沥青混合料配合比设计报告

合集下载

AC-13C沥青混凝土混合料配合比设计报告

AC-13C沥青混凝土混合料配合比设计报告

AC-13C沥青混凝土混合料配合比设计报告根据您提供的信息,我将为您撰写一份关于AC-13C沥青混凝土混合料配合比设计的报告。

1.引言2.材料选择在进行配合比设计之前,需要选择合适的原材料。

通常情况下,AC-13C沥青混凝土主要包括沥青胶结剂、矿料和填料。

在选择沥青胶结剂时,应考虑其粘结性、耐久性和可再生性。

常见的矿料包括砂、碎石和矿粉,而填料可以选择耐久性较高的岩石粉。

3.性能要求针对AC-13C沥青混凝土,需要确定其性能要求。

一般来说,AC-13C沥青混凝土应具有较高的抗压强度、良好的抗变形性能和较长的使用寿命。

此外,还应考虑其耐水性、耐久性、抗裂性等性能要求。

4.配合比设计配合比设计是根据所选原材料的性能和性能要求进行的。

首先需要确定沥青含量,一般来说,沥青含量应控制在4%~6%之间。

然后根据所选矿料和填料的性能确定其粒径级配和配合比。

一般来说,选择不同粒径的矿料可以提高混凝土的密实性和承载能力。

5.实验室试验为了验证所设计的配合比的可行性,需要进行实验室试验。

实验室试验可以包括沥青含量试验、矿料粒径试验、密实度试验和抗压强度试验等。

6.结果分析根据实验室试验的结果,可以对配合比进行修正。

如果实验结果与预期目标相差较大,可以考虑调整沥青含量、矿料比例或者更换不同性能的原材料。

7.结论根据实验结果和分析,可以得出最终的AC-13C沥青混凝土混合料配合比。

通过实验室试验的验证,可以保证所设计的配合比具有满足性能要求的性能。

总结:本报告通过选择合适的原材料、确定性能要求、进行配合比设计和实验室试验,最终得出了AC-13C沥青混凝土混合料的合适配合比。

通过本报告,可以为道路铺装提供合适的AC-13C沥青混凝土材料,以满足其性能要求。

AC-25沥青混合料配合比报告

AC-25沥青混合料配合比报告

AC-25沥青混合料配合比报告一、配合比概述二、石料选用和筛孔分析石料在混合料中占有很大的比重,对于道路工程的质量和性能起到重要的影响。

常用的石料有碎石、砾石等。

在选择石料时应符合相关的标准要求,例如石料的韧性、坚固度等。

此外,在沥青混合料中,采用了不同粒径的石料,以满足不同层次的要求。

在配合比中,还需要对石料进行筛孔分析,以确定各个粒径的石料含量。

通过筛孔分析可以获得石料的粒径分布曲线,并确定粗、中、细三个级配点。

根据不同的要求和层次,确定各个级配点的石料比例。

三、沥青沥青是沥青混合料的主要胶结材料,其质量和品质直接影响混合料的性质和使用寿命。

常用的沥青有几种类型,如粘度等级的分级沥青、改性沥青、复合沥青等。

根据不同要求,可以选择相应质量适中的沥青作为胶结材料。

在配合比中,沥青的含量应合理控制,过高会导致沥青饱和,使沥青混合料疏松、变形性增加;过低则可能会引起石料没有充分胶结等问题。

合理的沥青含量范围通常在5%到7%之间。

四、填充料填充料是沥青混合料中的一种辅助材料,用于填补石料之间的空隙,增加混合料的密实性和稳定性。

常用的填充料有细石屑、粉煤灰等。

填充料的含量根据需求进行调整,在总重量中占有一定的比例。

填充料的选用应满足相关标准的要求,确保其性能和质量。

五、配合比设计和调整根据工程的具体要求和相关规范,可以进行初步的配合比设计。

设计时要综合考虑石料、沥青和填充料的性能、用量等因素。

进行初步设计后,还需要进行试验和实际施工,根据实际情况进行配合比的调整。

通过试验和实际施工的结果,可以对配合比进行进一步的优化,使沥青混合料的性能和使用寿命得以最大程度的提高。

总结:AC-25沥青混合料的配合比是根据工程要求和规范,通过综合考虑石料、沥青和填充料等因素,并进行试验和实际施工的调整而确定的。

合理的配合比设计能够保证沥青混合料的质量和性能,提高道路工程的耐久性和可靠性。

因此,在进行配合比设计时,需要综合考虑各种因素,进行合理的配比和调整。

AC-25C沥青混合料配合比设计报告

AC-25C沥青混合料配合比设计报告

AC-25C沥青混合料配合比设计报告沥青砼面层AC-25C型目标配合比设计一、前言由我项目部承担的深阳市天目湖宾馆道路广场工程沥青砼下面层AC-25C型(粗粒式)最大公称粒径26.5mm,矿料级配如下:试验室根据有关的技术规范的要求,进行了一系列的试验,现将各项试验及目标配合比情况汇报如下:二、原材料1、沥青:采用了韩国70#沥青。

针入度、延度、软化点及其他各项物理指标达到施工规范的要求,现将沥青的试验结果列表如下:沥青的主要技术性质试验结果表二2、矿料施工中采取的1#料(碎石)、2#料(瓜子片)是石灰岩,3#料(米砂)、4#料(石屑)是玄武岩,填料(石灰岩矿粉)均产自溧阳。

各项技术指标均满足施工规范的要求,试验结果表三、表四、表五。

AC-25C型沥青砼面层粗集料试验结果AC-25C型沥青砼面层石屑试验结果AC-25C型沥青砼面层矿粉试验结果表五备注:视密度一栏为毛体积相对密度。

三、目标配合比设计1、矿料配合比计算根据各种矿料筛分结果,经反复计算,得出各种矿料用量为1# 料:2#料:3#料:4#料:填料=35:27:8:28:2,混合料筛分计算结果均在级配范围内,计算见AC-25C型矿料混合料级配计算表。

AC-25C型矿料混合料级配计算表2、沥青混合料的拌制成型根据JTG F40-2004《公路沥青路面施工技术规范》的要求,参照以往施工经验初定最佳油石比4.0%,并按照0.5%的间隔变化,分 别取3.0%、3.5%、4.0%、4.5%、5・0%五个不同的油石比,按照 JTJ052-2000《沥青混合料试验规范》严格控制好拌和温度及时间, 并按《沥青混合料试验规范》规定的击实次数成型马歇尔试件,因 AC-25C 型是密级配,试件吸水率很小,故采用《规范》中规定的表 干法测定试件的密度,并计算空隙率/沥青饱和等物理指标,进行体 积组成分析。

