铜及铜合金的高温特性

合集下载

铜及铜合金的熔炼工艺特性及操作要点

铜及铜合金的熔炼工艺特性及操作要点

铜及铜合金的熔炼工艺特性及操作要点铜及铜合金的熔炼是什么?铜及铜合金的熔炼工艺特性是什么?操作要点又有哪些呢?首先来看熔炼定义:熔炼是铸造生产工艺之一。

将金属材料及其它辅助材料投入加热炉溶化并调质,炉料在高温(1300~1600K)炉内物料发生一定的物理、化学变化,产出粗金属或金属富集物和炉渣的火法冶金过程。

炉料除精矿、焙砂、烧结矿等外,有时还需添加为使炉料易于熔融的熔剂,以及为进行某种反应而加入还原剂。

此外,为提供必须的温度,往往需加入燃料燃烧,并送入空气或富氧空气。

粗金属或金属富集物由于与熔融炉渣互溶度很小和密度差分为两层而得以分离。

富集物有锍、黄渣等,它们尚须经过吹炼或其他方法处理才能得到金属。

铜及铜合金的熔炼图1常见铜及铜合金的熔炼工艺特性及操作要点:黄铜熔炼工艺特性及操作要点:1)锌的除气和脱氧性能很好,操作中加入脱氧剂铜-磷的目的,主要是改善合金的流动性;2)含锌大于20%的黄铜,一般可按喷火次数作为实际出炉依据;3)尽量低温加锌,高温捞渣,以减少熔炼损耗;4)以冰晶石作熔剂的合金,冰晶石加入量约为炉料重量的0.1%;5)铁以Cu-Fe或Al-Fe中间合金加入,易氧化元素如砷、铍等与铜制成中间合金加入。

青铜熔炼工艺特性及操作要点:1)青铜宜采用中频感应电炉熔炼,硅砂或镁砂炉衬,但用有芯感应炉熔炼铝青铜时,最好使用中性或碱性炉衬;2)硅青铜、锡锌铅青铜吸气性强,应使用煅烧木炭作覆盖剂,装料后立即加入足够木炭,直到浇铸完毕不再向炉内添加木炭。

铜及铜合金的熔炼图2白铜熔炼工艺特性及操作要点:1)白铜宜采用工频或中频感应电炉熔炼,硅砂或镁砂炉衬;2)为提高普通白铜的热塑性,可加入钛、锆作变质剂。

3)装料时如炉内残留铜水过少,镍、铁不易熔化时,允许先加入少量紫铜以加速熔化。

镍和镍合金熔炼工艺特性及操作要点:1)镍和镍合金采用中频或高频感应电炉熔炼,高铝砂或镁砂炉衬;2)为提高纯镍和镍合金的热塑性,细化晶粒,可加入少量钛作变质剂,在炉料全部熔化后加入;3)加炭脱氧时,可用小块木炭慢慢加于液面,一次加入过多或过快易造成金属液上涨,甚至外溢。

高温下金属腐蚀机理探究

高温下金属腐蚀机理探究

高温下金属腐蚀机理探究高温下金属腐蚀机理探究引言:金属腐蚀是指金属在特定环境中与氧气、水或其他化学物质发生反应引起的损失。

在高温条件下,金属腐蚀的速度更加快速和严重,因此探究高温下金属腐蚀机理对于有效防止金属材料的损耗具有重要意义。

本文将重点讨论高温条件下金属腐蚀的机理,并介绍常见的高温腐蚀类型和预防措施。

一、高温下金属腐蚀反应机理1. 氧化反应:高温下金属的氧化反应是最主要的腐蚀类型之一。

当金属与氧气接触时,金属表面会形成氧化皮层,这是一种稳定的纳米尺度金属氧化物。

金属氧化物通常具有精细的晶体结构,因此具有优异的物理、化学和热力学性质。

然而,这层氧化层并不稳定,它会通过气相或金属表面的扩散机制被氧进一步氧化形成氧化物或氧化物混合物,导致金属腐蚀加剧。

2. 离子迁移:金属在高温下是高活性物质,它的离子(阳离子)可以在晶体结构中迁移,并与外部环境中的离子发生反应。

离子迁移是金属腐蚀过程中不可忽视的因素之一。

高温下金属晶体中离子的迁移速率比较快,甚至可以达到很高的速度。

离子迁移可以引起金属的局部腐蚀和晶间腐蚀,从而导致金属的失效。

3. 自增强腐蚀:自增强腐蚀是金属在高温下发生腐蚀过程中的一个重要现象。

高温条件下,金属材料内部产生的应力和扩散不均匀会导致局部氧化膜的脱落和重新形成,从而形成更大的氧化层。

这种现象会进一步加速金属的腐蚀速度,形成一个自我放大的过程。

二、高温下常见的金属腐蚀类型1. 高温氧化腐蚀:高温氧化腐蚀是金属在高温条件下与氧气发生反应而引起的腐蚀。

氧化反应是金属在高温下腐蚀的主要原因,它会导致金属的减薄和失效。

常见的高温氧化腐蚀有高温空气氧化腐蚀、高温水蒸气氧化腐蚀等。

2. 高温酸性腐蚀:高温酸性腐蚀是金属在高温酸性介质中发生的腐蚀。

在高温酸性环境中,金属表面会受到腐蚀溶解和局部电化学反应的影响,从而引起金属的失效。

常见的高温酸性腐蚀有酸雾腐蚀、硫酸腐蚀等。

3. 高温碱性腐蚀:高温碱性腐蚀是金属在高温碱性介质中发生的腐蚀。

铜及加工铜合金的热处理

铜及加工铜合金的热处理

一、铜和加工铜合金的热处理字体[大][中][小](一)铜和加工铜合金的退火1. 再结晶退火加工硬化可以提高铜和铜合金的强度和硬度,但也降低了材料的塑性和韧性。

冷加工(冷轧、冷冲或冷拔)后的型材(线材、棒材、板材)再作进一步冷变形时将成为困难。

所以,材料冷轧或冷拔的过程中,一道与一道之间须进行再结晶退火,恢复其塑性,以便于冷加工,此类再结晶退火为中间(再结晶)退火。

为了改善材料的组织,且使材料均匀化,以满足使用条件的要求,成品最终要进行一次再结晶退火,即为最终再结晶退火。

通常中间退火时,采取快速升温,装炉量大,温度取上限.从而提高再结晶温度,细化晶粒,缩短加热时间,减少氧化,提高生产率;最终退火,缓慢升温,控制装炉量,温度取下限,特别是薄壁零件,以保证产品性能均匀。

温度控制在±5℃之内,退火保温时黄铜为1.5~3h,锡青铜、铝青铜、铍青铜为1~3h。

纯铜的再结晶退火工艺见表9.2-1,加工铜合金再结晶退火工艺见表9.2-2,对于能热处理强化的铜合金,中间退火后必须缓冷,其他铜合金冷却速度对性能影响不大。

中间退火的温度与预先的冷变形程度、金属的成分、加热速度、原始晶粒尺寸等有关。

加热温度且在再结晶温度以上,温度太低再结晶不完全,但太高又会使晶粒粗大,使下一道冷加工时,材料表面出现“桔皮”状,这是十分有害的,尤其在单相材料中。

在成形加工量小时,宜采用晶粒细小的坯料,当成形加工量大时,宜采用晶粒粗大的坯料。

铜合金再结晶后的力学性能不仅与其成分有关,还与退火温度及退火前的冷加工量有关,表9.2-3显示了黄铜带材的制造过程与力学性能的关系。

2. 去应力退火其作用是去除铸件、焊接件及冷成形件的内应力,以防止零件变形与开裂,也能提高抗蚀性(因零件存在拉应力时,在腐蚀介质中,极易产生应力腐蚀)。

去应力退火也能提高冷成形黄铜、锌白铜、磷青铜的弹性和强度。

一般合金去应力退火保温时间为1~3 h,铍青铜为15~20 min,去应力退火温度见表9.2-2。

铜及铜合金性能数据

铜及铜合金性能数据

铜及铜合金性能数据1 概述由纯铜和其他合金元素组成的铜合金一般分为以下几类:1)纯铜;2)黄铜——铜和锌的合金;3)锡青铜——铜和锡的合金;4)特殊青铜——铜基合金中不含锡而含有铝、镍、锰、硅、铁、铍、铅等特殊元素(二元多元)组成的合金;5)白铜——铜和镍的合金。

