立体几何空间成角问题
立体角计算题目
立体角计算题目
立体角是三维空间中与立体图形相关的一个概念,它用于描述一个点所在的空间角度范围。
立体角的单位是立体弧度(sr)。
以下是一个简单的立体角计算题目:
一个正方体的一个顶点被连接到它的对角面上的一个点。
计算这个顶点所在的立体角。
解答:
首先,可以利用正方体的几何特征来确定这个所在点的立体角。
这个顶点在正方体中与另一个对角顶点相对,它的连接点在正方体的另一面上。
因此,可以将正方体视为由两个完全相同的四面体组成的结构,这些四面体的顶点分别为正方体的两个对角顶点和两个中心点。
接下来,可以计算其中一个四面体的立体角,然后将结果乘以2来得到整个正方体的立体角。
使用三角函数和几何关系,可以计算每个四面体的立体角为:立体角= 2 * arctan(√2) ≈ 3.14 sr
因此,正方体一个顶点所在的立体角为:
立体角= 2 * 3.14 ≈ 6.28 sr
注意:这只是一个简单的例子,实际的立体角计算可能需要更复杂的数学和几何技能。
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
(高中段)大题考法立体几何第二课时空间向量与空间角3
[解] (1)证明:在△ABC 中,BC=2,AB=4,∠ABC=60°,所以 AC2= BC2+AB2-2BC·AB·cos B=12,
则有 AC2+BC2=AB2,即 AC⊥BC. 又因为 PA⊥BC,PA∩AC=A,PA⊂平面 PAC,AC⊂平面 PAC,所以 BC ⊥平面 PAC. (2)由(1)知 AC⊥BC,以点 C 为坐标原点,CA,CB 所在 直线分别为 x,y 轴建立如图所示的坐标系 C-xyz. 则 C(0,0,0),A(2 3,0,0),B(0,2,0),D( 3,-1,0), 易知 P 在底面的射影为 AC 与 BD 的交点, 所以 P233,0,236,―PD→= 33,-1,-2 36,
由(1)知―A→P =0,1, 22是平面 PCB 的一个法向量,
记 n =―A→P ,则
n ,m
n ·m =
|n |·|m
|=2 5
5 .
所以二面角
B-PC-E
的余弦值为2 5
5 .
融通方法 利用空间向量求二面角的解题模型
应用体验 (2020·河北“五个一”名校联考)在四棱锥 P-ABCD 中,AD ∥BC,AB=BC=CD=12AD,G 是 PB 的中点,△PAD 是 等边三角形,平面 PAD⊥平面 ABCD. (1)求证:CD⊥平面 GAC; (2)求二面角 P-AG-C 大小的正弦值.
设平面 AEF 的一个法向量为 n =(x1,y1,z1),
n ·―AE→=0,
则 n
·―AF→=0,
即x21x+1+z1λ=y1=0,0.
令 y1=2,则zx11==λ-. λ, ∴n =(-λ,2,λ).
设平面 PCD 的一个法向量为 m =(x2,y2,z2),
高二数学空间的角试题答案及解析
高二数学空间的角试题答案及解析1.在正方体中,直线与平面所成角的大小为____________.【答案】.【解析】连接,,连接.由正方体的性质可得,且,所以平面,所以可得为直线与平面所成的角.设正方体的棱长为,则,.在中,,从而得到答案为.【考点】直线与平面所成的角;棱柱的结构特征.2.如图是一个正方体的表面展开图,A、B、C均为棱的中点,D是顶点,则在正方体中,异面直线AB和CD的夹角的余弦值为。
【答案】【解析】试题分析:把正方体的表面展开图还原成正方体,设的中点为,连接,又,则为异面直线AB和CD所成的角,由余弦定理可得。
【考点】(1)异面直线所成角的定义;(2)平行公里;(3)余弦定理的应用。
3.空间四边形ABCD中,M,N分别是AB和CD的中点,AD=BC=6,MN=则AD和BC所成的角是()A.B.C.D.【答案】B【解析】取线段AC的中点P.由于M,N都是中点.所以QN=3,QM=3.又因为.所以三角形MNP是直角三角形.即MP⊥PN,又因为MP∥BC, PN∥AD.所以AD⊥BC.本题主要是应用三角形的中位线的知识.含中点的题一般都的转化为中位线的知识.【考点】1.异面直线所成的角.2.中位线定理.3.空间问题向平面问题转化.4.在正方体中,是的中点,则异面直线与所成角的大小是()A.B.C.D.【答案】D【解析】在正方体中,容易得到平面,又因为平面,故得到.【考点】异面直线所成角.5.在三棱锥中,是边长为2的正三角形,平面平面,,分别为的中点.(1)证明:;(2)求锐二面角的余弦值;【答案】(1)见试题解析;(2).【解析】(1)要证线线垂直,一般可先证线面垂直,而本题中有,是等边三角形,故可以取中点为,则有,,这是等腰三角形的常用辅助线的作法;(2)关键是作出所求二面角的平面角,由已知及(1)中辅助线,可知平面,由于是中点,故只要取中点,则有,也即平面,有了平面的垂线,二面角的平面角就容易找到了。
高考真题(立体几何中空间角问题[题目])
