2020年中考数学专题33最值问题

合集下载

2020年中考数学(线段路径)最值问题解法分类(10种)及试题精练(PDF版带答案)

2020年中考数学(线段路径)最值问题解法分类(10种)及试题精练(PDF版带答案)

中考数学专题:线段/路径最值问题线段最值问题解法分类一、定点到定点⇒连线段点P在直线l上,AP+BP何时最小?二、定点到定线⇒作垂线点P在直线l上,AP何时最小?三、定点到定圆⇒连心线点P在圆O上,AP何时最小?线段最值问题一般转化为上述三个问题.例题赏析:1.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN 的周长最小值为.思路:把点P分别沿OA、OB翻折得P1、P2,周长即为P1M+MN+P2N,转化为求P1、P2两点之间最小值,得△PMN最小值为P1P2=OP=6.2.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.思路:点N沿AD翻折至AC上,BM+MN=BM+MN',转化为求点B到直线AC的连线最小值,即BN'⊥AC时,最小值为2√2.3.如图,矩形ABCD中,AB=2,BC=3,以A为圆心、1为半径画圆,E是⊙A上一动点,F是BC 上的一动点,则FE+FD的最小值是.思路:点D沿BC翻折至D',DF+EF=D'F+EF,转化为求点D'到圆A上各点的最小距离,易求D'E=4.4.抛物线y=3/5x2-18/5x+3与直线y=3/5x+3相交于A、B两点,点M是线段AB上的动点,直线PM∥y轴,交抛物线于点N.在点M运动过程中,求出MN的最大值.思路:设M(m,3/5m2-18/5m+3),N(m,3/5m+3),用函数关系式表示MN=(3/5m+3)-(3/5m2-18/5m+3)=21/5m-3/5m2,求得最大值即可.5.在菱形ABCD中,对角线AC=8,BD=6,点E、F分别是边 AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是思路:点E沿AC翻折,转化为点到点的距离.(将军饮马问题实质就是通过翻折转化为定点到定点的问题)6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为 .思路:取AB中点E,连接DE、OE,由两点间线段最短,得OD≤OE+DE,最大为1+√2.7.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是简解:B'点运动路径为以C为圆心,BC为半径的圆弧,转化为点到圆的最短距离AC-B'C=1.8.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为 .思路:正六边形最大半径为1/2,与正方形中心重合,E点运动路径为圆,转化为求点到圆的最短距离,如下图.9.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是 .思路:D是定点,C是直线AC上的动点,转化为求点到线的最短距离.10.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上的动点,在△A'B'C绕点C顺时针旋转过程中,点F的对应点是F',求线段EF'长度的最大值与最小值的差.思路:先确定线段A'B'的运动轨迹是圆环,外圆半径为BC,内圆半径为AB边上的高,F'是A'B'上任意一点,因此F'的运动轨迹是圆环内的任意一点,由此转化为点E到圆环的最短和最长距离.E到圆环的最短距离为EF2=CF2-CE=4.8-3=1.8,E到圆环的最长距离为EF1=EC+CF1=3+6=9,其差为7.2.问:何时需要作辅助线翻折其中的定点(定线或定圆)?答:当动点所在直线不在定点(定线或定圆)之间时,需把定点(定线或定圆)沿动点所在直线翻折以使定点(定线或定圆)处于动点所在直线的两侧,从而便于连接相关线段或作垂线与动点所在直线找到交点.如上述例3,动点F所在直线不在定圆A和定点D之间,因而需把D点沿BC翻折至D',即可转化为定点D'到定圆A的最短距离,另外亦可把圆A沿BC翻折至另一侧,同样可以转化为定点D到定圆A'的最短距离,如下图.关键方法:动中求定,动点化定线;以定制动,定点翻两边.(1)动中求定,动点化定线:如例7、例8、例10,动点所在路径未画出时需先画出动点所在轨迹,一般动点所在轨迹为线或圆.(2)以定制动,定点翻两边:如例1、例2、例3、例5,定点(线或圆)在动点所在直线同侧时需翻折至两侧,转化为上述三种关系.练1、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2022年中考数学试卷分类汇编专项33网格问题

2022年中考数学试卷分类汇编专项33网格问题

2022年中考数学试卷分类汇编专项33网格问题专题33:网格问题一、选择题1. (2020宁夏区3分)一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近那个几何体的侧面积的是【】A.24.0 B.62.8 C.74.2 D.113.0【答案】B。

【考点】网格问题,圆锥的运算,由三视图判定几何体,勾股定理。

【分析】由题意和图形可知,几何体是圆锥,底面半径为4,依照勾股定理可得母线长为5。

则侧面积为πrl=π×4×5=20π≈62.8。

故选B。

2. (2020湖北孝感3分)如图,△ABC在平面直角坐标系中的第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是【】A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)【答案】B。

【考点】坐标与图形的对称和平移变化。

【分析】∵将△ABC向右平移4个单位得△A1B1C1,∴A1的横坐标为-2+4=2;纵坐标不变为3;∵把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,∴A2的横坐标为2,纵坐标为-3。

∴点A2的坐标是(2,-3)。

故选B。

3. (2020湖北荆门3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是【】A.B.C.D.4. (2020山东聊城3分)如图,在方格纸中,△ABC通过变换得到△DEF,正确的变换是【】A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180°D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°【答案】B 。

2020年九年级数学中考经典几何题讲义系列:几何最值问题

2020年九年级数学中考经典几何题讲义系列:几何最值问题
2.如图,已知 A(1,3),B(5,1),长度为 2 的线段 PQ 在 x 轴上平行移动,当 AP+PQ+QB 的值最小时,点 P 的坐标为( )
3 / 18
(4) 两点两线的最值问题: (两个动点+两个定点)
问题特征:两动点分别在两条直线上独立运动,一动点分别到一定点和另一动点的距离和最小。 核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两点之间线段最 短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点与直线上各点的所有线 段中,垂线段最短)时,两线段和最小,最小值等于这条垂线段的长。 变异类型:演变为多边形周长、折线段等最值问题。 1. 如图,点 A 是∠MON 内的一点,在射线 ON 上作点 P,使 PA 与点 P 到射线 OM 的距离之 和最小。
A.
B.
C.
D.1
考点: 轴对称-最短路线问题;正方形的性质. 菁优网版权所有
分析: 根据题意得出作 EF∥AC 且 EF= ,连结 DF 交 AC 于 M,在 AC 上截取 MN=
,此时四边形 BMNE
解答: 的周长最小,进而利用相似三角形的判定与性质得出答案. 解:作 EF∥AC 且 EF= ,连结 DF 交 AC 于 M,在 AC 上截取 MN= ,延长 DF 交 BC 于 P,作
2.连结对称点与另一个定点,则直线段长度就是我们所求。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、 正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1.如图,直线 l 和 l 的同侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB 最小。
∵LN=AS=
=40.

2020年重庆中考复习数学课件 “线段最值问题”漫谈(56张PPT)

2020年重庆中考复习数学课件 “线段最值问题”漫谈(56张PPT)
5
y
B
M1
O
点M1为最值点, P1D1为所求线段 M
x
D1
H
P1
P
D C
“阿氏圆”问题
【问题背景】阿氏圆又称阿波罗尼斯圆,已知平面上两点 A、B, 则所有满足PA/PB=k(k≠1)的点 P 的轨迹是一个圆,这个轨迹 最先由古希腊数学家阿波罗尼斯发现,故称“阿波罗尼斯圆”简称 “阿氏圆”.如下图所示,其中PA:PB=OP:OB=OA:OP=k.
小伙子从A走到P,然后从P折往B,可望最早到达B。
问 题 : 若 在 驿 道 上 行 走 的 速 度 为 v1=8km/h , 在 沙 地 上 行 走 的 速 度 为
v2=4km/h.(1)小伙子回家需要的时间可表示为 (2)点P选择在何处他回家的时间最短?
AP P; B
84
1 4
1 2
PA
PB
PA最长 PB最短
⑦圆圆之间,连心线截距最短(长)
基本图形
E
A
O
C
B DM
F
结论
AB最长 CD最短
解决策略
复杂的几何最值问题都是在基本图形的基础上进行变式 得到的,在解决这一类问题的时候,常常需要通过几何变换 进行转化,逐渐转化为“基本图形”,再运用“基本图形” 的知识解决。常运用的典型几何变换有: (1)平移------“架桥选址” (2)翻折------“将军饮马“ (3)旋转------“费马点问题“ (4)相似------“阿氏圆问题“ (5)三角------“胡不归问题“ (6)多变换综合运用
解题要点:
将定点沿定长方向平移
定长距离 将军饮马
B1
B1
架桥选址类
【例20】如图,在矩形ABCD中,AB= 3 ,BC=1,将△ABD

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。

阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。

【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。

即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。

【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。

但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。

知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。

【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。

①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。

2020年中考数学复习微专题最值问题(费马点问题)

2020年中考数学复习微专题最值问题(费马点问题)