3、马歇尔试验测定马歇尔稳定度及流值等物理力学性质,试验结果汇总如表六:1//J/// J///r/J/ JJ // Z/ 不 /7 fFr r - 1AC-25C 型矿质混合料目标配合比级配图459筛孔尺寸(mm )2 级配上限级配下限合成级配规范中值95 5 5 . . *70090wOo o o oooO8765 4 32率过通合成级配规范上限 规范下限 规范中值 0 10 0 10 0 10 0 10 0 010 0 10 010 0 100 98 .3 10 90 95 .084 .3 90 75 82 .5 76 .5 83 65 74 67 .9 76 53 .4 38 .1 27 .4 19 .5 13 .8 65 52 42 33 24 1 57 45 24 16 1 66 .5 55 38 29 22 .516 9. 6. 4.47 13 118. 6 03 O51 O马歇尔击实试验汇总表表六4、绘图法确定油石比以沥青油石比为横坐标,各项技术指标为纵坐标,分别将试验结果点入图中(见附图)由图可得相应于密度最大值油石比a1=4.4%相应于稳定度最大值油石比a2=3.6%相应于空隙率范围中值最大值油石比为:a3=3.91%,相应于饱和度范围中值最大值油石比为a4=4.26%对应各项指标均满足要求的共同油石比范围为:04^^=335%,OAC max=4.66%所以OAC产(a1+a2+a3+a4)/4=4.04%OAC2= (OAC min+OAC max)/2=4.30%OAC=( OAC1+ OAC2)/2=4.17%鉴于本地区气候分区处于热区,根据沥青路面施工规范及参照以往经验确定最佳油石比:4.2%综上所述:AC-25C型沥青混合料配合比为1#料:2#料:3#料:4#料:矿粉=35:27:8:28:2油石比:4.2%四、水稳定性检验按最佳油石比4.2%制作马歇尔试件,进行浸水半小时及48小时马歇尔试验,试验结果列表如下:从上表可以明显的看出,水稳定性指标(残留稳定度280%)满足规范要求,其它各项指标均满足规范要求,所以通过验证试验最终确定最佳油石比为4.2% o。

AC-13沥青混合料配合比设计报告

AC-13沥青混合料配合比设计报告

严谨求实科学管理精益求精质量至上试验报告样品名称:AC-13C沥青混合料目标配合比设计与试验检验类别:委托试验委托单位: 中建五局土木工程有限公司试验单位: 湖南省交通建设质量监督试验检测中心批准日期:2010年5月21日地址:湖南省长沙市芙蓉中路三段472# 邮政编码:410015 电话:3 传真:3湖南省交通建设质量监督试验检测中心试验报告主检: 审核:审批:湖南省交通建设质量监督试验检测中心试验报告主检: 审核:审批:设计说明1.沥青混合料的级配采用AC-13C型级配。

根据JTG F40-2004《公路沥青路面施工技术规范》要求,并结合刚果(布)国家1号公路:施工地点为热带雨淋气候,常年平均气温为35℃左右,最高气温40℃-45℃,年降雨量大于1000mm的具体情况,确定了相应的工程级配。

2.AC-13沥青混合料所用原材料均为委托单位来样,其组成为:(1)集料:取样地点为萨哈采石场。

碎石规格和数量:0/0.3mm3.4kg, 0/2.36mm13kg,0/4.75mm22kg,0/16mm19kg,4.75/9.5mm20kg, 9.5/16mm29kg。

(2)沥青:道路石油沥青60/70,重量5kg。

(3)沥青抗剥离剂:江西省上饶市恒大建材化工有限公司。

3.按规范要求,沥青混合料理论最大相对密度采用真空实测法。

4.室内试验的拌和温度为160℃,试件的击实成型温度为145℃。

5.配合比设计试验及计算参数均以“JTG F40-2004《公路沥青路面施工技术规范》中附录B 热拌沥青混合料配合比设计方法”中的程序及公式计算。

6.试验结果:经室内配合比设计试验与相关验证,确定AC-13沥青混合料目标配合比设计的最佳油石比为4.8%,在进行生产配合比设计与试验时,其合成级配尽可能与目标配合比级配曲线接近。