解答题1. 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠=o .(Ⅰ)求证:BD ⊥平面;PAC(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.2. 如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,︒=∠45CDA .(I )求证:平面P AB ⊥平面P AD ;(II )设AB =AP .(i )若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长;(ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由。
3. 如图5.在椎体P -ABCD 中,ABCD 是边长为1的棱形,且∠DAB =60︒,2PA PD ==,PB =2, E ,F 分别是BC ,PC 的中点.(1) 证明:AD ⊥平面DEF ;(2) 求二面角P -AD -B 的余弦值.4. 如图,已知正三棱柱111ABC A B C -的各棱长都是4,E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合.(Ⅰ)当CF =1时,求证:EF ⊥1A C ;(Ⅱ)设二面角C AF E --的大小为θ,求tan θ的最小值.A B DC FPE5. 如图,在圆锥PO中,已知PO=2,⊙O的直径2AB=,C是»AB的中点,D为AC 的中点.(Ⅰ)证明:平面POD⊥平面PAC;(Ⅱ)求二面角B PA C--的余弦值。
6. 如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=12 PD.(I)证明:平面PQC⊥平面DCQ;(II)求二面角Q—BP—C的余弦值.8. 如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(I )证明:PA BD ⊥;(II )若PD =AD ,求二面角A -PB -C 的余弦值.9. 在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB =90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.10. 如图,在ABC ∆中,60,90,ABC BAC AD ∠=∠=o o 是BC 上的高,沿AD 把ABC ∆折起,使90BCD ∠=o 。
高中数学必修二立体几何角的问题-教师版(含几何法和向量法)
立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
立体几何空间角 专题
PCDBA立体几何空间角 专题空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。
空间角是异面直线所成的角、直线与平面所成的角及二面角总称。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三计算。
异面直线所成的角的范围:090θ<≤(一)平移法【例1】已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA ⊥平面AC ,且2BC =,1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值的大小。
【解】过点C 作//CE BD 交AD 的延长线于E ,连结PE ,则PC与BD 所成的角为PCE ∠或它的补角。
CE BD==PE==∴由余弦定理得222c o s 26PC CE PE PCE PC CE +-∠==-⋅∴PC 与BD 所成角的余弦值为63(二)补形法【变式练习】已知正三棱柱111ABC A B C -的底面边长为8,侧棱长为6,D为AC 中点。
求异面直线1AB 与1BC A 1C 1【答案】125直线与平面所成角的范围:090θ≤≤方法:射影转化法(关键是作垂线,找射影)【例2】如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点P 在平面ABC 内的射影O 在AB 上,的角的大小。
【解】连接OC ,由已知,OCP ∠为直线PC 与平面ABC 设AB 的中点为D ,连接,PD CD 。
AB BC CA ==,所以CD AB ⊥90,60APB PAB ∠=∠=,所以PAD ∆为等边三角形。
不妨设2PA =,则1,4OD OP AB===CD OC ∴===在RtOCP ∆中,tan 13OP OCP OC∠===【变式练习1】如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形。
立体几何角度的求法
3)角的边都要垂直于二面角的棱
l
B
A
此 图
×正
O
确 ?
B
10
二面角的平面角的作法:
1、定义法
A
根据定义作出来
O
l
B
2、垂面法 作与棱垂直的平面与
l
O
两半平面的交线得到
γ
A
B
3、三垂线定理法 借助三垂线定理或
其逆定理作出来
A
D
l
O
12
二面角的计算步骤:
1、找到或作出二面角的平面角 2、证明 (指出)1中的角就是所求的 角 3、计算出此角的大小
斜线和平面所成的角(或斜线和平面的夹角) • 直线和平面垂直<=>直线和平面所成的角是直角 • 直线和平面平行或在平面内<=>直线和平面所成的
角是0°
思考
• 直线与平面所成的角θ的取值范围
是: 0≤θ≤π/2
。