2020年中考数学复习专题最值问题(费马点问题)突破与提升策略问题:在△ABC内找一点P,使得P A+PB+PC最小.APB C【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.其实理论还是上面的理论,本题难点在于有3条线段,我们需要对这三条线段作一些位置上的变化,如果能变换成在一条直线上,问题就能解决了!若点P满足∠P AB=∠BPC=∠CP A=120°,则P A+PB+PC值最小,P点称为该三角形的费马点.接下来讨论3个问题:(1)如何作三角形的费马点?(2)为什么是这个点?(3)费马点怎么考?一.如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)(4)以BC为边作等边△BCF,连接AF,必过点P,有∠P AB=∠BPC=∠CP A =120°.EB ACAB CDE在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE . 有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC <120°,若120BAC∠≥︒ ,这个图就不是这个图了,会长成这个样子:此时CD 与BE 交点P 点还是我们的费马点吗?显然这时候就不是了,显然P 点到A 、B 、C 距离之和大于A 点到A 、B 、C 距离之和.所以咧?是的,你想得没错,此时三角形的费马点就是A 点!当然这种情况不会考的,就不多说了.二.为什么是这个点为什么P点满足∠P AB=∠BPC=∠CP A=120°,P A+PB+PC值就会最小呢?归根结底,还是要重组这里3条线段:P A、PB、PC的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC≌△ABE,可得:CD=BE.类似的手拉手,在图4中有3组,可得:AF=BE=CD.E更巧的是,其长度便是我们要求的P A+PB+PC的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值!接下来才是真正的证明:考虑到∠APB=120°,∴∠APE=60°,则可以AP为边,在PE边取点Q使得PQ=AP,则△APQ是等边三角形.△APQ、△ACE均为等边三角形,且共顶点A,故△APC≌△AQE,PC=QE.以上两步分别转化P A=PQ,PC=QE,故P A+PB+PC=PB+PQ+QE=BE.没有对比就没有差别,我们换个P 点位置,如下右图,同样可以构造等边△APQ ,同样有△APC ≌△AQE ,转化P A =PQ ,PC =QE ,显然,P A +PB +PC =PB +PQ +QE >BE .还剩下第3个问题!如果说费马点以前还算是课外的拓展内容,那现在,已经有人把它搬上了中考舞台!三.费马点怎么考?问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG=点O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.NG图2图1ABCD EP【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG为边作等边△MGH,连接NH,则NH的值即为所求的点O到△MNG三个顶点的距离和的最小值.(此处不再证明)HGNM过点H作HQ⊥NM交NM延长线于Q点,根据∠NMG=75°,∠GMH=60°,可得∠HMQ=45°,∴△MHQ是等腰直角三角形,∴MQ=HQ=4,∴NH==464QHGNM【练习】如图,在△ABC中,∠ACB=90°,AB=AC=1,P是△ABC内一点,求P A+PB+PC的最小值.C【分析】如图,以AD为边构造等边△ACD,连接BD,BD的长即为P A+PB+PC的最小值.至于点P的位置?这不重要!AB CD如何求BD ?考虑到△ABC 和△ACD 都是特殊的三角形,过点D 作DH ⊥BA 交BA 的延长线于H 点,根据勾股定理,222BD BH DH =+即可得出结果.HDCB A【练习】如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.ABCDME【分析】依然构造60°旋转,将三条折线段转化为一条直线段. 分别以AD 、AM 为边构造等边△ADF 、等边△AMG ,连接FG ,易证△AMD ≌△AGF ,∴MD =GF ∴ME +MA +MD =ME +EG +GF过F 作FH ⊥BC 交BC 于H 点,线段FH 的长即为所求的最小值.HFGE MDCBA。

中考数学点对点-最值问题(解析版)

中考数学点对点-最值问题(解析版)

中考数学最值问题专题知识点概述在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。

一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。

二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。

y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。

y ac b a max =-442。

2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

2023年九年级数学中考专题复习——最值问题(将军饮马,胡不归,阿氏圆)

2023年九年级数学中考专题复习——最值问题(将军饮马,胡不归,阿氏圆)

牛吃草最值问题:1.如图,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点.若MN=1,则△PMN 周长的最小值为.2.如图,点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =32,则△PMN 周长的最小值为.3.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上一动点,点N(6,0)是OB 上的一定点,点M 是ON 中点,∠AOB=30∘,要使PM+PN 最小,则点P 的坐标为.4.如图,Rt △ABC 中,∠ACB=90º,∠CAB=30º, BC=1,将△ABC 绕点B 顺时针转动, 并把各边缩小为原来的一半,得到△DBE ,点A ,B ,E 在一直线上.P 为边DB 上的动点,则AP+CP 的最小值为 .5.点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA+QB 的值最小的点,则OP OQ ⋅= .N M O P B A Ay6.如图,当四边形PABN 的周长最小时,a =.7.矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA=3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为8.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且=,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为三角形条件及隐圆最值问题1.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C. 则A′C 长度的最小值是.N (a +2,0)P (a ,0)B (4,-1)A (1,-3)O y x F D C B A x y O E F D C B A x y O E2如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是3.如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH,若正方形的边长为4,则线段DH长度的最小值是.4.如图,AB为直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,取AP中点Q,连CQ,则线段CQ的最大值为5.如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时BH:CF=6.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.7.如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线OF 绕O点旋转时,CD的最小值为________8.如图,点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______9.AB是半圆O的直径,AB=10,弦AC长为8,点D是弧BC上一个动点,连接AD,作CP⊥AD,垂足为P,连接BP,则BP的最小值是_____10.直线y=x+4 分别与x 轴、y 轴相交与点M、N,边长为2 的正方形OABC 一个顶点O 在坐标系的原点,直线AN 与MC 相交与点P,若正方形绕着点O 旋转一周,则点P 到点(0,2)长度的最小值是__________11.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是x−3与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、12.如图,已知直线y=34PB.则△PAB面积的最小值是_____.13.如图,C、D是以AB为直径的圆O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,M是弦CD 的中点,过点C作CP⊥AB于点P.若CD=3,AB=5,PM=x,则x的最大值是14.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是15.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是16.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕着点A旋转,当∠ABF最大时,S△ADE =17.如图,在直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为18.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是19.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=20..如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是路径问题:1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC 的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是2.如图,在圆心角为90°的扇形OAB中,OB=2,P为上任意一点,过点P作PE⊥OB于点E,设M为△OPE的内心,当点P从点A运动到点B时,则内心M所经过的路径长为3.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是4.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.若AF=BE,当点E从点A运动到点C时,则点P经过的路径长为.5.如图,边长为2 的正方形ABCD 的两条对角线交于点O,把BA 与CD 分别绕点B 和点C 逆时针旋转相同的角度,此时正方形ABCD 随之变成四边形A′BCD′.设A′C,BD′交于点O′,若旋转了60°,则点O 运动到点O′所经过的路径长为6.已知等边三角形ABC 的边长为4,点D 是边BC 的中点,点E 在线段BA 上由点B 向点A 运动,连接DE,以DE 为边在DE 右侧作等边三角形DEF.设△DEF 的中心为O,则点 E 由点 B 向点 A 运动的过程中,点O 运动的路径长为胡不归型问题:当 k≠1 且 k 为正数时,若点 P 在某条直线上运动时,此时所求的最短路径问题称之为“胡不归”问题.那么对于当“PA + k·PB”的值最小时,点 P 的位置如何确定呢?过点 P 作 PQ⊥BN,垂足为 Q,如图3则 k·PB = PB·sin∠MBN = PQ.因此,本题求“PA + k·PB”的最小值转化为求“PA +PQ”的最小值,即 A,P,Q 三点共线时最小.1.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+1BM的最小值为.22.在△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是阿氏圆模型问题:已知平面上两点 A,B,则所有满足 PA + k·PB(k≠1,且 k 为正数),若点 P 的轨迹是一个圆,当点 P 在圆周上运动的类型称之为“阿氏圆”(阿波罗尼斯圆)问题.如图所示,⊙O 的半径为 r,点 A,B 都在圆外,P 为⊙O 上的动点,已知 r = k·OB,连接 PA,PB,则当“PA + k·PB”的值最小时,P 点的位置如何确定?在线段 OB 上截取 OC 使 OC = k·r,则可说明△BPO∽△PCO,即 k·PB = PC.因此,求“PA + k·PB”的最小值转化为求“PA + PC”的最小值,即 A,P,C 三点共线时最小1.已知A(-4,-4)、B(0, 4)、C(0, -6)、 D(0, -1),AB与x轴交于点E,以点E为圆心,ED长为半径作圆,点M为⊙E上AM的最小值.一动点,求CM+122.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,则AP+1BP的最小值为.2旋转最值及路径问题:1.如图,点O在线段AB上,OA=1,OB=3,以O为圆心,OA长为半径作⊙O,点M在⊙O上运动,连接MB,以MB为腰作等腰Rt△MBC,使∠MBC=90°,M,B,C三点为逆时针顺序,连接AC,则AC长的取值范围为___________.2.如图,线段AB为⊙O的直径,AB=4,点C为OB的中点,点P在⊙O上运动,连接CP,以CP为一边向上作等边△CPD,连接OD,则OD的最大值为___________.3.如图,在直角坐标系中,已知点A(4,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下做等边△ABC,连接OC,则OC的最小值为__________4.如图,在Rt△ABC中,AB=BC=2,点P为AB边上一动点,连接CP,以CP为边向下作等腰RT△CPD,连接BD,则BD的最小值为____________.5..如图,在直角坐标系中,已知点A(4,0),点B为直线y=2上一动点,连接AB,以AB为底边向下做等腰Rt△ABC,∠ACB=90°,连接OC,则OC的最小值为__________6.如图,已知点A(3,0),C(0,-4),⊙C的半径为√5,点P为⊙C上一动点,连接AP,若M为AP的中点,连接OM,则OM的最大值为.7.如图,已知△ABC为等腰直角三角形,∠BAC=90°,AC=2,以点C为圆心,1为半径作圆,点P为⊙C上一动点,连结AP,并绕点A顺时针旋转90°得到AP′,连结CP′,则CP′的取值范围是.8.如图,Rt△ABC中,AC=6,BC=8,∠C=90°.点P是AB边上一动点,D是AC延长线上一点,且AC=CD,连接PD,过点D作.则当点P从点A运动到B点时,点E运动的路径长为DE⊥PD,连接PE,且tan∠DPE=252的一个定点,AC⊥x 轴于点M,交直线y=-x 于点N.若点P 是线段ON 上9.如图,点A 是第一象限内横坐标为3的一个动点,∠APB=30°,BA⊥PA,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.当点P 从点O 运动到点N 时,点B 运动的路径长是旋转构图法(补形)问题:常见旋转模型:1.如图,在△ABC 中,AB=AC=32,∠BAC=120°,点D ,E 都在BC 上,∠DAE=60°,若BD=2CE ,则DE 的长为_____.2.在四边形ABCD 中,AD=4,CD =3,∠ABC=∠ACB =∠ADC=45°,则BD 的长为;3.如图,在△ABC 中,∠ABC=90°,将AB 边绕点A 逆时针旋转90°得到线段AD ,将AC 边绕点C 顺时针旋转90°得到线段CE ,AE 与BD 交于点F .若DF=2,EF=22,则BC 边的长为____________.A D CB E FDE CB A4.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD的最小值为5.如图,在△ABC中,∠ABC=30°,AB=4 ,BC=5 , P是△ABC内部的任意一点,连接PA , PB , PC,则PA + PB + PC 的最小值为.。