现就纯铜、黄铜和锡青铜的特性和用途分别简介如下:纯铜外观呈紫红色,习惯上称为紫铜。

它具有很多有价值的性能,是一种主要的有色金属,广泛用于各个工业部门中。

铜的密度8.89,熔点1083ºC,它的主要特性是:(1)有良好的导电性,在各类金属中仅次于银;铜质愈纯,导电性愈高,即电阻愈小。

(2)有好的导热性,在这方面仅次于银和金。

(3)在大气、淡水、海水中有很好的耐蚀性,所以铜制的水管和器皿能经久不坏。

(4)塑性高,能很好地承受各种冷、热压力加工。

其主要缺点是强度和硬度较低,不能用作结构零件。

它在工业上主要用途是制造电气工业上的导线和导电零件,以及用于配制各种合金。

纯铜加工产品分含氧铜(即一般纯铜)、无氧铜、磷脱氧铜和银铜四类,以板、棒、管、箔材半成品形式供应。

由于氧对铜的力学性能和工艺性能都有不良影响,特别是含有氧的铜在还原性气氛中加热时(如退火),氢向铜中扩散与氧形成水蒸气,以一定压力由铜中跑出,会造成显微裂纹,即发生通常所说的“氢病”。

因此,重要的电气用铜,一般都采用无氧铜。

黄铜的颜色随含锌量的增加,由黄红色变到淡黄色。

如果合金只由铜和锌组成,称为普通黄铜或锌黄铜。

普通黄铜的力学性能比纯铜高,价格也便宜得多,在一般情况下是不生锈也不会被腐蚀的;同时塑性好,能很好地承受热压和冷压加工,故广泛用于机器制造业中各种结构零件。

为了改善普通黄铜的性质,在铜锌合金中再加入锡、镍、锰、铅、硅、铝、铁等元素,变成为特殊黄铜。

各种元素对特殊黄铜的性能影响如下:锡能提高黄铜的强度并能显著提高其对海水的抗蚀性能,故有海军黄铜之称。

镍也能提高强度和抗蚀性,但因镍太贵,所以镍黄铜用得不多。

铜及铜合金焊材选用

铜及铜合金焊材选用

铜及铜合金焊材选用铜及其合金在工业制造和建筑领域中广泛应用。

而焊接作为一种常见的加工方法,对于铜及铜合金的选用适合的焊材是至关重要的。

本文将探讨铜及铜合金焊材的选择,并提供一些建议。

一、铜及铜合金的特性铜具有优良的导热性和导电性,耐腐蚀性好,并且易于加工。

铜合金则具有更高的强度和硬度,适用于各种工业应用。

在焊接过程中,铜及铜合金的熔点较低,且易于形成均匀的焊缝。

二、焊接方法根据焊接方式的不同,可将焊接方法分为气焊、电弧焊和无熔剂焊接。

1. 气焊气焊是传统的焊接方法,使用氧炔火焰进行焊接。

对于铜及铜合金,采用适当的焊接棒和焊接流程能够获得良好的焊接效果。

常用的气焊焊材有无烟熔剂焊条与纯铜焊条。

2. 电弧焊电弧焊利用电弧形成焊缝。

对于铜及铜合金的焊接,采用惰性气体保护焊(TIG)和焊丝(MIG)焊接能够获得优异的焊接质量。

惰性气体焊接可以在焊接过程中提供保护性气氛,防止氧气和氮气的污染。

3. 无熔剂焊接无熔剂焊接是一种无需外加熔剂的焊接方法,通过高频加热和压力来实现焊接。

这种方法适用于一些对熔剂敏感的应用,因为没有熔剂的使用,焊接后无需清洁和去除残留。

三、焊材选择建议选择适合的焊材是确保焊接质量的关键。

下面是一些建议:1. 纯铜焊材纯铜焊材适用于焊接纯铜或低合金铜,如无氧铜和磷铜。

它们具有良好的导电性和导热性,并能够产生均匀的焊缝。

纯铜焊材可用于气焊、电弧焊和无熔剂焊接。

2. 银焊材银焊材是一种常用的铜合金焊材,适用于焊接多种铜合金,如黄铜和镍铜合金。

银焊材在高温下熔点低,具有较强的强度和耐腐蚀性。

然而,银焊材的成本较高,需要注意使用时的温度控制。

3. 焊丝焊丝适用于电弧焊和无熔剂焊接,可用于焊接各种铜合金。

根据具体应用的不同,可以选择不同材质的焊丝,如铜铝焊丝、铜镍焊丝和铜锌焊丝。

焊丝选择时需要根据要求的强度、导电性和耐腐蚀性来确定。

四、注意事项在选择和使用铜及铜合金焊材时,还需注意以下事项:1. 确保焊接材料的质量,选择正规的供应商和品牌。

国家标准《铜及铜合金软化温度的测定》编制说明

国家标准《铜及铜合金软化温度的测定》编制说明

《铜及铜合金软化温度的测定》(送审稿)编制说明一、任务来源根据有色标委(2014)第29号《关于转发2014年第一批有色金属国家、行业标准制(修)订项目计划的通知》所下达的国家标准制定计划,《铜及铜合金软化温度的测定方法》标准列入2014年第一批有色金属国家标准项目计划表第51号,由中铝洛阳铜业有限公司、菏泽广源铜带股份有限公司、安徽鑫科新材料股份有限公司、国家铜铝冶炼及加工产品质量监督检验中心、铜陵金威铜业有限公司、苏州有色金属研究院有限公司、宁波兴业盛泰有限公司、安徽楚江科技新材料股份有限公司、太原晋西春雷铜业有限公司负责起草。

二、工作简况1 立项目的和意义随着铜及铜合金产品在军工、航天航空、核电、船舶、冶金和高铁工业的广泛应用,特别是许多材料在高温环境下使用,材料在高温下的抗软化性能显得尤为重要。

软化温度是指铜及铜合金产品保温一小时后的硬度下降至原始硬度的80%时所对应的加热温度。

软化温度的高低是评价铜及铜合金产品材料抗高温软化性能的量化指标,目前国内外还没有测定铜及铜合金材料软化温度的方法,在高温下使用铜材的软化温度都是未知数,因此有必要起草铜及铜合金软化温度的测定的国家标准。

2项目编制组成员本标准的编制组由中铝洛阳铜业有限公司、菏泽广源铜带股份有限公司、安徽鑫科新材料股份有限公司、国家铜铝冶炼及加工产品质量监督检验中心、铜陵金威铜业有限公司、苏州有色金属研究院有限公司、宁波兴业盛泰有限公司、安徽楚江科技新材料股份有限公司、太原晋西春雷铜业有限公司等单位组成。

3 标准起草过程首先查阅、分析了国内外相关检测软化温度的标准和资料,国外没有相关标准,而目前国内只有YS/T466-2003《铜板带箔材耐热试验方法硬度法》,该标准仅适用于厚度为0.005 mm~0.5 mm的板带材耐热试验,且保温时间没有统一的规定,也没有规定软化温度的定义。

针对铜及铜合金软化温度的测定没有统一的检测标准,而随着微电子和通讯工业、高铁、军工的高速发展,对所需铜材(如框架材料、射频电缆带、铜镍硅、铜铬锆等)的抗软化性能提出了更高的要求,为了满足生产迅速提高的要求,寻找一种准确的软化温度检测方法已迫在眉睫。

铜及铜合金的介绍

铜及铜合金的介绍

铜及铜合金的介绍目前,铜及铜合金已成为第二大有色金属,是全球经济各行业中广泛需求的基础材料。

铜及铜合金之所以得到广泛的应用,是由于其具有一系列不可代替的优异特性。

特性如下所列:(1)铜及其合金具有优良的导电和导热性能,在所有金属中,铜的导电性仅次于银。

铜的导热性是所有金属中最好的,为420W/(m﹒k)。

当然,随着合金化程度显著提高,人类现代技术发展了一系列实现铜合金高强高导的途径。

导电、导热是铜及其合金最重要的应用。

(2)铜是抗磁性金属,并且抗磁性磁化率低,因此铜及其合金在抗外磁场的环境下得到了广泛的应用,如仪表,罗盘、航空、航天。

雷达等,但含铁,锰及高Ni的铜合金不在此之列。

(3)铜的摩擦因数很小,因此以铜为基体的铜合金耐磨性优良,尤其是含Sn 的多元铜合金。

(4)铜的电极电位很高,高于氢,其标准电极电位为+0.34V,因此铜的耐腐性良好,在许多介质中具有稳定。

(5)铜具有面心立方晶格,无同素异构转变,因而具有很高的塑性,非常易于加工成形。

铜尽强度很低,但不少元素在铜中溶解度都很大,固溶强化效果很好,这使得很多铜合金兼并具有高强度和高韧性,从而广泛用来制造高强,高韧,高导电,高导热和高耐蚀的重要零件。

