(完整版)函数的极值与最值问题

合集下载

掌握函数的极值与最值练习题

掌握函数的极值与最值练习题

掌握函数的极值与最值练习题在数学中,函数的极值与最值是一个非常重要的概念。

掌握函数的极值与最值对于解决许多实际问题、优化设计以及理解数学理论都有着至关重要的作用。

本文将给大家提供一些函数的极值与最值的练习题,以帮助大家更好地理解和掌握这一概念。

1. 已知函数 f(x) = 2x^3 - 3x^2 - 12x + 4,求函数 f(x) 的极值点。

解:首先,我们需要求解函数 f(x) 的导数 f'(x):f'(x) = 6x^2 - 6x - 12.将 f'(x) 置为零,我们可以解得:6x^2 - 6x - 12 = 0,x^2 - x - 2 = 0,(x - 2)(x + 1) = 0.从中我们得到两个解:x = 2 和 x = -1.接下来,我们需要判断这两个解对应的是极大值还是极小值。

为此,我们可以观察二次项系数的正负情况。

由于二次项系数为正,即6x^2,所以这个二次函数开口朝上,即曲线在极小值点时取得最小值。

因此,函数 f(x) 的极值点为极小值点,分别是 x = 2 和 x = -1。

2. 已知函数 g(x) = x^4 - 4x^3 + 4x^2 + 3,求函数 g(x) 的最值。

解:首先,我们需要求解函数 g(x) 的导数 g'(x):g'(x) = 4x^3 - 12x^2 + 8x.我们需要找到导数为零的点,即求解方程:4x^3 - 12x^2 + 8x = 0,x(4x^2 - 12x + 8) = 0.再进一步化简,我们可以得到:x(x^2 - 3x + 2) = 0.通过因式分解,我们可以求解得到三个解:x = 0,x = 1 和 x = 2.接下来,我们需要判断这三个解对应的是极大值还是极小值。

同样,观察三次项系数的正负情况。

由于三次项系数为正,即 4x^3,所以这个三次函数开口朝上,即曲线在极小值点时取得最小值。

因此,函数 g(x) 的最小值对应的 x 值为 x = 2,即 g(2) = 2^4 - 4 *2^3 + 4 * 2^2 + 3 = 7.综上所述,函数 g(x) 的最小值为 7.通过以上两个练习题,我们可以看出,找到函数的极值与最值需要通过导数来解决。

(完整版)极值、最值与导数习题(附答案)

(完整版)极值、最值与导数习题(附答案)

极值、最值与导数
1.若函数f(x)=2x3-3x2+c的极大值为6,那么c的值为( )
A.0
B.5
C.6
D.1
2.设函数2
()ln
f x x
x
=+,则( )
A .
1
2
x=为f(x)的极大值点 B .
1
2
x=为f(x)的极小值点
C .x=2为f(x)的极大值点
D .x=2为f(x)的极小值点
3.函数f(x)=(x-3)e x的单调递增区间是________.
4.如图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①-2是函数y=f(x)的极值点; ②1是函数y=f(x)的极值点;
③y=f(x)在x=0处切线的斜率小于零; ④y=f(x)在区间(-2,2)上单调递增. 则正确命题的序号是________.(写出所有正确命题的序号)
5.已知函数f(x)=-x3+3x2+9x-2.
(Ⅰ)求f(x)的单调递减区间; (Ⅱ)求f(x)在区间[-2,2]上的最大值与最小值.
答案:
1.C
2.D
3.(2,+∞)
4.①④
5. (Ⅰ)函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
(Ⅱ)函数f(x)在闭区间[-2,2]上的最大值为f(2)=20,最小值为f(-1)=-7.。

函数的极值与最值问题

函数的极值与最值问题

函数的极值与最值问题函数的极值与最值问题是数学分析中的重要内容。

在实际问题中,我们常常需要求解函数的极值或最值,来确定某一变量的最佳取值或最大最小值。

本文将介绍函数的极值与最值问题的定义、求解方法以及实际应用。

一、函数的极值与最值的定义在数学中,给定一个函数f(x),若存在一个区间I,使得对于该区间内的任意x值,f(x)的值都比f(x)在I的其它点处的值小(大),则称f(x)在I内存在极大(小)值,同时称该点为函数的极值点。