目标配合比的各级材料比例见相关设计图表。

7.建议在混合料中添加2%的硅酸盐水泥,以提高混合料的水稳定性。

AC-20C沥青混合料配合比设计报告详细

AC-20C沥青混合料配合比设计报告详细

设计说明1. AC-20C沥青混合料的级配范围来自于《湖南省高速公路沥青混凝土面层施工技术指南》.2. AC-20C沥青混合料所用原材料均为委托单位来样,其组成为:(1)集料:按13.2米米〜19米米(1号)、9.5米米〜13.2米米(2号)、4.75 米米〜9.5米米(3号)、2.36米米〜4.75米米(4号)、0米米〜2.36米米(5 号)备料.(2)沥青:XX生产SBS改性沥青.(3)矿粉:自产.3.按规范要求,混合料理论最大相对密度采用计算法.4.采用马歇尔试验进行配合比设计,室内试验的拌和温度为165-175(℃),试件的击实成型温度为155-160(℃).5.配合比设计试验及计算参数均以“JTGF40-2004《公路沥青路面施工技术规范》中附录B热拌沥青混合料配合比设计方法”中的程序及公式计算.6.试验结果:经室内配合比设计试验与相关验证,确定AC-20C沥青混合料目标配合比设计的最佳油石比为4.4%,在进行生产配合比设计与试验时,油石比宜控制在 4.3%-4.6%之间淇合成级配应尽可能与目标配合比级配曲线接近.目标配合比的各级材料比例见相关设计图表.7.采用旋转压实仪成型进行验证,旋转压实仪的单位压力为600KPa,设定旋转压实次数为125次.2012年7月2日.原材料试验1.沥青试验结果2.集料试验(1)集料原材料来样筛分试验结果(2)粗集料材质试验结果⑶各级粒径集料的相对密度试验结果(4)矿粉质量试验结果(5)细集料的砂当量试验结果二.AC-20C沥青混合料技术要求1. XX高速公路AC-20C型沥青混合料级配范围2.郴宁高速公路AC-20C沥青混合料马歇尔试验技术要求AC-20C型沥青混合料配合比试验1.各级集料在混合料中的比例及合成级配集料规格集料比例(%)通过下列方孔筛(mm)的质量百分率(%)26.5 19 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.0751号33 10088.553.4 4.00.10.10.10.10.10.10.10.1 2号14 100100100100 5.90.10.10.10.10.10.10.1 3号18 10010010010087.3 1.90.40.40.40.40.40.3 4号9 10010010010010087.611.8 1.10.90.90.90.8 5号23 10010010010010010074.949.127.918.210.17.1矿粉 3 10010010010010010010010010098.594.883.4合成级配结果100 96.2 84.6 68.3 51.6 34.2 21.4 14.5 9.6 7.3 5.4 4.3级配范围100 901007688637546582939192914229-17 7-13 5-10 3-6备注/AC-20C混合料矿料合成级配曲线如下图所示:) (( 率过通AC-20混合料级配合成图0.075 0.3 0.6 1.18 2.36 4.75 9.5 13.2 16 19 26.5--------------------------------------------- 孔径(mm)|T一上限 T-下限上中值合成级配2.目标配合比马歇尔试验结果体积指标油石比(%)3.4 3.94.4 4.95.4 混合料最大相对密度 2.578 2.559 2.541 2.523 2.505 试件毛体积相对密度 2.412 2.426 2.435 2.437 2.435 试件空隙率 (%)6.4 5.2 4.2 3.4 2.6 VFA (%) 52.2 61.2 68.9 75.4 81.6 V 米 A (%)13.4 13.4 13.5 13.8 14.1 稳 定 度 15.07 15.48 16.06 15.20 14.24 流值(米2.12.93.74.44.8AC-20C 型沥青混合料沥青用量确定图毛体积相对密度与油石比的关系油石比2 4 2 2 Z度密对相积体毛 一 44油石比从上表及图中可以得出AC-20C 沥青混合料指标与油石比的关系如下:从上图及表中可知,OAC 1=4.50%,各项指标符合技术要求的油石比范围OA 厘米反〜OA 厘密度 空隙率 流值 稳定度 VFA米ax为4.12%〜4.50%,因此:OAC2二(OA 厘米ix+OA 厘米ax)/2=4.31%.取OAC1与OAC2的中值为最佳油石比,得:OAC=(OAC1+OAC2)/2=4.41%.由上述计算确定郴宁高速公路AC-20C的最佳油石比OAC为4.4%.3. AC-20C型在最佳油石比OAC=4.4%时淇各项体积指标与强度指标如下表:(1)马歇尔试验结果(2)浸水马歇尔、冻融劈裂强度、车辙试验结果(3)AC-20C型沥青混合料旋转压实验证试验结果经过马歇尔试验及其相关的验证试验,郴宁高速公路路面AC-20C沥青混合料在最佳油石比取为 4.4%时,各项技术指标满足相应的技术要求.在进行生产配合比设计与试验时,应根据拌和机的除尘效果,确定矿粉的掺量,以使混合集料的级配尽可能与目标配合比的级配一致.主检:审核:审批:2012年7月2日。

AC-13C沥青混凝土混合料配合比设计报告

AC-13C沥青混凝土混合料配合比设计报告

::::AC-13C沥青混凝土混合料配合比设计报告施工单位试验室二零 年 月合同号分项工程沥青路面上面层混合料种类AC-13C沥青砼AC-13C配合比设计说明一、 配合比设计依据:1、JTG F40-2004《公路沥青路面施工技术规范》2、JTJ 052-2000《公路工程沥青及沥青混合料试验规程》3、JTG E42-2005《公路工程集料试验规程》4、相关设计图.二、 原材料的试验与确定:1、沥青:采用AH-70#重交通石油沥青,其针入度、延度、软化点三大指标均符合规范要求。

(见表2-1-1)2、集料:1#、2#、3#料采用南京泉水采石场的石灰岩集料,采用各项指标经试验检测符合规范要求。

(见表2-2-1、2-2-2)4、填料:采用泉水生产的矿粉,各项指标均符合规范要求。

各项指标符合规范要求(见表2-3-1)三、目标配合比设计1、矿料配合比设计从料场的料堆上下左右四个方向用装载车取样,并进行干拌后,取代表性样品,进行矿料配合比设计。

根据设计图纸要求,在设计级配范围内计算1~3组粗细不同的配合比,绘制设计级配曲线,分别位于工程设计级配范围的上方、中值及下方。

0.075 0.15 0.3 0.6 1.18 2.36 4.75 9.5 13.2 163、马歇尔试验根据级配,制作沥青砼试件并进行马歇尔试验的各项体积性能指标的测试,采用油石比分别为4.0%、4.5%、5.0%、5.5%、6.0%制作试件,分别测定其厚度、密度、空隙率、饱和度、稳定度、流值(见附表)。

按各项实测值绘制各技术指标与沥青用量关系图,得出油石比为5.19%符合规范的各项要求。

根据经验油石比取5.2%。

冷料其密度,并重新配比使之符合设计的级配。

生产配合比设计1、 首先根据料场原材料的情况进行流量调试,确定冷料仓开度,转速.使之基本符合目标配合比。

混合集料进入拌和楼后进行重新分级筛分后成为4种规格的集料.分别为1#仓,2#仓,3#仓,4#仓.最后取样进行筛分检测2、马歇尔试验根据生产级配,制作沥青砼试件并进行马歇尔试验的各项体积性能指标的测试,采用油石比分别为5.2%±0.3%制作试件,分别测定其厚度、密度、空隙率、饱和度、稳定度、流值(见附表)。

SMA沥青混合料目标配合比

SMA沥青混合料目标配合比

主要仪器及编号
样品描述
检测依据 施工用途
试验日期 试样来源 送样
(3)其他性能指标检测结果 级配 粗 中 细 检测结论:
备注: 1、本报告发出一式一份。凡自行涂改、增删及复印者一律无效,本中心不承担由此引发的任何责任。 2、凡经本中心同意复印的复印件,应由本中心加盖试验报告专用章确认,否则无效。 3、对检验结果有异议者,应于报告发出之日起,十五日内提请复验,过期则不受理,遗失不查不补。 4、凡属委托性试验,本中心试验结果只对来样负责。 5、本报告不得用于商业广告,否则本中心保留依法追究责任的权利。 地址: 邮编: 电话:
稳定度(KN) 8.49 8.62 8.67
流值(0.1mm201 0.109 0.099
飞散损失(%) 7.1 5.0 3.5
备注
根据设计要求技术性能指标取用中级配作为配合比合成级配
试验:
审核:
签发:
日期:



