对流传热系数的测定实验报告
对流传热系数的测定实验报告
. . .. . .浙江大学化学实验报告课程名称:过程工程原理实验甲实验名称:对流传热系数的测定指导教师:专业班级:姓名:学号:同组学生:实验日期:实验地点:目录一、实验目的和要求 (2)二、实验流程与装置 (2)三、实验容和原理 (2)1.间壁式传热基本原理 (2)2.空气流量的测定 (2)3.空气在传热管对流传热系数的测定 (2)3.1牛顿冷却定律法 (2)3.2近似法 (2)3.3简易Wilson图解法 (2)4.拟合实验准数方程式 (2)5.传热准数经验式 (2)四、操作方法与实验步骤 (2)五、实验数据处理 (2)1.原始数据: (2)2.数据处理 (2)六、实验结果 (2)七、实验思考 (2)一、实验目的和要求1)掌握空气在传热管对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径;2)把测得的数据整理成形式的准数方程,并与教材中公认经验式进行比较;3)了解温度、加热功率、空气流量的自动控制原理和使用方法。
二、实验流程与装置本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显示仪表等构成。
空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。
空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器管,热交换后从风机出口排出。
注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者必学统一。
图1 横管对流传热系数测定实验装置流程图图中符号说明如下表:符号名称 单位 备注 V空气流量 m 3/h 紫铜管规格Φ19×1.5mm 有效长度1020mm t1空气进口温度 ℃ t2 普通管空气出口温度 ℃三、实验容和原理在工业生产过程中,大量情况下,采用间壁式换热方式进行换热。
对流传热系数的测定实验报告
淅江丈禽化学实验报告课程名称:过程工程原理实验甲实验名称:对流传热系数的测定指导教师:___________________专业班级: _____________________ 姓名: ________________________ 学号: ________________________ 同组学生: _____________________实验日期: _____________________实验地点:目录一、实验目的和要求 (2)二、实验流程与装置 (2)三、实验容和原理 (3)1.间壁式传热基本原理 (3)2.空气流呈的测定 (5)3.空气在传热管对流传热系数。
的测定 (6)3. 1牛顿冷却定律法 (6)3. 2近似法 (6)3. 3简易Wilson图解法 (7)4.拟合实验准数方程式 (8)5.传热准数经验式 (8)四、操作方法与实验步骤 (9)五、实验数据处理 (10)1.原始数据: (10)2.数据处理 (10)六、实验结果 (13)七、实验思考 (14)、实验目的和要求1) 掌握空气在传热管对流传热系数的测定方法,了解影响传热系数的 因素和强化传热的途径; 2) 把测得的数据整理成=形式的准数方程,并与教材中公认经验式进行比较;3) 了解温度、加热功率、空气流量的自动控制原理和使用方法。
二、实验流程与装置本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板 流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显 示仪表等构成。
空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器, 与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3 和F4)排岀,冷凝水经排出阀(F5和F6)排入盛水杯。
空气山风机提供, 流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管 换热器管,热交换后从风机岀口排出。
注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2) 进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者 必学统一。
对流传热系数测定实验报告
竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
实验报告二:对流传热系数及准数关联式常数的测定
对流传热系数及准数关联式常数的测定实验报告1.前言研究表明,加入到换热器换热管中的扰流子添加物可以使换热管内流动的液体产生明显的螺旋运动。
换句话说,在换热器换热管中加入扰流子添加物,就相当于在换热器换热管中加入空隙率ε≥95%的多孔体,当换热器换热管中流动的液体流经这些扰流子添加物以后,流道内将产生明显的弥散流动效应,在低雷诺数下(Re≥300),由于弥散流动的促进,使换热器换热管中的液体转变为湍流。
湍流状态的流动液体其总热阻是所有流态液体中最小的,由于换热器换热管中湍流状态的流动液体热阻非常小,所以,换热器的传热系数(K)值将大大增加。
