实验一用matlab求解线性方程组
MATLAB计算方法3解线性方程组计算解法
MATLAB计算方法3解线性方程组计算解法线性方程组是数学中的一个重要问题,解线性方程组是计算数学中的一个基本计算,有着广泛的应用。
MATLAB是一种功能强大的数学软件,提供了多种解线性方程组的计算方法。
本文将介绍MATLAB中的三种解线性方程组的计算方法。
第一种方法是用MATLAB函数“linsolve”解线性方程组。
该函数使用高斯消元法和LU分解法求解线性方程组,可以处理单个方程组以及多个方程组的情况。
使用该函数的语法如下:X = linsolve(A, B)其中A是系数矩阵,B是常数向量,X是解向量。
该函数会根据A的形式自动选择求解方法,返回解向量X。
下面是一个使用“linsolve”函数解线性方程组的例子:A=[12;34];B=[5;6];X = linsolve(A, B);上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。
运行代码后,X的值为[-4.0000;4.5000]。
第二种方法是用MATLAB函数“inv”求解逆矩阵来解线性方程组。
当系数矩阵A非奇异(可逆)时,可以使用逆矩阵求解线性方程组。
使用“inv”函数的语法如下:X = inv(A) * B其中A是系数矩阵,B是常数向量,X是解向量。
该方法先计算A的逆矩阵,然后将逆矩阵与B相乘得到解向量X。
下面是一个使用“inv”函数解线性方程组的例子:A=[12;34];B=[5;6];X = inv(A) * B;上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。
运行代码后,X的值为[-4.0000;4.5000]。
第三种方法是用MATLAB函数“mldivide”(或“\”)求解线性方程组。
该函数使用最小二乘法求解非方阵的线性方程组。
使用“mldivide”函数的语法如下:X=A\B其中A是系数矩阵,B是常数向量,X是解向量。
matlab 实验教程 实验一
MATLAB语言及其应用实验教程实验一实验目的:1.熟悉MATLAB的界面,菜单,会使用DEMO,学会使用帮助(help)。
2.学习MATLAB的基本语法实验内容:1.打开MATLAB,点击各个菜单以了解各个子菜单项。
2.更改当前路径,在指定路径下保存所作的实验。
实验具体步骤:如图所示,在D盘根目录下建立“MATLAB实验”文件夹,并在此文件夹下以各自的学号建立子文件夹。
如图所示,点击工具栏上“Current Directory”栏的浏览按钮。
选择刚刚建立的以各自学号命名的文件夹,“Current Directory”栏显示如下路径格式。
注意!以后所有的实验均保存在此目录中。
3.学习打开和关闭命令窗口(command window),工作空间(workspace)和命令历史窗口(command history)。
实验具体步骤:单击命令窗口右上角的“X”标志,关闭命令窗口;在Desktop菜单下选择“Command window”,打开命令窗口;单击工作空间窗口右上角的“X”标志,关闭工作空间;在Desktop菜单下选择“Workspace”,打开工作空间;单击命令历史窗口右上角的“X”标志,关闭命令历史窗口;在Desktop菜单下选择“Command history”,打开命令历史窗口。
4.练习变量的赋值,包括向量赋值,矩阵赋值以及复数的赋值。
实验具体步骤:变量赋值>> a=100a =100>> b=0.1b =0.1000向量赋值>> a=1:1:10a =1 2 3 4 5 6 7 8 9 10>> b=1:2:10b =1 3 5 7 9矩阵赋值>> a=[1 2 3;4 5 6;7 8 9]a =1 2 34 5 67 8 9复数赋值>> c=3+5.2ic =3.0000 + 5.2000i>> z=[1+2i,3+4i;5+6i,7+8i]z =1.0000 +2.0000i3.0000 +4.0000i5.0000 +6.0000i7.0000 +8.0000i5.用变量检查命令who和whos检查工作空间中的变量。
利用Matlab进行线性代数问题求解的方法与案例
利用Matlab进行线性代数问题求解的方法与案例引言线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
而Matlab作为一种功能强大的数值计算软件,提供了各种实用的工具和函数,可以方便地解决线性代数问题。
本文将介绍一些常用的线性代数问题求解方法,并通过具体的案例来展示Matlab在实际应用中的效果。
一、线性方程组的求解线性方程组是线性代数中最基础的问题之一。
Matlab提供了多种求解线性方程组的函数,如“backslash”操作符(\)和“linsolve”函数等。
下面通过一个实例来说明Matlab的线性方程组求解功能。
案例:假设有以下线性方程组需要求解:2x + 3y - 4z = 53x - 2y + z = 8x + 5y - 3z = 7在Matlab中输入以下代码:A = [2 3 -4; 3 -2 1; 1 5 -3];b = [5; 8; 7];x = A\b;通过以上代码,我们可以得到线性方程组的解x=[1; -2; 3]。
这表明在满足以上方程组的条件下,x=1,y=-2,z=3。
可以看出,Matlab在求解线性方程组时,使用简单且高效。
二、矩阵的特征值和特征向量求解矩阵的特征值和特征向量也是线性代数中的重要概念。
利用特征值和特征向量可以得到矩阵的许多性质和信息。
在Matlab中,我们可以通过“eig”函数来求解矩阵的特征值和特征向量。
案例:假设有一个2x2矩阵A,需要求解其特征值和特征向量。
在Matlab中输入以下代码:A = [2 3; 1 4];[V, D] = eig(A);通过以上代码,我们可以得到矩阵A的特征向量矩阵V和特征值矩阵D。