而函数在区间I内最大(小)的极值点则称为函数的最大(小)值。

二、求解函数的极值与最值的方法1. 寻找驻点首先,我们需要寻找函数的驻点。

驻点即为函数在该点的导数为零的点,也就是函数的极值点可能位于驻点处。

2. 列出极值点及临界点的值将驻点的值以及函数的定义域内的临界点的值列出,并计算出相应的函数值。

3. 比较并确定极值点及最值比较驻点和临界点的函数值,找出函数的极大值和极小值,即为函数的极值点。

同样地,比较所有极值点的函数值,找出函数的最大值和最小值。

4. 确定函数的定义域在比较极值点和临界点的函数值时,需要注意函数定义域的边界条件。

确保所比较的点处于函数的定义域内。

三、函数极值与最值问题的应用函数的极值与最值问题在实践中具有广泛的应用。

以经济学为例,函数的极值与最值问题常用于优化问题的求解。

例如,确定成本最低的生产方案或利润最大化的销售策略等。

在工程学中,函数的极值与最值问题可应用于优化设计。

比如求解最节能的物流路径、最优化的结构参数以及最大功率输出的电子电路布局等。

此外,函数的极值与最值问题还可用于求解几何问题中的最优解。

在数学建模、各类优化理论以及应用数学的研究中都有广泛的应用。

结论函数的极值与最值问题是数学分析中一个重要且常见的问题。

通过寻找函数的极值点和最值点,可以确定变量的最佳取值或者确定函数在某个区间内的最大最小值。

本文介绍了函数极值与最值问题的定义、求解方法以及应用,并指出了其在实际问题中的重要性。

(完整版)函数的极值与最值练习题及答案

(完整版)函数的极值与最值练习题及答案

【巩固练习】一、选择题1.(2015 天津校级模拟)设函数2()ln f x x x=+,则( ) A.12x =为()f x 的极小值点 B. 2x =为()f x 的极大值点 C. 12x =为()f x 的极大值点 D.2x =为()f x 的极小值点2.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( ) A .a -2b =0 B .2a -b =0 C .2a +b =0 D .a +2b =03.函数y =23x +x 2-3x -4在[0,2]上的最小值是( )A .173-B .103- C .-4 D .643-4.连续函数f (x )的导函数为f ′(x ),若(x +1)·f ′(x )>0,则下列结论中正确的是( )A .x =-1一定是函数f (x )的极大值点B .x =-1一定是函数f (x )的极小值点C .x =-1不是函数f (x )的极值点D .x =-1不一定是函数f (x )的极值点5.(2015 金家庄区校级模拟)若函数32()132x a f x x x =-++ 在区间1,43⎛⎫⎪⎝⎭上有极值点,则实数a 的取值范围是( ) A.102,3⎛⎫⎪⎝⎭ B. 102,3⎡⎫⎪⎢⎣⎭ C. 1017,34⎛⎫⎪⎝⎭ D. 172,4⎛⎫⎪⎝⎭6.已知函数y=―x 2―2x+3在区间[a ,2]上的最大值为154,则a 等于( ) A .32-B .12C .12-D .12或32- 7.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是( )A .-13B .-15C .10D .15 二、填空题8.函数y=x+2cosx 在区间1[,1]2上的最大值是________ 。

