固体物理课后习题与答案
固体物理基础课后1到10题答案
一.本章习题P272习题1.试证理想六方密堆结构中c/a=.一. 说明:C 是上下底面距离,a 是六边形边长。
二. 分析:首先看是怎样密堆的。
如图(书图(a),P8),六方密堆结构每个格点有12个近邻。
(同一面上有6个,上下各有3个)上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。
中间层的三个球相切,又分别与上下底面的各七个球相切。
球心之间距离为a 。
所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。
三. 证明:如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点33'a AB AO ==∴(由余弦定理)330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=οοο633.1322384132)2()2()3()2(2222222222''≈===∴+=+=+=a c c a ac a ac OA AO OO2.若晶胞基矢c b a ρρρ,,互相垂直,试求晶面族(hkl )的面间距。
一、分析:我们想到倒格矢与面间距的关系G d ρπ2=。
倒格矢与晶面族 (hkl )的关系321b l b k b h G ρρρρ++=写出)(321b b b ρρρ与正格子基矢 )(c b a ρρρ的关系。
即可得与晶面族(hkl ) 垂直的倒格矢G ρ。
进而求得此面间距d 。
二、解:c b a ρρρΘ,,互相垂直,可令k c c j b b i a a ρρρρρρ===,,晶胞体积abc c b a v =⨯⋅=)(ρρρ倒格子基矢:kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b ρρρρρρρρρρρρρρρρρρπππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢 222321)()()(2)(2cl b k a h G k cl j b k i a h b l b k b h G ++=∴++=++=ππρρρρρρρρ故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h G d ++=++==πππρ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子?1.分析:考虑选取原胞的条件:(即布拉菲晶格的最小单元)(1)体积最小的重复结构单元(2)只包含一个格点(3)能反映晶格的周期性应将几个原子组合成一个格点,然后构成原胞。
固体物理 课后习题解答(黄昆版)第二章
黄昆 固体物理 习题解答第二章 晶体的结合2.1 证明两种一价离子组成的一维晶格的马德隆常数为α = 2 2n解:设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用 r 表示相邻离子间的距离,于是有α= ∑ ′ ( 1)=2[1 1 1 1 −+−+ ...]r jr ijr 2r 3r 4r前边的因子 2 是因为存在着两个相等距离 的离子,一个在参考离子左面,一个在其右面,i1 1 1故对一边求和后要乘 2,马德隆常数为234α = 2[1− + − + ...] 2 3 4xx xQl n(1 + x ) = −x + − + ... 当 x=1 时,有12 3 4 1 1 1...− + − + = l n2∴ =α 2 2n2 3 42.2 讨论使离子电荷加倍所引起的对 Nacl 晶格常数及结合能的影响(排斥势看作不变)α2e C解: u r ( )= −α2+rrnα2nC1du e nCenC 由| =−= 0 解得=+r e−1 r2n +12n 1( ) (=2)ndrrrrr 0nC11α e于是当 e 变为 2e 时,有 r−1= 4 −1 r e( )(2 ) (=2)nn= − α214α e结合能为 u r( )e (1−) 当 e 变为 2e 时,有4α e 2r0 1nnu e(2 )= −r (2 ) (1 −) = u e( ) 4 −n 1nu r( )= − α+βm n 2.3 若一晶体两个离子之间的相互作用能可以表示为计算: 1) 平衡间距r0解答(初稿)作者季正华- 1 -r r黄昆固体物理习题解答2) 结合能W(单个原子的)3) 体弹性模量4) 若取m = 2, n = 10, r= 0.3 , = 4 eV计算αβ, 的值解:1) 平衡间距r0的计算NαβdU= mαnβU r ( ) = (−+m n) dr0 −r m+1 + r n+1 = 0晶体内能nβ 12 r r平衡条件r r0 即0 0r0= ( )n m所以mα2) 单个原子的结合能W = −1u( )r u r( ) (0= −α+βm n) r nβ 1r r0=( ) n m2 0β−m r r0 αmW = 1 α(1−)( )m n n m2 n mα3)体弹性模量K = ∂2U(2)V⋅V0∂V0晶体的体积V = NAr3—— A 为常数,N 为原胞数目NαβU r ( ) = (−+m n)晶体内能∂=α2nβr rU∂U r∂N m− 1∂V ∂∂r V= 2 ( r m+1 r n+1 ) NAr23∂2 = ∂∂mαnβU N r[( −) 1 ]∂V 2 2 ∂∂V r rm+1 r n+1 3 N Ar2∂2U∂2UN1[2αmn2βmαnβK = (2)V⋅V0 ∂V2= 2 9V2−r m+ r n−r m+ r n]体弹性模量由平衡条件∂U∂V=N mα−V Vnβ 1= 00 0 0 0∂V 2 ( r m+1 r n+1 ) 3NAr2V V0解答(初稿)作者季正华0 0 0- 2 -α=n β∂2UN黄昆 固体物理 习题解答m 2αn 2βm r 0mr 0n ∂V 2V V=1[− 2 9V 02r 0m + r 0n ]体弹性模量 K= ∂2U(2)V⋅V 0∂2U=mn(−U )∂ V∂ V2 V V 9V 2mn K = U 0V 904)若取 m =β12, n = 10, r 0=0.3 ,= 4 eVβ−m计算 α β,的值r = n( ) −n mW = 1 α (1− )( )m n n mαm2 αn mβ =Wr 10α = r 2β+W 2[r 102 ]β =1.2 ×10-95eV ⋅m 103α =−7.5 ×1019eV ⋅ m 22.4 经过 sp 杂化后形成的共价键,其方向沿着立方体的四条对角线 的方向,求共价键之间的夹角。
固体物理习题及解答
完美导体不具备完全抗磁性,而超导体具有完全抗磁性,此为两者间最
E= B
根本的区别。根据法拉第电磁感应定律:
t ,若将超导体仅仅视
为电阻率为零的完美导体,内部电场强度 E 必为零,其旋度 E 必为零,
B
则磁场强度的时间变化率 t 亦必为零。因此完美导体内部的磁场强度保持 不变,根据外加磁场可为零或一定值;而对于超导体,无论外加磁场有无, 在超导态其内部磁场强度始终保持为零,具有完全抗磁性,其磁化率为-1。
表征。高于
68. 铁磁性物质高于居里温度时转变为顺磁性,并遵从 居里外斯 定律,
居里温度与 交换相互作用强度 成正比。
69. 第二类超导体的相干长度 小于 磁场侵入长度,因此超导态和正常态 的界面自由能为 负 值,可形成涡旋混合态。
70. 晶体衍射的必要条件是满足 Brag 方程,但由于系统消光,其中
-16. 布里渊(Brillouin)区 定义为倒格子空间中的维格纳-赛茨原胞;按
照衍射的劳埃条件,布里渊区边界包括了所有能发生 布拉格(Brag)反射 。
17. 根据布拉格方程,能满足衍射条件的入射 x 射线的波长不得大于 2d ;
入射 x 射线波长变大将导致衍射角
变大
。
18. 晶体结构中由原子或原子集团组成的最小重复单元称为
因此在外磁场为零时,具有 自发磁化 。
65. 根据费米分布函数
,在一定温度下,电子在费米能
级处的占据概率为
1/2
。
66. 原子磁矩在外磁场作用下的转向表现为 郎之万 顺磁性;导电电子
的自旋磁矩在外磁场作用下的转向表现为 泡利 顺磁性;
67. 一定温度下,铁磁性物质的特征物理性质由 磁滞回线 居里温度时转变为顺磁性,并遵从 居里外斯 定律。
固体物理课后习题与答案
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
《固体物理》课后习题答案
1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52 体心立方3π/ 8 ≈0.68 面心立方2π/ 6 ≈0.74六方密排2π/ 6 ≈0.74 金刚石3π/16 ≈0.34解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。
证明:体心立方格子的基矢可以写为面心立方格子的基矢可以写为根据定义,体心立方晶格的倒格子基矢为同理与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。
注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。
根据定义,面心立方的倒格子基矢为同理而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。