(6)铜呈紫铜色,并通过合金化,形成金黄色和银白色,色调古典,可适用于货币和工艺美术品等(7)铜通过合金化,还可以使其产生一些奇特性能,如形状记忆效应,超弹性和减振性。

铜和铜合金最普通的分类方法是将其分成六大类:紫铜、高铜合金、黄铜、青铜、白铜和锌白铜。

由于实际应用的紫铜,和黄铜较普遍。

紫铜又叫工业纯铜,紫铜通常较软且有韧性,含杂质总量低于0.7%。

高铜合金含有少量的,各种合金元素如铍,镉,Cr,或Fe等,每一种合金元素的固溶度小于8%(摩尔分数)其这些元素可改善铜的一种或一种以上基本性能,其余几大类的每一类含五种主要的合金元素的一种,以作为每类合金的初始合金组分,如下图4.1-1另外铜合金的总分类,黄铜Cu-Zn,锡黄铜Cu-Zn-Sn-Pb ,铝青铜Cu-Al-Fe-Ni,硅青铜Cu-Si,白铜Cu--N i-Fe ,锌白铜Cu--N i-Zn 。

加工用铜及铜合金的牌号

加工用铜及铜合金的牌号

加工用铜及铜合金的牌号、特性及应用序号组别牌号主要特性应用举例1.纯铜TI有良好的导电、导热、耐蚀和加工性能,可以焊接和钎焊。

含降低导电、导热性的杂质较少,微量的氧对导电、导热和加工等性能影响不大,但易引起“氢病”,不宜在高温(如>370℃)还原性气氛中加工(退火、焊接等)和使用用于导电、导热、耐蚀器材。

如:电线、电缆、导电螺钉、爆破用雷管、化工用蒸发器、贮藏器及各种管道等2.T23.T3有较好的导电、导热、耐蚀和加工性能,可以焊接和钎焊;但含降低导电、导热性的杂质较多,含氧量更高,更易引起“氢病”,不能在高温还原性气氛中加工、使用用于一般铜材,如:电气开关、垫圈、垫片、铆钉、管嘴、油管及其他管道等4.无氧铜TU1、TU2纯度高,导电、导热性极好,无“氢病”或极少“氢病”;加工性能和焊接、耐蚀、耐寒性均好主要用于电真空仪器仪表器件5.磷脱氧铜TP1焊接性能和冷弯性能好,一般无“氢病”倾向,可在还原性气氛中加工、使用,但不宜在氧化性气氛中加工、使用。

TP1的残留磷量比TP2少,故其导电、导热性较TP2高主要以管材应用,也可以板、带或棒、线供应。

用作汽油或气体输送管、排水管、冷凝管、水雷用管、冷凝器、蒸发器、换热器、火车厢零件6.TP27.银铜TAg0.1铜中加入少量的银,可显著提高软化温度(再结晶温度)和蠕变强度,而很少降低铜的导电、导热性和塑性。

实用的银铜其时效硬化的效果不显著,一般采用冷作硬化来提高强度。

它具有很好的耐磨性、电接触性和耐蚀性,如制成电车线时,使用寿命比一般硬铜高2~4倍用于耐热、导电器材。

如:电动机整流子片、发电机转子用导体、点焊电极、通信线、引线、导线、电子管材料等8.普通黄铜H95强度比纯铜高(但在普通黄铜中,它是最低的),导热、导电性好,在大气和淡水中有高的耐蚀性,且有良好的塑性,易于冷、热压力加工,易于焊接、锻造和镀锡,无应力腐蚀破裂倾向在一般机械制造中用作导管、冷凝管、散热器管、散热片、汽车水箱带以及导电零件等9.H90性能和H96相似,但强度较H96稍高,可镀金属及涂敷珐琅供水及排水管、奖章、艺术品、水箱带以及双金属片10.H85具有较高的强度,塑性好,能很好地承受冷、热压力加工,焊接和耐蚀性能也都良好冷凝和散热用管、虹吸管、蛇形管、冷却设备制件11.H80性能和H85近似,但强度较高,塑性也较好,在大气、淡水及海水中有较高的耐蚀性造纸网、薄壁管、皱纹管及房屋建筑用品12.H70H68有极为良好的塑性(是黄铜中最佳者)和较高的强度,可加工性能好,易焊接,对一般腐蚀非常安定,但易产生腐蚀开裂。

铜及铜合金在高温环境下的性能研究

铜及铜合金在高温环境下的性能研究

M etallurgical smelting冶金冶炼铜及铜合金在高温环境下的性能研究许义月,傅金林,周伶俐摘要:铜及其合金作为重要的工程材料,在各个领域都有广泛应用。

然而,在高温环境下,铜及铜合金的性能受到严重挑战,如热膨胀、氧化和强度降低等问题。

这些问题不仅影响了材料的性能和寿命,也制约了其在电子、航空航天等领域的应用潜力。

因此,深入研究铜及铜合金在高温环境下的性能特点,并提出相应的优化措施,具有重要意义。

本文旨在通过理论分析,探讨铜及铜合金在高温环境下的性能问题,并提出解决方案和优化措施,以提高其在实际应用中的效能。

同时,本文还将探讨铜及铜合金在电子、航空航天等领域的应用前景。

关键词:铜合金;高温环境;性能特点;优化措施;应用前景铜及其合金作为重要的工程材料,在多个领域具有广泛应用。

然而,高温环境对铜及铜合金的性能会产生显著影响,例如,热膨胀、氧化和强度降低等问题。

因此,深入研究铜及铜合金在高温环境下的性能特点,并提出相应的优化措施,对于提高其在实际应用中的效能至关重要。

通过理论分析,探讨铜及铜合金在高温环境下的性能问题,并提出解决方案和优化措施,同时探讨其在电子、航空航天等领域的应用前景,以期为相关领域的研究和应用提供参考。

1 铜及铜合金在高温环境下的性能研究1.1 铜及铜合金的热膨胀性铜及其合金在高温环境下的热膨胀性是一个重要的性能特点。

热膨胀性是指材料在温度变化时的尺寸变化情况。

在高温下,材料受热后原子内部的热振动增强,导致晶格结构发生变化,从而引起材料的体积膨胀。

铜及铜合金的热膨胀性主要受到两个因素影响:晶格结构和合金元素含量。

铜的晶格结构属于面心立方结构,相对比较稳定。

然而,当合金中添加其他元素时,这些元素的不同晶格结构和原子尺寸会影响到铜的热膨胀性。

例如,铝、锡等元素可以引入不同的晶格缺陷,使得铜的热膨胀系数发生变化。

在实际应用中,铜及铜合金的热膨胀性需要得到有效控制。

过大的热膨胀系数可能导致材料在高温下产生应力集中现象,进而引发裂纹和破坏。

铜及铜合金性能数据

铜及铜合金性能数据

铜及铜合金性能数据1 概述由纯铜和其他合金元素组成的铜合金一般分为以下几类:1)纯铜;2)黄铜——铜和锌的合金;3)锡青铜——铜和锡的合金;4)特殊青铜——铜基合金中不含锡而含有铝、镍、锰、硅、铁、铍、铅等特殊元素(二元多元)组成的合金;5)白铜——铜和镍的合金。