在高的传热系数(K)值状态下,换热器中扰流子强化传热的效果就会非常明显。
当然换热器中的扰流子对流经换热管的不同介质,其强化传热的效果是有区别的。
并且,换热管内扰流元件的形状和在传热面上的安装方法,对传热和流阻都有影响,一般可通过实验确定其最佳形式。
例如试验表明:在管道的全长填满螺旋形金属丝与间断设置螺旋圈相比,后者在传热性能不变时可减小流阻。
关于扰流子强化传热的原理,还有许多其它见解,有的专家认为扰流子强化传热是基于加大了传热面积和粗糙度,这无疑是正确的。
但试验表明,即使不紧贴壁面安装,则轴向固定在流道中心的扰流子也能使α值加大,有人解释为填充物能产生持续不断的涡流,并沿流向产生一个中心旋转流,在离心力的影响下使管中心的流体与壁面边界层流体充分混合。
从而减薄了边界层,强化了传热。
总的看,有关扰流子强化传热的理论还不完备和一致,一些数据仅来自实验,有待于更多的科研人员开发和利用。
在换热器换热管中加扰流子添加物,最明显的特点就是大大增强了换热管内侧的换热系数。
试验表明,在换热器换热管中加扰流子添加物,换热管内侧换热系数可比光管提高3.5倍以上。
扰流子强化传热除了减少金属消耗,它还可以提高工厂热能利用效率,降低能耗。
目前,一些设计追求高热强度,而管壳式换热器由于传热效率低,设计中采用的主要手段是选择提高对数平均温差,这要导致能耗的大幅度增加。
对流传热系数实验报告
一、实验目的1. 了解对流传热的基本原理,掌握对流传热系数的测定方法。
2. 掌握牛顿冷却定律的应用,通过实验验证其对流传热系数的计算公式。
3. 分析影响对流传热系数的因素,如流体速度、温度差、流体性质等。
二、实验原理对流传热系数是指单位时间内,单位面积上流体温度差为1℃时,单位面积上传递的热量。
牛顿冷却定律描述了对流传热过程,即:Q = h A (T1 - T2)式中:Q ——传热量(W)h ——对流传热系数(W/(m²·K))A ——传热面积(m²)T1 ——高温流体温度(℃)T2 ——低温流体温度(℃)根据牛顿冷却定律,可以通过实验测量传热量、传热面积、流体温度差,从而计算出对流传热系数。
三、实验仪器与材料1. 套管换热器2. 温度计3. 流量计4. 计时器5. 计算器6. 水和空气四、实验步骤1. 准备实验仪器,连接套管换热器、温度计、流量计等。
2. 在套管换热器内注入水,打开冷却水阀门,调节流量至预定值。
3. 在套管换热器外通入空气,调节风速至预定值。
4. 同时打开加热器和冷却水阀门,使水加热至预定温度,空气冷却至预定温度。
5. 记录开始加热和冷却的时间,观察温度变化。
6. 当温度变化稳定后,记录温度计的读数,计算温度差。
7. 关闭加热器和冷却水阀门,停止实验。
五、实验数据与处理1. 记录实验数据,包括水温度、空气温度、流量、时间等。
2. 根据牛顿冷却定律计算传热量Q:Q = m c ΔT其中,m为水的质量流量(kg/s),c为水的比热容(J/(kg·K)),ΔT为温度差(K)。
3. 计算对流传热系数h:h = Q / (A ΔT)六、实验结果与分析1. 根据实验数据,计算对流传热系数h,并与理论值进行比较。
2. 分析实验结果,探讨影响对流传热系数的因素。
3. 分析实验误差,总结实验经验。
七、结论通过对对流传热系数的测定实验,掌握了对流传热的基本原理和牛顿冷却定律的应用。
实验五 对流给热系数测定
5 对流给热系数测定5.1 实验目的(1) 测定水蒸汽在圆直水平管外冷凝给热系数α0及冷流体(空气或水)在圆直水平管内的强制对流给热系数αi 。
(2) 观察水蒸汽在圆直水平管外壁上的冷凝状况(膜状冷凝和滴状冷凝)。
5.2实验原理5.2.1.串联传热过程冷流体(空气和水)与热流体水蒸汽通过套管换热器的内管管壁发生热量交换的过程可分为三步:○1套管环隙内的水蒸汽通过冷凝给热将热量传给圆直水平管的外壁面(A 0); ○2热量从圆直水平管的外壁面以热传导的方式传至内壁面(A i ); ○3内壁面通过对流给热的方式将热量传给冷流体(V c )。
在实验中, 水蒸汽走套管换热器的环隙通道, 冷流体走套管换热器的内管管内, 当冷、热流体间的传热达到稳定状态后, 根据传热的三个过程、牛顿冷却定律及冷流体得到的热量, 可以计算出冷热流体的给热系数(以上是实验原理)。
(以下是计算方法)传热计算公式如下:Q=α0A 0( T –T w )m = αi A i ( t w –t)m =V c ρc C pc (t 2-t 1) (1)由(1)式可得:m w pc c c T T A t t C V )()(0120--=ρα (2)m w i pc c c i t t A t t C V )()(12--=ρα (3)式(2)中, ( T –Tw)为水蒸汽温度与内管外壁面温度之差, 式(3)中, ( tw –t)为内管内壁面温度与冷流体温度之差。
由于热流体温度T 、内管外壁温Tw 、冷流体温度t 及内管内壁温tw 均沿内管管长不断发生变化, 因此, 温差( T –Tw) 和( tw –t)也随管长发生变化, 在用牛顿冷却定律算传热速率Q 时, 温差应分别取进口(1)与出口(2)处两端温差的对数平均值( T –Tw)m 和( tw –t)m, 方法如下:22112211ln )()()(w W W w w T T T T T T T T T T -----=- (4) 22112211ln )()()(t t t t t t t t t t w w w w m w -----=- (5)当套管换热器的内管壁较薄且管壁导热性能优良(即λ值较大)时, 管壁热阻可以忽略不计, 可近似认为管壁内、外表面温度相等, 即Tw1=tw1, Tw2=tw2。