证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为即为平面的法线根据定义,倒格子基矢为则倒格子原胞的体积为1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足其中a 为立方边长。
解:根据倒格子的特点,倒格子与晶面族(h, k,l)的面间距有如下关系因此只要先求出倒格,求出其大小即可。
因为倒格子基矢互相正交,因此其大小为则带入前边的关系式,即得晶面族的面间距。
1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。
若立方边长为a ,写出最近邻和次近邻的原子间距。
答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a ;面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a 。
固体物理(胡安)课后答案(可编辑)
固体物理(胡安)课后答案第一章晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。
为什么?作出这一结构所对应的两维点阵和初基元胞。
解:石墨层中原子排成的六角网状结构是复式格子。
因为如图点A和点B的格点在晶格结构中所处的地位不同,并不完全等价,平移A→B,平移后晶格结构不能完全复原所以是复式格子。
1.2在正交直角坐标系中,若矢量,,,为单位向量。
为整数。
问下列情况属于什么点阵?(a)当为全奇或全偶时;(b)当之和为偶数时。
解:当为全奇或全偶时为面心立方结构点阵,当之和为偶数时是面心立方结构1.3 在上题中若奇数位上有负离子,偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。
1.4 (a)分别证明,面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角相等,对fcc为,对bcc为(b)在金刚石结构中,作任意原子与其四个最近邻原子的连线。
证明任意两条线之间夹角θ均为解:(1)对于面心立方 (2)对于体心立方 (3)对于金刚石晶胞1.5 证明:在六角晶系中密勒指数为(h,k,l)的晶面族间距为证明:元胞基矢的体积倒格子基矢倒格矢:晶面间距1.6 证明:底心正交的倒点阵仍为底心正交的。
证明:简单六角点阵的第一布里渊区是一个六角正棱柱体底心正交点阵的惯用晶胞如图: 初级晶胞体积: 倒易点阵的基矢: 这组基矢确定的面是正交底心点阵1.7 证明:正点阵是其本身的倒易点阵的倒格子。
证明:倒易点阵初级元胞的体积:是初基元胞的体积而由于而或:现在证明: 又令又:代入同理 1.8 从二维平面点阵作图说明点阵不可能有七重旋转对称轴。
解: 1.9 试解释为什么:(a)四角(四方)晶系中没有底心四角和面心四角点阵。
(b)立方晶系中没有底心立方点阵。
(c)六角晶中只有简单六角点阵。
解:(a)因为四方晶系加底心,会失去4次轴。
(b)因为立方晶系加底心,将失去3次轴。
(参考资料)固体物理习题带答案
D E ( ) ,其中 , 表示沿 x , y , z 轴的分量,我们选取 x , y , z
沿立方晶体的三个立方轴的方向。
显然,一般地讲,如果把电场 E 和晶体同时转动, D 也将做相同转动,我们将以 D' 表示转
动后的矢量。
设 E 沿 y 轴,这时,上面一般表达式将归结为:Dx xyE, Dy yyE, Dz zy E 。现在
偏转一个角度 tg 。(2)当晶体发生体膨胀时,反射线将偏转角度
tg , 为体胀系数
3
解:(1)、布拉格衍射公式为 2d sin ,既然波长改变,则两边同时求导,有
2d cos ,将两式组合,则可得 tg 。
(2)、当晶体发生膨胀时,则为 d 改变,将布拉格衍射公式 2d sin 左右两边同时对 d
考虑把晶体和电场同时绕 y 轴转动 / 2 ,使 z 轴转到 x 轴, x 轴转到 z 轴, D 将做相同
转动,因此
D'x Dz zy E
D'y Dy yyE
D'z Dx xy E 但是,转动是以 E 方向为轴的,所以,实际上电场并未改变,同时,上述转动时立方晶体
的一个对称操作,所以转动前后晶体应没有任何差别,所以电位移矢量实际上应当不变,即
第一章:晶体结构 1. 证明:立方晶体中,晶向[hkl]垂直于晶面(hkl)。
证 明 : 晶 向 [hkl] 为 h1 k2 l3 , 其 倒 格 子 为
b1
2
a1
a2
a3
(a2 a3 )
b2
2
a1
a3 a1 (a2 a3)
b3
2
a1
a1
a2
(a2 a3)
。可以知道其倒格子矢量
固体物理课后习题答案
(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .
固体物理 课后答案
第一章、晶体的结构习题1.以刚性原子球堆积模型,计算以下各结构的致密度分别为:(1)简立方,6π; (2)体心立方, ;83π(3)面心立方,;62π(4)六角密积,;62π(5)金刚石结构,;163π[解答]设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度,设n为一个晶胞中的刚性原子球数,r表示刚性原子球半径,V表示晶胞体积,则致密度ρ=Vrn334π(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为,,433aVra==面1.2 简立方晶胞晶胞内包含1个原子,所以ρ=6)(33234ππ=aa(2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433aVra==晶胞内包含2个原子,所以ρ=ππ83)(*2334334=aa图1.3 体心立方晶胞(3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以ρ=62)(*4334234ππ=a a .(4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。
5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,图 1.5 六角晶胞 图 1.6 正四面体晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高h =223232c r a == 晶胞体积 V = 222360sin ca ca =, 一个晶胞内包含两个原子,所以ρ=ππ62)(*22233234=ca a .(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O原子与中心在1,2,3,4处的原子相切,因为,8 3r a=晶胞体积3aV=,一个晶胞内包含8个原子,所以ρ=163)83(*83334ππ=aa.2.在立方晶胞中,画出(102),(021),(122-),和(201-)晶面。
固体物理学课后题答案
第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
固体物理习题解答参考答案晶体结构
r
( )
。由 R 所定义的也是一个点阵常数为
r
r r r ( i 2 的 SC 点阵,但相对于上面一个 SC 点阵位移了一个矢量 + j + k ) ,
这个点正好位于体心位置。 上面两个 SC 点阵穿套起来正好是一个 bcc 点阵,故 ni 或全为奇数,或全为偶数所定义的是一个 bcc 点阵。 (2)若
体心立方晶格原胞基矢 a1 = (−i + j + k ) a2 = (i − j + k ) a3 = (i + j − k ) 体心立方晶格原胞体积 倒格子基矢:
r
a 2
r
r
r r
ห้องสมุดไป่ตู้
a r 2
r
r r
a r 2
r
r
同理: 可见由 为基矢构成的格子为面心立方格子。
面心立方格子原胞基矢: 面心立方格子原胞体积: 倒格子基矢: 同理 可见由 为基矢构成的格子为体心立方格子。
(2) 体心立方(书P3,图1-3)
r 取 原 子 球 相 切 时 的 半 径 ( 体 对 角 线 的 1/4 ) , r= 3a / 4 ,n=2, V = a 3 所 以
ρ=
n 4π r 3 3 = 3π / 8 V
(3) 面心立方(书P4,图1-7)
r 取 原 子 球 相 切 时 的 半 径 ( 面 对 角 线 的 1/4 ) r= 2a / 4 ,n=4, V = a 3 , 所 以
则由 ε = AxT ε Ax 得
黄昆版固体物理学课后答案解析答案
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
固体物理基础(吴代鸣之高教版)课后1到10题答案
固体物理基础(吴代鸣之高教版)课后1到10题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一. 本章习题P272习题1.试证理想六方密堆结构中c/a=1.633.一. 说明:C 是上下底面距离,a 是六边形边长。
二. 分析:首先看是怎样密堆的。
如图(书图1.10(a),P8),六方密堆结构每个格点有12个近邻。
(同一面上有6个,上下各有3个)上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。
中间层的三个球相切,又分别与上下底面的各七个球相切。
球心之间距离为a 。
所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。