现就纯铜、黄铜和锡青铜的特性和用途分别简介如下:纯铜外观呈紫红色,习惯上称为紫铜。

它具有很多有价值的性能,是一种主要的有色金属,广泛用于各个工业部门中。

铜的密度8.89,熔点1083ºC,它的主要特性是:(1)有良好的导电性,在各类金属中仅次于银;铜质愈纯,导电性愈高,即电阻愈小。

(2)有好的导热性,在这方面仅次于银和金。

(3)在大气、淡水、海水中有很好的耐蚀性,所以铜制的水管和器皿能经久不坏。

(4)塑性高,能很好地承受各种冷、热压力加工。

其主要缺点是强度和硬度较低,不能用作结构零件。

它在工业上主要用途是制造电气工业上的导线和导电零件,以及用于配制各种合金。

纯铜加工产品分含氧铜(即一般纯铜)、无氧铜、磷脱氧铜和银铜四类,以板、棒、管、箔材半成品形式供应。

由于氧对铜的力学性能和工艺性能都有不良影响,特别是含有氧的铜在还原性气氛中加热时(如退火),氢向铜中扩散与氧形成水蒸气,以一定压力由铜中跑出,会造成显微裂纹,即发生通常所说的“氢病”。

因此,重要的电气用铜,一般都采用无氧铜。

黄铜的颜色随含锌量的增加,由黄红色变到淡黄色。

如果合金只由铜和锌组成,称为普通黄铜或锌黄铜。

普通黄铜的力学性能比纯铜高,价格也便宜得多,在一般情况下是不生锈也不会被腐蚀的;同时塑性好,能很好地承受热压和冷压加工,故广泛用于机器制造业中各种结构零件。

为了改善普通黄铜的性质,在铜锌合金中再加入锡、镍、锰、铅、硅、铝、铁等元素,变成为特殊黄铜。

各种元素对特殊黄铜的性能影响如下:锡能提高黄铜的强度并能显著提高其对海水的抗蚀性能,故有海军黄铜之称。

镍也能提高强度和抗蚀性,但因镍太贵,所以镍黄铜用得不多。

铜合金的熔点

铜合金的熔点

铜合金的熔点铜合金是一种非常重要的金属材料,广泛应用于工业、建筑、电子、航空航天等领域。

铜合金的特性之一就是具有较高的熔点,这是由于铜的原子结构决定的。

本文将介绍铜合金的熔点及其对材料性能的影响。

1. 铜合金的熔点铜的原子序数为29,其原子结构为1s2 2s2 2p6 3s2 3p6 4s1 3d10。

铜原子中的3d电子层只有一个电子,而这个电子与4s电子层的电子形成了半满的电子壳层结构。

这种结构使得铜原子具有较高的电子云密度,因此在晶格中的原子间相互作用较强,导致其熔点较高。

铜合金的熔点因其成分不同而有所差异。

以下是一些常见铜合金的熔点范围:- 纯铜:1083℃- 黄铜(含Zn):900-940℃- 白铜(含Ni):1100-1200℃- 铜铝合金:630-1000℃- 铜镍合金:1080-1300℃- 铜钴合金:900-1040℃- 铜铬合金:1110-1310℃可以看出,铜合金的熔点范围很大,这也是其应用广泛的原因之一。

2. 铜合金的熔点对材料性能的影响铜合金的熔点对其材料性能有着重要的影响。

一般来说,熔点越高的材料,其强度和硬度也会相应提高。

这是因为高熔点材料的晶格结构更加紧密,原子间的相互作用力更强,导致材料更加坚硬。

此外,铜合金的熔点还影响着其加工性能和耐高温性能。

高熔点的铜合金通常需要更高的加工温度才能进行塑性变形,这对于一些精密加工来说是很具有挑战性的。

而耐高温性能较好的铜合金则可以在高温环境下保持稳定的性能,这在一些特殊的应用场合中非常重要。

另外,铜合金的熔点也对其成本造成一定的影响。

一般来说,熔点越高的材料其加工难度也越大,因此生产成本也会相应提高。

3. 铜合金的应用铜合金由于其优良的性能,被广泛应用于工业、建筑、电子、航空航天等领域。

以下是一些常见的应用场合:- 电子领域:铜合金是一种良好的导电材料,常用于制造电线、电缆、电极等部件。

- 建筑领域:铜合金具有良好的耐腐蚀性和美观性,常用于制造屋顶、墙面、门窗等建筑部件。

铜合金材料的高温氧化行为研究

铜合金材料的高温氧化行为研究

铜合金材料的高温氧化行为研究随着科技的发展,高温材料越来越受到人们的关注。

铜合金是重要的高温结构材料,具有优异的导电性、热传导性、抗热膨胀性和耐高温氧化性,因此被广泛应用于航空航天、能源和环保等领域。

而高温氧化是铜合金在高温环境中的一个主要问题,会对其表面产生氧化物和失效等不良影响。

因此,研究铜合金材料的高温氧化行为,对其性能的提升和改善具有重要的意义。

一、高温氧化机理在高温氧化过程中,氧气和金属表面形成氧化物,主要有三种机理:均一氧化、离子扩散和缺陷扩散。

1. 均一氧化均一氧化属于表面反应,也称为外彩层氧化,主要是氧分子与金属表面上的空位相遇,通过随机的过程形成氧化物。

在均一氧化机理中,氧化物的生成速度不仅与氧的分压力有关,还取决于金属氧化膜上是否还有空位。

包括铜在内的许多金属在空气中加热会形成高氧化态金属,如CuO、Cu2O等。

2. 离子扩散离子扩散指的是氧离子在氧化物膜内扩散,氧分子和金属离子之间的相互作用,形成不同的氧化物产物分布。

在离子扩散机理中,氧离子在氧化膜内间歇性地跃迁,可以划分为Fick扩散、Wagner扩散和Kirkendall效应扩散等。

3. 缺陷扩散缺陷扩散是氧化物中空位的扩散,其中空位可以是空间缺陷,如晶格缺陷、非晶体空洞等。

在缺陷扩散机理中,由于空间和时间的限制,空洞可以与周围的原子进行相互作用和扩散,形成不同的缺陷扩散系统。

二、铜合金高温氧化行为研究为了研究铜合金在高温氧化过程中的机理以及氧化物的产生和析出情况,许多实验研究进行了大量工作。

1. 表面形貌观察显微镜观察表明,随着温度的升高,铜合金表面会产生许多蜂窝状孔洞和氧化物沉积物,表面变得粗糙不平。

铜合金中Y2O3、Cr2O3等添加剂则可以有效的抑制氧化过程,减弱表面菌糸的氧化反应。

2. 物理性质研究铜合金的高温氧化行为与其物理性质密切相关。

实验表明,金属材料的抗氧化性与其晶格结构、约束、空位和金属氧化物的活性有关。

铜加热至500度的颜色

铜加热至500度的颜色

铜加热至500度的颜色
摘要:
一、铜加热至500度的颜色
二、铜加热过程中的物理变化
三、铜在不同温度下的颜色变化
四、实际应用:铜加热在工艺品制作中的作用
正文:
铜加热至500度的颜色会发生怎样的变化呢?铜是一种常见的金属材料,在加热过程中会呈现出不同的颜色,这主要是由于其表面氧化物的形成所致。

首先,我们需要了解铜加热过程中的物理变化。

当铜被加热至500度时,其表面会逐渐氧化,形成一层淡蓝色的氧化铜。

这是因为铜在高温下与氧气发生反应,产生氧化铜。

随着加热温度的升高,氧化铜的生成速度加快,颜色也会逐渐变得更加明显。

那么,铜在不同温度下的颜色变化是怎样的呢?在加热至100度左右时,铜的颜色变化不明显,仍为红色。

当加热至300度时,铜表面开始出现蓝色,随着温度的继续升高,蓝色逐渐加深。

当达到500度时,铜的颜色呈现出深蓝色,这是氧化铜的颜色。

铜加热在工艺品制作中有着广泛的应用。

例如,在我国传统的景泰蓝制作过程中,就需要将铜加热至一定的温度,使其表面氧化形成丰富的蓝色。

此外,在金属雕刻、铜饰品制作等领域,铜加热的颜色变化也发挥着重要作用。

总之,铜加热至500度的颜色为深蓝色,这是由于表面氧化物的形成所
致。

了解铜在不同温度下的颜色变化,可以为我们制作精美的铜制品提供有益的参考。

耐高温铜合金牌号

耐高温铜合金牌号

耐高温铜合金牌号概述:随着高科技产业的发展和人们对于高性能材料需求的增加,耐高温铜合金也因其独特的性能而备受瞩目。

在使用过程中,根据不同的工作环境和终端要求,需要选用不同的耐高温铜合金牌号才能确保其稳定可靠的工作,因此选材过程显得至关重要。

下面将根据合金类型进行分类,介绍耐高温铜合金的常用牌号及其特点。

铝铜系耐高温铜合金:铝铜系耐高温铜合金具有耐氧化、耐腐蚀、耐高温性能好的特点。

根据铝铜比例不同,可以分为两类:铝铜比较高的防火铝合金和铝铜比较低的硬铝合金。

防火铝合金,比例为铝:铜:硅=3:1:1.6,常用牌号为Al-Cu-Si-Mg (铝铜硅镁合金),具有抗裂纹能力强、高温下具有很好的稳定性,极限工作温度可高达400℃,主要应用于飞机、船舶、火箭等高温环境下。