9. 若f(x)=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围是__ _。

函数的极值与最值的求解

函数的极值与最值的求解

函数的极值与最值的求解在数学中,我们经常需要找出一个函数的极值和最值。

极值和最值是指在一个给定的区间内,函数所能达到的最大和最小值。

求解函数的极值和最值是优化问题中的一个重要部分。

本文将详细介绍几种常用的方法来求解函数的极值和最值。

(正文开始)一、函数的极值求解函数的极值指的是在某个区间内,函数的斜率等于零的点。

求解函数的极值可以通过以下步骤进行:1. 求函数的导数首先,我们需要求解函数的导数。

导数可以告诉我们函数在某个点上的斜率。

记函数为f(x),则其导数可以表示为f'(x)或dy/dx。

2. 求导数的根接下来,我们需要找出导数的根。

导数的根即为函数的极值点,因为在这些点上,函数的斜率等于零。

3. 检验导数的根对于导数的根,我们需要检验它们是否确实对应函数的极值点。

可以通过计算二阶导数来确定。

如果二阶导数大于零,则说明导数的根对应函数的极小值;如果二阶导数小于零,则说明导数的根对应函数的极大值。

二、函数的最值求解函数的最值指的是在一个给定的区间内,函数所能达到的最大和最小值。

求解函数的最值可以通过以下步骤进行:1. 确定求解区间首先,我们需要确定在哪个区间内求解函数的最值。

这需要根据具体的问题来确定。

2. 将求解区间分成若干小区间将求解区间按照一定的步长进行划分,可以得到若干小区间。

步长的选择需要根据函数的变化情况来确定。

3. 在每个小区间内求解对于每个小区间,分别求解函数的极值。

可以使用之前介绍的函数的极值求解方法。

4. 比较每个小区间的最值将每个小区间的最值进行比较,找出最大值和最小值。

这些最值即为函数的最值。

总结:函数的极值和最值的求解是数学中的重要问题。

通过求解函数的导数和二阶导数,我们可以找到函数的极值点和确定其对应的极值类型。

而求解函数的最值则可以通过将求解区间分成若干小区间,并在每个小区间内求解函数的极值来实现。

这些方法可以帮助我们更好地理解和应用函数的极值和最值。

(正文结束)以上是关于函数的极值与最值的求解的文章,希望对您有所帮助。

研究函数的极值与最值问题

研究函数的极值与最值问题

研究函数的极值与最值问题在数学中,研究函数的极值和最值问题是非常重要的。

通过研究函数的极值和最值,我们可以了解函数的性质,并解决许多实际问题。

一、极值问题函数的极值是指在一定范围内的最大值或最小值。

为了求得函数的极值,我们需要先求出函数的导数,然后令导数为零并解方程,得到极值对应的自变量值。

接下来,可以通过代入自变量值进入原函数来求得极值。

举个例子,考虑函数 f(x) = 2x^3 - 3x^2 - 12x + 4 在区间 [-2, 3] 上的极值问题。

首先,我们求得导数 f'(x) = 6x^2 - 6x - 12。

令 f'(x) = 0,解方程可以得到x = -1 和 x = 2。

接着,我们将这两个值代入原函数 f(x) 中,可以得到 f(-1) = -7 和 f(2) = 6。

所以,在区间 [-2, 3] 上,函数 f(x) 的最小值为 -7,对应的自变量 x = -1,函数 f(x) 的最大值为 6,对应的自变量 x = 2。

二、最值问题函数的最值是指函数在整个定义域内的最大值或最小值。

为了求得函数的最值,我们需要先求得函数的导数,并研究其在定义域内的增减性以及边界情况。

根据导数和边界的关系,可以找到函数在定义域内的最值。

以函数 g(x) = x^2 + 4x - 3 为例,我们可以求得导数 g'(x) = 2x + 4。

通过观察导数的符号,我们可以发现在 x < -2 时,导数为负数,表示函数 g(x) 单调递减;在 x > -2 时,导数为正数,表示函数 g(x) 单调递增。

由于函数 g(x) 是一个二次函数,我们可以知道当 x 趋近无穷大或无穷小时,函数的值无限增大,因此函数g(x) 在无穷大时没有最大值。

另外,函数 g(x) 在定义域内都是连续的,所以可以确定函数 g(x) 存在最小值。

为了找到函数 g(x) 的最小值,我们可以考虑其导数为零的情况。

(完整版)高二数学函数的极值与最值试题

(完整版)高二数学函数的极值与最值试题

高二数学函数的极值与最值试题一:选择题1. 函数x ax x x f ++=23)(在),0(+∞内有两个极值点,则实数a 的取值范围是( ) A .),0(+∞ B .)3,3(- C .)0,(-∞ D .)3,(--∞【答案】D2.函数f (x )=x 2+x ﹣lnx 的极值点的个数是( ) A . 0个 B . 1个 C . 2个 D . 3个解:由于函数f (x )=x 2+x ﹣lnx ,(x >0) 则==(x >0)令f ’(x )=0,则故函数f (x )=x 2+x ﹣lnx 的极值点的个数是1, 故答案为 B .3.如图所示的是函数d cx bx x x f +++=23)(的大致图象,则2221x x +等于( )A .32 B .34C .38 D .316【答案】C4.函数12)(+⋅=x ex x f ,[]1,2-∈x 的最大值为( )A.14e -B.0C. 2eD. 23e 【答案】C5.函数)0(3)(3>+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是( ) A. (-1,1) B. (0,1) C. (-1,0) D. (-2,-1)【答案】A6.右图是函数()y f x =的导函数()y f x '=的图象,xyO 1-2-3-1给出下列命题:①3-是函数()y f x =的极值点; ②1-是函数()y f x =的极小值点; ③()y f x =在0x =处切线的斜率小于零;④()y f x =在区间(3,1)-上单调递增.则正确命题的序号是( )A.①②B.①④C.②③D.②④ 【答案】B7.(2008•广东)设a ∈R ,若函数y=e ax +3x ,x ∈R 有大于零的极值点,则( ) A . a >﹣3 B . a <﹣3 C . a >﹣ D .a <﹣ 解:设f (x )=e ax +3x ,则f ′(x )=3+ae ax .若函数在x ∈R 上有大于零的极值点. 即f ′(x )=3+ae ax =0有正根.当有f ′(x )=3+ae ax =0成立时,显然有a <0, 此时x=ln (﹣).由x >0,得参数a 的范围为a <﹣3. 故选B .8.【2012高考真题辽宁理12】若[0,)x ∈+∞,则下列不等式恒成立的是 (A)21xe x x ++„ 2111241x x x<-++(C)21cos 12x x -… (D)21ln(1)8x x x +-… 【答案】C【解析】设2211()cos (1)cos 122f x x x x x =--=-+,则()()sin ,g x f x x x '==-+ 所以()cos 10g x x '=-+≥,所以当[0,)x ∈+∞时,()()()(0)0,g x g x f x g '==为增函数,所以≥同理21()(0)0cos (1)02f x f x x =∴--≥,≥,即21cos 12x x -…,故选C9.已知函数3211()2(,,)32f x x ax bx c a b c R =+++∈,且函数()f x 在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则22(3)z a b =++的取值范围为( )A. 2(,2)2 B.1(,4)2C. (1,2)D.(1,4) 【答案】B10.【2012高考真题全国卷理10】已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 【答案】A【解析】若函数c x x y +-=33的图象与x 轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为33'2-=x y ,令033'2=-=x y ,解得1±=x ,可知当极大值为c f +=-2)1(,极小值为2)1(-=c f .由02)1(=+=-c f ,解得2-=c ,由02)1(=-=c f ,解得2=c ,所以2-=c 或2=c ,选A.11.(2012•昌图县模拟)下列关于函数f (x )=(2x ﹣x 2)e x 的判断正确的是( ) ①f (x )>0的解集是{x|0<x <2};②f (﹣)是极小值,f ()是极大值; ③f (x )没有最小值,也没有最大值.A . ①③B . ①②③C . ②D . ①② 解:由f (x )>0⇒(2x ﹣x 2)e x >0⇒2x ﹣x 2>0⇒0<x <2,故①正确; f ′(x )=e x (2﹣x 2),由f ′(x )=0得x=±, 由f ′(x )<0得x >或x <﹣, 由f ′(x )>0得﹣<x <,∴f (x )的单调减区间为(﹣∞,﹣),(,+∞).单调增区间为(﹣,).∴f (x )的极大值为f (),极小值为f (﹣),故②正确. ∵x <﹣时,f (x )<0恒成立.∴f (x )无最小值,但有最大值f () ∴③不正确. 故选D .12.(2010•安庆模拟)如果函数满足:对于任意的x 1,x 2∈[0,1],都有|f (x 1)﹣f (x 2)|≤1恒成立,则a 的取值范围是( ) A . B .C .D .解:由题意f ′(x )=x 2﹣a 2当a 2≥1时,在x ∈[0,1],恒有导数为负,即函数在[0,1]上是减函数,故最大值为f (0)=0,最小值为f (1)=﹣a 2,故有,解得|a|≤,故可得1≤a ≤当a 2∈[0,1],由导数知函数在[0,a ]上增,在[a ,1]上减,故最大值为f (a )=又f(0)=0,矛盾,a ∈[0,1]不成立, 故选A .二:填空题13.函数322()f x x ax bx a =+++在1x =时有极值10,那么,a b 的值分别为________. 【答案】4,-11 14.已知函数f (x) 的导数f ′(x)=a(x +1)(x -a),若f (x)在x =a 处取得极大值,则a 的取值范围是 。

函数的极值与最值(带答案).doc

函数的极值与最值(带答案).doc

导数法解极值、最值问题类型一、正向思维已知解析式求极值或最值In X【例1】已知函数y=f(x) = —ox(I)求y = f(x)的最大值;(II)设实数a>0,求函数F(x) = af⑴在[a,2a]±的最小值解析:⑴令/© = 0得x = e" "|・・•当xe (O.e)时,/(>:)> 0, /(功在(04上为増函数当x e时,f (x) < 0,在(e:g)上为减旳数厶⑴= /(◎ = [e.(2) va>0,由(2〉知:F(x)在(0«)上单调递増,在@出功上里调递减。

