巧构造妙解题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧构造妙解题

高琴

1. 直接构造

例1. 求函数的值域。

分析:由于可以看作定点(2,3)与动点(-cosx,sinx)连线的斜率,故f(x)的值域即为斜率的最大、最小值。

解:令,则表示单位圆

表示连接定点P(2,3)与单位圆上任一点(,)所得直线

的斜率。

显然该直线与圆相切时,k取得最值,此时,圆心(0,0)到这条直线的距离为

1,即

所以

例2. 已知三条不同的直线,,

共点,求的值。

分析:由条件知为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。

解:设(m,n)是三条直线的交点,则可构造方程,即

(*)

由条件知,均为关于的一元三次方程(*)的根。

由韦达定理知

2. 由条件入手构造

例3. 已知实数x,y,z满足,求证:

分析:由已知得,以x,y为根构造一元二次方程,再由判别式非负证得结论。

解:构造一元二次方程

其中x,y为方程的两实根

所以

故△=0,即

3. 由结论入手构造

例4. 求证:若,,则

分析:待证式的左边求和的分母是三次式,为降低分母次数,构造一个恒不等式。

所以左边

故原式得证。

例5. 已知实数x,y满足,求证:

分析:要证原式成立,即证

即证

由三角函数线知可构造下图,此时不等式右边为图中三个矩形的面积之和,而单位圆的面积为,所以

故结论成立。

相关文档
最新文档