2020年中考数学二轮核心考点讲解第03讲最值问题专题解析版

2020年中考数学二轮核心考点讲解第03讲最值问题专题解析版

【中考数学二轮核心考点讲解】第03讲最值问题专题最值的种类你是否都提前总结过?1. 垂线段最值类型:2. 点与点之间,线段最短类型;3. 轴对称最值类型(也称将军饮马型);4. 二次函数最值类型;5. 辅助圆中最值类型;6. 费马点最值类型;7. 胡不归最值类型;8. 阿波罗尼斯圆最值类型.【例题1】(2019•鸡西)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为.【分析】本题属于“将军饮马最值类型”【解析】如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC都是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵S△P AB=S△PCD,∴×4×x=××4×(6﹣x),∴x=2,∴AM=2,DM=EM=4,在Rt△ECD中,EC==4,∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC ≥4,∴PD+PC的最小值为4.【例题2】在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分BAE∠,90ACE∠=︒,则线段AE、AB、DE的长度满足的数量关系为AE AB DE=+;(直接写出答案)(2)如图(2),AC平分BAE∠,EC平分AED∠,若120ACE∠=︒,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),8BD=,2AB=,8DE=,若135ACE=︒,求线段AE长度的最大值.【分析】本题属于“两点之间,线段最短类型”【解析】(1)AE AB DE=+;理由:在AE上取一点F,使AF AB=.易得=AE AF EF AB DE=++(2)猜想:12AE AB DE BD=++.证明:在AE上取点F,使AF AB=,连结CF,在AE上取点G,使EG ED=,连结CG.CQ是BD边的中点,12CB CD BD∴==.ACQ平分BAE∠,BAC FAC∴∠=∠.在ACB∆和ACF∆中,AB AFBAC FACAC AC=⎧⎪∠=∠⎨⎪=⎩,()ACB ACF SAS∴∆≅∆,CF CB∴=,BCA FCA∴∠=∠.同理可证:CD CG=,DCE GCE∴∠=∠.CB CD=Q,CG CF∴=120ACE∠=︒Q,18012060BCA DCE∴∠+∠=︒-︒=︒.60FCA GCE∴∠+∠=︒.60FCG∴∠=︒.FGC∴∆是等边三角形.12FG FC BD ∴==. AE AF EG FG =++Q .12AE AB DE BD ∴=++.(3)作B 关于AC 的对称点F ,D 关于EC 的对称点G ,连接AF ,FC ,CG ,EG ,FG . C Q 是BD 边的中点,12CB CD BD ∴==.()ACB ACF SAS ∆≅∆Q ,CF CB ∴=,BCA FCA ∴∠=∠.同理可证:CD CG =,DCE GCE ∴∠=∠ CB CD =Q ,CG CF ∴= 135ACE ∠=︒Q ,18013545BCA DCE ∴∠+∠=︒-︒=︒. 45FCA GCE ∴∠+∠=︒. 90FCG ∴∠=︒.FGC ∴∆是等腰直角三角形.12FC BD ∴=.8BD =Q , 4FC ∴=, 42FG ∴=. 42AE AB DE =++Q . 2AB =Q ,8DE =,1042AE AF FG EG ∴++=+….∴当A 、F 、G 、E 共线时AE 的值最大2,最大值为1042+.故答案为:1042+. 【例题3】(2019•普洱一模)已知菱形ABCD 中,AB =5,∠B =60°,⊙A 的半径为2,⊙B 的半径为3,点E 、F 分别为⊙A 、⊙B 上的动点,点P 为DC 边上的动点,则PE +PF 的最小值为 5 .【分析】本题属于“轴对称最值类型”【解析】当P 与C 重合时,F 点在BC 上,E 点在AC 上,此时PE +PF 的值最小; 连接AC ,∵菱形ABCD ,AB =5,∠B =60°, ∴AC =5,∵⊙A 的半径为2, ∴EC =3,∵⊙B 的半径为3, ∴FC =2, ∴PE +PF =5;故答案为5;【例题4】(2019•玉林)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.8【分析】本题属于“圆中常规最值类型”【解析】如图,设⊙O与AC相切于点D,连接OD,作OP⊥BC垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为OP﹣OF,∵AC=4,BC=3,∴AB=5∵∠OPB=90°,∴OP∥AC∵点O是AB的三等分点,∴OB=×5=,==,∴OP=,∵⊙O与AC相切于点D,∴OD⊥AC,∴OD∥BC,∴==,∴OD=1,∴MN最小值为OP﹣OF=﹣1=,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值=+1=,∴MN长的最大值与最小值的和是6.故选:B.【例题5】如图,四边形的两条对角线AC、BD相交所成的锐角为60︒,当8+=时,四边形ABCDAC BD的面积的最大值是.【分析】本题属于“二次函数最值类型”【解析】ACQ与BD所成的锐角为60︒,∴根据四边形面积公式,得四边形ABCD 的面积1sin602S AC BD =⨯⨯︒, 设AC x =,则8BD x =-, 所以2133(8)(4)43224S x x x =-⨯=--+, 所以当4x =,S 有最大值43. 故答案为:43.【例题6】(2019•上虞区一模)如图,已知ABC ∆,DEF ∆均为等腰直角三角形,102EF =,顶点D ,E 分别在边AB ,AC 上滑动.则在滑动过程中,点A ,F 间距离的最大值为 .【分析】本题属于“辅助圆最值类型”【解析】DEF ∆均为等腰直角三角形,102EF =,10DE DF ∴==,ABC ∆Q 是等腰直角三角形,以ED 为直角作等腰直角三角形EDM ,以M 为圆心,AM 为半径作圆, 随着D 、E 点运动,A 始终在圆M 上, 当A 、M 、F 三点共线时,AF 最大; AM EM =Q , 52AM ∴=,45DEF MED ∠=∠=︒Q , 90MEF ∴∠=︒, 510MF ∴=, 52510AF ∴=+,故答案为52510+.【例题7】(2019•武汉)问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG =.点O 是△MNG 内一点,则点O 到△MNG三个顶点的距离和的最小值是.【分析】本题属于“费马点最值类型”【解析】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2【例题8】如图,在ACEe经过点C,且圆的直径AB在线段AE上.∆中,CA CE∠=︒,OCAE=,30(1)试说明CE是Oe的切线;(2)若ACEe的直径AB;∆中AE边上的高为h,试用含h的代数式表示O(3)设点D 是线段AC 上任意一点(不含端点),连接OD ,当12CD OD +的最小值为6时,求O e 的直径AB 的长.【分析】本题属于“胡不归最值类型” 【解析】(1)连接OC ,如图1, CA CE =Q ,30CAE ∠=︒,30E CAE ∴∠=∠=︒,260COE A ∠=∠=︒, 90OCE ∴∠=︒,CE ∴是O e 的切线;(2)过点C 作CH AB ⊥于H ,连接OC ,如图2, 由题可得CH h =.在Rt OHC ∆中,sin CH OC COH =∠g , 3sin 60h OC OC ∴=︒=g , 233OC h ∴==,432AB OC h ∴==; (3)作OF 平分AOC ∠,交O e 于F ,连接AF 、CF 、DF ,如图3, 则11(18060)6022AOF COF AOC ∠=∠=∠=︒-︒=︒.OA OF OC ==Q ,AOF ∴∆、COF ∆是等边三角形, AF AO OC FC ∴===, ∴四边形AOCF 是菱形,∴根据对称性可得DF DO =. 过点D 作DH OC ⊥于H ,OA OC =Q ,30OCA OAC ∴∠=∠=︒, 1sin sin302DH DC DCH DC DC ∴=∠=︒=g g , ∴12CD OD DH FD +=+. 根据垂线段最短可得:当F 、D 、H 三点共线时,DH FD +(即1)2CD OD +最小,此时3sin 6FH OF FOH OF =∠==g , 则43OF =,283AB OF ==.∴当12CD OD +的最小值为6时,O e 的直径AB 的长为83.【例题9】阅读以下材料,并按要求完成相应的任务. 已知平面上两点A 、B ,则所有符合(0PAk k PB=>且1)k ≠的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆. 阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标中,在x 轴,y 轴上分别有点(,0)C m ,(0,)D n ,点P 是平面内一动点,且OP r =,设OPk OD=,求PC kPD +的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得0::M OP OP OD k ==;第二步:证明kPD PM =;第三步:连接CM ,此时CM 即为所求的最小值. 下面是该题的解答过程(部分):解:在OD 上取点M ,使得::OM OP OP OD k ==, 又POD MOP ∠=∠Q ,~POM DOP ∴∆∆…… 任务:(1)将以上解答过程补充完整.(2)如图2,在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,D 为ABC ∆内一动点,满足2CD =,利用(1)中的结论,请直接写出23AD BD +的最小值.【分析】本题属于“阿波罗尼斯圆最值类型”【解析】解(1)在OD 上取点M ,使得::OM OP OP OD k ==, 又POD MOP ∠=∠Q , ~POM DOP ∴∆∆. :MP PD k ∴=, MP kPD ∴=,PC kPD PC MP ∴+=+,当PC kPD +取最小值时,PC MP +有最小值, 即C ,P ,M 三点共线时有最小值,利用勾股定理得2222222()CM OC OM m kr m k r =+++.(2)4AC m==Q,23CDBC=,在CB上取一点M,使得2433CM CD==,∴23AD BD+的最小值为2244104()3+=.1.(2019•乐山)如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是()A.3 B.C.D.4【解析】连接BP,如图,当y=0时,x2﹣4=0,解得x1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段P A的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.2.