■・-・F(力在肚却上的最小值/oul(x) = miD{ F® FS}・・・F(a)-F3 = 存片「.当0v"2 时,F(^>- F(2a)(x) = F(a) = fa A当2<«B寸F(o)—FS〉0, f^(x)=F(2a) = ^2ai--------------------------------------------------------------------------------------------------- -j --------------------------------------- 互--------------------------------------- ■<类型二、逆向思维已知极值或最值求解析式【例2】已f (x) = ax3 + bx2 + cx(a 0)在兀=±1时取得极值,且f (1) =—1.(1)试求常数a、b、c的值;(2)试判断x二±1是函数的极小值还是极人值,并说明理由.解析:(1〉由已知得=3ax a+2bx+c*/x=± 1是函数f (x)的极值点,-■.x=±l 是方程f\x)=0,即3ax2+2bx+c=O 的两根.』=0 ①由根与系数的关系,得367又 f (1) =-1, /.a+b+c=~l, ③由①②③解得a二丄上=0工=3,学科网2 21 3 3 3 3(2)f (x)= —x3—— x, —^2—— =—(X— 1)(x+1)2 2 2 2 2当xV-l 或X>1 时,f\x)>0}当一1<xVl 时,/r(x)<0• ••函数f(X)在(—8〉— 1)和十8〉上是増函数,在(—1, 1)上是;咸函数.• ••当汩一1时,国数取得极犬值f ("I) =1,当汩1时,函数取得极小值f CD =-1.类型三、构造函数不等式恒成立问题转化为求最值问题点评:利用导数研究不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性, 求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函 数,直接把问题转化为函数的最值问题.【例4]已知函数f(x) = a\nx-^-bx(a,be R) , |11|线y = /(x)在点(1,/(1))处的切线方程 为x-2y-2=0.(I )求/(X )的解析式;(II)当兀>1吋,/(兀)+仝vO 恒成立,求实数R 的収值范围;解析:(I 〉•.•y'(x) = alux + &x ,・ \f r (x) = — +b ・•・•直线x —即一 2 = 0的斜率为;,且曲线y = 丁⑴过点(1,一亠TT lc H LI D x — — + — < 0 等价于——一xlnx •2 x 2令 g(x) = — —xlu x > 贝I 」g f(x) = x —(lu X +1) = x — 1 —I D X . 21y_[令应(x) = x-l —lnx,贝I J/J F (X ) = 1-- = -------- ・-XT当el 时」函数方匕)在(L-KO)上单调递増,故A(x)>A(l)=O.从而,当工>1时,g'(x )A0,即函数g(0在(L-H»)上单调递増,1X 21故g(x )Ag(l) =刁・ 因此,当兀>1时,k< — -x]nx 恒成立,则k<-.・•・上的取值范围杲(Tof]・1.若点P 是曲线尸 二x‘一In x 上任意一点,则点P 到直线y = x —2的最小值为()A. 1B. ^2C. -----D. y/32八1)詁’ b =——.2・ 即Ia+b = -.2丄~2所以 /(x)=lnx-^ Ir(II 〉由(I 〉得当"1时,/(%) + -<0恒成立即解析:设心如,点P 到直线一 2的距离“上需已亡”,设g^ = j(?-x-\nx+2 (x>0),所以g ,(x)二"% 1 = (2兀 + lXx 1),当x<o 时,g ,(x )<o,当x X X >0时,g©)>0,则g(x)在(0,1)是减函数,在(b +8)上是増函数,则当E 时,g(x)取极小值也是最小值g(l)=2,此时好血,故选B ・2.若函数y = /一弓工2+Q 在[_i,i ]上有授大值3,则该函数在[一1,1]上的最小值是2解析:/=3X 2-3X = 3X (X -1)>0,/ <0,解得 0<x<l,所以当血[一1,1]时,a1[-1,0]函数増,[0,1]函数减,所以当x = 0时,函数取得最大值/(O )=a =3 > y =< 一牙x 2 +3 ,/(-l) = —, /(1) =舟'所以最小值是/(一1) = £・选C 。

函数的极值与最值的求解

函数的极值与最值的求解

函数的极值与最值的求解在数学中,函数的极值与最值是常见的概念。

极值指的是函数在某个特定区间内的最大值或最小值,而最值则是函数在整个定义域内的最大值或最小值。

求解函数的极值与最值是数学分析的重要内容之一,本文将介绍函数求解极值与最值的方法和技巧。

一、确定区间要求解函数的极值与最值,首先需要确定函数的定义域或者要求解的区间范围。

根据函数的特点或问题的要求,确定区间是取整个定义域还是某个特定的局部区间。

二、求解极值在确定了求解的区间后,接下来的任务就是求解函数在该区间内的极值。

函数的极值主要分为两种:极大值和极小值。

求解极值的方法一般有以下几种:1. 导数法对于可导函数,极值通常出现在导数为零的点或者导数不存在的点。

因此,可以通过求解函数的导数来确定函数的极值。

具体步骤如下:a. 求解函数的导数;b. 解方程f'(x)=0,求得导数为零的点;c. 判断导数不存在的点是否为极值点。

2. 边界法对于闭区间上的函数,除了导数为零或不存在的点外,还需要考虑区间的边界点。

因此,可以通过求解边界点的函数值来确定函数的极值。

3. 二阶导数法(Hessian矩阵法)对于多元函数,可以通过计算其Hessian矩阵的特征值来确定函数的极值。

当Hessian矩阵的特征值全为正数时,函数取得极小值;当Hessian矩阵的特征值全为负数时,函数取得极大值。

4. Lagrange乘子法(约束条件法)对于多元函数在一定的条件下求取最值,可以使用Lagrange乘子法。

该方法通过引入等式约束条件,将求解极值的问题转化为求解方程组的问题。

三、求解最值对于求解函数在整个定义域内的最值,可以采用以下方法:1. 导数法求解函数的导数,找出导数的零点,再将这些零点与定义域的边界点比较,从中选取最大值或最小值。