• 斜线与平面所成的角θ的取值范围
是: 0<θ<π/2
。
斜线和平面所成的角的求法
(1)射影法:在线上取一点作面的垂线,斜 足与垂足的连线与斜线所成的角即为所求。 问题2.正方体ABCD-A1B1C1D1中,E、F分别为BB1 、
这两个半平面叫做二面角的面。
二面角的范围
[00,1800]
3
角
二面角
图形
顶点
A 边
O
边B
从一点出发的两
定义 条射线所组成的
图形叫做角。
构成
边—点—边
(顶点)
表示法
∠AOB
A 棱a 面
B面
从一条直线出发的 两个半平面所组成 的图形叫做二面角。
考点08 空间角的求解问题(解析版)
考点08 空间角的求解问题立体几何是历年高考的必考题,其考查形式主要为空间几何体的有关计算(主要是体积计算),空间线面的位置关系以及空间角和距离的求解。
例如:2022年全国乙卷(理)[18],2022年全国甲卷(理)[18],2022年浙江高考[19],2022年新高考Ⅰ卷[19],2022年新高考Ⅱ卷[20],2022年天津高考[17],2022年北京高考[17]等都对空间几何体的体积进行了考查。
〔1〕平移法求异面直线所成的角求异面直线所成的角的方法为平移法,平移法一般有3种 (1)利用图形中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移; (3)补形平移.〔2〕线面角、二面角1.线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,把线面角转化到一个三角形中求解.2.二面角的求法:二面角的大小用它的平面角来度量. 平面角的作法常见的有①定义法;①垂面法。
〔3〕利用空间向量求空间中的角与距离 1.异面直线所成角若异面直线1l ,2l 所成的角为θ,则|||||cos |cos b a b a b a ==θ(注意:两异面直线所成的角为锐角或直角,而不共线的两向量的夹角的取值范围为(0,π),所以公式中要加绝对值),其中a ,b 分别是直线1l ,2l 的方向向量。
2.直线与平面所成角已知直线l 与平面α,A l =α ,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成的角,则|||||cos |sin n a n a n a ==θ。
(注意:直线与平面所成角的范围为⎥⎦⎤⎢⎣⎡2,0π,而向量的夹角的取值范围为[]π,0,所以公式中要加绝对值)。
3.二面角设1n 为平面α的法向量,2n 为平面β的法向量,1n ,2n 的夹角为θ,l =βα ,则二面角βα--l 的大小为θ或θπ-。
设二面角βα--l 的大小为ϕ,则|||||cos ||cos |2121n n ==θϕ①①所示。
立体几何空间成角问题【实用资料】
1、异面直线所成的角
(3)计算。
根据异面直线所成角的定义,求异面直线所成角,就
是要将其变换成相交直线所成有角。其一般方法有:
(1)平移法:即根据定义,以“运动”的观点,用
Hale Waihona Puke “平移转化”的方法,使之成为相交直线所成的角。
具体地讲是选择“特殊点”作异面直线的平行线, 构作含异面直线所成(或其补角)的角的三角形,再求之。
B’
C’
BC’AC,BC’=26cm,求BC’与底面所成的角。
分析:欲求BC’与底面ABC所成的角,关键在于准确地找到BC’在
x
于(0º,9底0º]面, 上的射影。注意到ACAB和ACBC’,即AC平面ABC’,所以,
连例BC结2’:A=平A如12EB图面,C6,Cc的Am1斜BE,交求三,CB棱则’线C柱’平BAA与AB面1上底CC1—A面,EBA为所C’A成,B1C的C’故1’角CB与’。O点B的D为C1底所’所在面成求为底的一的角面等(角或上腰补。直的角角射),三影角形O,在直平角面边AABB=CA’C和=2c平m,面侧棱与底面成60º角A,BC’
线段在平面内的射影; 通常是从斜线上找特殊点, 作平面的垂线段,构作含所求线面角的三角形求之。
A’
例2:如图,斜三棱柱ABC—A’B’C’的底面为 B’
C’
一等腰直角三角形,直角边AB=AC=2cm,侧棱与底 面成60º角,BC’AC,BC’=26cm,求BC’与底面
所分成析的:角。欲求BC’与底面ABC所成的角,关键
AC,
O
x
解: , , 平面 (1)定义法: 根据定义作出二面角的平面角;
AC AB AC BC’ 这实为异面直线上两点的距离公式,但这里 不局限
高中数学必修二立体几何角的问题-学生版(含几何法和向量法)
立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010例2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( ) A.3 B.22 C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc
3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。
第2讲 立体几何中的空间角问题
(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),
论立体几何中的所成角问题