(2019•泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.【解析】如图:当点F与点C重合时,点P在P 1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2故选:D.3.(2019•黄石)如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时=()A.B.C.D.【解析】如图,设BD与AF交于点M.设AB=a,AD=a,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD==,∴BD=AC==2a,∠ABD=60°,∴△ABE、△CDE都是等边三角形,∴BE=DE=AE=CE=AB=CD=a.∵将△ABD沿BD折叠,点A的对应点为F,∴BM垂直平分AF,BF=AB=a,DF=DA=a.在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,∴GM=BG=1,BM=GM=,∴DM=BD﹣BM=2a﹣.∵矩形ABCD中,BC∥AD,∴△ADM∽△GBM,∴=,即=,∴a=2,∴BE=DE=AE=CE=AB=CD=2,AD=BC=6,BD=AC=4.易证∠BAF=∠F AC=∠CAD=∠ADB=∠BDF=∠CDF=30°,∴△ADF是等边三角形,∵AC平分∠DAF,∴AC垂直平分DF,∴CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.如图,建立平面直角坐标系,则A(3,0),B(3,2),B′(3,﹣2),E(0,),易求直线B′E的解析式为y=﹣x+,∴H(1,0),∴BH==4,∴==.故选:B.4.(2019•包头)如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N在直线y=kx+b上,则b 的最大值是()A.﹣B.﹣C.﹣1 D.0【解析】连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△NBM,∴,设BN=y,AM=x.则MB=3﹣x,ON=2﹣y,∴,即:y=x2+x∴当x=﹣=﹣时,y最大=×()2+=,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB﹣BN=2﹣=,此时,N(0,)b的最大值为.故选:A.5.如图,正三角形ABC的边长为3+,在正三角形ABC中放入正方形DEMN和EFPH,使得D、E、F 在边AB上,点P、N分别在边CB、CA上,这两个正方形面积和的最小值是,最大值是99﹣54.【解析】设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,∵△ABC为等边三角形,∴∠A=∠B=60°,AB=3+,在Rt△ADN中,AD=DN=m,在Rt△BPF中,BF=PF=n,∵AD+DE+EF+BF=AB,∴m+m+n+n=3+,∴m+n=3,∴n=3﹣m,∴S=m2+n2=m2+(3﹣m)2=2(m﹣)2+当点M落在BC上,则正方形DEMN的边长最小,正方形EFPH的边长最大,如图,在Rt△ADN中,AD=DN,AN=DN,∴DN+DN=3+,解得DN=3﹣3,在Rt△BPF中,BF=PF,∴(3﹣3)+3﹣3+EF+PF=3+,解得PF=6﹣9,∴6﹣3≤m≤3﹣3,∴当m=时,S最小,S的最小值为;当m=3﹣3时,S最大,S的最大值=2(3﹣3﹣)2+=99﹣54.故答案为;99﹣54.6.如图,平面直角坐标系中,A、B在x轴上,A(2,0)、B(8,0),点C为y轴上一动点,当∠ACB最大时,C点坐标为(0,4)或(0,﹣4).【解析】当过A、B两点的⊙P与y轴正半轴相切于C时,∠ACB最大时,作PH⊥AB于H,连结PC、P A,如图,∵A(2,0)、B(8,0),∴OA=2,AB=6,∵PH⊥AB,∴AH=BH=3,∴OH=OA+AH=5,∵⊙P与y轴相切,∴PC⊥y轴,∴四边形PHOC为矩形,∴OC=PH,PC=OH=5,在Rt△P AH中,∵AH=3,P A=5,∴PH==4,∴OC=4,∴C点坐标为(0,4),当⊙P与y轴的负半轴相切时,C点坐标为(0,﹣4).故答案为(0,4)或(0,﹣4).7.(2019•威海)如图,在平面直角坐标系中,点A,B在反比例函数y=(k≠0)的图象上运动,且始终保持线段AB=4的长度不变.M为线段AB的中点,连接OM.则线段OM长度的最小值是(用含k的代数式表示).【解析】如图,因为反比例函数关于直线y=x对称,观察图象可知:当线段AB与直线y=x垂直时,垂足为M,此时AM=BM,OM的值最小,∵M为线段AB的中点,∴OA=OB,∵点A,B在反比例函数y=(k≠0)的图象上,∴点A与点B关于直线y=x对称,∵AB=4,∴可以假设A(m,),则B(m+4,﹣4),∴(m+4)(﹣4)=k,整理得k=m2+4m,∴A(m,m+4),B(m+4,m),∴M(m+2,m+2),∴OM===,∴OM的最小值为.故答案为.8.(2019•凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为4.【解析】∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.9.(2019•东营)如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N 分别是AC、BC的中点,则MN的最大值是.【解析】∵点M,N分别是BC,AC的中点,∴MN=AB,∴当AB取得最大值时,MN就取得最大值,当AB是直径时,AB最大,连接AO并延长交⊙O于点B′,连接CB′,∵AB′是⊙O的直径,∴∠ACB′=90°.∵∠ABC=45°,AC=5,∴∠AB′C=45°,∴AB′===5,∴MN最大=.故答案为:.10.(2019•乐山)如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是3.【解析】∵PQ⊥x轴,∴设P(x,),则Q(x,x﹣2),∴PQ=﹣x+2,∴S△POQ=(﹣+2)•x=﹣(x﹣2)2+3,∵﹣<0,∴△POQ面积有最大值,最大值是3,故答案为3.11.(2019•宿迁)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【解析】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.12.(2019•北仑区模拟)如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边BC上的一个动点,EG=EF,且∠GEF=60°,则GB+GC的最小值为2.【解析】取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;∵MN∥AD,∴HM=AE,∵HB⊥HM,AB=4,∠A=60°,∴MB=2,∠HMB=60°,∴HM=1,∴AE'=2,∴E点与E'点重合,∵∠AEB=∠MHB=90°,∴∠CBE=90°,在Rt△EBC中,EB=2,BC=4,∴EC=2,故答案为2;13.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【解析】∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.14.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC =60°,⊙O的半径为6,则点P到AC距离的最大值是6+3.【解析】过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC的距离最大,且点P到AC距离的最大值=PM,∵OM⊥AC,∠A=∠BPC=60°,⊙O的半径为6,∴OP=OA=6,∴OM=OA=×6=3,∴PM=OP+OM=6+3,∴则点P到AC距离的最大值是6+3,故答案为:6+3.15.(2019•眉山)如图,在Rt△AOB中,OA=OB=4.⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为2.【解析】连接OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=4,∴AB=OA=8,∴OP==4,∴PQ==2.故答案为2.16.(2019•通辽)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是﹣1.【解析】过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=60°∴HD=MD=1,HM=HD=∴CH=4∴MC==∵将△AMN沿MN所在直线翻折得到△A′MN,∴AM=A'M=1,∴点A'在以M为圆心,AM为半径的圆上,∴当点A'在线段MC上时,A'C长度有最小值∴A'C长度的最小值=MC﹣MA'=﹣1故答案为:﹣117(2019•营口)如图,△ABC是等边三角形,点D为BC边上一点,BD=DC=2,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为8.【解析】过点A作AM⊥BC于M,∵BD=DC=2,∴DC=4,∴BC=BD+DC=2+4=6,∵△ABC是等边三角形,∴AB=AC=BC=6,∵AM⊥BC,∴BM=BC=×6=3,∴DM=BM﹣BD=3﹣2=1,在Rt△ABM中,AM===3,当点E在DA延长线上时,AE=DE﹣AD.此时AE取最小值,在Rt△ADM中,AD===2,∴在Rt△ADG中,AG===8;故答案为:8.18.(2019•舟山)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC =12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm;连接BD,则△ABD的面积最大值为(24+36﹣12)cm2.【解析】∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm如图,连接BD',AD',∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C∴S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N当E'D'⊥AC时,S△AD'B有最大值,∴S△AD'B最大值=24+(12﹣4)×6=(24+36﹣12)cm2.故答案为:(24﹣12),(24+36﹣12)19.(2019•十堰)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A 旋转,当∠ABF最大时,S△ADE=6.