2. 二阶导数法对于多元函数,可以通过计算其Hessian矩阵的特征值来确定函数的最值。

当Hessian矩阵的特征值全为正数时,函数取得最小值;当Hessian矩阵的特征值全为负数时,函数取得最大值。

导数与函数的极值和最值考点及题型

导数与函数的极值和最值考点及题型

第三节导数与函数的极值、最值❖基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.❖常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](2018·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d =3,求f (x )的极小值点及极大值.[解] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1.因此曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0. (2)由已知可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3) =(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:[解题技法] 求函数的极值或极值点的步骤(1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (2018·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x ,得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).[解题技法]已知函数极值点或极值求参数的2个要领[题组训练]1.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(2019·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x-1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1;由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.故a 的取值范围为⎣⎡⎭⎫43,+∞. 考点二 利用导数解决函数的最值问题[典例] (2017·北京高考)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [题组训练]1.(2018·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝⎛⎭⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3). 答案:1442.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2,因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32,所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32,所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a , 当1<x <-a 时,f ′(x )<0, 所以f (x )在(1,-a )上单调递减; 当-a <x <e 时,f ′(x )>0, 所以f (x )在(-a ,e)上单调递增,所以f (x )min =f (-a )=ln(-a )+1=32,所以a =- e.综上,a =- e.[课时跟踪检测]A 级1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t ,设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y =2x -1x 2在x =-1处取得极值,因此a =2. 答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析:y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R ),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值; (2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a (1-ln x )x 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x.令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 解析:因为f (x )的单调递减区间为(-1,1),所以a >0.由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t >0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝⎛⎭⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.贾老师数学解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x 2(a >0). (1)由f ′(x )>0,解得x >1a, 所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a, 所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a ,无极大值. (2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数, 故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1.②若1<1a <e ,即1e<a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎝⎛⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1. ③若1a ≥e ,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e=a +1e=0, 即a =-1e ,故不满足条件0<a ≤1e. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。

函数极值和最值计算练习题

函数极值和最值计算练习题

函数极值和最值计算练习题在微积分中,函数的极值和最值是非常重要的概念。

通过求取函数的导数,我们可以找到函数的极值点以及取得最值的点。

在本文中,我们将通过几个练习题来帮助大家熟练掌握函数极值和最值的计算方法。

练习一:考虑函数f(x) = 3x^2 - 12x + 5。

1. 求函数f(x)的导数f'(x)。

2. 通过求解方程f'(x) = 0,找到函数f(x)的极值点。

3. 判断函数f(x)在极值点处取得的极值是极大值还是极小值。

解答一:1. 函数f(x)的导数f'(x)为f'(x) = 6x - 12。

2. 通过求解方程f'(x) = 0,我们有6x - 12 = 0,解得x = 2。

因此,函数f(x)的极值点为x = 2。

3. 要判断函数f(x)在极值点处取得的极值是极大值还是极小值,我们可以用二阶导数来进行判别。

计算函数f(x)的二阶导数f''(x),有f''(x) = 6。

由于f''(x)大于0,所以函数f(x)在极值点x = 2处取得的是极小值。

练习二:考虑函数g(x) = x^3 - 9x^2 + 24x - 12。

1. 求函数g(x)的导数g'(x)。

2. 通过求解方程g'(x) = 0,找到函数g(x)的极值点。

3. 判断函数g(x)在极值点处取得的极值是极大值还是极小值。

解答二:1. 函数g(x)的导数g'(x)为g'(x) = 3x^2 - 18x + 24。

2. 通过求解方程g'(x) = 0,我们有3x^2 - 18x + 24 = 0,化简得x^2 - 6x + 8 = 0,进一步解得(x - 2)(x - 4) = 0。