论立体几何中的所成角问题所成角问题是立体几何中很重要的一部分,它包括了三种角:直线与直线所成角,直线与平面所成角以及平面和平面所成角。
讨论所成角问题主要是要讨论用什么方法去寻找这些角。
一、直线与直线所成角(就是指异面直线所成角)直线与直线所成角是立体几何的所成角问题中最简单的一种,只需要在固定一点之后把 两条直线都平移,使它们都过这一点就可以了。
通过平移就可以把求两条异面直线所成角的问题转变为求平面中两条相交直线所夹角的问题了。
要注意的是求直线与直线所成角的时候,我们找到的那个角是这两条直线的所成角或者它的补角。
它的范围是⎥⎦⎤ ⎝⎛2,0π。
二、 直线与平面所成角直线与平面所成角的找法就是在直线上找到一点,然后往那个平面内做垂线,得到直线在那个平面内的射影。
线面成角就是直线与它在那个平面内的射影所夹的角。
直线与平面所成角不存在补角的问题。
它的范围是⎥⎦⎤⎢⎣⎡2,0π。
三、 平面与平面所成角(就是所谓的二面角)面面成角是立体几何中的所成角问题中的重点,一般来说考试测验都会把二面角作为重点考核的对象,也是学生最头痛的一类问题。
我们大概可以把找二面角平面角的方法归结为以下几类:1、 按照定义来找二面角的平面角从二面角的棱上一点在两个平面内分别作垂直于棱的射线,两条射线所夹的角就是二面角的平面角。
2、 利用三垂线定理来寻找二面角的平面角这个方法是寻找二面角的平面角最常用的。
首先要找到一条垂线,这条垂线指的是要垂直于其中的一个面。
垂线上有两点是我们要关注的,一点是垂足,另外一点是它与另一个面的交点。
其次我们可以过这两点中的任意一点在那个平面内做棱的垂线,再连接垂足和另外一点,得到一条我们连接的线段。
我们找到的二面角的平面角就是那条垂直于棱的线段和我们所连接的线段所夹的角。
这种方法不适用与两个互相垂直的面。
3、 二面角中的特殊情况有时候我们可以通过证明两个平面是垂直的以得到它们的二面角的平面角是90度。
专题 立体几何之所成角-(人教A版2019必修第二册) (教师版)
立体几何之所成角1 异面直线所成的角①范围(0∘ ,90∘];②作异面直线所成的角:平移法.如图,在空间任取一点O,过O作a′ // a ,b′ // b,则a′ ,b′所成的θ角为异面直线a ,b所成的角.特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角.2 线面所成的角①定义如下图,平面的一条斜线(直线l)和它在平面上的射影(AO)所成的角,叫做这条直线和这个平面所成的角.一条直线垂直平面,则θ=90°;一条直线和平面平行或在平面内,则θ=0°.②范围[0∘ ,90∘]3 二面角①定义从一条直线出发的两个半平面所组成的图形叫做二面角.在二面角的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB 构成的∠AOB叫做二面角的平面角.②范围[0° ,180°].【题型一】异面直线所成的角【典题1】如图,正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°【解析】连结A1D、BD、A1B,∵正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD ,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选 C.【点拨】①找异面直线所成的角,主要是把两条异面直线通过平移使得它们共面,可平移一条直线也可以同时平移两条直线;②平移时常利用中位线、平行四边形的性质;【典题2】如图所示,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1 ,AD 的中点,那么异面直线OE和FD1所成角的余弦值等于.【解析】取BC的中点G.连接GC1,则GC1∥FD1,再取GC的中点H,连接HE、OH,则∵E是CC1的中点,∴GC1∥EH,∴∠OEH为异面直线所成的角.在△OEH中,OE=√3,HE=√52,OH=√52.由余弦定理,可得cos∠OEH=OE 2+EH2−OH22OE⋅EH=3⋅√2=√155.故答案为√155【点拨】本题利用平移法找到异面直线所成的角(∠OEH)后,确定含有该角的三角形(△OEH),利用解三角形的方法(正弦定理,余弦定理等)把所求角∠OEH最终求出来.【典题3】如图,已知P是平行四边形ABCD所在平面外一点,M,N分别是AB ,PC的中点.(1)求证:MN∥平面PAD;(2)若MN=BC=4 ,PA=4√3,求异面直线PA与MN所成的角的大小.【解析】(1)证明:取PD中点Q,连AQ、QN,则AM∥QN,且AM=QN,∴四边形AMNQ为平行四边形∴MN∥AQ又∵AQ在平面PAD内,MN不在平面PAD内∴MN∥面PAD;(2)解方法一∵MN∥AQ∴∠PAQ即为异面直线PA与MN所成的角∵MN=BC=4 ,PA=4√3,∴AQ=4,设PQ=x,根据余弦定理可知cos∠AQD+cos∠AQP=0即16+x 2−488x +16+x2−168x=0,解得x=4在三角形AQP中,AQ=PQ=4 ,AP=4√3∴cos∠PAQ=2×4×4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°方法二过点A作AH⊥PD交PD于H,如图∵MN=BC=4,∴H是QD的中点设HD=x,则QH=x,PQ=2x,在Rt△AQD和Rt△APH利用勾股定理可得AH2=16−x2=48−9x2,解得x=2∴cos∠PAQ=PHAP =4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°【点拨】本题中所成角∠PAQ找到后,无法在一个三角形里求出,此时把问题转化为平面几何问题, 再利用解三角形的方法进行求解.