三.证明:如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点33'aAB AO ==∴(由余弦定理)330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=633.1322384132)2()2()3()2(2222222222''≈===∴+=+=+=a c c a ac a ac OA AO OO2.若晶胞基矢c b a,,互相垂直,试求晶面族(hkl )的面间距。
一、分析:我们想到倒格矢与面间距的关系G d π2=。
倒格矢与晶面族 (hkl )的关系321b l b k b h G++=写出)(321b b b 与正格子基矢 )(c b a的关系。
即可得与晶面族(hkl ) 垂直的倒格矢G。
进而求得此面间距d 。
二、解:c b a ,,互相垂直,可令k c c j b b i a a===,,晶胞体积abc c b a v =⨯⋅=)(倒格子基矢: kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢 222321)()()(2)(2cl b k a h G k cl j b k i a h b l b k b h G ++=∴++=++=ππ故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h Gd ++=++==πππ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择每个原胞含有几个原子1.分析:考虑选取原胞的条件:(即布拉菲晶格的最小单元)(1)体积最小的重复结构单元(2)只包含一个格点(3)能反映晶格的周期性应将几个原子组合成一个格点,然后构成原胞。
固体物理学习题解答(完整版)
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2(3)面心立方:6(4)六方密堆积:6(5)金刚石:。
高中物理固体课后习题答案及解析
高中物理固体课后习题答案及解析1.某人为了检验一块薄片物质是否为晶体,做了一个实验。
他以薄片的正中央O为坐标原点,建立Oxy平面直角坐标系,在两个坐标轴上分别取两点x1和y1,使x1和y1到O点的距离相等。
在x1和y1上分别固定一个测温元件,再把一个针状热源放在O点,发现x1点和y1点的温度在缓慢升高,但两点温度的高低没有差异。
于是得出结论:这块薄片是非晶体。
请说明:以上结论科学吗?为什么?解析:实验说明该均匀薄片在x,y两个方向上导热性能相同,但不能因此就确定这块薄片是非晶体,因为晶体有可能在导热性能上表现为各向同性,而在其他性质上表现为各向异性;由于多晶体具有各向同性,该薄片也有可能是多晶体。
2.食盐晶体的结构可以用钠离子和氯离子空间分布的示意图表示(图2.4-8),图中相邻离子的中心用线连起来了,组成了一个个大小相等的立方体。
现在要估算相邻两个钠离子中心的距离,除了知道食盐的密度ρ为2.17×103 kg/m3外,还要知道哪些数据?请用字母表示这些已知数据,推导出相邻两个钠离子中心距离的表达式。
提示:图中最小立方体的个数与离子数目相等。
答案及解析如下:3.内陆盐矿中开采的氯化钠称为岩盐,岩盐的颗粒很大,我们能清楚地看出它的立方体形状。
把大颗粒的岩盐敲碎后,小颗粒的岩盐仍然呈立方体形状。
图2.4-13表示了岩盐晶体的平面结构:粉红点为氯离子,灰点为钠离子,如果把它们用直线连起来,将构成一系列大小相同的正方形,作分界线AA 1,使它平行于正方形的对角线,作分界线BB 1,使它平行于正方形的一边。
在两线的左侧各取一个钠离子M 和N ,为了比较这两个钠离子所受分界线另一侧的离子对它作用力的大小,分别以M 、N 为圆心,作两个相同的扇形,不考虑扇形以外远处离子的作用。
(1)如果F 表示两个相邻离子之间引力的大小,问:M 、N 所受扇形范围内的正负离子对它作用力的合力是F 的多少倍?为使问题简化,设所有离子都是质点,而且它们之间的相互作用遵从“平方反ABB 1A 1 MN 图 2.4-13 岩盐晶体的平面结构比”规律。
《固体物理》课后习题答案
1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52 体心立方3π/ 8 ≈0.68 面心立方2π/ 6 ≈0.74六方密排2π/ 6 ≈0.74 金刚石3π/16 ≈0.34解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。
证明:体心立方格子的基矢可以写为面心立方格子的基矢可以写为根据定义,体心立方晶格的倒格子基矢为同理与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。
注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。
根据定义,面心立方的倒格子基矢为同理而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。
证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为即为平面的法线根据定义,倒格子基矢为则倒格子原胞的体积为1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足其中a 为立方边长。