解得x = 2或x = 4。

因此,函数g(x)的极值点为x = 2和x = 4。

3. 计算函数g(x)的二阶导数g''(x),有g''(x) = 6x - 18。

高考数学中的函数极值及最值问题及解题方法

高考数学中的函数极值及最值问题及解题方法

高考数学中的函数极值及最值问题及解题方法在高中数学学习中,函数极值及最值问题是一个重要的考点,也是一个有难度的知识点。

在高考数学中,这个知识点被广泛地应用于各种数学题型中,涉及到的知识点和方法需要大家掌握好。

本文将就函数极值及最值问题及解题方法做一些简单的介绍和详解。

第一部分:什么是函数的最值和极值函数的最大值和最小值是这个函数在定义域内的函数值中的最大值和最小值,也就是说,最大值和最小值都是函数的取值,而不是函数本身。

函数的最大值就是这个函数在定义域内取到的最大值,而函数的最小值就是这个函数在定义域内取到的最小值。

函数的极值也是类似的,极大值指的是某个函数在一个特定的区间内取到的最大值,而极小值就是函数在这个特定的区间内取到的最小值。

第二部分:函数的最值和极值问题的解法1. 求函数的最值对于求函数的最值,一般有两种方法:一种方法是借助函数图像,根据函数图像的形态来看出函数的最值所在的位置。

另一种方法是通过求导数,然后借助导数定理来求解函数的最值。

求函数的最值需要用到极限、导数、函数的性质等多个数学知识点,需要考生们细心地掌握。

2. 求函数的极值对于求函数的极值,可以通过以下几种方法来实现:一种方法是通过求导数,然后求得导函数的零点,从而求出函数的极值点。

另一种方法是对函数求导数,然后再对导数进行求导数,直到得到导函数的函数表达式,从而得到函数的极值点。

还有一种方法是使用极限和数列的性质来求解函数的极值。

总的来说,求函数的极值需要使用到导数、函数的性质、函数图像的图形等多个数学知识点,需要考生们认真学习和练习。

第三部分:函数极值及最值问题的解题实例在高考数学中,函数极值及最值问题的解题实例非常丰富,接下来就给大家介绍一些常见的解题思路。

1. 求函数的最值比如,一道求函数最大值的题目:求函数f(x)=x2+2x+3的最小值。

解题思路:首先可以画出函数的图像,在图像上寻找最小值所在的位置。

另一方面,我们也可以通过求导数来求解函数的最值。

完整版)导数与极值、最值练习题

完整版)导数与极值、最值练习题

完整版)导数与极值、最值练习题三、知识新授一)函数极值的概念函数极值指的是函数在某个点上的最大值或最小值,包括极大值和极小值。

二)函数极值的求法:1)确定函数的定义域,并求出函数的导数f'(x);2)解方程f'(x)=0,得到方程的根x(可能不止一个);3)如果在x附近的左侧f'(x)>0,右侧f'(x)<0,则f(x)是极大值;反之,则f(x)是极小值。

题型一图像问题1、函数f(x)的导函数图像如下图所示,则函数f(x)在图示区间上()第二题图)A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点2、函数f(x)的定义域为开区间(a,b),导函数f'(x)在(a,b)内的图像如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个B.2个C.3个D.4个3、若函数f(x)=x+bx+c的图像的顶点在第四象限,则函数f'(x)的图像可能为()图略)4、设f'(x)是函数f(x)的导函数,y=f'(x)的图像如下图所示,则y=f(x)的图像可能是()图略)A。

B。

C。

D。

5、已知函数f(x)的导函数f'(x)的图像如右图所示,那么函数f(x)的图像最有可能的是()图略)6、f'(x)是f(x)的导函数,f'(x)的图像如图所示,则f(x)的图像只可能是()图略)A。

B。

C。

D。

7、如果函数y=f(x)的图像如图,那么导函数y=f'(x)的图像可能是()图略)ABCD8、如图所示是函数y=f(x)的导函数y=f'(x)图像,则下列哪一个判断可能是正确的()图略)A.在区间(-2,0)内y=f(x)为增函数B.在区间(0,3)内y=f(x)为减函数C.在区间(4,+∞)内y=f(x)为增函数D.当x=2时y=f(x)有极小值9、如果函数y=f(x)的导函数的图像如图所示,给出下列判断:①函数y=f(x)在区间(-3,-1/2)内单调递增;②函数y=f(x)在区间(-1/2,2)内单调递减。

高中函数的极值与最值问题

高中函数的极值与最值问题

高中函数的极值与最值问题函数是数学中的重要概念之一,它描述了两个变量之间的关系。

在高中数学学习中,我们经常遇到关于函数的极值与最值问题,这是一类常见且重要的问题。

本文将详细介绍高中函数的极值与最值问题,以帮助读者更好地理解和解决这类题目。

一、函数的极值与最值概念函数的极值包括极大值和极小值,统称为极值。

极大值对应函数的最大值,极小值对应函数的最小值。

最值问题是要求在一定条件下找到函数的最大值或最小值。

1. 极值的定义设函数y=f(x)在点x0处取得极大值,如果对于x0的某个邻域上的任意一点x,都有f(x)≤f(x0),则称f(x0)为函数的极大值。

类似地,如果对于x0的某个邻域上的任意一点x,都有f(x)≥f(x0),则称f(x0)为函数的极小值。

2. 最值的定义给定一个函数,如果在其定义域上存在一个点x1,使得对于定义域上的任意一点x,都有f(x)≤f(x1),则称f(x1)为函数的最大值。

类似地,如果对于定义域上的任意一点x,都有f(x)≥f(x1),则称f(x1)为函数的最小值。

二、求解函数的极值与最值的方法在高中数学中,求解函数的极值与最值可以采用以下方法:1. 导数法当函数的导数存在时,可以通过求导数的方法来找到函数的极值。

具体步骤如下:(1)求出函数的导数f'(x);(2)令f'(x)=0,求出导数为零的临界点;(3)将临界点和函数的端点代入原函数,并比较函数值,找到最大值与最小值。