硬铝合金,比例为铝:铜=2:1,常用牌号为Al-Cu,具有强度高、耐腐蚀、耐磨性好等特点,也适用于高温环境下的航空航天、军工等领域。

钼铜系耐高温铜合金:钼铜系耐高温铜合金以钼为主要合金元素,具有良好的高温强度、耐蚀性和耐磨性。

常用的牌号为Mo-Cu,采用纯钼和纯铜的混合物制成,可以承受高达500℃的高温环境,用于制造高温电子器件、高速运动部件、卫星发射器等。

另外,钼铜合金中还含有小量的镍、铁等元素,以提高其强度、增加其韧性。

铬铜系耐高温铜合金:铬铜系耐高温铜合金具有良好的氧化、腐蚀性能,在高温下依然保持高强度和塑性。

常用的牌号有CuCr1Zr和CuCrZr,其中CuCr1Zr含有1%铪、0.1%锆,CuCrZr含有1%锆、0.1%铝。

这两种合金都能够在高温下维持优异的力学性能,承受高达450℃的温度。

适用于航空航天、核工业等领域。

总结:耐高温铜合金因其独特的性能,在高科技行业及重要领域具有广泛应用。

正确选择合适的合金牌号,可以保证其在高温环境下的性能稳定,具有很好的经济效益和社会效应。

t2紫铜的工作温度

t2紫铜的工作温度

t2紫铜的工作温度T2紫铜是一种常见的铜合金,主要由铜和少量的锡组成。

它具有良好的导电性、导热性和耐蚀性,因此广泛应用于电子、电工、建筑和工业领域。

在这篇文章中,我将详细介绍T2紫铜的工作温度范围,包括其熔点、变形温度和耐热性能。

首先,我们先来了解T2紫铜的熔点。

T2紫铜的熔点约为1083°C,这是指在常压下,T2紫铜完全熔化所需的温度。

熔点高是T2紫铜的一个优点,使得它在高温条件下保持较好的稳定性和可靠性。

然而,需要注意的是,当T2紫铜处于工作状态时,其实际温度并不会达到熔点。

实际上,T2紫铜的工作温度范围一般在室温到高温之间,具体取决于所需的应用环境和材料特性。

在室温下,T2紫铜可以承受较高的温度而不发生显著的变形或损坏。

室温下的T2紫铜通常可以安全使用在80°C至100°C的范围内,这使得它非常适用于一些需要高导电性和耐腐蚀性的电子设备和电工应用。

随着温度的升高,T2紫铜的强度和硬度会逐渐降低,同时塑性和韧性会增加。

这意味着在高温下,T2紫铜更容易被加工、成型和焊接。

一般来说,T2紫铜可以安全使用在200°C至300°C的范围内,而且在一些特殊应用中,甚至可以承受更高的温度。

另外,T2紫铜也具有良好的耐腐蚀性,可以在酸性、碱性和盐性环境中长时间稳定地工作。

这使得T2紫铜广泛应用于化学工业、海洋工程和石油化工等领域,这些行业中的设备经常暴露在高温和腐蚀性介质中,因此对材料的耐热性要求较高。

总结一下,T2紫铜通常在室温到高温之间的工作温度范围内使用。

具体的工作温度取决于应用环境和材料特性。

在室温下,T2紫铜适用于电子、电工和建筑应用,而在高温和腐蚀性环境下,T2紫铜可以应用于化学工业和海洋工程。

无论在哪种应用中,T2紫铜都能够提供良好的性能和可靠性,以满足多样化的需求。

总体而言,T2紫铜作为一种常用的铜合金,在各个行业中具有广泛的应用前景。

随着科技的不断进步,我们也相信T2紫铜会在未来得到更多的创新和应用。

铜合金的工作温度

铜合金的工作温度

铜合金的工作温度
铜合金是一种常用的金属材料,具有良好的导电性和导热性,因此在许多领域都有广泛的应用。

然而,铜合金的工作温度也是一个需要考虑的重要因素。

铜合金的工作温度范围是相对较广的,一般可以在-200℃至300℃之间工作。

这意味着铜合金可以在低温环境下保持其性能,并且在高温环境下也能保持稳定。

这使得铜合金成为许多工业领域中的理想选择。

在高温环境下,铜合金表现出良好的耐热性和耐腐蚀性。

它可以在高温下保持较好的机械强度和硬度,不易变形或熔化。

因此,铜合金常被用于制造高温工作环境下的零部件,如汽车发动机的气缸盖、航空发动机的叶片等。

另一方面,在低温环境下,铜合金也能保持较好的性能。

它具有良好的低温韧性和抗冷脆性,不易发生断裂或变脆。

这使得铜合金适用于低温工作环境下的设备和器件,如航天器的导航系统、核电站的冷却系统等。

除了温度的影响外,铜合金的工作温度还受到其他因素的影响,如应力、压力和化学环境等。

在高温高压的环境下,铜合金的工作温度可能会有所降低,而在化学环境中的腐蚀作用下,铜合金的工作温度也可能会受到一定的限制。

铜合金的工作温度范围相对较广,在许多工业领域中都有广泛的应用。

它在高温和低温环境下都能保持较好的性能,具有良好的耐热性、耐腐蚀性和低温韧性。

然而,需要注意的是,铜合金的工作温度还受到其他因素的影响,需要根据具体情况进行选择和使用。

铜合金的相变温度

铜合金的相变温度

铜合金的相变温度受到合金成分和结构的影响,因此具体相变温度需要根据具体的铜合金类型来确定。

一般来说,纯铜(紫铜)的熔点为摄氏1083度。

当温度超过这个温度时,铜会由固体变成熔融状态。

铜合金如果有形成合金(如黄铜、青铜等),其熔点则会受到合金成分和结构的影响,通常会低于纯铜。

例如,锡青铜的熔点为965度至970度,而铝青铜则会在约700度左右熔化。

在热力学上,固相和液相是相邻的两种平衡状态,当温度升高超过熔点时,铜合金将从固相状态逐渐转变为液相状态。

这个转变过程需要经历一定的时间,并且与温度的变化速度有关。

如果温度变化过快,合金可能无法充分时间达到新的平衡态,从而产生过热现象。

此外,铜合金的相变温度还与其组织结构有关。

不同的组织结构可能对应不同的相变温度和过程。

例如,固溶体合金中的溶质原子可以改变固溶体的共价键结构,从而影响合金的相变行为。

总的来说,铜合金的相变温度是一个复杂的现象,受到合金成分、结构、温度和组织结构等多种因素的影响。

在具体的应用中,需要根据铜合金的类型和具体条件来了解其相变温度和相变行为,以便合理地应用和进行相关的工艺处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Thesis SubmittedByRamkumar KesharwaniRoll No: 208ME208In the partial fulfillment for the award of Degree ofMaster of TechnologyInMechanical EngineeringDepartment of Mechanical EngineeringNational Institute of TechnologyRourkela-769008, Orissa, India.May 2010National Institute of TechnologyRourkelaCERTIFICATEThis is to certify that thesis entitled, “High Temperature behavior of Copper” submitted by Mr. “Ramkumar Kesharwani” in partial fulfillment of the requirements for the award of Master of Technology Degree in Mechanical Engineering with specialization in “Production Engineering” at National Institute of Technology, Rourkela (Deemed University) is an authentic work carried out by him under my supervision and guidance.To the best of my knowledge, the matter embodied in this thesis has not been submitted to any other university/ institute for award of any Degree or Diploma.Date: Prof. S.K. Sahoo Dept. of Mechanical Engineering National Institute of TechnologyRourkela-769008ACKNOWLEDGEMENTIt is with a feeling of great pleasure that I would like to express my most sincere heartfeltgratitude to Prof. S. K. Sahoo, Professor, Dept. of Mechanical Engineering, NIT Rourkela forsuggesting the topic for my thesis report and for his ready and able guidance throughout thecourse of my preparing the report. I am greatly indebted to him for his constructive suggestionsand criticism from time to time during the course of progress of my work.I express my sincere thanks to Prof. R. K. Sahoo, Head of the Department of Mechanical Engineering, NIT, Rourkela for providing me the necessary facilities in the department. I expressmy sincere gratitude to Prof. S.S. Mahapatra, Co-ordinator of M.E. Course for his timely helpduring the course of work. I am also thankful to all the staff members of the department of Mechanical Engineering and to all my well wishers for their inspiration and help. I feel pleasedand privileged to fulfill my parent’s ambition and I am greatly indebted to them for bearing the inconvenience during my M. Tech. course.Place: Ramkumar Kesharwani Date: Roll No. : 208ME208AbstractThe high temperature properties of pure & alloy copper have been investigated in the temperature range of room temperature to 500.C. Substantial decrease in yield strength and ultimate strength for both pure & alloy copper were observed with increasing temperature. The Ductility or percentage elongation was also found decreasing with increase in temperature for both pure & alloy copper.If comparison is made between pure copper & alloy copper then, the yield strength and ultimate strength of alloy copper were found slightly greater than that of the pure copper, even at elevated temperature also. But the ductility or % elongation for pure copper was found slightly greater than that of the alloy copper even at elevated temperature. Ductile mode of fracture was observed even at elevated temperature.Substantial decrease in Strain Hardening Exponent `n` with increase in Temperature both for pure & alloy copper were observed; but the strengthening coefficient `A` decreases with increase in temperature for Pure Copper, and initially increases up to 373K and after that decreases for Alloy Copper, due to phase change of carbon atoms (present in Alloy Copper) at higher Temperature. A generalized characteristic equation for both tested materials has been proposed, which can take effect of temperature.Key words: Yield Strength, Ultimate Strength, Ductility, % Elongation, True Stress, True Strain.Particulars Page no.Certificate I Acknowledgement II Abstract IIIList of figures 3List of tables 5 Nomenclature 6 Symbol 71.Introduction 81.1Introduction to Tensile Test 91.2Introduction to Copper 142.Background Literatures 182.1Literature Review 192.2Objective of the Project 202.3Organization of Thesis 203.Experimentations 213.1The INSTRON 223.2Preparation of Specimen 323.3Tensile testing of specimen 334.Results and discussion 374.1Variation of % Elongation with Test Temperature 394.2Variation of tensile stress with tensile strain 404.3Variation of ultimate tensile strength with Temperature 414.4Variation of 0.2% offset Yield strength with Temperature 424.5Variation of True Stress with Time 434.6Variation of true Stress with True Strain 444.7Variation of strain hardening exponent with straightening 47Coefficient5.Conclusion. 