【题型二】线面所成的角【典题1】如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB= 2CD=2BC,EA⊥EB.(1)求证:AB⊥DE;(2)求直线EC与平面ABE所成角的正弦值.【解析】(1)证明:取AB中点O,连接EO,DO.∵EB=EA,∴EO⊥AB.∵四边形ABCD为直角梯形,AB=2CD=2BC,AB⊥BC,∴四边形OBCD为正方形,∴AB⊥OD.又∵EO∩OD=O,∴AB⊥平面EOD.∴AB⊥ED.(2)∵平面ABE⊥平面ABCD,且AB⊥BC,∴BC⊥平面ABE.则∠CEB为直线EC与平面ABE所成的角.设BC=a,则AB=2a,BE=√2a,∴CE=√3a,在直角三角形CBE中,sin∠CEB=CBCE =√3=√33.即直线EC与平面ABE所成角的正弦值为√33.【点拨】本题中的“直线EC与平面ABE所成的角”是根据线面角的定义直接在题目原图上找到的,在含所求角∠CEB的直角三角形CBE中求出角度!【典题2】如图,四边形ABCD为正方形,PA⊥平面ABCD,且AB=4,PA=3,点A在PD上的射影为G点,E点在AB边上,平面PEC⊥平面PDC.(1)求证:AG∥平面PEC;(2)求BE的长;(3)求直线AG与平面PCA所成角的余弦值.【解析】(1)证明:∵CD ⊥AD,CD ⊥PA∴CD ⊥平面PAD ∴CD ⊥AG,又PD ⊥AG∴AG ⊥平面PCD作EF ⊥PC 于F,因面PEC ⊥面PCD∴EF ⊥平面PCD∴EF ∥AG,又AG ⊄面PEC,EF ⊂面PEC,∴AG ∥平面PEC(2)由(1)知A 、E 、F 、G 四点共面,又AE ∥CD ∴AE ∥平面PCD∴AE ∥GF ∴四边形AEFG 为平行四边形,∴AE =GF∵PA =3,AD =AB =4 ∴PD =5,AG =125, 在Rt △PAGP 中,PG 2=PA 2−AG 2=8125 ∴PG =95 又GF CD =PG PD∴GF =3625 ∴AE =3625,故BE =6425(3)∵EF ∥AG,所以AG 与平面PAC 所成角等于EF 与平面PAC 所成的角,过E 作EO ⊥AC 于O 点,易知EO ⊥平面PAC,又EF ⊥PC,∴OF 是EF 在平面PAC 内的射影∴∠EFO 即为EF 与平面PAC 所成的角EO =AEsin45°=3625×√22=18√225,又EF =AG =125,∴sin∠EFO=EOEF =18√225×512=3√210故cos∠EFO=√1−sin2∠EFO=√8210所以AG与平面PAC所成角的余弦值等于√8210.【点拨】①若在题目中不能直接找到所求线面角,则可用“作高法”确定所求角,比如下图中,求直线AP与平面α所成的角,具体步骤如下:(1) 如图,过点P作平面α的高PO,垂足为O,则AO是线段AP在平面α上的投影;(2) 找到所求角θ;(3) 求解三角形APO进而求角θ.(此方法关键在于找到垂足O的位置,证明到PO⊥平面α,如本题中EO⊥平面PAC的证明)②本题若直接求“AG与平面PAC所成角”,过点G做高有些难度,则由EF∥AG,能把“AG与平面PAC所成角”转化为“EF与平面PAC所成的角”,这方法称为“间接法”吧.【典题3】如图,正四棱锥S-ABCD中,SA=AB=2,E,F,G分别为BC,SC,CD的中点.设P为线段FG上任意一点.(Ⅰ)求证:EP⊥AC;(Ⅰ)当P为线段FG的中点时,求直线BP与平面EFG所成角的余弦值.【解析】证明:(Ⅰ)连接AC交BD于O,∵S-ABCD是正四棱锥,∴ SO⊥平面ABCD,∴SO⊥AC,又∵AC⊥BD,SO∩BD=O,∴AC⊥平面SBD,∴AC⊥SD,∵F,G分别为SC,CD的中点,∴SD∥FG,∴AC⊥GF,同理AC⊥EF,∴AC⊥平面GEF,又∵PE⊂平面GEF,∴EP⊥AC.(Ⅰ) 方法一过B作BH⊥GE于点H,连接PH,∵BD⊥AC,BD∥GF,∴BH∥AC,由(Ⅰ)知:AC⊥平面GEF,∴BH⊥平面GEF,∴∠BPH就是直线BP与平面EFG所成的角,∵SA=AB=2,∴在Rt△BHP中,解得BH=√22,PH=√132,PB=√152,(易知△BHE是等腰直角三角形,又由斜边BE=1,∴BH=√22;在三角形PGH中,PG=12,GH=3√22,∠PGH=π4,用余弦定理可得PH=√132)则cos∠BPH=PHPB =√19515,故直线BP与平面EFG所成角的余弦值为√19515.