SMA沥青混合料目标配合比设计报告
试验单位: 工程名称 委托单位 施工单位 全自动沥青拌和机A-007、马歇尔试验仪 LWD-3型 A-022、车辙试验机A-003、004、 标准筛、电子天平、烘箱C-017、D-002、 A-010 JTGF40-2004、JTG E20-2011、JTG E422005及设计文件、SHC F40-01-2002 SMA-13沥青路面 初试级配混合料性能检测 根据矿料的密度,选用初试级配的用油量为6%,并按设计文件要求,掺加4‰颗粒木质纤维稳定剂。 (1)级配性能指标检测结果 级配 粗 中 细 玄武岩碎石 9.5-16mm 42 38 33 玄武岩碎石 4.75-9.5mm 36 38 41 玄武岩石屑 2.36-4.75mm 0 0 0 (2)体积性能指标检测结果 级配 粗 中 细 Y se 2.892 2.888 2.884 Y s 1.672 1.681 1.688 Y t 2.595 2.592 2.589 Y f 2.487 2.490 2.494 VCAdrc VCAmin 42.01 41.70 41.43 38.89 40.51 42.19 VV 4.2 3.9 3.7 VMA 17.8 17.6 17.4 VFA 76.6 77.6 78.9 备注 VCAdrc>VCAmin VCAdrc>VCAmin VCAdrc<VCAmin 石灰岩石屑 0-2.36mm 10 12 14 矿粉 12 12 12 沥青用量 (%) 5.90 5.90 5.90 石油比 6.27 6.27 6.27 报告编号: 委托单编号 样品编号 样品名称 WT-2015-09-020 YP-2015-09-QPB-020 玄武岩碎石、石灰岩石屑、 矿粉、SBS改性沥青 符合要求

AC-20沥青混合料配合比设计报告

AC-20沥青混合料配合比设计报告
11.11
90。2
≥80
(2)冻融劈裂试验
试验条件:采用双面个击实50次的马歇尔试件,试件温度为25±0.5℃,加载速率为50mm/min,试件按《公路工程沥青及沥青混合料试验规程》(JTJ052-2000)T0717方法进行真空饱水,试件在-18℃冷冻16小时后,经60℃水浴保温24小时,再放入25℃水温保温2小时,然后将两组试件分别进行劈裂试验,得到劈裂抗拉强度比)。
25。1
4。4
2。412
2。509
2。663
3。9
13。2
70.7
12.86
29.4
4.9
2.423
2.498
2。663
3.0
13。3
77.3
11。14
36。2
5。4
2。417
2。486
2.663
2.8
13.9
80.1
10.31
40。8
(6)以油石比为横坐标,以测定各项指标为纵坐标,分别将试验结果点入图中,绘制沥青用量与稳定度、流值、密度、空隙率、VMA、VFA的关系曲线,
4、最佳沥青用量的确定
由图可知:
相应于密度最大值的为油石比: a1=4.9%
相应于稳定度最大值的为油石比: a2=4。4%
相应于空隙率范围中值的为油石比: a3=4.4%
相应于沥青饱和度范围中值的为油石比: a4=4.4%
对应各项指标均满足要求的共同油石比范围为:
OACmin=4。1%OACmax=4.7%
一、概述
AC-20沥青路面进行目标配合比设计。
二、设计依据
1、《公路沥青路面施工技术规范》(JTG F40-2004)
2、《公路工程集料试验规程》(JTG E42—2005)

AC-20沥青混合料配合比设计报告

AC-20沥青混合料配合比设计报告

AC-20沥青混合料配合比设计报告AC-20沥青混合料是一种常用的路面铺设材料,其特点是强度高、耐久性好,适用于高速公路、城市道路等重要路段。

在进行AC-20沥青混合料的配合比设计时,需要考虑沥青含量、骨料配合比、沥青粘结剂选择等因素,以确保混合料的质量和性能满足需求。

本文将详细介绍AC-20沥青混合料配合比设计的流程和步骤。

首先,在进行AC-20沥青混合料配合比设计之前,我们需要根据路面的使用要求和设计要求确定混合料的级配要求。

级配是指不同颗粒大小的骨料在混合料中的分布情况,对于混合料的性能具有重要影响。

根据目标密度和最大骨料粒度等参数,我们可以通过筛分试验和密度试验来确定所需的骨料级配。

其次,根据混合料的设计厚度和使用要求,我们需要确定AC-20沥青混合料中沥青的含量。

沥青含量对混合料的性能具有显著影响,一般情况下,含量过高会导致混合料易软化,含量过低则会影响混合料的抗水性和耐久性。

通过试验室的沥青含量试验和稳定性试验,确定合适的沥青含量范围。

接下来,根据确定的沥青含量和级配要求,我们需要进行骨料的粘结剂选择。

骨料粘结剂是指沥青的粘结性能,对混合料的稳定性和耐久性有重要影响。

常用的粘结剂有聚合物改性沥青、橡胶改性沥青等,根据实际情况选择适合的粘结剂,并进行试验评估其性能。

最后,我们需要进行混合料的稳定性和流动性试验。

稳定性试验是通过马歇尔稳定性试验来评估混合料的抗压能力和抗变形性能,以保证混合料在使用过程中不会产生塌陷和变形。

流动性试验是通过滚筒法来评估混合料的可铺性和可塑性,以保证混合料在施工过程中的流动性和铺设质量。

通过以上的步骤和试验,我们可以得到合适的AC-20沥青混合料配合比设计。

在实际施工过程中,要严格按照设计要求进行配料和施工,保证混合料的质量和性能符合标准,以提高路面的使用寿命和性能。

另外,在使用过程中要进行定期检测和维护,及时修补和维护损坏的路面,以确保路面的安全和舒适性。

沥青混合料目标配合比设计报告

沥青混合料目标配合比设计报告

受控编号:细粒式(AC-13型)目标配合比设计报告工程名称:委托单位:检测单位名称年月日委托单位:见证单位:见证人:见证号:取样人:取样证号:说明1、委托送检,检测结果仅对来样负责;2、本报告无骑缝章及检验检测报告专用章无效;3、本报告无主检、审核、批准人签名无效;4、本报告涂改、增删无效;5、报告复印页数不全、未加盖检验检测报告专用章无效;6、对本报告若有异议,应于收到报告之日起十五日内向检测单位提出书面申诉,否则按认可检测报告处理。