对流传热系数的测定
对流传热系数的测定北京理工大学化学学院董女青1120102745一、实验目的1、掌握对流传热系数的测定方法,测定空气在圆形直管内的强制对流传热系数, 验证准数关联式。
2、了解套管换热器的结构及操作,掌握强化传热的途径。
3、学习热电偶测量温度的方法。
二.实验原理冷热流体在间壁两侧换热时,传热基本方程及热衡算方程为:Q = KAAtm = m^Cp (t入一t出)换热器的总传热系数可表示为:1 1 b 1—------- 1 ---- 1 ----K a :入a 0 式中:Q—换热量,J/sK—总传热系数,J/(m' s)A—换热面积,m:At m-平均温度差,°CCp—比热,J/ (kg • K)nu—质量流量,kg/sb—换热器壁厚,ma i、a o—内、外流体对流传热系数,J/(m? • s)依据牛顿冷却定律,管外蒸汽冷凝,管内空气被加热,换热最亦可表示为:Q = a jAj(t w - t) = a 0A0 (T — T w)式中:t w.凡一管内(冷侧)、管外(热侧)壁温,t、T-管内(冷侧)、管外(热侧)流体温度测定空气流量、进出口温度、套管换热面积,并测定蒸汽侧套管壁温,由于管壁导热系数较大且管壁较薄,管内壁温与外壁温近似柑等,根据上述数据即可得到管内对流传热系数,由丁•换热器总传热系数近似等丁•关内对流传热系数,所以亦可得到套管换热器的总传热系数。
流体在圆形直管强制对流时满足下述准数关联式:Nu = O.O237?e°-8Pr0-33式中:Nu-努塞尔特准数,Nu=^,无因次Re—雷诺准数,Re = ^,无因次P L普兰特准数,Pr =耳,无因次测定不冋流速条件下的对流传热系数,在双对数坐标屮标绘加he关系得到一条直线,直线斜率应为0. &三、实验内容1、测定不同空气流星下空气和水蒸汽在套管换热器换热时内管空气的对流传热系数,推算总传热系数。
2、在双对数坐标中标绘M L R決糸,验证准数关联式。
实验四 对流传热系数的测定
实验四 对流传热系数的测定一、实验目的1.学会对流传热系数的测定方法。
2.测定空气在圆形直管内的强制对流传热系数,并把数据整理成准数关联式。
二、实验原理1.流传热系数的测定111,m t A Q∆=α其中 11211121p p Q W C (t t )V C (t t )ρ=-=- l d A 11π= t t t w m -=∆1, (壁温的平均值44321T T T T t w +++=空气的平均温度221t t t +=)2.关联式的整理4.0PrRe mA Nu =其中 dNu αλ= λμp c =Pr (α是通过上面第一步算出来的,λ、Cp 、μ分别是空气在平均温度下的热导率、定压热容和粘度)上式两边都取对数 Re ln ln Pr ln 4.0ln m A Nu +=-以Pr ln 4.0ln -Nu 为纵坐标,Re ln 为横坐标作图,直线的斜率为m ,截据为A ln ,从而求出m 、A. 三、实验装置主要设备;套管换热器、鼓风机、电加热釜 、离心式磁力泵、转子流量计 四、实验步骤1.开启总电源,然后开启自动控温和手动控温电闸使水罐加热,将自动控温给定温度调至110℃,手动控温调至7A 左右。
2.待水罐内水沸腾后,将风机打开,冷风进入换热器内管3.当空气流量、蒸汽温度保持不变时,打开套管换热器巡检测温仪表,测定温度。
4.改变若干空气流量,维持蒸汽温度不变,测定5-6组实验数据。
五、数据记录六、数据处理平均温度(t 1+t 2)/2 Cp (J/(kg. ℃)) ρ(kg/m 3) λ(W/m. ℃) μ(Pa.s) 1 2 3 4 5 6平均温度(t 1+t 2)/2 平均壁温 (T1 +T 2 +T 3 +T 4)/4 Δt m,1 Q(W) α1(W/m 2. ℃) 1 2 3 4 5 6ReNuPrRe ln Pr ln 4.0ln Nu1 2 3以为纵坐标,为横坐标作图,直线的斜率为m,截据为,从而求出m、A.。
对流传热系数测定实验报告
竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
对流传热系数测定实验.doc
对流传热系数测定实验.doc实验目的:1.测定水在圆管内的对流传热系数。
2.熟悉实验过程和方法,掌握实验技能。
实验原理:对流传热是指在流体内部,由于温度差而发生的热量传递过程。
负责传热的机构是流体内的对流,它能有效地加快热量的传递。
圆管内加热相当于给液体部分加热,液体受热变得稀薄,流动影响整个管道,使得流体相对速度增加,对流热传导增强,同时散热增大。
对流传热系数,以水作为样品,可得公式如下:V=λ(ρ 2-ρ1)gL^3/μQ其中:V 水流速λ 对流传热系数ρ1 密度ρ2 受热稀薄液体的密度g 重力加速度L 热交换区段的长度μ 动力粘度系数Q 加热量测量方法:以恒流供热方式加热,用热电偶及温度计测量流体进入和流出处的温度,并通过流量表测量流体流量。
最后,利用以上数据及传热计算公式计算对流传热系数。
实验过程:1.组装好实验装置。
2.调节水流量,打开恒温水浴,调节温度至稳定后,进一步调节流量,直到流量稳定。
3.测量流体进入和流出处的温度,测量流体流量,并记录数据。