具体结果如下:特征向量矩阵V = [0.8507 -0.5257; 0.5257 0.8507]特征值矩阵D = [1.5858 0; 0 4.4142]由结果可知,矩阵A的特征向量矩阵V和特征值矩阵D可以提供有关该矩阵的很多信息,如相关线性变换、对称性等。
用MATLAB做线性代数实验
【2】参数方程解的判别 【注意】 :含有参数情况的线性方程组的解的情况讨论,不能直接使用 Matlab 中 的函数:rank,rref,因为 Matlab 会默认这些参数及其表达式不等于零。因此,应 该编写独立的过程加以讨论。 试就参数 s 的各种情况,讨论下述线性方程组的解的情况:
sx y z 1 x sy z s 。 2 x y sz s
p1 ( x ) q( x ) p2 ( x ) r ( x ) , d (r ( x )) d ( p2 ( x ))
例如,求多项式 f ( x ) x 3 6 x 2 11 x 6 , g( x ) x 5 2 x 2 1 的最大公因式和最小公倍 式。 p=[1 -6 11 -6]; q=[1 0 0 -2 0 1]; [q1,r1]=deconv(q,p) [q2,r2]=deconv(p,r1(4:6)) %注意保证第一个分量不能为零 [q3,r3]=deconv(r1(4:6),r2(3:4))
x2 x3 2 x2 3 x 2
分解为最简分式之和的程序如下:
-0.5000 - 1.3229i -1.0000 r = [] 结果表示出来即是:
f ( x)
如果是在实数范围内分解:
0.25 0.4725 i x 0.51.3229 i
0.25 0.4725 i x 0.51.3229 i
用 MATLAB 做线性代数实验
1. 多项式运算
【1】表示方法与根 表示方法:降幂,向量形式. 例如, p( x ) 2 x x 3 x5 被表示为向量 p=[-1 0 1 0 2 0] 而不是 p=[0 2 0 1 0 -1] 或者 p=[2 1 -1]. 相关 MATLAB 函数 函数名 含义 %注意保证第一个分量不能为零
利用MATLAB求线性方程组
《MATLAB语言》课成论文利用MATLAB求线性方程组姓名:郭亚兰学号:12010245331专业:通信工程班级:2010级通信工程一班指导老师:汤全武学院:物电学院完成日期:2011年12月17日利用MATLAB求解线性方程组(郭亚兰 12010245331 2010 级通信一班)【摘要】在高等数学及线性代数中涉及许多的数值问题,未知数的求解,微积分,不定积分,线性方程组的求解等对其手工求解都是比较复杂,而MATLAB语言正是处理线性方程组的求解的很好工具。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。
【关键字】线性代数MATLAB语言秩矩阵解一、基本概念1、N级行列式A:A等于所有取自不同性不同列的n个元素的积的代数和。
2、矩阵B:矩阵的概念是很直观的,可以说是一张表。
3、线性无关:一向量组(a1,a2,…,an)不线性相关,既没有不全为零的数k1,k2,………kn使得:k1*a1+k2*a2+………+kn*an=04、秩:向量组的极在线性无关组所含向量的个数成为这个向量组的秩。
5、矩阵B的秩:行秩,指矩阵的行向量组的秩;列秩类似。
记:R(B)6、一般线性方程组是指形式:⎪⎪⎩⎪⎪⎨⎧=+++=+++=*+++ssn s s n n n n b a x a x a b x a x a x a b x a x a x n 22112222212111212111x ********a 二、基本理论三种基本变换:1,用一非零的数乘某一方程;2,把一个方程的倍数加到另一方程;3,互换两个方程的位置。
基于Matlab的解线性方程组的几种迭代法的实现及比较
基于Matlab的解线性方程组的几种迭代法的实现及比较线性方程组的解法有很多种,其中一类常用的方法是迭代法。
迭代法根据一个初值逐步逼近方程组的解,在每一次迭代中利用现有的信息产生新的近似值,并不断地修正。
下面介绍基于Matlab的三种迭代法:雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法,并进行比较。
1. 雅可比迭代法雅可比迭代法是迭代法中最简单的一种方法。
对于线性方程组Ax=b,雅可比迭代法的迭代公式为:x_{i+1}(j)=1/a_{jj}(b_j-\\sum_{k=1,k\eq j}^n a_{jk}x_i(k))其中,i表示迭代次数,j表示未知数的下标,x_i表示第i次迭代的近似解,a_{jk}表示系数矩阵A的第j行第k列元素,b_j 表示方程组的常数项第j项。
在Matlab中,可以使用以下代码实现雅可比迭代:function [x,flag]=jacobi(A,b,X0,tol,kmax)n=length(b);x=X0;for k=1:kmaxfor i=1:nx(i)=(b(i)-A(i,:)*x+A(i,i)*x(i))/A(i,i);endif norm(A*x-b)<tolflag=1;returnendendflag=0;return其中,参数A为系数矩阵,b为常数项列向量,X0为初值列向量,tol为迭代误差容许值(默认为1e-6),kmax为最大迭代次数(默认为1000)。
函数返回值x为近似解列向量,flag表示是否满足容许误差要求。
2. 高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进。
其基本思想是,每次迭代时,利用已经求出的新解中的信息来更新其他未知数的值。
迭代公式为:x_{i+1}(j)=(1/a_{jj})(b_j-\\sum_{k=1}^{j-1}a_{jk}x_{i+1}(k)-\\sum_{k=j+1}^n a_{jk}x_i(k))与雅可比迭代法相比,高斯-赛德尔迭代法的每一次迭代都利用了前面已求得的近似解,因此可以更快地收敛。
matlab中快速求解xa=b的方法
matlab中快速求解xa=b的方法在Matlab中,要快速求解线性方程组xa=b,可以使用以下几种方法:1. 直接求解法(\):直接使用斜杠操作符(\)可以求解线性方程组。
