的逻辑功能;
2.掌握RS和D触发器的使用方法和逻辑功能的测试方法。

二、实验预习要求
1.预习触发器的相关内容;
2.熟悉触发器功能测试表格。

三、实验原理
触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序电路的最基本逻辑单元。

触发器具有两个稳定状态,即“0”和“1”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态。

1.基本RS触发器
图实验4.1 基本RS触发

图实验4.1为由两个与非门交叉耦合构成的基本RS触发器。

基本RS触发器具有置“0”、置“1”和“保持”三种功能。

通常称为置“1”端,因为=0时触发器被置“1”;端为置“0”端,因为=0时触发器被置“0”;当 = =1时,触发器状态保持。

基本RS触发器也可以用两个“或非门”组成,此时为高电平有效置位触发器。

2. D触发器
D 触发器的状态方程为:Qn+1=D。

其状态的更新发生在CP脉冲的边沿,74LS74(CC4013)、74LS175(CC4042)等均为上升沿触发,故又称之为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D端的状态。

D触发器应用很广,可用做数字信号的寄存、移位寄存、分频和波形发生器等。

四、实验仪器设备
1、TPE-AD数字实验箱1台
2、双D触发器74LS74 2片
3、四两输入集成与非门74LS00 1片
4、双通道示波器 1台
五、实验内容及方法
1.测试基本RS触发器的逻辑功能
按图实验4.1连接电路,用两个与非门组成基本RS触发器,输入端、接逻辑开关的输出口,输出端Q、接逻辑电平显示灯输入接口,按表实验4.1的要求测试并记录。

表实验4.1 RS触发器的逻辑功能
1
10 1 0
0 1 1 0
10 1 0 1
0 1 0 1
0 0 1 1
2.测试D触发器的逻辑功能。

(1)测试、的复位、置位功能。

在=0, =1作用期间,改变D与CP的状态,观察 Q、状态。

在=1,=0作用期间,改变D与CP的状态,观察Q 、状态。

自拟表格记录。

0 1 0 1
Φ0 1 10
1 0 0 1
Φ 1 0 10
(2)测试D触发器的逻辑功能
表实验4.2 D触发器的逻辑功能
0 0 1 0 0
10 0 1
1 0 1 1 1
10 1 1
双D触发器74LS74的引脚分布图如附录所示,了解电路,按表实验4.2进行测试,并观察触发器状态更新是否发生在CP脉冲的上升沿(即0→1),记录在表格中。

(3) 用D 触发器构成分频器。

按图实验4.2连接电路,构成2分频和4分频器。

图实验4.2 用74LS74双D 触发器构成
分频器
在CP1端加入1KHz的连续方波,并用示波器观察CP1、Q1、Q2各端的波形。

再取一只74LS74组件,仿照图实验4.2电路连成8分频和16分频器
如下图所示:
Q4
从Q2和Q4接出来的就是8分频和16分频器。

六、实验报告
1.整理实验所测结果,总结RS触发器和D触发器的特点。

总体来说:
1.主从RS触发器具有置位、复位和保持(记忆)功能.
2.由两个受互补时钟脉冲控制的主触发器和从触发器组成,二者轮流工作,主
触发器的状态决定从触发器的状态,属于脉冲触发方式,触发翻转只在时钟脉冲的下降沿发生; 3.主从RS触发器存在约束条件,即当R=S=1时将导致下一状态的不确定。

RS触发器有和两个输出端,这两个输出端是互补的。

通常以端的值作为触发器的状态,当为1时,则触发器处于置位状态,当为0时处于复位状态。

在同一时刻,只能处于其中一个状态。

(1)R=0,S=0时,状态不变,
(2)R=0,S=1时,置位状态,置为1
(3)R=1,S=0,复位状态,复位为0
(4)R=1,S=1时,触发器的状态是不定的。

所以触发器不能同时为1。

D触发器的逻辑功能:当时钟信号来临时,如果输入D=0,则触发器一定输出Q=0,如果输入D=1,则触发器一定输出Q=1。

而当始终信号没来时,无论输入是0或1,触发器都保持原来的状态不变。

2.画出分频器实验测得的波形图。

七、思考题
在R-S触发器中,对触发器脉冲的宽度有何要求?
对CP的要求是宽度较窄的正脉冲。

时钟控制R-S触发器解决了触发器状态变化的定时问题,但由于时钟信号具有一定的宽度,在时钟信号作用期间,如果输入信号发生变化,触发器会跟着变化,从而在一次时钟信号作用期间,可能引起触发器的多次空翻,这种现象称为“空翻”。

“空翻”将造成触发器的状态不确定,使系统工作紊乱,这是不允许的。

因此,应该避免这种情况的发生。

解决“空翻”问题的根本途径就是改进触发器的电路结构。

相关文档
最新文档