实验记录:表一流体进出口温度及温度差(数据保留两位小数)进口温度45.20°C 流量计温度差 6.95°C表二流量及所用时间流量(L/min)时间(s)0.50 55.110.60 48.781.10 23.61采用已有数据计算出对流传热系数的值如下:ρ1 998kg/m³μ 1.004×10^{-3}N/s·m²Q 0.293WL 0.15mλ 195.44W/(m²·K)实验结果:本次实验得到了水在圆管内的对流传热系数λ=195.44W/(m²·K)。
对流传热系数测定实验
对流传热系数测定实验一、实验目的a)测定空气在传热管内的对流传热系数,掌握空气在传热管内的对流传热系数的测定方法。
b)把测得的实验数据整理成Nu=BRe n形式的准数方程式,并与教材中相应公式进行比较。
c)通过实验提高对准数方程式的理解,了解影响传热系数的因素和强化传热的途径。
二、实验装置实验装置如图1所示,由蒸汽发生器、风机、套管换热器、流量调节阀及不锈钢进、出口管道、温度测量和流量测量装置等组成。
1. 风机 F1. 旁路阀2. 孔板流量计3. 空气压力变送器4. 蒸汽放空口5. 冷凝液排放口6. 玻璃视镜7. 套管换热器 F2. 空气流量调节阀 F3. 蒸汽流量调节阀8. 加水装置F4. 进水阀 13. 蒸汽发生器 T. 蒸汽温度 t1、t2 . 空气进、出口温度 T w1、T w2. 空气出口和进口侧的管壁温度图1 空气-水蒸气传热实验装置示意图三、对流传热及参数测取空气从漩涡风机吸入,经孔板流量计计量后进入套管换热器的内管(紫铜管),与来自蒸汽发生器的饱和水蒸汽在套管换热器内进行换热。
被空气冷凝下来的冷凝水经冷凝液排放口排入蒸汽发生器的加水装置。
进入套管换热器的空气进、出口温度t1、t2分别由铜—康铜热电偶测出。
换热管两端管壁温度T w1、T w2同样也分别由埋在内管(紫铜管)外壁上的铜—康铜热电偶测出。
蒸汽温度T由蒸汽发生器根据管路内的实际状况实现自动控制,T由热电阻PT100测得。
空气流量通过F2、F2的组合调节来改变或通过变频器改变,由孔板流量计测量,并通过压力变送器测出空气的压力。
套管换热器内管(紫铜管)的规格为:φ20×2 mm ,换热管有效长度为1200mm ,待测的空气温度、压力、流量、管壁温度和蒸汽温度均可在无纸记录仪或计算机上读取。
四、原理和方法在工业生产过程中,一般情况下,均采用间壁式换热方式进行换热。
所谓间壁式换热,就是冷、热两种流体分别在固体壁面的两侧流动,两流体不直接接触,通过固体壁面进行传热。
4.5对流传热系数测定实验
广州大学实验报告项目名称:对流传热系数测定实验学院:化学化工学院专业年级:广州大学教务处制一、实验目的1、通过对传热系数a准数关联系的测定,掌握实验方法,加深对流传热概念和影响因素的理解。
2、应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4 中常数A、m的值。
3、加深对由实验确定经验公式的量纲分析法的理解4、得出得出单一流体下的总传热系数K。
二、实验的基本原理1、对流传热系数a i 的测定以蒸汽为加热介质走外管,空气为冷却介质走内管。
对流传热系数a I 可以根据牛顿冷却定律,通过用实验来测定。
由牛顿冷却定律:)(M W i T T S Qa -=式中:ai ——管内流体对流传热系数,W/(m2.℃); Q —传热速率,W;S —内管传热面积,㎡; Tw ——壁面平均温度,℃; Tm ——定性温度,℃。
传热面积计算公式:S=πdL 定性温度:221T T T M +=上式中:d —管内径,m;L —传热管测量段的实际长度,m;T1,T2——冷流体的入口、出口温度,℃。
传热速率)(21,T T C V Q P M M S -=ρ式中:M S V ,—冷流体在套管内的平均体积流量,m3/s; M ρ—冷流体的密度,kg/m3;P C —冷流体的定压比热容,J/(kg.℃)。
2、对流传热系数ai 准数关联式的确定流体在管内做强制湍流,准数关联式的形式为:Nu=ARemPrn在本实验条件下在管内被加热的空气,普兰特数Pr 变化不大,可近似为常数,则关联式的形式可简化为:Nu=A ’Rem 所以仅有A ’,m 两个参数。
则两边取对数得:'lg Re lg lg A m Nu +=显然,上式中是一个线性方程,通过实验测定并计算得出一系列的Nu 和Re,即可在双对数坐标系中描绘出Nu —Re 直线,然后进行线性回归即可得出m,lgA ’,继而确定准数关联式雷诺数:μπρμρπμρd V Vd du 4d 4Re 2===则努塞尔数:λadNu =上式中λμ,分别为空气的粘度、流体的热导率(在定性温度Tm 下查出)三、实验装置图附图:空气-水蒸气传热综合实验装置流程图1、普通套管换热器;2、内插有螺旋线圈的强化套管换热器;3、蒸汽发生器;4、旋涡气泵;5、旁路调节阀;6、孔板流量计;7、风机出口温度(冷流体入口温度)测试点;8、9空气支路控制阀;10、11、蒸汽支路控制阀;12、13、蒸汽放空口;14、蒸汽上升主管路;15、加水口;16、放水口;17、液位计;18、冷凝液回流口四、实验步骤:1、实验前准备,检查工作(1)向电加热釜中加水至液位计上端显示安全水位之上。
对流传热实验实验报告
对流传热实验实验报告一、实验目的对流传热现象在工业生产和日常生活中广泛存在,深入理解对流传热的原理和规律对于优化传热过程、提高能源利用效率具有重要意义。