例如,对于方程组xa=b,可以直接使用x = A\b来解决,其中A是系数矩阵,b是常数向量。
这种方法使用了高效的LU分解算法,并且能够自动适应方程组的类型(如稀疏矩阵或密集矩阵),因此是一种快速求解线性方程组的常用方法。
2. QR分解法:QR分解是一种将矩阵分解为正交矩阵和上三角矩阵的方法。
在Matlab中,可以使用qr函数对系数矩阵进行QR分解,然后使用这个分解求解线性方程组。
具体而言,可以使用[q,r] = qr(A)将系数矩阵A分解为正交矩阵q和上三角矩阵r,然后使用x = r\(q'*b)求解方程组。
这种方法通常适用于方程组的系数矩阵具有较大的条件数或者方程组数目较多的情况。
3. Cholesky分解法:如果线性方程组的系数矩阵是对称正定的,那么可以使用Cholesky分解来求解方程组。
在Matlab中,可以使用chol函数对系数矩阵进行Cholesky分解,然后使用这个分解求解线性方程组。
具体而言,可以使用R = chol(A)将系数矩阵A分解为上三角矩阵R,然后使用x = R'\(R\b)求解方程组。
Cholesky分解法通常适用于系数矩阵具有良好的性质(如对称正定)的情况。
4. 迭代法:如果线性方程组的系数矩阵是稀疏的,那么可以使用迭代法来求解方程组。
迭代法的基本思想是通过迭代改进解的逼近值。
在Matlab中,可以使用pcg函数(预处理共轭梯度法)或者bicg函数(双共轭梯度法)来求解稀疏线性方程组。
这些函数需要提供一个预处理矩阵,用于加速迭代过程。
预处理矩阵可以根据具体问题进行选择,常见的预处理方法包括不完全LU分解(ilu)和代数多重网格(amg)等。
通过使用上述方法,可以在Matlab中快速求解线性方程组xa=b。
利用matlab解线性方程组
数值计算实验——解线性方程组西南交通大学2012级茅7班20123257 陈鼎摘要本报告主要介绍了基于求解线性方程组的高斯消元法和列主消元法两种数值分析方法的算法原理及实现方法。
运用matlab数学软件辅助求解。
实验内容1.编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证。
2.编写用列主消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证。
给定方程组如下:①0.325x1+2.564x2+3.888x3+5x4=1.521②-1.548x1+3.648x2+4.214x3-4.214x4=2.614③-2.154x1+1.647x2+5.364x3+x4=3.978④0x1+2.141x2-2.354x3-2x4=4.214A.高斯消元法一、算法介绍高斯消元法是一种规则化的加减消元法。
基本思想是通过逐次消元计算把需要求解的线性方程组转化成为上三角方程组,即把现形方程组的系数矩阵转化为上三角矩阵,从而使一般线性方程组的求解转化为等价的上三角方程组的求解。
二、matlab程序function [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp(‘因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp(‘因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp(‘因为RA=RB<n,所以此方程组有无穷多解.')endend三、实验过程与结果输入的量:系数矩阵A和常系数向量b;输出的量:系数矩阵A和增广矩阵B的秩RA、RB,方程中未知量的个数n和有关方程组解X及其解的信息。
线性代数的MATLAB软件实验报告
线性代数的MATLAB 软件实验一、实验目的1.熟悉矩阵代数主要MATLAB 指令。
2.掌握矩阵的转置、加、减、乘、除、乘方、除法等MATLAB 运算。
3.掌握特殊矩阵的MATLAB 生成。
4.掌握MATLAB 的矩阵处理方法。
5.掌握MATLAB 的矩阵分析方法。
6.掌握矩阵的特征值与标准形的MATLAB 验算。
7.掌握线性方程组的MATLAB 求解算法。
二、实验原理1.线性方程组 【基本观点】自然科学和工程实践很多问题的解决都涉及线性代数方程组的求解和矩阵运算.一方面,许多问题的数学模型本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题和投入产出分析问题;另一方面,有些数值计算方法导致线性方程组求解,如数据拟合,非线性方程组求解和偏微分方程组数值解等.n 个未知量m 个方程的线性方程组一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a (3.1) 令,,,2121212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=m n mn m m n n b b b b x x x x a a a a a aa a a A则得矩阵形式Ax=b. (3.2)若右端b=0,即Ax=0, (3.3)则称方程组为齐次的.方程组(3.1)可能有唯一解,可能有无穷多解,也可能无解,主要取决于系数矩阵A 及增广矩阵(A,b )的秩.若秩(A )=秩(A,b )=n,存在唯一解,其解理论上用Cramer 法则求出,但由于这种方法要计算n+1个n 阶行列式,计算量太大通常并不采用;若秩(A )=秩(A,b )<n,存在无穷多解,其通解可表示为对应齐次方程组(3.3)的一个基础解系与(3.2)的一个特解的叠加;若秩(A )≠秩(A,b ),则无解,这时一般寻求最小二乘近似解,即求x 使向量Ax-b 模最小.P50矩阵左除的数学思维:恒等变形Ax=b 方程两边的左边同时除以A ,得:b AAx A11=,即:b A b Ax 11-==MATLAB 的实现(左除):x=A\b 2.逆矩阵 【基本观点】方阵A 称为可逆的,如果存在方阵B ,使 AB=BA=E,这里E 表示单位阵.并称B 为A 的逆矩阵,记B=1-A .方阵A 可逆的充分必要条件是A 的行列式det A ≠0.求逆矩阵理论上的公式为*1det 1A AA =-, (3.4)这里*A 为A 的伴随矩阵.利用逆矩阵,当A 可逆时,(3.2)的解可表示为b A x 1-=.由于公式(3.4)涉及大量行列式计算,数值计算不采用.求逆矩阵的数值算法一般是基于矩阵分解的方法.3.特征值与特征向量 【基本观点】对于方阵A ,若存在数λ和非零向量x ,使,x Ax λ= (3.5) 则称λ为A 的一个特征值,x 为A 的一个对应于特征值λ的特征向量.特征值计算归结为特征多项式的求根.对于n 阶实数方阵,特征多项式在复数范围内总有n 个根。