【解析】作DH⊥AE于H,如图,∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF==3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中,∴△ADH≌△ABF(AAS),∴DH=BF=3,∴S△ADE=AE•DH=×3×4=6.故答案为6.20.(2019•黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD =120°,则CD的最大值是14.【解析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.21.(2019•嘉兴)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【解析】连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.22.(2019•连云港)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是3.【解析】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.23.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD 为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.【解析】过点C 作CG ⊥BA 于点G ,作EH ⊥AB 于点H ,作AM ⊥BC 于点M . ∵AB =AC =5,BC =4, ∴BM =CM =2, 易证△AMB ∽△CGB , ∴,即∴GB =8,设BD =x ,则DG =8﹣x , 易证△EDH ≌△DCG (AAS ), ∴EH =DG =8﹣x , ∴S △BDE ===,当x =4时,△BDE 面积的最大值为8. 故答案为8. 24.(2019秋•嘉兴期末)一副三角板(ABC ∆与)DEF ∆如图放置,点D 在AB 边上滑动,DE 交AC 于点G ,DF 交BC 于点H ,且在滑动过程中始终保持DG DH =,若2AC =,则BDH ∆面积的最大值是( )A .3B .33C .32D .33【解析】如图,作HM AB ⊥于M , 2AC =Q ,30B ∠=︒,23AB ∴=, 90EDF ∠=︒Q ,90ADG MDH ∴∠+∠=︒, 90ADG AGD ∠+∠=︒Q , AGD MDH ∴∠=∠,DG DH =Q ,90A DMH ∠=∠=︒,()ADG MHD AAS ∴∆≅∆,AD HM ∴=,设AD x =,则23BD x =-,211113(23)(3)22222BDH S BD MH BD AD x x x ∆∴===-=--+g g , BDH ∴∆面积的最大值是32,故选:C .25.如图,已知矩形ABCD ,4AB =,6BC =,点M 为矩形内一点,点E 为BC 边上任意一点,则MA MD ME ++的最小值为 433+ .【解析】将AMD ∆绕点A 逆时针旋转60︒得到△AM D '',由性质的性质可知:MD M D ='',ADD ∆'和AMM ∆'均为等边三角形, AM MM ∴=',MA MD ME D M MM ME ∴++='+'+, D M ∴'、MM '、ME 共线时最短, 由于点E 也为动点,∴当D E BC '⊥时最短,此时易求得433D E DG GE '=+=+,MA MD ME ∴++的最小值为433+.26.(2012•金牛区校级二模)如图,在△AOB 中,OA =OB =8,∠AOB =90°,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上,若tan CDO =,则矩形CDEF 面积的最大值s =.【解析】设CD =x ,CF =y .过F 作FH ⊥AO 于H .在 Rt △COD 中, ∵,∴.∴.∵∠FCH +∠OCD =90°,∴∠FCH =∠CDO . ∴.∴.∵△AHF 是等腰直角三角形,∴.∴AO =AH +HC +CO . ∴.∴.易知,∴当x =5时,矩形CDEF 面积的最大值为.故答案为:. 27.(2019•雁塔区校级一模)问题提出:(1)如图1,在四边形ABCD 中,AB BC =,3AD CD ==,90BAD BCD ∠=∠=︒,60ADC ∠=︒,则四边形ABCD 的面积为 33 ; 问题探究:(2)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=︒,135ABC ∠=︒,22AB =,3BC =,在AD 、CD 上分别找一点E 、F ,使得BEF ∆的周长最小,并求出BEF ∆的最小周长; 问题解决: (3)如图3,在四边形ABCD 中,2AB BC ==,10CD =,150ABC ∠=︒,90BCD ∠=︒,则在四边形ABCD 中(包含其边沿)是否存在一点E ,使得30AEC ∠=︒,且使四边形ABCE 的面积最大.若存在,找出点E 的位置,并求出四边形ABCE 的最大面积;若不存在,请说明理由.【解析】(1)AB BC =Q ,3AD CD ==,90BAD BCD ∠=∠=︒ ()ABD CBD SAS ∴∆≅∆ADB CDB ∴∠=∠,且60ADC ∠=︒30ADB CDB ∴∠=∠=︒,且90BAD BCD ∠=∠=︒ 3AB BC ∴==∴四边形ABCD 的面积1233332=⨯⨯⨯=故答案为:33(2)如图,作点B 关于AD 的对称点M ,作点B 关于CD 的对称点N ,连接MN ,交AD 于点E ,交CD 于点F ,过点M 作MG BC ⊥,交CB 的延长线于点G , Q 点B ,点M 关于AD 对称BE EM ∴=,22AB AM ==,42BM ∴=Q 点B ,点N 关于CD 对称BF FN ∴=,3BC CN ==BEF ∴∆的周长BE BF EF NF EF EM MN =++=++= 135ABC ∠=︒Q ,45GBM ∴∠=︒,且GM BG ⊥, 45GBM GMB ∴∠=∠=︒BG GM ∴=,且222BG GM BM +=, 4BG GM ∴==,43310GN BG BC CN ∴=++=++=,∴在Rt GMN ∆中,2210016229MN GM GN =+=+=BEF ∴∆的最小周长为229(3)作ABC ∆的外接圆,交CD 于点E ,连接AC ,AE ,过点A 作AM CD ⊥于点M ,作BN AM ⊥于点N , Q 四边形ABCE 是圆内接四边形 180ABC AEC ∴∠+∠=︒ 30AEC ∴∠=︒,BN AM ⊥Q ,AM CD ⊥,90BCD ∠=︒, ∴四边形BCMN 是矩形2BC MN ∴==,BN CM =,90CBN ∠=︒, 150ABC ∠=︒Q ,60ABN ∴∠=︒,且BN AM ⊥ 30BAN ∴∠=︒, 112BN AB ∴==,33AN BN == 32AM ∴=+,1CM =30AEC ∠=︒Q ,AM CE ⊥,2234AE AM ∴==+,3323ME AM ==+ 423CE CM ME AE ∴=+=+=∴点E 在AC 垂直平分线上,ABC ACE ABCE S S S ∆∆=+Q 四边形,且ABC S ∆是定值,AC 长度是定值,点E 在ABC ∆的外接圆上,∴当点E 在AC 的垂直平分线上时,ABCE S 四边形最大()()()232331223184322AMEABCE ABCM S S S ∆++∴=+=⨯++⨯+=+四边形四边形 28.(2010•滨州模拟)如图,在平面直角坐标系中,已知四边形ABCD 是等腰梯形,A 、B 在x 轴上,D 在y 轴上,//AB CD ,17AD BC ==,5AB =,3CD =,抛物线2y x bx c =-++过A 、B 两点.(1)求b 、c ;(2)设M 是x 轴上方抛物线上的一动点,它到x 轴与y 轴的距离之和为d ,求d 的最大值;(3)当(2)中M 点运动到使d 取最大值时,此时记点M 为N ,设线段AC 与y 轴交于点E ,F 为线段EC 上一动点,求F 到N 点与到y 轴的距离之和的最小值,并求此时F 点的坐标.【解析】(1)易得(1A -,0)(4B ,0), 把1x =-,0y =;4x =,0y =分别代入2y x bx c =-++, 得101640b c b c --+=⎧⎨-++=⎩,解得34b c =⎧⎨=⎩.(3分)(2)设M 点坐标为2(,34)a a a -++,2||34d a a a =-++.①当10a -<…时,2224(1)5d a a a =-++=--+, 所以,当0a =时,d 取最大值,值为4; ②当04a <<时,2244(2)8d a a a =-++=--+所以,当2a =时,d 取最大值,最大值为8; 综合①、②得,d 的最大值为8.(不讨论a 的取值情况得出正确结果的得2分)(3)N 点的坐标为(2,6),过A 作y 轴的平行线AH ,过F 作FG y ⊥轴交AH 于点Q ,过F 作FK x ⊥轴于K , 45CAB ∠=︒Q ,AC 平分HAB ∠, FQ FK ∴=1FN FG FN FK ∴+=+-,所以,当N 、F 、K 在一条直线上时,1FN FG FN FK +=+-最小,最小值为5. 易求直线AC 的函数关系式为1y x =+,把2x =代入1y x =+得3y =, 所以F 点的坐标为(2,3).29.(2019•淮安)如图①,在△ABC 中,AB =AC =3,∠BAC =100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB .将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE .小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题: (1)当点E 在直线AD 上时,如图②所示. ①∠BEP = 50 °;②连接CE ,直线CE 与直线AB 的位置关系是 EC ∥AB .(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE .试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解析】(1)①如图②中, ∵∠BPE =80°,PB =PE , ∴∠PEB =∠PBE =50°, ②结论:AB ∥EC .理由:∵AB =AC ,BD =DC , ∴AD ⊥BC , ∴∠BDE =90°, ∴∠EBD =90°﹣50°=40°, ∵AE 垂直平分线段BC , ∴EB =EC ,∴∠ECB =∠EBC =40°, ∵AB =AC ,∠BAC =100°, ∴∠ABC =∠ACB =40°, ∴∠ABC =∠ECB , ∴AB ∥EC .故答案为50,AB ∥EC .(2)如图③中,以P 为圆心,PB 为半径作⊙P . ∵AD 垂直平分线段BC , ∴PB =PC ,∴∠BCE =∠BPE =40°, ∵∠ABC =40°, ∴AB ∥EC .(3)如图④中,作AH⊥CE于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.。