本次对流传热实验的主要目的包括:1、测定空气在圆形直管内强制对流传热的表面传热系数,并与经验关联式的计算值进行比较,加深对对流传热基本原理的理解。
2、了解实验设备的结构和工作原理,掌握实验数据的测量和处理方法。
3、观察和分析影响对流传热系数的因素,如流速、温度等。
二、实验原理对流传热是指流体与固体壁面之间的热量传递过程。
在强制对流情况下,流体的流速对传热系数有着显著的影响。
根据牛顿冷却定律,对流传热的热流量$\Phi$ 可以表示为:$\Phi = hA\Delta T$其中,$h$ 为表面传热系数,$A$ 为传热面积,$\Delta T$ 为壁面与流体之间的温差。
对于圆形直管内的强制对流传热,表面传热系数可以通过经验关联式计算。
在本次实验中,采用迪图斯贝尔特(DittusBoelter)关联式:$Nu = 0023Re^{08}Pr^{n}$其中,$Nu$ 为努塞尔数,$Re$ 为雷诺数,$Pr$ 为普朗特数,$n$ 的取值取决于流体的加热或冷却情况,加热时$n = 04$,冷却时$n = 03$。
努塞尔数、雷诺数和普朗特数的定义分别为:$Nu =\frac{hd}{k}$$Re =\frac{ud\rho}{\mu}$$Pr =\frac{\mu C_{p}}{k}$其中,$d$ 为管道内径,$k$ 为流体的热导率,$u$ 为流体流速,$\rho$ 为流体密度,$\mu$ 为流体动力粘度,$C_{p}$为流体定压比热容。
通过测量流体的流速、温度、压力等参数,可以计算出雷诺数、普朗特数和温差,进而求得表面传热系数的实验值。
将实验值与关联式的计算值进行比较,可以验证关联式的准确性,并分析误差产生的原因。
三、实验设备本次实验所使用的对流传热实验装置主要由风机、风道、电加热管、圆形直管、测温热电偶、压差计、流量计等组成,如图 1 所示。
实验对流传热系数测定
平均值(℃),������——空气进、出口温度������1、������2的平均值(℃),������w——内管内壁温度(℃)。 总传热速率方程:
联立式(1)(2)(3)得:
������ = ������������∆������m(3)
������������∆������m = ������������������������(������2 − ������1)(4) 而
=
������������
=
������������������������(������2 − ������1) ������������������∆������m
序 号 T(℃)
1. 102.0 2. 102.0 3. 103.8 4. 104.3 5. 103.6 6. 103.7 7. 103.6 8. 103.6
且������o ≫ ������������, ∴ ���������−��� 1 ≫ ������o−1, ������������为空气的传热膜系数。
������−1 = ���������−��� 1 + ������o−1 ������ ≈ ������������(6)
联立(1)(2)(3)(4)(5)(6)得:
������ = 17.8mm = 0.0178m,������ = 1m。������1、������2、������1、������2均由控制台测得,计算出对应的������m后查
取相应温度下的������、������������值,������由控制台测得的流量������′换算得到:
������
5. 14.7
6. 13.0
7. 11.6
8. 10.3
空气蒸汽对流传热系数的测定实验报告
空气蒸汽对流传热系数的测定实验报告实验目的:测定空气中的蒸汽对流传热系数,了解其在热传导过程中的特性和规律。
实验原理:空气中的热传导有两个主要的途径,即对流传热和辐射传热。
在大气压力下,空气中的蒸汽通常以微小的水滴或颗粒的形式存在。
当热量传递给空气蒸汽颗粒时,其会通过对流传热的方式将热量散发到周围的空气中。
对流传热系数(h)是描述对流传热性能的一个重要参数,通过测量传热流量和温度差,可以计算出空气蒸汽对流传热系数。
实验器材:1. 空气蒸汽发生器:用于产生空气中的蒸汽。
2. 传热试样:具有良好的导热性能的金属试样。
3. 温度测量仪器:如温度计或热电偶,用于测量传热试样和周围环境的温度。
4. 流量计:用于测量蒸汽的流量。
5. 电源和电表:用于供电和测量电能消耗。
实验步骤:1. 将空气蒸汽发生器连接到传热试样,并保持一定的温度差。
2. 打开空气蒸汽发生器和流量计,开始生成空气中的蒸汽,并调整蒸汽流量至稳定。
3. 同时开启温度测量仪器,分别测量传热试样的表面温度和周围环境的温度。
4. 根据传热试样表面温度和周围环境温度的差值,计算出传热速率,即传热流量。
5. 根据蒸汽流量和传热流量,计算得到空气蒸汽的对流传热系数。
实验数据记录与处理:1. 记录传热试样表面温度和周围环境温度的数值。
2. 根据所测得的温度差值,计算出传热速率。
3. 根据蒸汽流量和传热速率的比值,计算得到空气蒸汽的对流传热系数。
实验结果与讨论:根据实验测得的数据,计算出空气蒸汽的对流传热系数,并进行实验结果的分析和讨论,比较不同实验条件下的对流传热系数差异,探究影响因素与对流传热系数的关系。
结论:通过本次实验,测定并计算得到了空气蒸汽的对流传热系数,并对影响因素进行了讨论。