matlab线性方程组求解
0.9739 -0.0047 1.0010
n= 5 Jacobi 迭代法: function [x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps= 1.0e-6; M = 200; elseif nargin<3 error return elseif nargin ==5 M = varargin{1}; end D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); B=D/(L+U); f=D/b; x=B*x0+f; n=1; % 迭代次数 % 求 A 的对角矩阵 % 求 A 的上三角阵
n= 5 Gauss-Seidel 迭代法: function [x,n]=gauseidel(A,b,x0,eps,M) if nargin==3 eps= 1.0e-6; M = 200; elseif nargin == 4 M = 200; elseif nargin<3 error return; end D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)/U; f=(D-L)/b; % 求 A 的对角矩阵 % 求 A 的上三角阵 % 求 A 的下三角阵
批注本地保存成功开通会员云端永久保存去开通
线性方程组求解 1. 直接法 Gauss 消元法: function x=DelGauss(a,b) % Gauss 消去法 [n,m]=size(a); nb=length(b); det=1;% 存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); end det=det*a(n,n);
基于matlab的线性方程组迭代法(实验报告)
基于matlab 的线性方程组迭代法实验题目:实验要求:(1)分别试用 Jacobi 和Gauss-Seidel 迭代法计算,要求达到的精度为:(1)()510k k x x +-∞->(2)观测得到的迭代序列是否收敛?若收敛,记录迭代次数并分析计算结果。
实验流程一、迭代法简介 1、 Jacobi 迭代法对于方程组Ax b =有A 非奇异情况下且0ij a ≠时,A 分裂为A D L U =--,可得到:0x B x f =+,其中1110(),B I D A D L U f D b ---=-=+=,得到雅克比迭代法:(0)(1)()0()k k x xB x f +⎧⎪⎨=+⎪⎩初始向量 2、 Gauss-Seidel 迭代法(0)(1)()()k k x x Gx f +⎧⎪⎨=+⎪⎩初始向量 其中11(),()G D L U f D L b --=-=-。
其迭代法优点为只需一组存储单元。
3、 超松弛迭代法(SOR)Gauss-Seidel 迭代法的一种加速方法,ω松弛因子。
(0)(1)()(1)(1))()(1)k k k k k x x Gx f x x x ωω+++⎧⎪⎪=+⎨⎪=+-⎪⎩(初始向量 其中11(),()G D L U f D L b --=-=-。
二、迭代法的matlab 程序1、 Jacobi 迭代法Jacobi.mfunction [y,n]= Jacobi( A,b,x0,e )%JACOBI ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));B=I-D\A;f=D\b;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=B*y+f;n=n+1;endnend2、Gauss-Seidel迭代法GaussSeidel.mfunction [y,n]= GaussSeidel( A,b,x0,e ) %GS ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=G*y+f;n=n+1;endnend3、超松弛迭代法(SOR) SOR.mfunction [y,n]= SOR( A,b,w,x0,e )%SORÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<5)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ex0=y;x1=G*x0+f;y=(1-w)*x0+w*x1;n=n+1;endnend4、变量初始化creatMatrix.mclear;clc;a=diag(3*ones(1,20));b=diag(-0.5*ones(1,19),1);c=diag(-0.25*ones(1,18),2);A=a+b+b'+c+c';%ϵÊý¾ØÕób=ones(20,1)*7/4;b(1)=9/4;b(20)=9/4;x0=zeros(20,1);A,b,x0,w=1.5建立A数组以及初始化b,松弛因子w,迭代初值x05、程序运行和结果记录solve.mclc;tic,s1=Jacobi(A,b,x0),toctic,s2=GaussSeidel(A,b,x0),toctic,s3=SOR(A,b,w,x0),toc三、计算结果运行程序得到几种方法的计算结果。