资质证书编号:检测地址:邮编:电话:目录一、工程概述二、检验依据三、原材料检测结果四、沥青混合料目标配合比设计五、沥青混合料目标配合比设计验证六、沥青混合料目标配合比一、工程概述道路等级:沥青混合料种类:检验依据1、《公路沥青路面施工技术规范》JTG F40-20042、《公路工程沥青及沥青混合料试验规程》JTG E20-20113、《公路工程集料试验规程》JTG E42-20054、设计图纸三、原材料检测结果1、沥青:(材料说明:如产地、厂家、标号)2、沥青混合料粗集料:(材料说明:产地、种类)3、沥青混合料用细集料:(材料说明:产地、种类)4、沥青混合料用填料:(材料说明:产地、种类)四、沥青混合料目标配合比设计1、矿料各成份原始级配及混合料级配计算表6 各集料原始级配汇总表7 混合料级配计算表2、矿料各成份原始级配及混合料级配绘图表8筛孔(mm)37.5 31.5 26.5 19.0 16.0 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 级配上限级配下限级配中值合成级配3、马歇尔试验指标测定结果表9 不同沥青油石比马歇尔试验指标测定结果油石比(%)最大理论相对密度毛体积相对密度空隙率VV(%)沥青饱和度VFA(%)矿料间隙率VMA(%)稳定度MS(kN)流值FL(mm)技术要求实测实测 4.5-6.5 70-85 ≥17.0 ≥6.0 ---4、绘制油石比与物理力学指标关系图(表10)5、确定最佳沥青油石比(OAC)OAC1=(a1+a2+a3+a4)/4=(7.18+6.52+6.73+7.35)/4=6.95OAC2=(OACmin+OACmax)/2=(6.70+7.06)/2=6.88OAC=(OAC1+OAC2)/2=(6.95+6.88)/2=6.9其中:a1、a2、a3、a4分别为密度最大值、稳定度最大值、目标空隙率中值、沥青饱和度范围的中值的沥青油石比。

沥青混合料配合比设计报告

沥青混合料配合比设计报告

沥青混合料配合比设计报告好嘞,咱们今天聊聊沥青混合料配合比设计,听起来挺高大上的吧,但其实也没那么复杂,大家放轻松,咱们轻松聊聊。

首先啊,沥青混合料就像是你做饭时的食材。

你得先准备好各种材料,才能做出美味的菜肴。

沥青、矿料、填料,这些都是咱们的“食材”。

想象一下,沥青就像是那浓稠的酱汁,给整个混合料增添了风味。

而矿料呢,像是大米、蔬菜,增加了混合料的口感。

你得把这些材料搭配得当,才能做出美味的沥青混合料。

说到配合比,这可不是随便加几勺就完事儿的。

得有讲究,有时候多一点少一点,口感就完全不一样。

比如沥青的比例太多,混合料就会像是稠稠的粥,不好铺;而要是矿料多了,哎呀,硬得跟石头一样,根本不行。

你得把握住那个平衡,像调味一样,盐多了咸,少了没味,合适才是王道。

然后呢,咱们还得考虑一下温度,沥青可不是随便加热就行。

你要是温度不够,沥青就像个害羞的小姑娘,根本不愿意融入矿料的大家庭;要是温度太高,又容易变得过于活泼,搞得整个配合比都乱了套。

温度就像是咱们做菜时火候的掌握,太大或太小,都不好。

得时刻关注,别让它过了头。

就是咱们的试验。

这一步就像是做完饭要尝一口,看味道对不对。

混合料的强度、稳定性,都得通过实验来验证。

你想啊,要是配合比设计出来了,结果一试就塌了,那可真是笑话了。

试验就是为了确保,咱们做的每一锅“饭”都是美味的。

结果出来后,心里总算能踏实些,嘿,算是没有白忙活。

设计配合比的时候,还得考虑环境因素。

不同的地方,气候、交通状况都不一样,咱们得因地制宜。

有的地方下雨多,咱们就得选用排水性能好的混合料;有的地方车流量大,那就得选用耐磨的配合比。

这就像是去不同的餐厅,得根据食客的口味调整菜单,才能讨大家欢心。

设计配合比的过程真是一场智力游戏。

你得不断地试错,找出最适合的组合。

有点像捉迷藏,前面找不到,后面突然冒出一个好主意,嘿,原来这就是答案!每一次的尝试,都是一次新的发现,慢慢摸索,总会找到最适合的那一款。

稀浆封层沥青混合料配合比设计报告

稀浆封层沥青混合料配合比设计报告

稀浆封层沥青混合料配合⽐设计报告稀浆封层沥青混合料配合⽐设计报告1.概述1.1 稀浆封层沥青混合料配合⽐设计是为了保证稀浆封层施⼯和质量,同时也是为了作好本⼯程材料供应,根据JTG F40-2004规范,对稀浆封层沥青混合料进⾏配合⽐设计。

1.2 本试验通过⾻料筛分确定合理级配、湿轮磨耗试验、负荷轮试验确定改性乳化沥青的⽤量及拌和及养护时间。

1.3 本次稀浆封层沥青混合料配合⽐设计依据为:《公路沥青路⾯施⼯技术规范》JTG F40-2004《路⾯稀浆封层施⼯规程》CJJ 66-952.说明2. 1 本设计为ES-2型稀浆封层混合料⽬标⾻料级配。

2. 2 材料产地:1:粗⾻料房⼭区张家⼝2:细⾻料房⼭区张家⼝3:⽔泥房⼭区琉璃河⽔泥⼚4:沥青滨州中海沥青5:乳化沥青房⼭区北京⼦⽛宜万兴⼯贸有限公司2.3 设计结果:ES-2型稀浆封层混合料最佳油⽯⽐7.3/%3.原材料性能检验3.1本次设计采⽤的是中海重胶90#道路⽯油沥青,适⽤1-3⽓候分区对沥青各项指标进⾏测试,见表3-1。