实验结果可以为热传导以及相关工程问题的研究和应用提供参考。
对流传热系数的测定实验报告
对流传热系数的测定实验报告对流传热系数的测定实验报告一、引言热传导是物质内部热量传递的一种方式,而对流传热是物质表面与流体之间热量传递的一种方式。
对流传热系数是衡量对流传热能力的重要参数,它与流体性质、流动状态、表面特性等因素密切相关。
本实验旨在通过测定不同流体在不同流动状态下的对流传热系数,探究其变化规律。
二、实验装置和方法实验装置主要包括热传导仪、热电偶、温度计、流量计等。
在实验过程中,我们选择了水和空气作为流体介质,分别进行了静止状态和流动状态下的测定。
三、实验结果与分析1. 静止状态下的测定首先,我们将热传导仪放入水中,使其温度稳定在一定值。
然后,通过热电偶和温度计测定水的表面温度和流体温度。
根据实验数据,我们计算得到了水的对流传热系数。
接着,我们将热传导仪放入空气中,同样进行了温度测定。
通过对比水和空气的对流传热系数,我们发现空气的对流传热系数要远小于水的对流传热系数。
这是因为水的导热性能较好,能够更有效地传递热量。
2. 流动状态下的测定接下来,我们改变了实验装置,使流体产生流动。
通过调节流量计和阀门,我们控制了水的流速,并进行了温度测定。
根据实验数据,我们计算得到了不同流速下的对流传热系数。
通过对比不同流速下的对流传热系数,我们发现随着流速的增加,对流传热系数也随之增加。
这是因为流速的增加会增加流体与表面的接触面积,从而增加热量传递的效率。
四、实验误差分析在实验过程中,由于设备精度和操作技巧等因素的限制,可能会引入一定的误差。
例如,温度测量时由于热电偶的位置不准确或者温度计的示数偏差,都会对最终的结果产生影响。
此外,实验中还存在着一些难以控制的因素,比如流体的湍流程度、表面粗糙度等。
这些因素的变化也会对对流传热系数的测定结果造成一定的影响。
五、实验结论通过本实验的测定,我们得出了以下结论:1. 对流传热系数与流体介质的性质密切相关,导热性能较好的介质对流传热系数较大。
2. 对流传热系数与流体流动状态有关,流速的增加会使对流传热系数增加。
对流给热系数的测定实验
对流给热系数的测定一、实验目的1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型;2、测定空气(或水)在圆直管内强制对流给热系数i α;3、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。
4、掌握热电阻测温的方法。
二、基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气或水,水蒸气冷凝放热以加热空气或水,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=αi A i (t w -t)m (1-1)式中: V ——被加热流体体积流量,m3/s ; Ρ——被加热流体密度,kg/m3; C P ——被加热流体平均比热,J/(kg ·℃);αi ——流体对内管内壁的对流给热系数,W/(m2·℃); t 1、t 2——被加热流体进、出口温度,℃;A i ——内管的外壁、内壁的传热面积,m2;(T -T W )m ——水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1-2)(t w -t)m ——内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w m w -----=-(1-3)式中:T 1、T 2——蒸汽进、出口温度,℃;T w1、T w2、t w1、t w2——外壁和内壁上进、出口温度,℃。
当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。
由式(1-3)可得:m w P i t t A t t C V )()(012--=ρα (1-4)若能测得被加热流体的V 、t 1、t 2,内管的换热面积A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1-4)算得实测的流体在管内的(平均)对流给热系数αi 。
实验报告二:对流传热系数及准数关联式常数的测定
对流传热系数及准数关联式常数的测定实验报告1.前言研究表明,加入到换热器换热管中的扰流子添加物可以使换热管内流动的液体产生明显的螺旋运动。
换句话说,在换热器换热管中加入扰流子添加物,就相当于在换热器换热管中加入空隙率ε≥95%的多孔体,当换热器换热管中流动的液体流经这些扰流子添加物以后,流道内将产生明显的弥散流动效应,在低雷诺数下(Re≥300),由于弥散流动的促进,使换热器换热管中的液体转变为湍流。
湍流状态的流动液体其总热阻是所有流态液体中最小的,由于换热器换热管中湍流状态的流动液体热阻非常小,所以,换热器的传热系数(K)值将大大增加。
在高的传热系数(K)值状态下,换热器中扰流子强化传热的效果就会非常明显。
当然换热器中的扰流子对流经换热管的不同介质,其强化传热的效果是有区别的。
并且,换热管内扰流元件的形状和在传热面上的安装方法,对传热和流阻都有影响,一般可通过实验确定其最佳形式。
例如试验表明:在管道的全长填满螺旋形金属丝与间断设置螺旋圈相比,后者在传热性能不变时可减小流阻。
关于扰流子强化传热的原理,还有许多其它见解,有的专家认为扰流子强化传热是基于加大了传热面积和粗糙度,这无疑是正确的。