matlab十个简单案例编写
matlab十个简单案例编写1. 求解线性方程组线性方程组是数学中常见的问题之一,而MATLAB提供了用于求解线性方程组的函数。
例如,我们可以使用"linsolve"函数来求解以下线性方程组:2x + 3y = 74x - 2y = 2代码如下所示:A = [2, 3; 4, -2];B = [7; 2];X = linsolve(A, B);disp(X);解释:上述代码定义了一个2x2的矩阵A和一个2x1的矩阵B,分别表示线性方程组的系数矩阵和常数向量。
然后,使用linsolve函数求解线性方程组,结果存储在X中,并通过disp函数打印出来。
运行代码后,可以得到x=2和y=1的解。
2. 求解非线性方程除了线性方程组外,MATLAB还可以用于求解非线性方程。
例如,我们可以使用"fzero"函数求解以下非线性方程:x^2 + 2x - 3 = 0代码如下所示:fun = @(x) x^2 + 2*x - 3;x0 = 0;x = fzero(fun, x0);disp(x);解释:上述代码定义了一个匿名函数fun,表示非线性方程。
然后,使用fzero函数传入fun和初始值x0来求解非线性方程的根,并通过disp函数打印出来。
运行代码后,可以得到x=1的解。
3. 绘制函数图像MATLAB提供了强大的绘图功能,可以帮助我们可视化函数的形状和特征。
例如,我们可以使用"plot"函数绘制以下函数的图像:y = cos(x)代码如下所示:x = linspace(0, 2*pi, 100);y = cos(x);plot(x, y);解释:上述代码首先使用linspace函数生成一个从0到2π的100个等间距点的向量x,然后计算对应的cos值,并存储在向量y中。
最后,使用plot函数将x和y作为横纵坐标绘制出函数图像。
运行代码后,可以看到cos函数的周期性波动图像。
matlab解方程组方法
matlab解方程组方法在MATLAB中,有多种方法可以解方程组。
以下是其中几种常用的方法:1.solve函数:这是最直接的方法,适用于解线性方程组。
假设你有以下线性方程组:(Ax = b)你可以使用solve函数来求解。
例如:2.matlab复制代码A = [1, 2; 3,4];b = [5; 6];x = solve(A,b);3.\和/运算符:这两个运算符也可以用于解线性方程组。
例如:4.matlab复制代码A = [1, 2; 3, 4];b = [5; 6];x = A\b; % 使用左除运算符或者matlab复制代码x = b/A; % 使用右除运算符5.gaussj函数:这个函数使用高斯-约当消元法来解方程组。
使用方法如下:6.matlab复制代码A = [1, 2; 3,4];b = [5; 6];x = gaussj(A,b);7.mldivide函数:这个函数与\运算符相同,也是用于解线性方程组。
例如:8.matlab复制代码A = [1, 2; 3, 4];b = [5; 6];x = mldivide(A, b); % 等价于A\b9.lyap函数:对于非线性方程组,可以使用lyap函数来求解。
这个函数用于解决Lyapunov方程,通常用于控制系统和稳定性分析。
使用方法如下:10.matlab复制代码A = [1, 2; 3, 4];lyap(A); % 对于给定的A矩阵,求解Lyapunov方程。
11.fzero和root函数:这两个函数用于求解非线性方程的根。
例如,如果你有一个非线性方程(f(x) = 0),你可以使用fzero或root来找到这个方程的根。
使用方法如下:12.matlab复制代码f = @(x) x^2 - 4; % 非线性方程 f(x) = x^2 - 4x = fzero(f, [1, 2]); % 在区间[1,2]内寻找方程的根或者:matlab复制代码root(f) % 使用root函数求解非线性方程的根。
线性方程组直接解法实验
实验一 线性方程组直接解法实验一、实验目的1.运用matlab 软件完成线性方程组的直接实验;2.通过实验,了解Doolittle 分解方法和列主元消去法解方程组的过程,并比较两种方法的优点。
二、实验题目分别用Doolittle 分解方法和列主元消去法解方程组123410-7018-3 2.09999962 5.9000015-15-1521021⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭x x x x . 输出A ,b ;Doolittle 分解方法的L 和U ;解向量x,det A ;列主元方法的行交换次序,解向量x,det A ;比较两种方法所得的结果。
三、实验原理1) Doolittle 分解方法的原理算法原理:应用高斯消去法解n 阶线性方程Ax b =经过1n -步消去后得出一个等价的上三角形方程组()()n n A x b =,对上三角形方程组用逐步回代就可以求出解来。
这个过程也可通过矩阵分解来实现。
将非奇异阵分解成一个下三角阵L 和上三角阵U 的乘积称为对矩阵A 的三角分解,又称LU 分解。
根据LU 分解,将Ax b =分解为Ly bUx y =⎧⎨=⎩形式,简化了求解问题。
程序框图:变量说明:ij a 为系数矩阵元素,i b 为常数矩阵系数,,ij ij l u 分别为下、上三角矩阵元素。
2)列主元消去法解方程组的原理算法原理:列选主元是当变换到第k步时,从k列的kk a及以下的各元素中选取绝对值a的位置上,然后再进行消元过程。
交换系数矩阵中最大的元素,通过行交换将其交换到kk的两行(包括常数项),相当于两个方程的位置交换了。