沥青检测结果表3-1从表3-1中可以看出,中海重胶70#道路⽯油沥青的各项指标均符合规范要求。

3.2乳化沥青在稀浆封层沥青混合料中发挥重要作⽤,对乳化沥青性能检验见表3-2乳化沥青检测结果表3-2从表3-2结果可以看出该乳化沥青质量符合《公路沥青路⾯施⼯技术规范》(JTG F40-2004)中规定的质量要求。

4.稀浆封层⾻料级配4.1 根据JTG F40-2004规范要求所⽤⾻料级配为⾻料筛分试验报告表4-15.稀浆封层沥青混合料配合⽐设计为保证试验质量,采⽤施⼯时选定的料⼚和其他相关材料,符合稀浆封层沥青混合料配合⽐设计要求,根据本⼯程性质、⽓候条件材料品种、确定混合料的路⽤性能要求各种材料的⽤量,满⾜施⼯要求和质量要求。

5.1 湿轮磨耗试验见表5-1湿轮磨耗试验记录表5-15.2负荷轮试验负荷轮试验记录表5-25.3 稀浆封层沥青混合料稠度试验稠度试验记录表5-35.4 稀浆封层沥青混合料沥青⽤量计算由5.1、5.2两试验折算的沥青⽤量见表5.4两试验折算的沥青⽤量表5-45.5.通过表5.4两试验获得的数据绘制稀浆封层沥青最佳⽤量的曲线图,从⽽确定沥青最佳⽤量和乳化沥青⽤量。

AC-20c沥青混合料目标配比设计报告

AC-20c沥青混合料目标配比设计报告

AC-20c沥青混合料目标配比设计报告一、配比设计原则:1.经济合理:在满足技术性能要求的前提下,选择成本较低的材料,并合理控制用量。

2.良好的工作性:确保混合料具有良好的稳定性、抗沉降性、易于浇筑和压实等工作性能。

3.优异的抗剪强度:混合料的抗剪强度能够满足道路使用的要求,提供良好的承载能力和耐久性。

4.良好的变形性能:混合料在交通荷载作用下,能够保持较小的变形,避免产生裂缝和坑洞。

二、矿料选择:根据AC-20c混合料的要求,粗矿料应选用规格为16-31.5mm的碎石,细矿料应选用规格为4.75-9.5mm的石子。

同时,矿料的形状应以块状和角状为主,具有好的磨耗和耐久性能。

三、沥青选择:四、配比设计步骤:1.根据道路设计要求和使用环境,确定AC-20c混合料的级配要求,即不同矿料粒径层级的比例。

通常,粗矿料占总矿料重量的40-60%,细矿料占40-60%,而沥青占总矿料重量的5-7%。

2. 根据级配要求,计算各级矿料的标准配合比。

配合比是指根据矿料的粒径分布,按照一定的比例确定各级矿料的重量。

例如,对于粗矿料层级,标准配合比可以为20%的16-31.5mm石子、50%的9.5-16mm石子、30%的4.75-9.5mm石子。

3.计算混合料的总配合比。

将各级配合比按照矿料的重量加和即可得到总配合比。

例如,如果有3个级矿料,则总配合比为各级配合比之和。

4. 确定沥青的用量。

根据总配合比和沥青占总矿料重量的比例,计算沥青的实际用量。

例如,如果总配合比为1000kg,沥青占总矿料重量的6%,则沥青的用量为60kg。

5.按照确定的配合比,进行试验配合。

将矿料和沥青按照配合比的比例混合,进行性能测试。

根据测试结果进行调整,直至满足要求的性能指标。

五、性能测试:常见的AC-20c沥青混合料性能测试包括稳定度、流动度、抗剪强度、抗水剥离性等。

这些测试旨在评估混合料的稳定性、变形性和耐久性能。

根据测试结果,可以对配合比进行进一步调整,以达到所需的性能要求。

AC-C沥青混合料配合比设计报告

AC-C沥青混合料配合比设计报告

AC-C沥青混合料配合比设计报告一、引言AC-C(即沥青混合料)是一种常用的路面材料,由沥青、骨料和填料组成。

沥青混合料的配合比是确定其组分比例的重要工作,直接影响到混合料的性能和使用效果。

本报告旨在对AC-C沥青混合料的配合比进行设计,从而满足道路使用的要求。

二、基本原则1.强度要求:AC-C沥青混合料应具有足够的抗位移和抗疲劳能力,能够承受交通荷载和周围环境的各种影响。

2.耐久性要求:AC-C沥青混合料应具有良好的耐水性和耐久性,能够在长期使用中保持其性能和功能。

3.施工性要求:AC-C沥青混合料的施工应方便、有效,能够满足现场实际条件下的施工要求。

三、设计步骤1.确定沥青的黏度:根据路面使用的要求和所在地的气候条件,选择适合的沥青黏度等级。

2.骨料选择:根据所需的抗压强度、耐久性等要求,选择适合的骨料类型和粒径分布。

3.骨料配合比确定:根据所需的强度和耐久性要求,选择适量的粗骨料、中骨料和细骨料,并确定其比例。

4.油石配合比确定:根据所选的沥青、骨料类型和粒径分布,确定油石配合比,即沥青与骨料的质量比。

5.配合料用量确定:计算所需的沥青、骨料和填料的用量,以满足规定的油石配合比。

四、设计实例假设需要设计一种AC-C沥青混合料,以用于高速公路。

根据规范要求,该混合料的抗压强度应不低于350MPa,耐久性要求为在20年内不出现严重裂缝和剥离现象。

根据以上要求,按照如下步骤进行设计:1.确定沥青的黏度:根据气候条件选择高温黏度为70#的沥青。

2.骨料选择:选择石子、玄武岩骨料和石粉作为骨料,根据规范要求确定其粒径分布范围。

3.骨料配合比确定:根据试验结果确定适宜的骨料比例为石子:玄武岩骨料:石粉=5:3:24.油石配合比确定:根据所选的沥青和骨料类型,确定油石配合比为1:35.配合料用量确定:根据所需的抗压强度和油石配合比,计算所需的沥青、骨料和填料用量。