505.1 Conclusion 51References 52List of FiguresFig No Fig Caption Page No.1.1 General purpose testing machine 91.2 Specimen with extensometer 101.3 Stress-strain curve for structural steel 121.4 0.2% offset stress-strain curve 133.1 INSTRON static series 233.2 Specimen alignment with extension rod 253.3 Furnace (open) 263.4 Furnace(closed) 273.5 Hinged furnace mounting bracket 283.6 Temperature controller 293.7 Pull rod and push rod 293.8 Threaded end specimen holders 313.9 Thread making die of 12 mm 323.10 A test specimen with furnace after fracture 333.11 Specimen of Pure Copper tested at 313K 343.12 Specimen of Pure Copper tested at 323K 343.13 Specimen of Pure Copper tested at 373K 343.14 Specimen of Pure Copper tested at 473K 343.15 Specimen of Pure Copper tested at 573K 353.16 Specimen of Pure Copper tested at 673K 35 3.17 Specimen of Pure Copper tested at 313K 35 3.18 Specimen of Pure Copper tested at 323K 35 3.19 Specimen of Pure Copper tested at 373K 36 3.20 Specimen of Pure Copper tested at 473K 363.21 Specimen of Pure Copper tested at 673K 364.1 Plot of % Elongation with Temperature 38 4.2 Plot of Tensile stress with Tensile strain 39 4.3 Plot of ultimate strength with Temperature 40 4.4 Plot of 0.2% offset yield strength with Temperature 41 4.5 Plot of True Stress with Time 42 4.6 Plot of True Stress with True Strain 43 4.7 Plot of Strain hardening exponent with Temperature 49List of TablesTable No. Table Caption Page No.1.1 Mechanical properties of copper at room temperature 151.2 Thermal properties of copper 154.1 % Elongation- Temperature curve 384.2 Values of ultimate tensile strength at different temperature 404.3 Values of 0.2% yield stress at Different Temperature 414.4 Values of `n` and `A` at different temperature 44NomenclatureRT SEM U.S. UTM Y.S.Room Temperature Scanning Electron Microscopy Ultimate Stress Universal Testing Machine Yield stressSymbolsA D E n K σ εStrengthening Coefficient Diameter Young modulus of Elasticity Strain hardening exponent Temperature True Stress True StrainChapter 1Introduction1. Introduction:1.1 Introduction to tensile test. 1.2 Introduction to Copper.1.1 Introduction to Tensile TestThe mechanical properties of materials used in engineering are determined by tests performed on small specimens of the material. The tests are conducted in materials testing laboratories equipped with testing machines capable of loading the specimen in a variety of ways, including static and dynamic loading in tension and compression. One such machine is shown in fig1.1. A test specimen is in the place in the middle of the loading assembly, and the control console is the separate unit on the left.Fig. 1.1 General purpose testing machine.In order that test results may be compared easily, the dimensions of test specimens and the methods of applying loads have been standardized. One of the major standards organizations is the American society for Testing and Materials (ASTM), a national technical society that publishes specifications and standards for materials and testing. Other standardizating organizations are the American Standards Association (ASA) and the National Bureau of Standards (NBS). The most common materials test is the tension test, in which tensile loads are applied to a cylindrical specimen like the one shown in fig. 1.2. The ends of the specimen are enlarged where they fit in the grips so that failure will occur in the central uniform region, where the stress is easy to calculate, rather than near the ends, where the stress distribution is complicated under load. The device at the middle which is attached by two arms to the specimen, is an extensometer that measures the elongation during loading.Fig. 1.2 . Specimen with Extensometer. The ASTM standard tension specimen has a diameter of 0.5 in. and a gage length of 0.2 in. between the gage marks, which are the points where the extensometer arms are attached to the specimen, as shown in fig. 1.2. As the specimen is pulled, the load P is measured and recorded, either automatically or by reading from a dial. The elongation over the gage length is measured simultaneously with the load, usually by mechanical gages ofthe kind shown in fig. 1.2, although electric-resistance strain gages are also used. In a static test, the load is applied very slowly; however, in a dynamic test, the rate of loading may be very high and also must be measured because it affects the properties of the materials. The axial stress σ in the test specimen is calculated by dividing the load P by the cross-sectional area A. When the initial area of the bar is used in this calculation, the resulting stress is called the nominal stress (other names are conventional stress and engineering stress). A more exact value of the axial stress, known as the true stress, can be calculated by using the actual area of the bar, which can become significantly less than the initial area for some materials. The average axial strain in the bar is found from the measured elongation δ between the gage marks by dividing δ by the gage length L. If the initial gage length is used (for instance, 2.0 in.), then the nominal strain is obtained. Of course, the distance between the gage marks increases as the tensile load is applied. If the actual distance is used in calculating the strain, we obtain the true strain, or natural strain. After performing a tension test and determining the stress and strain at various magnitude of the load, we can plot a diagram of stress versus strain. Such a stress-strain diagram is characteristic of the material and conveys important information about the mechanical properties and type of behavior. The first material we will discuss is structural steel, also known as mild steel o low carbon steel. Structural steel is one of the most widely used materials, being the principal steel used in buildings, bridges, towers, and many other types of construction. A stress-strain diagram for a typical structural steel in tension is shown in fig 1.3 (not to scale). Strains are plotted on the horizontal axis and stress on the vertical axis. The diagram begins with a straight line from O to A. in this region, the stress and strain are directly proportional, and the behavior of the material is said to be linear. Beyond point A, the linear relationship between stress and strain no longer exists; hence, the stress at A is called the proportional limit. For low-carbon steel, this limit is in the range 30 to 40 ksi, but high-strength steels (with higher carbon content plus other alloys) can have proportional limits of 80 ksi and more. With an increase in the load beyond the proportional limit, the strain begins to increase more rapidly for each increment in stress. The stress-strain curve then has a smaller and smaller slope, until, at point B, the curve becomes horizontal. Beginning at this point, considerable elongation occurs, with no noticeable increase in the tensile force (from B to C on the diagram). This phenomenon is known as yielding of the material, and the stress at point B is called the yield stress, or yield point. In the region from B to C, the material becomes perfectly plastic, which means that it can deform without an increase in the perfectly plastic region is typically 10 to 15 times the elongation that occurs between the onset of loading and the proportional limit. After undergoing the large strains that occur during yielding in the region BC, the steel begins to strain harden. During strain hardening, the material undergoes charges in its atomic and crystalline structure, resulting in increased of material tofurther deformation. Thus, additional elongation requires an increase in the tensile load, and the stress-strain diagram has a positive slope from C to D. The load eventually reaches its maximum value, and the corresponding stress (at point D) is called the ultimate stress. Further stretching of the bar is actually accompanied by a reduction in the load, and fracture finally occurs at a point such as E on the diagram. Lateral contraction of the specimen occurs when it is stretched, resulting in a decrease in the cross-sectional area, as previously mentioned. The reduction in area is too small to have a noticeable effect on the reduction begins to alter the shape of the diagram. Of course, the true stress is larger than the nominal stress because it is calculated with a smaller area. In the vicinity of the ultimate stress, the reduction in area of the bar becomes clearly visible and a pronounced necking of the bar occurs.