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。

阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。

【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。

即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。

【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。

但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。

知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。

【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。

①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。

2020年数学中考最值问题试题总汇【含答案】

2020年数学中考最值问题试题总汇【含答案】

⎭ ⎝⎝ ⎝ 4 4 6 4 ⎭ 初中代数、几何所有最值问题一代数问题中的最值问题1、从 - 3,- 2,-1,4,5中任取两个数相乘,所得积中最大值为a ,最小值为b ,求-4答案: 32、若a , b , c 都是大于1的自然数,且a c= 252b , 求a 的最小值? 答案:42.a 的值?b 解析:252b 可以分成某数幂的形式。

252b=6×6×7 b , × 即 b=7,即 a=6×7=42.3、下面是按一定规律排列的一组数:1 ⎛ -1 ⎫第一个数: - 1+ ⎪2 ⎝ 2 ⎭1 ⎛ -1 ⎫⎛(-1)2 ⎫⎛ (-1)3 ⎫第二个数: - 1+ ⎪ 1+ ⎪1+ ⎪3 ⎝ 2 ⎪ ⎪ ⎭⎝ ⎭1 ⎛ -1 ⎫⎛ (-1)2 ⎫⎛ (-1)3 ⎫⎛ (-1)4 ⎫⎛ (-1)5 ⎫第三个数: - 1+ ⎪ 1+ ⎪1+ ⎪1+ ⎪1+ ⎪4 ⎝ 2 ⎭⎪ ⎪ ⎭⎝ ⎭⎝ ⎪ ⎪ ⎭⎝ ⎭……第 n 个数:1⎛ -1 ⎫⎛(-1)2 ⎫⎛ (-1)3 ⎫ ⎛ (-1)2n -1 ⎫ - 1+ ⎪ 1+ ⎪1+ ⎪…… 1+ ⎪n +1 ⎝ 2 ⎭ ⎪ ⎪ ⎭⎝ ⎭ ⎝2n ⎪ ;那么在第 10 个数,第 11 个数,第 12个数中,最大数是?答案:第 10 个。

解析:第n 个数是 1- n2(n +1), 把n = 10, n = 11, n = 12, n = 13分别代入得出答案。

4、已知: 20n 是整数,求满足条件的 最小整正数n 的值?答案:5解析:20n=4×5×n ,因为20n 是整数,∴ 20n 是一个完全平方数,∴ n 的最小值为54、当(m+n )²+1 取最小值时,求m 2 - n 2 + 2 m - 2 n 的值?答案:0解析:(m+n )²+1 取最小值,m+n=0 时最小。

2020年中考数学选择填空压轴题汇编最值问题含解析

2020年中考数学选择填空压轴题汇编最值问题含解析

2020年中考数学选择填空压轴题汇编:最值问题1.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2 2 .【解答】解:如图,连接BE,BD.由题意BD2,∵∠MBN=90°,MN=4,EM=NE,∴BE MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为22.故答案为22.2.(2020•玉林)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4 B.0 C.2 D.6【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y =﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.3.(2020•河南)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′2,的长l,∴阴影部分周长的最小值为2.故答案为:.4.(2020•鄂州)如图,已知直线y x+4与x、y轴交于A、B两点,⊙O的半径为1,P为AB上一动点,PQ切⊙O于Q点.当线段PQ长取最小值时,直线PQ交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为2.【解答】解:如图,在直线y x+4上,x=0时,y=4,当y=0时,x,∴OB=4,OA,∴tan∠OBA,∴∠OBA=30°,由PQ切⊙O于Q点可知:OQ⊥PQ,∴PQ,由于OQ=1,因此当OP最小时PQ长取最小值,此时OP⊥AB,∴OP OB=2,此时PQ,BP2,∴OQ OP,即∠OPQ=30°,若使点P到直线a的距离最大,则最大值为PM,且M位于x轴下方,过点P作PE⊥y轴于点E,∴EP BP,∴BE3,∴OE=4﹣3=1,∵OE OP,∴∠OPE=30°,∴∠EPM=30°+30°=60°,即∠EMP=30°,∴PM=2EP=2.故答案为:2.5.(2020•荆门)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2B.2C.6D.3【解答】解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD,∴要求AC+BD的最小值,相当于在x轴上找一点P(m,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,(PM+PN),如图1中,作点M关于原点O的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P′M+P′N的最小值=P′N+P′M=P′N+P′Q=NQ2,∴AC+BD的最小值为2.故选:B.6.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为2 .【解答】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴,∴,∴MN,当点C与C′重合时,△C′DE的面积最小,最小值5×(1)=2,故答案为2.7.(2020•徐州)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为99 .【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM AB3,∴OA3,∴CM=OC+OM=33,∴S△ABC AB•CM6×(33)=99.故答案为:99.8.(2020•扬州)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为9.【解答】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴,∵DF DE,∴,∴,∴,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4,∴GO=5,∴EG的最小值是,故答案为:9.9.(2020•聊城)如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+2.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE2,∴最小周长的值=AC+BC+AE=4+2,故答案为:4+2.10.(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A. 1 B.C.2 1 D.2【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=21,∴OM CD,即OM的最大值为;故选:B.11.(2020•乐山)如图,在平面直角坐标系中,直线y=﹣x与双曲线y交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.B.C.﹣2 D.【解答】解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2,∴k=m(﹣m),故选:A.12.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15 .【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB10,∵A′H⊥AB,∴AH=HB=5,∴A′H AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.13.(2020•新疆)如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为 6 .【解答】解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH,AA'=2,∠C=30°,∴Rt△CDE中,DE CD,即2DE=CD,∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,此时,Rt△AA'E中,A'E=sin60°×AA'23,∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.。

中考数学必考考点 专题33 最值问题(含解析)-人教版初中九年级全册数学试题

中考数学必考考点 专题33 最值问题(含解析)-人教版初中九年级全册数学试题

专题33 最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种:二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有①若a >0当x b a =-2时,y 有最小值。

y ac b a min =-442;②若a <0当x b a =-2时,y 有最大值。

y ac b amax =-442。

一次函数y kx b k =+≠()0的自变量x 的取值X 围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值X 围,并由此得出y 的最值。

“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质在实数X 围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值X 围内,再通过解不等式专题知识回顾获取问题的答案,这一方法称为“夹逼法”。

【例题1】(经典题)二次函数y=2(x﹣3)2﹣4的最小值为.【答案】﹣4.【解析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.【例题2】(2018某某)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.【答案】.【解析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,专题典型题考法及解析∴∠BAC ′=90°. ∵∠ACB=45°,AB=5, ∴∠AC ′B=45°,∴BC ′===5,∴MN 最大=.【例题3】(2019某某某某)已知抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3.(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值; (4)若点Q 为线段OC 上的一动点,问AQ +12QC 是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.【思路分析】(1)将A 、B 、C 三点坐标代入抛物线的解析式即可求出a 、b 、c 的值(当然用两根式做更方便);(2)先证四边形AMBD 为矩形,再证该矩形有一组邻边相等,即可证明该四边形为正方形;(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .再由S △PBC =S △PBE +S △CPE ,转化为12PE •OB =12×3×(-m 2+3m ),最后将二次函数化为顶点式即可锁定S △PBC 的最大值与点P 坐标;(4)解决本问按两步走:一找(如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC 1(3)2t -,取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小)、二求(由 AQ =12QC ,解关于t 的方程即可).【解题过程】(1)∵抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点, ∴令抛物线解析为y =a (x -1)(x -3). ∵该抛物线过点C (0,3),∴3=a ×(0-1)×(0-3),解得a =1.∴抛物线的解析式为y =(x -1)(x -3),即y =x 2-4x +3. ∵y =x 2-4x +3=(x -2)2-1, ∴抛物线的顶点D 的坐标为(2,-1).综上,所求抛物线的解析式为y =x 2-4x +3,顶点坐标为(2,-1). (2)如答图1,连接AD 、BD ,易知DA =DB . ∵OB =OC ,∠BOC =90°, ∴∠MBA =45°. ∵D (2,-1),A (3,0), ∴∠DBA =45°. ∴∠DBM =90°. 同理,∠DAM =90°. 又∵AM ⊥BC ,∴四边形ADBM 为矩形. 又∵DA =DB ,∴四边形ADBM 为正方形.(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .∵S △PBC =S △PBE +S △CPE =12PE •BF +12PE •OF =12PE •OB =12×3×(-m 2+3m ) =-32 (m -32)2+278,∴当m =32时,S △PBC 有最大值为278,此时P 点的坐标为(32,-34).(4)如答图3,设OQ =t ,则CQ =3-t ,AQ +12QC 1(3)2t -, 取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A 时,AQ +12QC =⊙Q 的直径最小,此时,√t 2+1=12(3−t ),解得t =2√63-1,于是AQ +12QC 的最小值为3-t =3-(2√63-1)=4-2√63.专题典型训练题1.(2018某某)要使代数式√2−3t 有意义,则x 的( )2323 3232【答案】A.【解析】要使代数式√2−3t 有意义,必须使2-3x ≥0,即x ≤23,所以x 的最大值为23。

中考数学最值问题解题

中考数学最值问题解题

中考数学最值问题解题技巧中考数学最值问题是指在一组或若干个变量中,要求找到一个或几个变量的最大值或最小值。

这类问题在中考数学中比较常见,通常涉及到函数、不等式、方程等知识点。

下面将介绍几个解题技巧:1.观察法观察法是最直接、最简单的方法,通过观察题目中的条件和结论,寻找其中的规律和趋势,从而得出结论。

例如,在求一个二次函数的最值时,可以通过观察函数的开口方向、对称轴和顶点位置等特征,从而得出函数的最大值或最小值。

2.函数法函数法是指利用函数的概念和性质来解决最值问题。

通常需要建立一个函数模型,如一次函数、二次函数等,然后通过求导数或分析函数的单调性来找到最大值或最小值。

例如,在求一个关于x的二次函数y=x^2+2ax+b的最值时,可以通过配方将函数转化为顶点式,再利用二次函数的性质进行求解。

3.不等式法不等式法是指利用不等式的性质来解决最值问题。

通常需要先找到一个不等式,然后通过分析不等式的性质来找到最大值或最小值。

例如,在求一个关于x的一元二次不等式ax^2+bx+c>0的最大值时,可以通过分析不等式的开口方向、对称轴和判别式等特征,从而找到最大值。

4.数形结合法数形结合法是指将数量关系和空间形式结合起来解决问题。

通常需要先分析题目中的数量关系,然后借助图形将数量关系直观地表现出来,再通过观察图形找到最大值或最小值。

例如,在求一个关于x的一元二次不等式ax^2+bx+c>0的最大值时,可以通过将不等式转化为二次函数,再结合图形进行分析。

总之,解决中考数学最值问题需要掌握一定的解题技巧和思维方式。

在解题过程中要善于观察、分析、归纳和总结,同时要注意灵活运用所学知识进行综合分析和解题。

2020中考数学复习分类汇编专题3:二次函数与线段及其最值问题(含答案)