方法二设过点B作平面EFG的垂直,垂直为T,则∠BPT就是直线BP与平面EFG所成的角,BT是点B到平面PGE的距离,由已知条件可求GF=EF=1,GE=√2,则∠GFE=90°,∴S△PEG=12S△GFE=12×12=14,由于P、F是中点,易得点P到平面ABCD的距离ℎ1=14SO=√24,而S△GEB=12S△GCB=12×1=12,对于三棱锥P−GEB,由V B−PEG=V P−GEB⇒13×BT×S△PEG=13×ℎ1×S△GEB⇒112BT=√224⇒BT=√22,在正四棱锥S-ABCD中可求PB=√152,(方法较多,提示过点P作平面ABCD的高PI)∴sin∠BPT=BTBP =√3015∴cos∠BPT=√1−sin∠BPT=√19515,故直线BP与平面EFG所成角的余弦值为√19515.【点拨】①本题第二问中方法一就是用“做高法”,计算量有些大;方法二是觉得垂足H的位置难确定,可设点B到平面EFG的投影为T(即垂足),再用“等积法”求高BT,则sin∠BPT=BTBP,可求所求角∠BPT,这种方法称为“等积法”;②思考:上一题试试用“等积法”!【题型三】二面角【典题1】如图,在棱长为a的正方体ABCD-A1B1C1D1中,AC 与BD相交于点O.求二面角 A1-BD-A 的正切值.【解析】在正方体中BD⊥平面A1ACC1,∴AO⊥BD,A1O⊥BD,∴二面角A1-BD-A的平面角为∠A1OA由题中的条件求出:AO=√22a ,AA1=a∴tan∠A1OA=√22a=√2,所以二面角 A1-BD-A 的正切值为√2.【点拨】本题根据二面角的定义找到二面角二面角A1-BD-A的平面角为∠A1OA,再在三角形AOA1内用解三角形的方法求解角∠A1OA.【典题2】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=√6,点E是棱PB的中点.(1)求直线AD与平面PBC的距离;(2)若AD=√3,求二面角A-EC-D的平面角的余弦值.【解析】(1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,因PA⊥底面ABCD,故PA⊥AB,可得△PAB为等腰直角三角形,又点E是棱PB的中点,故AE⊥PB,∵BC⊥AB,BC⊥PA,∴BC⊥平面PAB ∴BC⊥AE,从而AE⊥平面PBC,故AE之长即为直线AD与平面PBC的距离,在Rt△PAB中,PA=AB=√6,所以AE=12PB=12√PA2+AB2=√3(2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,连接DG,则∠DFG为所求的二面角的平面角.由(1)知BC⊥AE,又AD∥BC,得AD⊥AE,从而DE=√AE2+AD2=√6在Rt△CBE中,CE=√BE2+BC2=√6,由CD=√6,所以△CDE为等边三角形,故F为CE的中点,且DF=CD•sinπ3=3√22因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.∴G点为AC的中点,FG=12AE=√32,则在Rt△ADC中,DG=12√AD2+CD2=32,所以cos∠DFG=DF 2+FG2−DG22DF⋅FG=√63【点拨】若在题目中不能直接得到所求二面角,就需要构造出二面角,比如本题求二面角A-EC-D,解题具体步骤如下(1) 过点D作DF⊥EC,过点F作FG⊥EC交AC于点D,则二面角∠DFG为所求的二面角的平面角;(2) 确定含角∠DFG的三角形DFG,利用解三角形的方法求出角∠DFG,常见的是求出三角形三边再用余弦定理.【典题3】如图,已知三棱锥P-ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M为PB的中点.(1)求证:PC⊥BC.(2)求二面角M-AC-B的大小.【解析】(1)证明:由PA⊥平面ABC,∴PA⊥BC,又因为∠ACB=90°,即BC⊥AC.∴BC⊥面PAC,∴PC⊥BC.(2)取AB中点O,连结MO、过O作HO⊥AC于H,连结MH,∵M是PB的中点,∴MO∥PA,又∵PA⊥面ABC,∴MO⊥面ABC.∴∠MHO为二面角M-AC-B的平面角.设AC=2,则BC=2√3,MO=1,OH=√3,在Rt△MHO中,tan∠MHO=MOHO =√3=√33.二面角M-AC-B的大小为30∘.【点拨】求二面角也可以转化为线面角,比如求二面角D-AB-C,解题思路如下过点D作DE⊥AB,则二面角D-AB-C等于直线ED与平面ABC所成的角或其补角,若过点D作DF⊥平面ABC,则二面角D-AB-C是锐角,等于角∠DEF;二面角D-AB-C是钝角,等于角∠DEF的补角.1(★)在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0 <θ <π2B.0 <θ≤π2C.0≤θ≤π3D.0 <θ≤π3【答案】D【解析】∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为π3,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0 <θ≤π3.故选D.2(★★)如图所示的几何体,是将高为2、底面半径为1的圆柱沿过旋转轴的平面切开后,将其中一半沿切面向右水平平移后形成的封闭体.O1,O2,O2′分别为AB ,BC ,DE的中点,F为弧AB的中点,G为弧BC的中点.则异面直线AF与GO2′所成的角的余弦值为.