2. 函数图像法通过绘制函数的图像,可以直观地找到函数的极值与最值。

具体步骤如下:(1)绘制函数的图像;(2)观察图像的极值点和最值点,标出对应的坐标。

3. 区间端点法当函数在特定区间上连续且可导时,可以通过将函数在区间两个端点处的值进行比较来找到函数的最值。

具体步骤如下:(1)计算函数在区间的两个端点处的函数值;(2)比较函数值,找出最大值与最小值。

三、应用举例下面通过两个例子来说明如何求解函数的极值与最值问题。

函数的极值与最值

函数的极值与最值

函数的极值与最值在数学中,函数的极值与最值是我们经常会遇到的概念。

它们在解决实际问题,优化算法等方面发挥着重要的作用。

本文将介绍函数的极值与最值的定义、求解方法以及其在实际问题中的应用。

一、极值的定义与求解方法极值是函数在特定区间内取得的最大值或最小值。

根据定义,当函数在某个点的左右两侧函数值发生变化时,这个点就被称为极值点。

函数的最大值与最小值就是所有极值点中的最大值与最小值。

求解函数的极值可以通过以下几种方法:1. 导数法导数法是求解函数极值最常用的方法之一。

首先,我们需要计算函数的导数,然后找出导数为零的点,即驻点。

接下来,通过二阶导数的符号判断驻点是极大值还是极小值。

2. 边界法当函数在一个闭区间内连续且可导时,我们只需要计算函数在区间的端点以及在内部导数为零的点,然后比较这些函数值,即可找到函数的最大值与最小值。

3. Lagrange乘数法Lagrange乘数法主要用于求解带有约束条件的极值问题。

通过构造Lagrange函数并求解其偏导数为零的方程,我们可以获得函数在约束条件下的极值点。

二、最值的定义与求解方法最值是函数在定义域内的最大值或最小值。

与极值不同的是,最值并不要求函数在某个点处取得。

求解函数的最值可以通过以下几种方法:1. 根据函数性质有些函数具有明显的性质,比如函数的图像是凸函数或凹函数,这时我们可以直接判断函数的最值在哪个区间内取得。

2. 数值法数值法是一种较为直接的方法。

我们可以通过在定义域内取一系列点的函数值,然后比较这些函数值找出最大值与最小值。

3. 优化算法优化算法可以用来求解函数的最值问题。

例如,梯度下降法、遗传算法、模拟退火算法等可以被应用于求解实际问题中的最优解。

三、函数极值与最值的应用函数的极值与最值在实际问题中具有广泛的应用。

以下是一些具体例子:1. 生产优化问题在生产过程中,我们希望能够最大化产量或最小化成本。

通过建立相应的数学模型,并利用函数的极值与最值概念,可以确定生产因素的最佳配置,从而实现生产效益的最大化。

函数的极值与最大(小)值(解析版)

函数的极值与最大(小)值(解析版)

函数的极值与最大(小)值(解析版)函数的极值与最大(小)值(解析版)函数的极值与最大(小)值是数学分析中一个重要的概念和研究内容,它在很多领域具有广泛的应用,如经济学、物理学、工程学等。

本文将介绍函数的极值与最大(小)值的定义、求解方法以及一些实际问题中的应用。

一、函数的极值与最大(小)值的概念函数的极值是指在一个特定的区间内,函数取得的最大值或最小值。

定义域中的极值点可以是局部极大值或局部极小值,也可是全局的最大值或最小值。

二、求解函数的极值与最大(小)值求解函数的极值与最大(小)值通常有以下方法:1. 导数法:根据函数的导数(或导函数),可以找到函数的驻点和拐点,并通过一阶和二阶导数的符号来判断极值点的类型,即极大值或极小值。

其中,一阶导数为零的点即为函数的驻点,二阶导数为零的点即为函数的拐点。

2. 边界法:在给定的区间内,如果函数在区间的端点处取得最大或最小值,则该值也是函数的极值。

通过比较函数在边界点和内部点的取值,可以确定函数的最大(小)值。

3. 高阶导数法:对于一些特殊的函数,可以通过多阶导数的方法求解极值。

通过计算函数的高阶导数,可以得到函数的极值点。

4. 参数方程法:对于参数方程给出的函数,可以通过求解参数方程中的参数值,得到函数的极值。

这种方法在实际问题中应用较多。

三、实际问题中的应用函数的极值与最大(小)值在各个领域中都有广泛的应用,例如:1. 经济学中,通过对供需函数的极值分析,可以确定市场的均衡价格和数量,从而指导市场调节和政策制定。

2. 物理学中,通过对物体运动轨迹方程的极值分析,可以确定物体在运动过程中最大(小)值速度、加速度等相关参数。

3. 工程学中,通过对成本、效益、材料使用等函数的极值分析,可以优化设计方案,提高工程效率和经济性。

4. 生物学中,通过对生态系统中的种群数量变化函数的极值分析,可以研究种群的稳定性和生态系统的平衡状态。

总之,函数的极值与最大(小)值是数学分析中的重要内容,它不仅具有理论意义,还在实际应用中发挥着重要的作用。

函数的极值与最值问题

函数的极值与最值问题

函数的极值与最值问题在数学中,函数的极值与最值问题是一类常见且重要的问题。

通过研究函数的极值和最值,我们能够深入理解函数的特点,并且在实际问题中能够得到有效的应用。

一、函数极值的定义在初等数学中,我们将极值分为两种,即极大值和极小值。

对于一个函数f(x),如果在某一点x0处,其函数值f(x0)大于其邻近点的函数值,那么f(x0)即为函数的极大值;相反,如果在某一点x0处,其函数值f(x0)小于其邻近点的函数值,那么f(x0)即为函数的极小值。