2020中考数学复习分类汇编专题3:二次函数与线段及其最值问题(含答案)

专题:二次函数中的线段问题(含最值问题)1. 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A ,B (1,0),与y 轴交于点C ,直线y = x -2经过点A 、C .抛物线的顶点为D ,对称轴为直线l .(1) 求抛物线的表达式、顶点D 的坐标及对称轴l ; (2) 设点E 为x 轴上一点,且AE =CE ,求点E 的坐标;(3) 设点G 是y 轴上一点,是否存在点G ,使得GD +GB 的值最小,若存在,求出点G 的坐标;若不存在,请说明理由;(4) 在直线l 上是否存在一点F ,使得△BCF 的周长最小,若存在,求出点F 的坐标及△BCF 周长的最小值;若不存在,请说明理由;(5) 点S 为y 轴上任意一点,K 为直线AC 上一点,连接BS ,BK ,是否存在点S ,K 使得△BSK 的周长最小,若存在,求出S ,K 的坐标,并求出△BSK 周长的最小值;若不存在,请说明理由;(6) 在y 轴上是否存在一点S ,使得SD -SB 的值最大,若存在,求出点S 的坐标;若不存在,请说明理由; (7) 若点H 是抛物线上位于AC 上方的一点,过点H 作y 轴的平行线,交AC 于点K ,设点H 的横坐标为h ,线段HK =d .①求d 关于h 的函数关系式; ②求d 的最大值及此时H 点的坐标.122. 如图,抛物线y=-x2-2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点D(m,0)为线段OA上一个动点(与点A,O不重合),过点D作x轴的垂线与线段AC交于点P,与抛物线交于点Q,连接BP,与y轴交于点E.(1)求A,B,C三点的坐标;(2)当点D是OA的中点时,求线段PQ的长;(3)在点D运动的过程中,探究下列问题:①是否存在一点D,使得PQ+22PC取得最大值?若存在,求此时m的值;若不存在,请说明理由;②连接CQ,当线段PE=CQ时,直接写出m的值.3. 如图,直线y =-34x +1与x 轴、y 轴分别交于A 、B 两点,抛物线y =-12x 2+bx +c 经过点B ,且与直线AB 的另一交点为C (4,n ).(1)求该抛物线的表达式及点C 的坐标;(2)设抛物线上的一个动点P 的横坐标为t (0<t <4),过点P 作PD ⊥AB 交直线AB 于点D ,作PE ∥y 轴交直线AB 于点E .①求线段PD 的长的最大值; ②当t 为何值时,点D 为BE 的中点.4. 已知抛物线y =ax 2+bx +2经过A (-1,0),B (2,0),C 三点.直线y =mx +12交抛物线于A ,Q 两点,点P 是抛物线上直线AQ 上方的一个动点,过点P 作PF ⊥x 轴,垂足为点F ,交AQ 于点N .(1)求抛物线的表达式;(2)如图①,在点P 运动过程中,当PN =2NF 时,求点P 的坐标;(3)如图②,线段AC 的垂直平分线交x 轴于点E ,垂足为点D ,点M 为抛物线的顶点,在直线DE 上是否存在一点G ,使△CMG 的周长最小?若存在,请求出点G 的坐标;若不存在,请说明理由.参考答案1. (1)解:对于直线y =21x -2, 令y =0,得x =4,令x =0,得y =-2, ∴点A (4,0),点C (0,-2),抛物线的解析式为y = -21x 2+25x -2 ∴顶点D 的坐标为(25,98 ),对称轴l 为直线x = 25(2)要求点E 的坐标,已知AE =CE ,设E 点坐标为(e ,0),用含e 的式子分别表示出AE 和CE ,建立等量关系求解即可.点E 的坐标为( 23,0)(3)要使GD +GB 的值最小,一般是通过轴对称作出对称点来解决. 解:存在.如解图②,要使GD +GB 的值最小,取点B 关于y 轴的对称点B ′,点B ′的坐标为(-1,0).连接B ′D ,直线B ′D 与y 轴的交点G 即为所求的点,点G 的坐标为(0, 289);(4)要使△BCF 周长最小,BC 长为定值,即要使CF +BF 的值最小.△BCF 周长的最小值为BC +AC =3 √5 ;(5)要求△BSK 周长的最小值,可分别作点B 关于y 轴和直线AC 的两个对称点B ′、B ″,连接B ′B ″与y 轴和直线AC 交点即为使得△BSK 的周长最小的点S 、K ,最小值即线段B ′B ″的长.存在点S (0,-43 ),点K (1, - 23 )使得△BSK 的周长最小,最小值为4;(6)当点S 在DB 的延长线上时,SD -SB 最大,最大值为BD , 即当点S 的坐标为(0,-43)时,SD -SB 的值最大;(7)平行于y 轴的直线上两点之间的距离为此两点的纵坐标之差的绝对值,如此问,由题可得点H 的横坐标为h ,①求出点H ,K 的纵坐标,再由点H 在点K 的上方,可得到d 关于h 的函数关系式;②利用二次函数的性质求最值,即可得d 的最大值及H 点的坐标.(1)d 关于h 的函数关系式为d =-21h 2+2h ; (2)当h =2时,d 最大,最大值为2,此时点H 的坐标为(2,1).参考答案2. 解:(1)在y =-x 2-2x +3中, 令y =0,得-x 2-2x +3=0, 解得x 1=-3,x 2=1. ∵点A 在点B 的左侧, ∴A (-3,0),B (1,0). 令x =0,得y =3, ∴点C 的坐标为(0,3);(2)设直线AC 的表达式为y =kx +b .将A ,C 两点的坐标(-3,0),(0,3)代入表达式,得⎩⎪⎨⎪⎧-3k +b =0,b =3,解得⎩⎪⎨⎪⎧k =1,b =3,∴直线AC 的表达式为y =x +3.(4分) ∵点D 是OA 的中点,∴OD =12OA =32,∴点D 的横坐标m =-32.∵PQ ⊥x 轴,∴把m =-32分别代入y =x +3和y =-x 2-2x +3,得P ,Q 两点的坐标分别为(-32,32)、(-32,154),∵DQ ⊥OA ,∴PQ =DQ -DP =y Q -y P . ∴PQ =154-32=94;(3)①存在点D ,使得PQ +22PC 取得最大值. 理由:∵点D 的横坐标为m ,PQ ⊥x 轴,且点P ,Q 分别在直线AC 和抛物线上, ∴P ,Q 两点的坐标分别为(m ,m +3),(m ,-m 2-2m +3). ∵DQ ⊥OA ,∴PQ =DQ -DP =y Q -y P ,∴PQ =-m 2-2m +3-(m +3)=-m 2-3m . 如解图,过点P 作PF ⊥y 轴于点F ,则PF =-m . 在Rt △AOC 中,OA =OC =3, ∴∠CAO =∠OCA =45°.∴sin ∠OCA =PF PC =22.∴PF =22PC ∴PQ +22PC =-m 2-3m -m =-m 2-4m =-(m +2)2+4, ∵PQ +22PC 是m 的二次函数,其中a =-1<0,而-3<m <0. ∴当m =-2时,PQ +22PC 取得最大值;②m =-1或m =- 5.【解法提示】∵△PFE ∽△BOE ,∴PF BO =EFEO.∵PF =-m ,OF =m +3,OB =1,∴EF =-mOE .∵OF =EF +OE ,∴m +3=(-m +1)OE ,则OE =m +3-m +1,EF =-m (m +3)-m +1,又∵CQ =PE ,PQ ∥CE ,∴|y Q -y C |=|y P -y E |=EF .∵|y Q -y C |=|-m 2-2m +3-3|=|m 2+2m |,∴-m (m +3)-m +1=|m 2+2m |.又∵-3<m <0,解得m =-1或m =- 5.3. 解:(1)把x =4,y =n 代入y =-34x +1中,得n =-34×4+1=-2∴点C 的坐标为(4,-2).将点C (4,-2)和点B (0,1)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧-8+4b +c =-2,c =1, 解得⎩⎪⎨⎪⎧b =54,c =1,∴抛物线的表达式为y =-12x 2+54x +1;(2)①∵PE =-12t 2+54t +1-(-34t +1)=-12t 2+2t ,如解图,过点E 作QE ⊥y 轴于点Q ,则QE =t , QB =1+34t -1=34t ,BE =QB 2+QE 2=(34t )2+t 2=54t ∵PE ∥y 轴, ∴∠PEB =∠EBQ , ∵∠BQE =∠PDE =90°, ∴△PED ∽△EBQ ,∴PE EB =PD EQ ,得-12t 2+2t 54t =PDt, PD =-25t 2+85t .∵-25<0,∴PD 有最大值, PD 最大=0-(85)24×(-25)=85;②∵点D 为BE 的中点,∴由PE EB =DE QB ,DE =12BE ,得12BE 2=PE ·QB ,代入得12×(54t )2=(-12t 2+2t )×34t ,整理得2532=-38t +32,解得t =2312,∴当t =2312时,点D 为BE 的中点.4. 解:(1)∵抛物线y =ax 2+bx +2经过A (-1,0),B (2,0),∴将点A 和点B 的坐标代入得⎩⎪⎨⎪⎧a -b +2=0,4a +2b +2=0,解得⎩⎪⎨⎪⎧a =-1,b =1,∴抛物线的表达式为y =-x 2+x +2;(2)直线y =mx +12交抛物线于A 、Q 两点,把A (-1,0)代入解析式得m =12,∴直线AQ 的表达式为y =12x +12.设点P 的横坐标为n ,则P (n ,-n 2+n +2),N (n ,12n +12),F (n ,0),∴PN =-n 2+n +2-(12n +12)=-n 2+12n +32,NF =12n +12.∵PN =2NF ,即-n 2+12n +32=2×(12n +12),解得n =-1或n =12,当n =-1时,点P 与点A 重合,不符合题意舍去.∴点P 的坐标为(12,94);(3)在直线DE 上存在一点G ,使△CMG 的周长最小;此时G (-38,1516).理由如下:∵y =-x 2+x +2=-(x -12)2+94,∴M (12,94).如解图,连接AM 交直线DE 于点G ,连接CG 、CM ,此时,△CMG 的周长最小. 设直线AM 的函数表达式为y =kx +b ,且过A (-1,0),M (12,94).根据题意得⎩⎪⎨⎪⎧-k +b =0,12k +b =94,解得⎩⎨⎧k =32,b =32.∴直线AM 的表达式为y =32x +32.∵D 为AC 的中点,∴D (-12,1).设直线AC 的表达式为y =kx +2,将点A 的坐标代入得-k +2=0,解得k =2, ∴AC 的表达式为y =2x +2.设直线DE 的表达式为y =-12x +c ,将点D 的坐标代入得:14+c =1,解得c =34,∴直线DE 的表达式为y =-12x +34.联立⎩⎨⎧y =-12x +34,y =32x +32,解得⎩⎨⎧x =-38,y =1516.∴在直线DE 上存在一点G ,使△CMG 的周长最小,此时G (-38,1516).。