【答案】√1010【解析】如图,连接AF、FB、BG、GC,∵F为半圆弧AFB的中点,G为半圆弧BGC的中点,由圆的性质可知,G、B、F三点共线,且AF=CG,FB=GB,AB=BC,∴△AFB≌△CGB,∴AF∥CG,则∠CGO2′即为所求的角或其补角,又∵半径为1,高为2,且△AFB,△CG B都是等腰Rt△,∴CG=√2,CO2′=GO2′=√1+22=√5,∴在△CGO2′中,cos∠CGO2′=√52√22√522√2⋅√5=√1010,即异面直线AF与GO2′所成的角余弦值√1010.故答案为√1010.3 (★★)如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点, MN⊥平面A1DC.(1)求证:AD1⊥平面A1DC;(2)求MN与平面ABCD所成的角.【答案】(1) 见解析(2)π4【解析】(1)证明:由ABCD-A1B1C1D1为正方体,得CD⊥平面ADD1A1,AD1⊂平面ADD1A1∴CD⊥AD1,又AD1⊥A1D,且A1D∩CD=D,∴AD1⊥平面A1DC;(2)解:∵MN⊥平面A1DC,又由(1)知AD1⊥平面A1DC,∴MN∥AD1,∴AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,∵D1D⊥平面ABCD,∴∠D1AD即为AD1与平面ABCD所成的角,,由正方体可知∠D1AD=π4∴MN与平面ABCD所成的角为π.44(★★★) 如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P ,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.【答案】(1) 见解析(2)√55【解析】(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ 平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB. 故CQ⊥平面ABE.EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,由(1)有PQ∥DC,又PQ=12∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=√5,DP=1,sin∠DAP=√5,即AD与平面ABE5。
立体几何中的成角问题
D A E C BD=
5 3 2 15 DE= 8
B
3 COS = 4
P
D
C B
方法二:
方法三:
A
方法四:
(2)方法一 P 作出二面角的棱 来确定平面角 A M D B C
(2)方法二 P
垂面法
M D A B C
(2)方法三 P
射影法
M D A B C
(2)方法四 P
补形法
A1
D
A B
C
例:四棱锥P-ABCD的底边是边长为1的 正方形,PD垂直于底面,PB= 3
直线与平面所成角平面与平面所成角当直线与平面垂直时直线与平面所成的角是90当直线在平面内或与平面平行时直线与平面所成的角斜线与平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角
异面直线所成的角 直线与平面所成角
平面与平面所成角
异面直线所成的角:
经过空间任意一点,作两条异面直线 的平行线,则两条相交直线所成的锐角(直 角)即为两条异面直线所成的角。范围:0,
二面角的平面角:
以二面角的棱上任意一点为端点, 在两个面内分别作垂直于棱的两条射线, 这两条射线所成的角叫做二面角的平面角
O
二面角的求法 (1)三垂线法:利用三垂线定理作出平 面角,通过解直角三角形求角的大小
(2)垂面法:通过做二面角的棱的垂面, 两条交线所成的角即为平面角 (3)射影法:若多边形的面积是S,它在 一个平面上的射影图形面积是S`,则 二面角满足:COS = S`÷ S
斜线与平面所成角 :
平面的一条斜线和它在平面内的射影 所成的锐角,叫做这条直线和这个平面所 成的角。范围:
0, 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斜线与它在平面 内的射影所成的 锐角。
从一条直线引出的两 个半平面所组成的图 形叫做二面角。
表示 异面直线a,b所成角 线a与平面 所成角 l (面-棱-面)
范围
(0 , ]
2
要点 找适当点、作平行线
[0 , ]
2
找射影、二足相连
[ 0 , ]
用什么度量?
1.作出所求的空间角 <定位>
2.证明所作的角符合定义 <定性>
授课内容:空间的角
空间角及 专
题讲 座
其求法
(1)教材地位分析
立体几何板块主要有两大类型 (1)判断、推理型 (2)有关的 几何量的计算,其中包括空间角、空间距离、体积的计算。
空间角及其求法是是立体几何包括的重要组成部分,是立体几何 板块的一个重点,也是难点。
(2) 高考地位分析
在历届高考中,空间角及其求法是每年必考的内容,与距离的计算、线 面位置关系论证形成新的热点,该部分的分值约6-16分,属于中等难度。
(A) 3 3
3 (B)
2
6 (C)
3
6 (D)
2
3.如图,正方形ABCD所在平面与正方形ABEF所 在的平面成60°的二面角,则异面直线AD与BF所
2 成角的余弦值是_____4______.