数学上,我们通过求函数的导数来判断函数的极值。

若函数在某一点的导数等于零,且导数在该点的某个邻域内变号,那么这个点就是函数的极值点。

二、函数最值的定义与函数的极值不同,函数的最值是指函数在其定义域内取得的最大值和最小值。

函数的最大值是指函数在定义域内的某个点或某些点上取得的最大函数值;函数的最小值则是指函数在定义域内的某个点或某些点上取得的最小函数值。

为了求得函数的最值,我们需要通过一定的方法进行计算。

常见的方法有试探法、数列极限法、导数法等。

通过这些方法,我们能够准确地找到函数的最值点和最值。

三、函数极值与最值问题的应用函数的极值与最值问题广泛应用于各个领域,包括自然科学、工程技术以及社会经济等。

下面以数学建模为例,简要说明函数极值与最值问题的应用。

在数学建模中,我们常常需要寻找能够最大化或最小化某种指标的函数值。

通过求解函数的极值和最值问题,我们可以确定最优解。

例如,在运输路线优化问题中,我们可以将运输距离或成本等指标建立函数,然后通过求函数的最小值来确定最佳的运输路线。

在生产优化中,我们可以将成本和产量建立函数,进而求函数的最大值或最小值来获得最优的生产方案。

函数的极值与最值问题还应用于金融领域。

在投资决策中,我们需要评价不同投资方案的风险收益特征。

通过构建风险与收益函数,我们可以求函数的最值,从而找到最佳的投资方案。

此外,在金融衍生品定价中,通过求解衍生品定价模型中的极值问题,我们可以确定合理的衍生品价格,为交易提供参考。

解函数的最值与极值问题

解函数的最值与极值问题

解函数的最值与极值问题函数的最值与极值问题是数学中的常见问题,通过求解函数的最大值、最小值以及函数的极值点,可以帮助我们研究函数的性质和应用。

在本文中,我将介绍一些常见的方法和技巧,以解决函数的最值与极值问题。

一、最值问题的概念函数的最值问题是指在给定的定义域范围内,寻找函数的最大值和最小值的过程。

最大值是函数在定义域范围内取得的最大值,最小值则是函数在定义域范围内取得的最小值。

这些最值点可以通过找到函数的驻点(即导数等于零的点)和端点来确定。

二、最值问题的解法1. 使用导数法求解最值问题导数法是最常见也最基本的方法,通过求解函数的导数来确定函数的极值点和最值。

首先,计算函数的导数,然后将导数等于零求解,得到的解即为函数的驻点。

接着,将这些驻点代入原函数,求出对应的函数值,最大值和最小值即是其中的一个。

2. 使用二次函数的顶点公式求解最值问题当函数是二次函数时,可以使用顶点公式来求解最值问题。

二次函数的图像是一个开口朝上或朝下的抛物线,最值点即为函数的顶点。

顶点的横坐标是函数的最值点,将这个横坐标代入原函数,求出对应的纵坐标即为函数的最大值或最小值。

3. 使用辅助线段求解最值问题辅助线段法是一种简单有效的方法,特别适用于定义域为闭区间的函数。

通过构造一个辅助线段,将函数的定义域划分为若干个小区间。

然后,在每个小区间内比较函数的值,找到最大值和最小值。

4. 使用函数性质求解最值问题有时候,在函数的性质中可以找到求解最值问题的思路。

比如,对于周期函数,可以通过观察周期内的变化情况,确定函数的最大值和最小值。

当函数具有对称性或者特殊的增减性质时,也可以通过这些特点来求解最值问题。

三、极值问题的概念函数的极值是指函数在某一点上的最大值或最小值。

极大值是函数在该点的函数值大于它周围的函数值,而极小值则是函数在该点的函数值小于它周围的函数值。

四、极值问题的解法1. 使用导数法求解极值问题与最值问题类似,使用导数法也可以求解函数的极值问题。

解密初中数学函数的极值与最值问题

解密初中数学函数的极值与最值问题

解密初中数学函数的极值与最值问题在初中数学学习中,函数是一个非常重要的概念。

函数的极值和最值问题是函数章节的一个重要部分。

理解和解决这些问题有助于提升学生的数学思维能力和解题能力。

本文将为大家解密初中数学函数的极值与最值问题。

一、函数的极大值和极小值在初中数学中,函数的极值指的是函数在某个定义域内取得的最大值和最小值。

极大值是函数在某一点附近取得的最大值,极小值是函数在某一点附近取得的最小值。

要解决函数的极值问题,首先需要确定函数的定义域。

在定义域内,通过求函数的导数或者绘制函数的图像,可以找出函数的极值点。

导数为0的点或者导数不存在的点即为函数的极值点。

例如,对于函数f(x) = 2x^2 - 3x + 1,我们可以通过求导数来找出函数的极值点。

求导后得到f'(x) = 4x - 3,令f'(x) = 0,得到x = 3/4。

将x = 3/4代入原函数,得到f(3/4) = 25/8。

因此,函数f(x)在x = 3/4处取得极小值25/8。

二、函数的最值问题函数的最值问题是在函数的定义域内找出函数的最大值和最小值。

与函数的极值问题不同的是,最值问题并不要求极值点的存在,可以是函数的端点。

针对函数的最值问题,我们需要分两种情况进行讨论。

情况一:函数在定义域内没有极值点,只有端点。

例如,对于函数f(x) = x^2 - 4x + 5,我们可以通过求导数来找出函数的极值点。

求导后得到f'(x) = 2x - 4,令f'(x) = 0,得到x = 2。

然而,将x = 2代入原函数后发现,f(2) = 5,并非函数的最值。

由于函数是抛物线,开口朝上,因此函数在定义域内没有最小值,最小值为函数的最值。

情况二:函数在定义域内存在极值点。

例如,对于函数f(x) = -x^2 + 4x - 3,我们可以通过求导数来找出函数的极值点。

求导后得到f'(x) = -2x + 4,令f'(x) = 0,解得x = 2。

一轮复习:函数的极值与最值问题

一轮复习:函数的极值与最值问题

一轮复习 函数的极值一 基础知识1、函数极值的概念:(1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点(2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点极大值与极小值统称为极值2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。

请注意以下几点:(1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点3、极值点的作用:(1)极值点为单调区间的分界点 (2)极值点是函数最值点的候选点4、费马引理(大学内容 了解即可):()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点⇒()0'0f x =说明:①前提条件:()f x 在0x x =处可导②单向箭头:在可导的前提下,极值点⇒导数0=,但是导数0=不能推出0x x =为()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点)5、求极值的步骤:(1)筛选: 令()'0fx =求出()'f x 的零点(此时求出的点有可能是极值点)(2)精选:判断函数通过()'fx 的零点时,其单调性是否发生变化,若发生变化,则该点为极值点,否则不是极值点(3)定性: 通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点6、检验导数零点:对于在定义域中处处可导的函数,极值点是导函数的一些零点,所以涉及到极值点个数或所在区间的问题可转化成导函数的零点问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第讲函数的极值与最值问题
【最新考纲】
1.了解函数在某点取得极值的必要条件和充分条件;
2.会用导数求函数的极大值、极小值;
3.会求闭区间上函数的最大值、最小值。

知识梳理
1.函数的极值
一般地,当函数f(x)在点x0处连续时,
(1)如果在x0附近的左侧_______,右侧______,那么f(x0)是极大值;
(2)如果在x0附近的左侧_______,右侧,那么f(x0)是极小值.
2.函数的最值
(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.
(2)若函数f(x)在[a,b]上单调递增,则为函数的最小值,为函数的最大值;若函数f(x)在[a,b]上单调递减,则为函数的最大值,为函数的最小值.
题型一用导数解决函数极值问题
命题点1 根据函数图像判断极值
命题点2 求函数的极值
命题点3 已知极值求参数
题型二用导数求函数的最值
题型三函数极值和最值的综合问题
答题模板系列利用导数求函数的最值问题。

相关文档
最新文档