解:根据倒格子的特点,倒格子与晶面族(h, k,l)的面间距有如下关系因此只要先求出倒格,求出其大小即可。
因为倒格子基矢互相正交,因此其大小为则带入前边的关系式,即得晶面族的面间距。
1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。
若立方边长为a ,写出最近邻和次近邻的原子间距。
答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a ;面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a 。
黄昆版固体物理学课后答案解析答案(1)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
固体物理学课后题答案
第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
黄昆版固体物理学课后答案解析答案(1)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
所以价电子的浓度越大,价电子的平均动能就越大。
5. 两块同种金属,温度不同,接触后,温度未达到相等前,是否存在电势差?为什么?[解答] 两块同种金属,温度分别为1T 和2T ,且21T T >。
在这种情况下,温度为1T 的金属高于费米能oF E 的电子数目,多于温度为2T 的金属高于费米能oF E 的电子数目。
两块同种金属接触后,系统的能量要取最小值,温度为1T 的金属高于oF E 的部分电子将流向温度为2T 的金属。
温度未达到相等前,这种流动一直持续,期间,温度为1T 的金属失去电子,带正电;温度为2T 的金属得到电子,带负电,两者出现电势差。
6. 为什么价电子的浓度越高,电导率越大?[解答] 电导σ是金属通流能力的量度。
通流能力取决于单位时间内通过截面积的电子数。
但并不是所有价电子对导电都有贡献,对导电有贡献的是费米面附近的电子。
费米球越大,对导电有贡献的电子数目就越多。
费米球的大小取决于费米半径3/12)3(πn k F =。
可见电子浓度n 越高,费米球越大,对导电有贡献的电子数目就越多,该金属的电导率就越高。
7. 一金属体积为V ,价电子总数为N ,以自由电子气模型,(1)在绝热条件下导出电子气体的压强为: V U P 320=,其中电子气体的基态能量0053F NE U = (2)证明电子气体的体积弹性模量 VU P V p V K 91035)/(0==∂∂-=。
[解答](1) 在绝热近似条件下,外场力对电子气作的功W 等于系统内能的增加dU ,即PdV W dU -== 式中P 是电子气的压强。
由上式可得 VUP ∂∂-= 在常温条件下,忽略掉温度对内能的影响,则由3/22200)3(25353πVN m N NE U U F ===由此可得到VU V N m N V U P 32)(32)3(25303/53/2220=•=∂∂-=-π (2) 体积弹性模量K 与压强P和体积V 的关系为VKV P -=∂∂ ,将203/83/222910)(3532)3(253V U V N m N V P -=•-=∂∂-π 代入体积弹性模量K 与压强P 和体积V 的关系式,得到 VU K 9100=8. 每个原子占据的体积为 3a ,绝对零度时价电子的费米半径为 ak F3/120)6(π=,计算每个原子的价电子数目。
[解答] 在绝对零度时导电电子的费米半径 3/120)3(πn k F =。
现已知一金属导电电子的费米半径 3/120)6(ak F π=,所以,该金属中导电电子的密度32an =。
3a 是一个原子占据的体积,由此可知,该金属的原子具有两个价电子。
第二章 晶体的结构习题及答案1.晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,0A ,0B 和0C 分别与基矢1a ,2a 和3a 重合,除0点外,0A ,0B ,和0C 上是否有格点?若ABC 面的指数为(234),情况又如何?[解答] 晶面家族(123)截1a ,2a ,和3a 分别为1,2,3等份,ABC 面是离原点0最近的晶面,0A 的长度等于1a 长度,0B 的长度等于2a 的长度的1/2 ,0C 的长度等于3a 的长度的1/3 ,所以只有A 点是格点。
若ABC 面的指数为(234)的晶面族,则A 、B 、和C 都不是格点。
2.在结晶学中,晶胞是按晶体的什么特性选取的?[解答] 在结晶学中,晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性。
3. 在晶体衍射中,为什么不能用可见光?[解答] 晶体中原子间距的数量级为1010-米,要使原子晶格成为光波的衍射光栅,光波的波长应小于1010-米。