程序框图:Array变量说明:k表示消元到a为消元第k步时第k步,kk主对角线元素3)四、实验过程及结果1)Doolittle分解方法的输出结果----------计算实习题----------Page64 第1题用Doolittle分解方法解方程组A =10.0000 -7.0000 0 1.0000-3.0000 2.1000 6.0000 2.00005.0000 -1.0000 5.0000 -1.00002.0000 1.0000 0 2.0000b =8.00005.90005.00001.0000L =1.0e+006 *0.0000 0 0 0-0.0000 0.0000 0 00.0000 -2.5000 0.0000 00.0000 -2.4000 0.0000 0.0000 U =1.0e+007 *0.0000 -0.0000 0 0.00000 -0.0000 0.0000 0.00000 0 1.5000 0.57500 0 0 0.0000 X =-0.0000-1.00001.00001.0000det(A)值为-762.00009000----------输出完毕----------2)列主元消去法输出结果----------计算实习题----------Page64 第1题列主元消去法解方程组A =10.0000 -7.0000 0 1.0000-3.0000 2.1000 6.0000 2.00005.0000 -1.0000 5.0000 -1.00002.0000 1.0000 0 2.0000b =8.00005.90005.00001.0000X =0.0000-1.00001.00001.0000detA值为-762.00009000----------输出完毕----------五、实验分析1.运用LU分解法可以成批地解方程组,且速度快.若c先求LU=A3,再解(LU)x=b,则要重新计算,计算量增加;如果按照上述方法计算,能够减少运算次数,加快运算速度.3. ⑴无论当n=10、n=100、n=1000时,x1与x2的值都相等,且随着n的增大,变化的只是解的中间部分数字,头、前后几位数都没有变化.⑵高斯消去法应用于三对角方程组得到的就是所谓的“追赶法”.追赶法不需要对零元素计算,只有6n-5次乘除法计算量,求解速度快.且当系数矩阵对角占优时数值稳定,是解三对角方程组的优秀解法.⑶用LU分解法解此方程组速度慢.顺序高斯消去法实际上就是将方程组的系数矩阵分解成单位下三角矩阵与上三角矩阵的乘积.顺序高斯消去法的消元过程相当于LU分解过程和Ly=b的求解,回代过程则相当于解线性方程组Ux=y,故其求解速度慢.六、附原程序1)Doolittle分解方法原程序fprintf('----------计算实习题----------\n')fprintf('Page64 第1题用Doolittle分解方法解方程组\n')A=[10 -7 0 1 ; -3 2.099999 6 2 ;5 -1 5 -1 ; 2 1 0 2];b=[8;5.900001;5;1];n=length(A);U=zeros(n,n);L=eye(n,n);U(1,:)=A(1,:);L(2:n,1)=A(2:n,1)/U(1,1);for i=2:n;U(i,i:n)=A(i,i:n)-L(i,1:i-1)*U(1:i-1,i:n);L(i+1:n,i)=(A(i+1:n,i)-L(i+1:n,1:i-1)*U(1:i-1,i))/U(i,i); endY=zeros(n);Y(1)=b(1);for i=2:nY(i)=b(i)-L(i,1:i-1)*Y(1:i-1,1);endX=zeros(n,1);if det(U)==0;X=0;elseX(n)=Y(n)/U(n,n);for i=n-1:-1:1X(i)=(Y(i)-U(i,i+1:n)*X(i+1:n,1))/U(i,i);endendAbLUXfprintf('det(A)值为%9.8f\n',det(A))fprintf('----------输出完毕 ----------\n')2)列主元消去法原程序fprintf('----------计算实习题----------\n')fprintf('Page64 第1题列主元消去法解方程组\n')A=[10 -7 0 1 ; -3 2.099999 6 2 ;5 -1 5 -1 ; 2 1 0 2];b=[8;5.900001;5;1];C=[A b];n=length(A);D=zeros(n,n+1);l=zeros(n,1);for i=1:nD=C;k=min(find(C(i:n,i)==max(C(i:n,i))));C(i,i:n+1)=D(k+i-1,i:n+1);C(k+i-1,i:n+1)=D(i,i:n+1);l(i+1:n,1)=C(i+1:n,i)/C(i,i);C(i+1:n,i:n+1)= C(i+1:n,i:n+1)- l(i+1:n,1)*C(i,i:n+1); endX=zeros(n,1);X(n)=C(n,n+1)/C(n,n);for i=n-1:-1:1X(i)=(C(i,n+1)-C(i,i+1:n)*X(i+1:n,1))/C(i,i); endAbXfprintf('detA值为%9.8f\n',det(A))fprintf('----------输出完毕----------\n')。
matlab求线性方程组的解
matlab求线性方程组的解求解线性方程分为两种方法–直接法和迭代法常见的方法一共有8种直接法Gauss消去法Cholesky分解法迭代法Jacobi迭代法Gauss-Seidel迭代法超松弛迭代法共轭梯度法Bicg迭代法Bicgstab迭代法这里我从计算代码的角度来解释一下,代码按以下顺序给出。
把方程组直接带入已知条件,就可以得到答案。
适用条件Gauss消去法:求解中小规模线性方程(阶数不过1000),一般用于求系数矩阵稠密而且没有任何特殊结构的线性方程组Cholesky分解法:对称正定方程优先使用,系数矩阵A是n 阶对称正定矩阵Jacobi迭代法非奇异线性方程组,分量的计算顺序没有关系Gauss-Seidel迭代法与Jacobi迭代法相似,但计算的分量不能改变超松弛迭代法Jacobi迭代法和Gauss-Seidel迭代法的加速版,由Gauss-Seidel迭代法改进而来,速度较快共轭梯度法需要确定松弛参数w,只有系数矩阵具有较好的性质时才可以找到最佳松弛因子。