五、结论通过以上设计步骤,成功确定了AC-C沥青混合料的配合比。

沥青混合料生产配合比设计

沥青混合料生产配合比设计
沥青混合料生产配合比设计一沥青混合料生产配合比设计目的?沥青混合料生产配合比设计主要是针对于拌合楼进行的由于备料时每一种规格的集料都有一定的级配范围集料中含有一定的水分粉尘且试验筛分跟拌合楼热料筛分试验条件的差异因此目标配合比中各种材料的比例不能直接用于拌合楼进料控制必须对各种材料的进料比例进行调整使拌合楼生产的沥青混合料级配完全满足目标配合比级配要求并根据实测沥青混合料物理力学性能指标对沥青用量作相应调整
4#冷料仓中10-19mm碎石的标准流量为: 300×1000/60×(1-0.044)×0.32=1530kg/min
二、沥青混合料生产配合比设计过程
流量与频率关系曲线 表3、流量测量采用5min
冷料仓 1# 2# 3# 4#
赫兹
10 10 15 20
流量/kg
90 1520 3350 6390
二、沥青混合料生产配合比设计过程
• 表1、间歇式拌和机振动筛的等效筛孔(方孔筛mm)
标准筛筛孔 (mm) 振动筛筛孔 (mm)
2.36 4.75 3-4 6
9.5 11
13.2 16 15 19
19 22
26.5 31.5 37.5 30 35 41
53 60
表2、拌和机热料仓筛网尺寸(方孔筛mm)
二、沥青混合料生产配合比设计过程
依据目标配合比计算冷料仓调速电机转速,其计算公式为: 对1#、2#集料仓: n=5.875G/h*r (粒径≤2cm) n=5.875φG/h*r (粒径>2cm) 对3#、4#集料仓: n=4.756G/h*r (粒径≤2cm) n=4.756φG/h*r (粒径>2cm) G-集料参配量,单位t h-料门开(高)度,单位m r-集料容湿重,单位t/m2 φ-集料输送容积系数(φ=1.23) 计算冷料仓调速电机转速只是为了更好地配合二次筛分不等料、少溢料, 以提高生产效率。

AC-25C型沥青混合料目标配合比设计报告

AC-25C型沥青混合料目标配合比设计报告

AC-25C型沥青混合料目标配合比设计报告AC-25C型沥青混合料是一种适用于城市道路、乡村道路、市政基础设施等路面工程的沥青混合料。

在设计AC-25C型沥青混合料目标配合比时,需要根据路面的使用要求、环境条件、材料性能等因素进行综合考虑。

本报告将对AC-25C型沥青混合料目标配合比设计的内容进行详细阐述。

首先,在设计AC-25C型沥青混合料目标配合比时,需要考虑材料的性质和要求,包括沥青、骨料以及添加剂等。

沥青是混合料的主要胶结材料,其性能直接影响混合料的稳定性和抗水性能。

骨料是混合料中的颗粒填料,其粒度、形状和矿种的选择对混合料的力学性能和耐久性有重要影响。

添加剂是为了改善混合料的性能,如改善抗老化性能、提高抗剪切强度等。

其次,设计AC-25C型沥青混合料目标配合比时,需要考虑路面的使用要求。

不同路面的承载能力、平整度要求、抗水性能等都有所不同,因此在配合比设计中需要根据具体情况进行调整。

此外,还需要综合考虑施工条件和道路交通流量等因素,确保混合料的施工性能和路面的使用寿命达到设计要求。

然后,设计AC-25C型沥青混合料目标配合比时,需要考虑环境条件。

环境条件对沥青混合料的性能和耐久性有重要影响,如气候条件、交通荷载等。

在寒冷地区,需要选择寒冷天气下具有良好弹性恢复性能的沥青;在高温地区,要注意选择抗高温龟裂的沥青及适当调整沥青含量,以提高混合料的耐久性。

最后,在设计AC-25C型沥青混合料目标配合比时,需要进行实验室试验和现场试验等工作,验证配合比设计的合理性和可行性。

通过试验可以评估混合料的力学性能、稳定性和耐久性能,并对配合比进行调整,以达到设计要求。

综上所述,AC-25C型沥青混合料目标配合比设计需要考虑材料的性质和要求、路面的使用要求、环境条件等因素。

通过综合考虑以上因素,并结合试验结果进行优化调整,可以设计出满足工程要求的合理配合比,以确保道路工程的质量和使用寿命。

AC20沥青混合料配合比设计报告

AC20沥青混合料配合比设计报告

AC20沥青混合料配合比设计报告一、引言AC20沥青混合料是一种常用于路面铺设的材料,具有较好的抗裂性和抗变形性能。

为了确保AC20沥青混合料在使用过程中能够具备稳定的性能和寿命,需要进行合理的配合比设计。

本报告将从沥青粘结剂、骨料、稳定剂和添加剂等方面综合考虑,提出一种合理的AC20沥青混合料配合比设计。

二、沥青粘结剂的选择三、骨料的选择和配合比骨料在混合料中起到提供强度和稳定性的作用。

为了获得较好的耐久性和稳定性,需要选择合适的骨料类型和粒径配合比。

在本次设计中,选择玉石骨料、砂石骨料和碎石骨料作为AC20沥青混合料的三种骨料类型。

根据实际情况,设计骨料的粒径配合比。

四、稳定剂的选择和配比稳定剂是为了提高AC20沥青混合料的稳定性和耐久性,调节混合料强度和变形性能。

在本次设计中,选择抗剪稳定剂作为稳定剂,并进行适当的配比。

五、添加剂的选择和配比添加剂可以改善混合料的性能和工艺性能,提高AC20沥青混合料的耐水性、抗老化性和抗应力软化性。

根据实际需要进行添加剂的选择和配比。

六、混合料配合比设计根据前述的沥青粘结剂、骨料、稳定剂和添加剂选择结果,进行混合料的配合比设计。

根据使用要求和实际情况,确定沥青黏度或回弹值、最佳骨料配合比、最佳稳定剂配比和最佳添加剂配比。

综合考虑混合料的强度、变形性能和耐久性,确定最终的配合比。

根据混合料配合比设计结果,撰写本次设计的配合比设计报告。

报告包括设计目的和要求、设计原理和方法、选择的沥青粘结剂、骨料、稳定剂和添加剂等,以及具体的配合比设计结果。

报告还可以包括对配合比设计结果的分析和评价,以及进一步的优化建议。

八、结论AC20沥青混合料配合比设计是确保混合料在使用过程中具备稳定性和耐久性的基础。

通过综合考虑沥青粘结剂、骨料、稳定剂和添加剂等因素,可以得出合理的配合比设计结果。

本次设计的配合比设计报告提供了设计的目的、原理和方法,以及具体的配合比设计结果,对沥青混合料的配合比设计有一定的参考价值。

SMA-10目标配合比报告

SMA-10目标配合比报告

SMA-10目标配合比报告G045线赛-果公路改造工程第十合同段—SMA-10沥青混合料目标配合比设计报告1 概述我标段为全线上面层均采用SMA-10沥青混合料结构类型,于2010年8月30日在工地试验室进行目标配合比设计。