2020中考数学复习 最值问题-将军饮马问题 (51张PPT)

2020中考数学复习  最值问题-将军饮马问题 (51张PPT)
如图,∠AOB=60°,点P是∠AOB内的定点且OP 为根号3,若点M、N分别是射线OA、OB上异于 点O的动点,则△PMN周长的最小值是 _________.
04、特殊角的对称 ----60°角的对称
【分析】
此处M、N均为折点,分别作点P关于OB、OA的对 称点P'、P'',化△PMN周长为P'N+NM+MP''.
4、60°、30°、20°角中的将军饮马
02、将军饮马模型系列 ————“一定两动”之点到点
在OA、OB上分别取点M、N,使得△PMN周长最小。
此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线) 的对称点,化折线段PM+MN+NP为P'M+MN+NP'',当P'、M、N、P''共线时,△PMN 周长最小。
03、几何图形中的将军饮马 ----菱形和矩形中的“将军饮马”
【面积与折点】 如图,在矩形ABCD中,AB=6,AD=3,动点P满足△APB的面积是矩形
ABCD面积的三分之一,则点P到A、B两点距离之和PA+PB的最小值为_________.
03、几何图形中的将军饮马 ----菱形和矩形中的“将军饮马”
【将军过双桥】
已知将军在图中点A处,现要过 两条河去往B点的军营,桥必须 垂直于河岸建造,问:桥建在何 处能使路程最短?
05、将军过桥
【分析】考虑PQ、MN均为定值,所以路程最短等价于 AP+QM+NB最小,对于这彼此分离的三段,可以通过平 移使其连接到一起.AP平移至A'Q,NB平移至MB',化 AP+QM+NB为A'Q+QM+MB'.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题33 最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种:1.二次函数的最值公式二次函数(a 、b 、c 为常数且)其性质中有y ax bx c =++2a ≠0①若当时,y 有最小值。

;a >0xb a =-2y ac b a min =-442②若当时,y 有最大值。

a <0xb a =-2y ac b amax =-4422.一次函数的增减性一次函数的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大y kx b k =+≠()0(小)值;但当时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)m x n ≤≤值。

3. 判别式法根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得,进而求出y 的取值∆≥0范围,并由此得出y 的最值。

4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质在实数范围内,显然有,当且仅当时,等号成立,即的最小值a b k k 22++≥a b ==0a b k 22++为k 。

6. 零点区间讨论法用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解在不等式中,是最大值,在不等式中,是最小值。

x a ≤x a =x b ≥x b =8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

专题知识回顾【例题1】(经典题)二次函数y=2(x﹣3)2﹣4的最小值为 .【答案】﹣4.【解析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.【例题2】(2018江西)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 .【答案】.【解析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN 最大=.【例题3】(2019湖南张家界)已知抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3.(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值;(4)若点Q 为线段OC 上的一动点,问AQ +QC是否存在最小值?若存在,求岀这个最小值;若不存在,请12说明理由.【思路分析】(1)将A 、B 、C 三点坐标代入抛物线的解析式即可求出a 、b 、c 的值(当然用两根式做更方便);(2)先证四边形AMBD 为矩形,再证该矩形有一组邻边相等,即可证明该四边形为正方形;(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .再由S △PBC =S △PBE +S △CPE ,转化为PE •OB =×3×(-m 2+3m ),最后将二次函数化为顶点式即可锁定S △PBC 的最大值与点P 坐标;(4)解1212决本问按两步走:一找(如答图3,设OQ =t ,则CQ =3-t ,AQ +QC ,取CQ 的中点121(3)2t +-G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A时,AQ +QC =⊙Q的直径最小)、二求(由 AQ =12QC ,解关于t 的方程即可).12【解题过程】(1)∵抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,∴令抛物线解析为y=a(x-1)(x-3).∵该抛物线过点C(0,3),∴3=a×(0-1)×(0-3),解得a=1.∴抛物线的解析式为y=(x-1)(x-3),即y=x2-4x+3.∵y=x2-4x+3=(x-2)2-1,∴抛物线的顶点D的坐标为(2,-1).综上,所求抛物线的解析式为y=x2-4x+3,顶点坐标为(2,-1).(2)如答图1,连接AD、BD,易知DA=DB.∵OB=OC,∠BOC=90°,∴∠MBA=45°.∵D(2,-1),A(3,0),∴∠DBA=45°.∴∠DBM=90°.同理,∠DAM=90°.又∵AM⊥BC,∴四边形ADBM为矩形.又∵DA=DB,∴四边形ADBM为正方形.(3)如答图2,过点P作PF⊥AB于点F,交BC于点E,令P(m,m2-4m+3),易知直线BC的解析式为y=-x+3,则E(m,-m+3),PE=(-m+3)-(m2-4m+3)=-m2+3m.∵S △PBC =S △PBE +S △CPE =PE •BF +PE •OF =PE •OB =×3×(-m 2+3m )12121212=- (m -)2+,3232278∴当m =时,S △PBC 有最大值为,此时P点的坐标为(,-).322783234(4)如答图3,设OQ =t ,则CQ =3-t ,AQ +QC ,12211(3)2t t +-取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A时,AQ +QC =⊙Q的直径最小,12此时,,解得t =-1,t 2+1=12(3-t)263于是AQ +QC的最小值为3-t =3-(1)=4-.122632631.(2018河南)要使代数式有意义,则x 的( )2-3x A.最大值为 B.最小值为 2323C.最大值为 D.最大值为3232【答案】A.【解析】要使代数式有意义,必须使2-3x≥0,即x≤,所以x 的最大值为。

2-3x 23232.(2018四川绵阳)不等边三角形的两边上的高分别为4和12且第三边上的高为整数,那么此高∆ABC 的最大值可能为________。

【答案】5【解析】设a 、b 、c 三边上高分别为4、12、h专题典型训练题因为,所以2412S a b ch ABC ∆===a b =3又因为,代入c a b b <+=412b ch =得,所以124b bh <h >3又因为,代入c a b b >-=212b ch = 得,所以122b bh >h <6所以3<h<6,故整数h 的最大值为5。

3.(2018齐齐哈尔)设a 、b 为实数,那么的最小值为_______。

a ab b a b 222++--【答案】-1【解析】a ab b a b222++--=+-+-=+-+--=+-+--≥-a b a b ba b b b a b b 22222212123432141234111()()()()当,,即时,a b +-=120b -=10a b ==01,上式等号成立。

故所求的最小值为-1。

4.(2018云南)如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为  .【答案】2.【解析】过A 作关于直线MN 的对称点A′,连接A′B,由轴对称的性质可知A′B 即为PA+PB 的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON 的度数,再由勾股定理即可求解.过A 作关于直线MN 的对称点A′,连接A′B,由轴对称的性质可知A′B 即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.5.(2018海南)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?时间(天)1≤x<99≤x<15x≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80-3x120-x储存和损耗费用(元)40+3x3x2-64x+400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【答案】看解析。

【解析】(1)设该种水果每次降价的百分率为x,则第一次降价后的价格为10(1-x),第二次降价后的价格为10(1-x)2,进而可得方程;(2)分两种情况考虑,先利用“利润=(售价-进价)×销量-储存和损耗费用”,再分别求利润的最大值,比较大小确定结论;(3)设第15天在第14天的价格基础上降a元,利用不等关系“(2)中最大利润-[(8.1-a-4.1)×销量-储存和损耗费用]≤127.5”求解.解答:(1)设该种水果每次降价的百分率为x,依题意得:10(1-x)2=8.1.解方程得:x 1=0.1=10%,x 2=1.9(不合题意,舍去)答:该种水果每次降价的百分率为10%.(2)第一次降价后的销售价格为:10×(1-10%)=9(元/斤),当1≤x <9时,y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352;当9≤x <15时,y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80,综上,y 与x 的函数关系式为:y ={-17.7x +352(1≤x <9,x 为整数),-3x +60x +80(9≤x <15,x 为整数).)当1≤x <9时,y =-17.7x +352,∴当x =1时,y 最大=334.3(元);当9≤x <15时,y =-3x 2+60x +80=-3(x -10)2+380,∴当x =10时,y 最大=380(元);∵334.3<380,∴在第10天时销售利润最大.(3)设第15天在第14天的价格上最多可降a 元,依题意得:380-[(8.1-a -4.1)(120-15)-(3×152-64×15+400)]≤127.5,解得:a ≤0.5,则第15天在第14天的价格上最多可降0.5元.6.(2018湖北荆州)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R 、P 与x 的关系式分别为,。

相关文档
最新文档