但试验表明,即使不紧贴壁面安装,则轴向固定在流道中心的扰流子也能使α值加大,有人解释为填充物能产生持续不断的涡流,并沿流向产生一个中心旋转流,在离心力的影响下使管中心的流体与壁面边界层流体充分混合。
从而减薄了边界层,强化了传热。
总的看,有关扰流子强化传热的理论还不完备和一致,一些数据仅来自实验,有待于更多的科研人员开发和利用。
在换热器换热管中加扰流子添加物,最明显的特点就是大大增强了换热管内侧的换热系数。
试验表明,在换热器换热管中加扰流子添加物,换热管内侧换热系数可比光管提高3.5倍以上。
扰流子强化传热除了减少金属消耗,它还可以提高工厂热能利用效率,降低能耗。
目前,一些设计追求高热强度,而管壳式换热器由于传热效率低,设计中采用的主要手段是选择提高对数平均温差,这要导致能耗的大幅度增加。
空气对流传热系数的测定实验报告
一、实验目的1. 了解空气对流传热的基本原理和影响因素。
2. 掌握空气对流传热系数的测定方法。
3. 通过实验验证牛顿冷却定律,并分析其实际应用中的适用性。
4. 掌握传热实验的基本操作和数据处理方法。
二、实验原理对流传热是流体在运动过程中,由于流体各部分之间存在温差而引起的热量传递。
在空气对流传热过程中,热量通过流体运动传递给物体表面,使物体表面温度升高。
牛顿冷却定律是描述对流传热的一种基本定律,其表达式为:\[ Q = hA\Delta T \]其中,\( Q \) 为传热量,\( h \) 为对流传热系数,\( A \) 为传热面积,\( \Delta T \) 为流体与物体表面的温差。
本实验采用牛顿冷却定律法,通过测量空气与物体表面之间的温差,以及空气的流速和温度,计算对流传热系数。
三、实验仪器与材料1. 套管加热器2. 温度计3. 流量计4. 计算器5. 记录本四、实验步骤1. 将套管加热器固定在实验台上,连接好温度计、流量计和电源。
2. 调节流量计,使空气流速稳定。
3. 打开电源,加热套管加热器,使物体表面温度升高。
4. 记录物体表面温度、空气温度和空气流速。
5. 重复步骤3和4,改变空气流速,记录相应的温度和流速数据。
6. 根据牛顿冷却定律,计算不同空气流速下的对流传热系数。
五、实验结果与分析根据实验数据,绘制空气流速与对流传热系数的关系曲线。
结果表明,对流传热系数随空气流速的增加而增大,符合牛顿冷却定律。
六、实验讨论1. 实验结果表明,牛顿冷却定律在实验条件下适用,但在实际应用中,由于流体流动状态复杂,可能存在误差。
2. 影响对流传热系数的因素有:流体流速、流体温度、物体表面粗糙度等。
3. 实验过程中,应注意测量精度,避免误差。
七、结论1. 通过实验验证了牛顿冷却定律在空气对流传热过程中的适用性。
2. 掌握了空气对流传热系数的测定方法。
3. 了解了对流传热的基本原理和影响因素。
八、实验改进建议1. 采用更精确的测量仪器,提高实验精度。
对流传热实验报告doc
对流传热实验报告篇一:对流传热实验报告太原理工大学化工原理实验报告实验名称:对流传热系数的测定一、实验预习(30分)1.实验装置预习(10分)_____年____月____日指导教师______(签字)成绩2.实验仿真预习(10分)_____年____月____日指导教师______(签字)成绩3.预习报告(10分)指导教师______(签字)成绩(1)实验目的(2)实验原理(3)实验装置与流程:将本实验的主要设备、仪器和仪表等按编号顺序添入图下面的相应位置:10对流传热实验装置流程图1. 2.3. 4. 5.6. 7. 8.9. 10. 11. 12. 13.(4)简述实验所需测定参数及其测定方法:(5)实验操作要点:二、实验操作及原始数据表(30分)指导教师______(签字)成绩三、数据处理结果(10分)篇二:化工原理实验报告(传热)北京化工大学化工原理实验报告传热膜系数测定实验院(部):化学工程学院专业:化学工程与工艺班姓名:江海洋 XX011136同组人员:王彬刘玥波方郡实验名称:传热膜系数测定实验实验日期:XX.11.28传热膜系数测定实验一、摘要本实验以套管换热器为研究对象,以冷空气及热蒸汽为介质,冷空气走黄铜管内,即管程,热蒸汽走环隙,即壳程,研究热蒸汽与冷空气之间的传热过程。
通过测得的一系列温度及孔板压降数值,分别求得正常条件和加入静态混合器后的强化条件下的对流传热膜系数α及Nu,做出lg (Nu/Pr0.4)~lgRe的图像,分析出传热膜系数准数关联式Nu=ARemPr0.4中的A和m值。
关键词:对流传热 Nu Pr Re α A 二、实验目的1、掌握传热膜系数α及传热系数K的测定方法;2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m、n的方法;3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。