但可见光的波长为7.6 — 7100.4-⨯米,是晶体中原子间距的1000倍。
因此,在晶体衍射中,不能用可见光。
4.温度升高时,衍射角如何变化?X 光波长变化时,衍射角如何变化?[解答] 温度升高时,由于热膨胀,面间距hkl d 逐渐变大,由布拉格反射公式λθn d hkl =sin 2可知,对应同一级衍射,当X 光波长不变时,面间距hkl d 逐渐变大,衍射角θ逐渐变小。
所以温度升高,衍射角变小。
当温度不变,X 光波长变大时,对于同一晶面族,衍射角θ随之变大。
7. 六角晶胞的基矢 j a ai a 223+=, j a ai b 223+-=,ck c =。
求其倒格基矢。
[解答] 晶胞体积为 c a ck j a ai j a ai c b a 223)]()223[()223(][=⨯+-•+=⨯•=Ω。
其倒格矢为)33(232)]()223[(2][22*j i a c a ck j a ai c b a +=⨯⨯+-=Ω⨯=πππ。
)33(232)]223()[(2][22*j i a c a j a ai ck a c b +-=⨯+⨯=Ω⨯=πππ。
k c ca j a ai j a aib ac πππ232)]223()223[(2][22*=⨯+-⨯+=Ω⨯=。
8. 证明以下结构晶面族的面间距:(1)立方晶系:2/1222][-++=l k h a d hkl ;(2)正交晶系:2/1222])()()[(-++=cl bk ahd hkl ;[解答](1)设沿立方晶系晶轴c b a ,,的单位矢量分别为i ,j ,k ,则正格子基矢为ai a =, aj b =, ak c =,倒格子基矢为 i a a π2*=, j a b π2*=, k ac π2*=。
与晶面族(hkl )正交的倒格矢 ***lc kb ha K hkl ++=。
由晶面间距hkl d 与倒格矢hkl K 的关系式 hklhkl K d π2=得 222lk h a d hkl ++=。
(2)对于正交晶系,晶胞基矢a ,b ,c 相互垂直,但晶格常数c b a ≠≠,设沿晶轴a ,b ,c 的单位矢量分别为i ,j ,k ,则正格子基矢为 ai a =, bj b =, ck c =,图2.6 立方晶胞倒格子基矢为 i a a π2*=, j b b π2*=, k cc π2*=。
与晶面族(hkl )正交的倒格矢 ***lc kb ha K hkl ++=。
由晶面间距hkl d 与倒格矢hkl K 的关系式 hklhkl K d π2=得 2/1222])()()[(-++=cl bk ah d hkl 。
9.求晶格常数为a 的面心立方和体心立方晶体晶面族)(321h h h 的面间距。
[解答] 面心立方正格子的原胞基矢为)(21k j a a +=, )(22i k a a +=, )(23j i aa += 由 Ω⨯=][2321a a b π , Ω⨯=][2132a a b π , Ω⨯=][2213a a b π ,可得其倒格子基矢为 )(21k j i a b ++-=π , )(22k j i a b +-=π , )(23k j i ab -+=π , 倒格矢 332211b h b h b h K h ++=根据式 hh h h K d π2321=,得面心立方晶体晶面族)(321h h h 的面间距 2/1232123212321])()()[(2321h h h h h h h h h aK d h h h h -+++-+++-==π。
体心立方正格子原胞基矢可取为 )(21k j i a a ++-=, )(22k j i a a +-= , )(3k j i aaa -+= 。
其倒格子基矢为 )(21k j ab +=π , )(22i k a b +=π , )(23j i ab +=π。
则晶面族)(321h h h 的面间距为2/1221213232])()()[(2321h h h h h h aK d h h h h +++++==π。
10. 试证三角晶系的倒格子也属于三角晶系。
[解答] 对于三角晶系,其三个基矢量的大小相等,且它们相互间的夹角也相等,即a a c ab a a ======321, θγβα===。
利用正倒格子的关系,得 b a a a b =Ω=Ω⨯=θππsin 2][22321,b a a a b =Ω=Ω⨯=θππsin 2][22132b a a a b =Ω=Ω⨯=θππsin 2][22213。
(1)设1b 与2b 的交角为12θ ,2b 与3b 的交角为23θ , 3b 与1b 的交角为31θ ,则有)cos (cos 4])())([(4])[(4)]()[(4cos 224222132312233212213322212221θθππππθ-Ω=•-••Ω=⨯⨯•Ω=⨯•⨯Ω==•a a a a a a a a a a a a a a a a b b b (2) 由(1)和(2)式得 θθθθθθθθθcos 1cos cos 1)cos 1(cos sin cos cos cos 22212+-=---=-=。