但好处是不用确定任何参数,他是对称正定线性方程组的方法也是求解大型稀疏线性方程组最热门的方法Bicg迭代法本质是用双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Bicgstab迭代法本质是用稳定双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Gauss消去法第一、二个函数ltri、utri是一定要掌握的,后面的几乎每个函数都要用到ltri简单来说,当Ly=bb,L(非奇异下三角矩阵)已知求yfunction y =ltri(L,b)n=size(b,1);y=zeros(n,1);for j =1:n-1y(j)=b(j)/L(j,j);b(j+1:n)=b(j+1:n)-y(j)*L(j+1:n,j); endy(n)=b(n)/L(n,n);utri简单来说,当Ux=yy,U(非奇异上三角矩阵)已知求xfunction x =utri(U,y)n=size(y,1);x=zeros(n,1);for j = n:-1:2x(j)=y(j)/U(j,j);y(1:j-1)=y(1:j-1)-x(j)*U(1:j-1,j);endx(1)=y(1)/U(1,1);gauss算法,计算时粘贴过去就好function[L,U]=gauss(A)n=size(A,1);for k =1:n-1A(k+1:n,k)=A(k+1:n,k)/A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k +1:n)-A(k+1:n,k)*A(k,k+1:n);endL=tril(A,-1)+eye(n);U=triu(A);使用例子已经知道一个线性方程组,这里我就不写出数学形式了,A是系数矩阵,直接把上面写好的函数复制过来在运算就可以。
MATLAB实验一 解线性方程组的直接法
输出 Ax b 中系数 A LU 分解的矩阵 L 和 U ,解向量 x 和 det(A) ;用列主元法 的行交换次序解向量 x 和求 det(A) ;比较两种方法所得结果。
2、用列主高斯消元法解线性方程组 Ax b 。
3.01 6.03 1.99 x1 1 4.16 1.23 x 2 1 (1) 、 1.27 0.987 4.81 9.34 x 1 3 3.00 6.03 1.99 x1 1 4.16 1.23 x 2 1 (2) 、 1.27 0.990 4.81 9.34 x 1 3
index = 1 3、在 MATLAB 窗口:
A=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10]; b=[32 23 33 31]'; x=A\b b1=[32.1 22.9 33.1 30.9]'; x1=A\b1 A1=[10 7 8.1 7.2;7.08 5.04 6 5;8 5.98 9.89 9;6.99 5 9 9.98]; x2=A1\b delta_b=norm(b-b1)/norm(b) delta_A=norm(A-A1)/norm(A) delta_x1=norm(x-x1)/norm(x) delta_x2=norm(x-x2)/norm(x)
二. 实验要求 1、按照题目要求完成实验内容; 2、写出相应的 Matlab 程序; 3、给出实验结果(可以用表格展示实验结果); 4、分析和讨论实验结果并提出可能的优化实验。 5、写出实验报告。 三. 实验步骤 1、用 LU 分解及列主元高斯消去法解线性方程组
7 10 3 2.099999 a) 5 1 2 1 1 x1 8 6 2 x 2 5.900001 , 5 1 x3 5 0 2 1 x 4 0
利用Matlab解决常见数学问题的案例分析
利用Matlab解决常见数学问题的案例分析概述:Matlab是一款流行的科学软件,广泛应用于数学建模、数据分析、图像处理等领域。
本文将通过几个实际案例,介绍如何利用Matlab解决常见的数学问题,并分析其解决方法和效果。
案例一:线性方程组的求解线性方程组是数学中常见的问题之一。
假设有如下线性方程组:3x + 2y = 14x - 3y = 5可以使用Matlab中的线性方程组求解函数`linsolve`来求解。
首先,定义系数矩阵A和常数矩阵b,并调用`linsolve`函数求解方程组:```matlabA = [3 2; 4 -3];b = [1; 5];x = linsolve(A, b);```运行上述代码后,可以得到方程组的解x为:x = 3y = -2案例二:函数曲线绘制Matlab具有强大的绘图功能,可以绘制各种函数曲线。
例如,我们可以绘制正弦函数sin(x)在区间[-2π,2π]上的曲线。
首先,定义x的取值范围,并计算对应的y 值:```matlabx = -2*pi:0.1:2*pi;y = sin(x);```接下来,使用`plot`函数将曲线绘制出来:```matlabplot(x, y);```运行代码后,可以得到正弦函数的曲线图。
案例三:最小二乘拟合最小二乘拟合是一种常见的曲线拟合方法,用于将一组数据拟合成一条曲线。
假设有一组离散的数据点,我们希望找到一个曲线来拟合这些数据。
在Matlab中,可以使用`polyfit`函数进行最小二乘拟合。
例如,假设有一组数据:x = [1 2 3 4 5];y = [0.5 2.5 2 4 3.5];可以使用`polyfit`函数进行线性拟合:```matlabp = polyfit(x, y, 1);```其中,第一个参数x是自变量的取值,第二个参数y是因变量的取值,第三个参数1表示进行一次多项式拟合。
拟合的结果保存在向量p中,p(1)为拟合曲线的斜率,p(2)为截距。
matlab中用克莱姆法则求解
matlab中用克莱姆法则求解
在Matlab中使用克莱姆法则求解线性方程组可以通过以下步骤