三、实验原理黄铜管内走冷空气,管外走100℃的热蒸汽,壁内侧热阻1/α远远大于壁阻、垢阻及外侧热阻,因此研究传热的关键问题是测算α,当流体无相变时对流传热准数关系式的一般形式为:Nu?A?Rem?PrnGrp 对于强制湍流有: Nu?ARemPrn用图解法对多变量方程进行关联,要对不同变量Re和Pr分别回归。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 牛顿冷却定律法........................................................................................................6 3.2 近似法........................................................................................................................7 3.3 简易 Wilson 图解法..................................................................................................8 4.拟合实验准数方程式 ........................................................................................................... 8 5.传热准数经验式 ................................................................................................................... 9 四、操作方法与实验步骤 ............................................................................................................. 10 五、实验数据处理 ......................................................................................................................... 11 1.原始数据: ......................................................................................................................... 11 2.数据处理.............................................................................................................................11 六、实验结果.................................................................................................................................14 七、实验思考.................................................................................................................................15
浙江大学
化学实验报告
课程名称:过程工程原理实验甲 实验名称:对流传热系数的测定 指导教师:
专业班级: 姓 名: 学 号: 同组学生:
实验日期: 实验地点:
目录
一、实验目的和要求 ....................................................................................................................... 2 二、实验流程与装置 ....................................................................................................................... 2 三、实验内容和原理 ....................................................................................................................... 4
实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普
通管)及温度传感器、只能显示仪表等构成。
九、
空气-水蒸气换热流程:来自蒸汽发 生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝 气或未冷凝蒸汽通过阀门(F3 和 F4)排出,冷凝水经排出阀(F5 和 F6) 排入盛水杯。空气由风机提供,流量通过变频器改变风机转速达到自动控 制,空气经孔板流量计进入套管换热器内管,热交换后从风机出口排出。
一、
实验目的和要求
二、
1)掌握空气在传热管内对流传热系数的
测定方法,了解影响传热系数的
三、
因理成
形
式的准数方程,并与教材中公认
五、
经验式进行比较;
六、
动控制原理和使用方法。
七、
3)了解温度、加热功率、空气流量的自
实验流程与装置
八、
本实验流程图(横管)如下图 1 所示,