(Fig. 1.4). If the actual cross sectional area at the narrow part of the neck is used to calculate the stress, the true stress-strain curve will follow the dashed line CE` in fig 1.2. The total load the bar can carry does not indeed diminish after the ultimate stress is reached (curve DE), but this reduction is due to the decrease in area of the bar not to a loss in strength of the material itself. In reality, the material withstands an increase in stress up to failure (point E`). For most practical purposes, however, the conventional stress-strain curve OABCDE, which is based upon the original cross-sectional area of the specimen and hence is easy to calculate, provides satisfactory information for use in design.Fig.1.3 Stress-strain curve for structural steel (not to scale).The diagram in fig 1.3 shows the general characteristics of the stress-strain curve for mild steel, but its proportions are not realistic because, as already mentioned, the stain that occurs from B to C may be 15 times the strain occurring from O to A. Furthermore, the strains from C to E are many times greater than those from B to C. Many aluminum alloy posses considerable ductility, although they do not have a clearly definable yield point. Instead, they exhibit a gradual transition from the linear to the nonlinear region, as shown by the above stress-strain diagram. Aluminum alloy suitable for structural purposes are available with proportional limits in the range 10 to60 ksi and ultimate stresses in the range 20 to 80 ksi. When a material such as aluminum does not have an obvious yield point and yet undergoes large strains after the proportional limit is exceeded, an arbitrary yield stress may be determined by the offset method. A line is drawn on the stress-strain diagram parallel to the initial linear part of the curve but is offset by some standard amount of strain, such as .002 (or 0.2%). The intersection of the offset line and the stress-strain curve defines the yield stress. Since this stress is determined by an arbitrary rule and is not an inherent physical property of the material, it should be referred to as the offset yield stress. For a material such as aluminum, the offset yield stress is slightly above the proportional limit. In the case of structural steel, with its abrupt transition from the linear region to the region of plastic stretching, the offset stress is essentially the same as both the yield stress and the proportional limit.Fig1.4 (0.2%) offset stress-strain curve1.2Introduction to copper:Copper, the reddish metal, apart from gold the only metallic element with a color different from a gray tone, has been known since the early days of the human race. It has always been one of the significant materials, and today it is the most frequently used heavy nonferrous metal. The main grades of raw copper used for cast copper base alloy are: (a) High conductive copper (electrolytic) having not less than 99.9% Cu. The oxygen content may be of the order 0.40%, Pb and Fe less than 0.005% each Ag 0.002% and Bi less than 0.001% electrolytic copper is used for electrical purposes. (b) Deoxidized copper having not less than 99.85% Cu, less than 0.05% As, 0.035 Fe, and 0.003% Bi, other elements may be of the order of 0.005% P, 0.01% Pb, 0.10% Ni, 0.003% and 0.005% Ag and Sb respectively. (c) Arsenical deoxidized copper having 0.45 As, 0.04% P, and remaining copper. It is used for welded vessels and tanks. (d) Arsenical touch pitch copper containing 0.4% As, 0.065% oxygen, 0.02% Pb,0.15 %Ni, 0.006% Ag, 0.01% Sb and less than 0.005% Bi, less than 0.020% Fe and remaining copper. (e) Oxygen free copper contains 0.005% Pb,0.001% Ni,0.001% Ag, and less than 0.0005% and 0.001% Fe and Bi respectively. It is melted and cast in Ion oxidizing atmosphere.Various properties of copper:1. Atomic and Nuclear properties:The atomic number of copper is 29, and the atomic mass A is 63.546 ±0.003. Copper consists of two natural isotopes, 63Cu (68.94%) and 63Cu(31.06%). There are also nine synthetic radioactive isotopes with atomic masses between 59 and 68, of which 67Cu has the longest half-life, Ca.58.5 h. Crystal Structure : At moderate pressure, copper crystallizes from low temperatures up to its melting point in a cubic-closest-packed (ccp) lattice, type A1 (also F1 or Cu) with the coordination number 12 x-ray structure analysis yield the following dimensions (at 20.C): Lattice constant 0.36152 nmMinimum Inter atomic distance Atomic Radius Atomic Volume Density0.2551 nm 0.1276 nm 7.114 cm3/mol. 8.89 g/cm32. Mechanical Properties: Important mechanical values are given in Table 1.1Table 1.1: Mechanical Properties of copper at room temperatureProperty El;astic modules Shearing modulus Poisson`s ratio Tensile strength Yield strength Elongation Brinell hardness Vickers hardness Scratch hardnessUnit GPa GPa MPa MPa % (HB) (HV)Annealed(soft) Copper 100-120 40-45 0.35 200-250 40-120 30-40 40-50 45-55 3Coldworked(hard)Copper 120-130 45-50 300-360 250-320 3-5 80-110 90-1203. Thermal Properties: Important thermal values are compiled in Table 1.2Table 1.2: Thermal properties of CopperProperty Melting point Boiling point Heat of fusion Heat of Vaporization Vapor pressure(at mp) Specific heat capacity at 293k (20.C) 1 bar Average specific heat273573k (0-300.C) 1bar Cofficient of linear thermal expansion Thermal conductivity(at 293 k) Unit k k j/g j/g j/g Pa Jg-1 k-1 k-1 Wm-1k-1 Value 1356 2868 210 810 .073 .385 .494 .411 19.8 3944. Chemical Properties:In the periodic table, copper is placed in period 4 and subgroup IB; therefore, it behaves as a typical transition metal. It appears in oxidation states +1 to +4, its compounds are colored, and it tends to form complex ions. At relatively low temperature copper is the most stable state, . but above 800 C, copper predominates. Electron distribution: 1S2, 2S2, 2P6, S2, 3P6, 3D10, 4S1Occurrence: In the upper part of the earth`s crust (16 km deep), the average copper content isca.50 ppm. Older estimates were nearly 100 ppm, while recent spectral analysis values are 30-40 ppm. Copper is 26th in order of abundance of the elements in the accessible sphere of the earth.Copper alloys:Copper alloys normally possess excellent corrosion resistance, electrical and thermal conductivities and formability. Some copper alloys combine high strength and corrosion resistance, a combination desirable for marine applications. Some copper alloys because of their wearing properties high hardness or corrosion resistance are used as surfacing metals. Some copper alloys are selected for decorative applications because of appearance. Elements such as aluminum, zinc, tin, beryllium, nickel, silicon, lead etc, form alloys with copper.Copper alloys may be classified as: (a) High copper alloys:High copper alloys contain 96.0 to 99.3% copper. They possess enhanced mechanical properties due to the addition of small amount of alloying elements such as chromium, zirconium, beryllium and cadmium. A few typical high copper alloys are: (1) Cu, 1% Cd (2) Cu, 0.8 % Cr (3) Cu, 0.12-0.30%Zr, (4) Cu, 1.5-2.0% Be. Such alloys are used for electrical and electronic components, as resistance welding electrodes, wire conductors, diaphragms and pump parts.Some general properties of copper:(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) Excellent resistance to corrosion. Non magnetic properties. Easy to work, it is ductile and malleable. Moderate to high hardness and strength. High thermal and electrical conductivity. It can be easily polished, plated and possesses a pleasing appearance. Resistance to fatigue, abrasion and corrosion. It can be soldered, brazed or welded. Very good machinability. Each of forming alloys with other elements like Zn, Sn, Al, Pb, Si. Ni, etc.Copper is used for following: (a) Electrical parts, (b) Heat exchanger, (c)Screw machine products, (d) For making various copper alloy, such as Brass and Bronze. (e)Household utensils, etc. (f) Electrodes of EDM, ECM, resistance welding, etc.Chapter-2Background Literatures2.1 Literature Review:Since now a day copper is highly used for different mechanical purposes like; used as a electrode material in EDM, ECM, and in resistance welding, heat exchanger at higher temperature. So the high temperature behavior of copper is essential to know. So to know about it various literatures have been reviewed. Out of them some important literatures are discussed here: Nagarjuna s., srinivas m., [1], Introduces the high temperature tensile properties of a Cu1.5 wt% Ti alloy in the temperature range of 100-500.C and it is found by him, that the high temperature tensile properties of Cu-1.5 Ti alloy are comparable at 300.C and even better at 425.C than those of Cu-1.5 Ti-2.5 Sn, Cu-1.5 Ti-2.5 Sn-0.5 Cr and Cu_0.65 Be_2.7 Co alloy. Luo Anhua, Shin S. Kwang, Jacobson L. Dean, [2], Introduces the tensile properties of W-Re-1Wt.