设计依据:《公路沥青路面施工技术规范》(JTG F40-2004)《公路工程沥青及沥青混合料试验规程》(JTJ052-2000)《公路工程集料试验规程》(JTG E42-2005)2 原材料表2-1 材料信息本次目标配合比设计木质素纤维掺量为沥青混合料重量的0.3%。

各种集料、矿粉、木质素纤维及沥青的密度试验结果见表2-2和表2-3、各种矿料及矿粉的筛分结果见表2-4。

表2-2 集料密度试验结果表2-3 沥青及纤维密度*注:纤维密度由厂家提供。

表2-4 各种矿料和矿粉的筛分结果3 沥青混合料配合比设计3.1 混合料级配SMA-10混合料级配范围见表3-1。

表3-1 SMA-10混合料级配3.2 矿料配合比计算先确定SMA-10的三种级配(级配A、级配B和级配C),4.75mm筛孔通过率分别为29.9%、27.4%、23%,三种级配组成见表3-2。

图分别测定三种级配的VCA DRC,初试油石比按7.0%双面各击实75次制作试件,测定VCAmix及VMA等指标,在满足VCAmix小于VCA DRC和VMA不小于17%的等条件的基础上确定级配,测试结果见表3-3和表3-4。

表3-3 VCA测试结果表3-4 初试级配的体积分析*注:对重交通路段或炎热地区,空隙率可放宽到4.5%3.3马歇尔稳定度试验按级配A称取矿料,采用3种油石比,双面各击实75次成型马歇尔试件,然后将成型的试件进行马歇尔稳定度试验,试验结果列于表3-5。

表3-5 沥青混合料马歇尔试验结果*注:对重交通路段或炎热地区,设计空隙率可放宽到4.5%3.4 设计油石比的确定根据SMA 路面设计要求,空隙率应控制在3-4.5%。

沥青混合料实验报告

沥青混合料实验报告

一、实验目的1. 了解沥青混合料的基本组成及其特性。

2. 掌握沥青混合料配合比设计的基本原理和方法。

3. 通过实验,验证沥青混合料在不同条件下的性能,为实际工程提供参考。

二、实验材料1. 沥青:A级沥青。

2. 集料:粗集料、细集料、矿粉。

3. 纤维:木质纤维素纤维。

4. 水:去离子水。

5. 实验设备:马歇尔击实仪、沥青混合料搅拌机、烘箱、天平、温度计等。

三、实验方法1. 沥青混合料配合比设计:- 根据工程需求,确定沥青混合料的类型、级配设计。

- 通过马歇尔击实试验,确定沥青用量、集料用量和纤维用量。

2. 沥青混合料制备:- 将沥青、集料、纤维和水按照实验配合比进行混合。

- 使用沥青混合料搅拌机进行充分搅拌,直至混合料均匀。

3. 沥青混合料性能试验:- 马歇尔击实试验:测定沥青混合料的密度、空隙率、稳定度和流值。

- 高温稳定性试验:通过车辙试验测定沥青混合料的动稳定度。

- 低温抗裂性试验:通过低温弯曲试验测定沥青混合料的弯曲强度和延伸率。

- 水稳定性试验:通过冻融循环试验测定沥青混合料的残留稳定度。

四、实验结果与分析1. 马歇尔击实试验:- 实验结果显示,沥青混合料的密度、空隙率、稳定度和流值均符合设计要求。

- 沥青用量对混合料的密度、空隙率和流值有显著影响,而集料级配和纤维用量对混合料的稳定度有较大影响。

2. 高温稳定性试验:- 车辙试验结果显示,沥青混合料的动稳定度较高,表明其具有良好的高温稳定性。

3. 低温抗裂性试验:- 低温弯曲试验结果显示,沥青混合料的弯曲强度和延伸率均符合设计要求,表明其具有良好的低温抗裂性。

4. 水稳定性试验:- 冻融循环试验结果显示,沥青混合料的残留稳定度较高,表明其具有良好的水稳定性。

五、结论1. 本实验通过沥青混合料配合比设计、制备和性能试验,验证了沥青混合料在不同条件下的性能。

2. 沥青混合料的配合比设计对混合料的性能有显著影响,应充分考虑工程需求和环境条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定集料掺配比例:
沥青含量 (%)
马歇尔试 验技术指

毛体积 相对密

理论最 大
相对密
空隙率 (%)
矿料间 隙率 (%)
沥青饱 和mm)
a1
a2
a3
a4
OAC1
OACmin OACmax
OAC2
OAC
最佳沥青 用量时马 歇尔指标
确定最佳 沥青用量
公称最 大粒径
击实次 数(双
动稳定度(次/mm)
(mL/min)
(mm)
规定值 备注
监理:
批准:
审核:
试验:
批准日期:
面)
空隙率 VV(%)
稳定度 MS
(kN)
流值FL (mm)
沥青饱和度 VFA(%)
矿料间隙率 VMA(%)
技术要求 集料吸收的沥青比例
(%)
有效沥青用量 (%)
粉胶比 比表面积系数 有效沥青膜厚度DA
配合比设 计检验
水稳定性检验
高温稳定性检验 渗水系数检验 构造深度检验
残留稳定度 (%)
冻融劈裂残留强度比 (%)
沥青混合料马歇尔稳定度试验记录表(表干法)
通过的重量百分率(%)
试验室名称:
承包单位 工程名称 试验依据 主要仪器设备 结构层次 级配类型 沥青品种标号
100 90 80 70 60 50 40 30 20 10 0
报告编号 工程部位/用
途 判定依据 试验日期 沥青产地 集料产地 级配曲线图
方孔筛筛孔尺寸(mm)
相关文档
最新文档