4.异面直线a、b成80°角,P为a、b外一定点,若 过P有且仅有2条直线与a、b所成角都为θ,则θ的
说明:异面直线所成角的范围是(0º,90º],在把异面直
线所成的角平移转化为平面三角形中的角,常用余弦定理求
其大小,当余弦值为负值时,其对应角为钝角,这不符合两
条异面直线所成角的定义,故其补角为所求的角,这一点要
注意。
另外,当异面直线垂直时,应用线面垂直的定义或三垂线定
理(或逆定理)判定所成的角为90º,也是不可忽视的办法。
所分成析的:角。欲求BC’与底面ABC所成的角,关键
在于准确地找到BC’在底面上的射影。注意到
ACAB和ACBC’,即AC平面ABC’,所以,B 平面ABC’平面ABC,故点C’在底面上的射影
x
O
A
x
3
C
O在平面ABC’和平面ABC的交线BA上,C’BO为所求的角。
例2:如图,斜三棱柱ABC—A’B’C’的底面为一等腰直
影所成的角。求斜线与平面所成的角,关键是找准斜
线段在平面内的射影; 通常是从斜线上找特殊点, 作平面的垂线段,构作含所求线面角的三角形求之。
A’
例2:如图,斜三棱柱ABC—A’B’C’的底面为 B’
C’
一等腰直角三角形,直角边AB=AC=2cm,侧棱与底 面成60º角,BC’AC,BC’=26cm,求BC’与底面
(B) 1 2
(C) 30 15
(D) 15 10
返回
空间的角的概念及其计算,是立体几何的基本
内容,也是其重点和难点。
空间中的角有:
异面直线所成的角、直线与平面所成的角和二面角。
求空间角的一般步骤是: (1)找出或2)证明它符合定义;
1、异面直线所成的角
3.构造三角形并求出所要求角<定量>
简言之,空间角的求解步骤为:
“一 “二 作” 证”
“三 算”
“一 作” “二 证” “三 算”
课前热身
1. 平面α的斜线与α所成的角为30°,则此斜线和α
内所有不过斜足的直线中所成的角的最大值是( )C
(A)30°
(B)60°
(C)90°
(D)150°
2. 相交成90°的两条直线与一个平面所成的角分别 是30°与45°,则这两条直线在该平面内的射影所 成角的正弦值为( C )
A
D1 O1
C1
B1
M
D
C
B
角(或其补角),连A1M,在A1O1M中 A1M = 22 12 = 5,
O1M
=
1 2
BD1
=
1 2
22 12 22 = 3 , 2
A1O1
=
1 2
22 12 = 5 , 2
由余弦定理得
cos A1O1M =
5, 5
A1C1与BD1所成的角为
arccos
5. 5
解法二(补形法):如图,补一个与原长方体全等的并与原长方体有公共面
如正方体、平行六面体等,其目的在于易于发现两条异面
直线的关系。
例1:长方体ABCD-A1B1C1D1,
A1
AB=AA1=2 cm, AD=1cm,求异面直线
解法一(平移A法1C)1与:B如D图1所,成连的B1角D。1与A1C1 交于O1,
取BB1的中点M,连O1M,则O1MD1B,
于是A1O1M就是异面直线A1C1与BD1所成的
理解空间角的概念、会求空间角的大小。
立体几何高考分 析
高考中,立体几何板块往往有4个题目:2个选择题,一个填空题 和1个大题。在大题中,一般是论证题和空间角(距离)计算组成。 在选择题中有时有一个题考查空间角的求法。
异面直线所成角
图
直线与平面所成角
二面角
形
定 义
在空间任取一点o,分别 作a,b的平行线,从而 形成的的锐(直)角
范围是( B )
(A)θ 0 θ 0
(B)θ 40 θ 50
(C)θ 40 θ 90
(D)θ 50 θ 90
5.如图,ABC-A1B1C1是直三棱柱,∠BCA=90°, 点D1、F1分别是A1B1、A1C1的中点,若BC=CA= CC1,则BD1与AF1所成角的余弦值是( A )
(A) 30 10
(3)计算。
根据异面直线所成角的定义,求异面直线所成角,就
是要将其变换成相交直线所成有角。其一般方法有:
(1)平移法:即根据定义,以“运动”的观点,用
“平移转化”的方法,使之成为相交直线所成的角。
具体地讲是选择“特殊点”作异面直线的平行线, 构作含异面直线所成(或其补角)的角的三角形,再求之。
(2)补形法:把空间图形补成熟悉的或完整的几何体,
能力·思维·方法
1. 如图所示,ABCD是一个正四面体,E、F分别
为BC和AD的中点.求: (1)AE与CF所成的角; (2)CF与平面BCD所成的角.
2、直线和平面所成的角
•直线与平面平行或在平面内,直线和平面所成的角的是0º;
•直线与平面垂直,直线和平面所成的角是90º;
•斜线和平面所成的角是:斜线及斜线在平面上的射
BC1的方体B1F, 连结A1E,C1E,则A1C1E为A1C1与BD1所成的角(或补角),
在A1C1E中,
D1
A1C1 = 5, A1E = 2 5, C1E = 3 A1
C1 B1
F1 E1
由余弦定理得
5 cos A1C1E = 5
5
A1C1与BD1所成的角为
arccos . 5
D A
C B
F E