% ThO2 alloy with rehenium concentration of 0-26 wt% in a temperature range of 1600-2600K. Radovic M., Barsoum M.W., El-Raghy T., Seidensticker J., Widerhorn S., [3], Introduces the functional dependence of the tensile response of fine-grained (3-5µm) Ti3SiC2 samples on strain rates in the 25-1300.C temperature range. Nagarjuna S., Srinivas M.,[4] Introduces tensile properties of a Cu–1.5 wt.% Ti alloy in the temperature range of100–550 °C. Substantial increase in yield and tensile strengths of solution treated alloy is observed with increasing temperature, with a peak at 450 °C and decrease in strength beyond this temperature. Nagarjuna S., Srinivas M.,[5] Introduces the high temperature tensile properties ofsolution treated, cold worked and peak aged Cu–1.5 wt.%Ti and Cu–4.5 wt.%Ti alloys in the temperature range fromroom temperature (RT) to 550 ◦C. Yield strength (YS) and tensile strength (TS) of Cu–1.5Ti alloywere found to be independent of test temperature up to 350 ◦C and decreased thereafter, up to 550 ◦C. Quinlan M.F. , Hillery M.T.,[6] Introduces the flow stress of any given material in metal forming is sensitive to the working temperature and the rate of deformation. Research at high strain rates on tensile specimens at elevated temperatures was carried out in the 1940s by Manjoine and Nadai. Little work has been done on this topic since.V. Caballero, S. K. Varma, [7], Introduces the effect of stacking fault energy (SFE) on the evolution of microstructures during room temperature tensile testing at two strain rates of 8:3£10¡4 and 1:7£10¡1/s in pure copper, Cu-2.2%Al, and Cu-4.5%Al alloys with SFE values of, approximately, 78, 20 and 4 mJ/m2, respectively. Arthur k. lee, Nicholas J. Grant, [8], Introduces the property of two high temperature, high strength, high conductivity ingot-base copper alloys. Tensile test at 293K and stress rupture tests at 693K were performed. Gholam H., Amin H., Ali S., [9], Introduces the deformation mechanism of ductile fracture of two materials, copper and st37 steel, including void nucleation, void growth and void coalescence at different strain rates.2.2 Objective of the project:The objective of the project work is to know the high temperature tensile behavior of copper & its alloy in between (RT-500.C) temperature range and then find out the following: 1. The ductility or % elongation at higher temperature. 2. Effect on yield strength & ultimate tensile strength at higher temperature. 3. Find out the values of True stress & True strain, and then find out the value of strengthening coefficient & work hardening exponent. 4. Plot the graphs and fit the curves. 5. With the help of curves fitted derive the equations of curves. 6. Make the analysis and find out the results.2.3 Organization of thesis:The thesis is organized into five chapters. The chapter-1 contains the introduction. Here the basic introduction to stress-strain diagram and tensile test and then introduction to copper & its alloy have been discussed. The chapter-2 contains the literature review. The chapter-3 contains the experimentations. Here information about the experiment has been discussed. The chapter-4 contains results & discussion. Whatever observations have been taken during the experiments, the results of those are presented here in the form of graphs. Finally chapter-5 presents the overall conclusion of the research output of this project.Chapter-3ExperimentationExperimentation:Before discussing about the experiments let us know about the testing machine. For testing the specimen the “INSTRON” (SATEC series) machine was used .here some basic features of the machine are there.3.1 The INSTRON (Static series, 600kn):This machine is designed for the high capacity tension, compression; bending and shear test .The main design of the INSTRON Model provides the ultimate versatility. This machine has used here for tensile test of copper specimen at higher temperature.Features:Single ultra-large test space accommodates an assortment of specimen size grip fixture furnace and extensometer. Optional Hydraulic Lifts and Locks allow quick and easy repositioning of the crosshead over the length of the column. It provides the fast test speed and long test stroke capability to meet variety of testing requirements. Alignment head maintains accurate alignment of the load string over the entire stroke of the actuator. Choice of Partner or Bluehill Universal Materials Software provides the ultimate in easeof-operation and flexibility. Optional full capacity hydraulic wedge grips offer fully open-front design making specimen loading efficient and safe for the operator.Model range:600KN CapacityFigure 3.1 INSTRON staticTensile test also known as tension test has probably the most fundamental type of mechanical test you may be perform on material. Tensile test is simple, relatively inexpensive, and fully standardized. By pulling on something you should very quickly determine how the material will react to forces being applied in tension. The material has being pulled & you will find its strength along with how much it would be elongate. This is the method for determining behavior of materials under axial stretch loading. Data from test have used to determine elastic limit, elongation, modulus of elasticity, proportional limit, reduction in area, tensile strength, yield strength and other tensile properties. Strain: You would also be able to found out the amount of elongation the specimen undergoes during tensile testing. This may be expressed as absolute measurement of the change in length or as relative measurement called "strain". Strain itself can be expressed in two different ways engineering strain and true strain. Engineering strain has probably the easiest and the most common expression of strain used. It is the ratio of the change in length to the original length,Whereas the true strain is similar but based on the instantaneous length of the specimen as the test progresses,Where Li is the instantaneous length and L0 is the initial length.Specimen Shape: The specimen's shape has usually defined by the standard specificationbeing utilized, e.g., ASTM E8 its form is main, because you would like to avoid having a break, fracture inside the area being absorbed. So norms have been developed the state to shape of the specimen to sure the break would be happen in the gage length by reducing the cross sectional area or dia. of the specimen throughout the gage length. It is the produce of increasing stress in the gage length because stress has inversely proportional to the cross sectional area under the load.Face and grip choice has a very important factor. By not choose the right set up. Our specimen can be slide or even fracture inside the gripped area (jaw break). This will be lead to invalid results. The faces shall cover the entire area to be gripped. You do not like to use serrated facade when testing material that are extremely ductile. From time to time cover the serrated face with masking tape will become softer the bite prevent damage in the specimen.Grip with Face Selection:。

相关文档
最新文档