完成:
首先,我们需要定义系数矩阵A和常数向量b。
假设我们有一
个包含n个未知数的线性方程组Ax=b,其中A是一个n×n的系数
矩阵,b是一个n×1的常数向量。
接下来,我们可以使用det函数计算系数矩阵A的行列式的值。
行列式的值将用于后续计算。
然后,我们需要创建一个新的矩阵A1,其中用常数向量b替换
系数矩阵A的第一列。
然后我们计算A1的行列式的值。
接着,我们创建一个新的矩阵A2,其中用常数向量b替换系数
矩阵A的第二列,并计算A2的行列式的值。
依此类推,我们创建n个新的矩阵Ai,每个矩阵都用常数向量
b替换系数矩阵A的第i列,并计算每个Ai的行列式的值。
最后,我们可以使用克莱姆法则的公式来计算未知数的值。
未
知数的值可以通过将每个Ai的行列式的值除以A的行列式的值得到。
以上就是在Matlab中使用克莱姆法则求解线性方程组的基本步骤。
需要注意的是,克莱姆法则在实际应用中可能会受到舍入误差
的影响,而且当系数矩阵A的行列式的值接近于0时,克莱姆法则
可能会导致数值不稳定的结果。
因此,在实际工程计算中,通常会
使用更稳定的数值方法来求解线性方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1.1 用matlab 求解线性方程组
第一节 线性方程组的求解 一、齐次方程组的求解
rref (A ) %将矩阵A 化为阶梯形的最简式
null (A ) %求满足AX =0的解空间的一组基,即齐次线性方程组的基
础解系
【例1】 求下列齐次线性方程组的一个基础解系,并写出通解:
我们可以通过两种方法来解: 解法1:
>> A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; >> rref(A) 执行后可得结果: ans=
1 -1 0 0 0 0 -1 1 0 0 0 0 由最简行阶梯型矩阵,得化简后的方程
⎪⎩⎪
⎨⎧=+--=+--=-+-0
22004321
43214321x x x x x x x x x x x x
取x2,x4为自由未知量,扩充方程组为
即
提取自由未知量系数形成的列向量为基础解系,记
所以齐次方程组的通解为
解法2: clear
A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2];
B=null(A, 'r') % help null 看看加个‘r’是什么作用,
若去掉r ,是什么结果?
执行后可得结果: B=
1 0 1 0 0 1 0 1
⎩⎨
⎧=-=-0
04321x x x x ⎪⎪⎩⎪⎪⎨
⎧====4
4432221x x x x x x x x ⎥⎥⎥
⎥⎦⎤
⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡1100001142
4321x x x x x x ,
00111⎥⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎣⎡=ε,
11002⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=ε2
211εεk k x +=
易见,可直接得基础解系
所以齐次方程组的通解为
二、非齐次线性方程组的求解 Matlab 命令的基本格式:
X =A\b %系数阵A 满秩时,用左除法求线性方程组AX =b 的解
注意:A/B 即为AB -1, 而A\B 即为A -1B.
C =[A,b];
D =rref(C) % 求线性方程组AX =b 的特解,即D 的最后一列元素
【例2】 求下列非齐次线性方程组的解:
,
00111⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=ε,
11002⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=ε⎪⎪⎪⎩⎪
⎪⎪⎨⎧=+=++=++=++=+1
50
65065065165545
4354332121x x x x x x x x x x x x x 2
211εεk k x +=
解: clear
A=[5 6 0 0 0;1 5 6 0 0;0 1 5 6 0;0 0 1 5 6;0 0 0 1 5]; b=[1;0;0;0;1];
format rational %采用有理数近似输出格式,
比较format short 看看
x=A\b
执行后可得所求方程组的解. 作业:
【第一题】 求下列非齐次线性方程组的通解.
A=[1 2 3 1;1 4 6 2;2 9 8 3;3 7 7 2] B=[3;2;7;12] format rational x=A\B x =
⎪⎪⎩⎪⎪⎨
⎧=+++=+++=+++=+++12
27737389222643324321432143214321x x x x x x x x x x x x x x x x
4
2/3
1/2684838239393950
-7/3
【第二题】计算工资问题
一个木工,一个电工,一个油漆工,三个人相互同意彼此装修他们自己的房子。
在装修之前,他们达成如下协议:
(1)每人总共工作十天(包括给自己家干活在内);
(2)每人的日工资根据一般的市价在60~80元之间;
(3)每人的日工资数应使得每人的总收入与总支出相等。
下为他们协商后制定出的工作天数分配方案:
解:设在木工、电工和油漆工每天的工资数分别为x,y和z;
依题意得
8x=y+6z
5y=4x+z
7z=4x+4y
即为8x-y-6z=0
4x-5y+z=0
4x+4y-7z=0
clear
A=[8 -1 -6;4 -5 1 ;4 4 -7];
B=null(A, 'r')
B =
0.8611
0.8889
1.0000
实验1.2 M ATLAB程式设计与应用
-----二维绘图部分
基本xy平面绘图命令
M ATLAB不但擅长于矩阵相关的数值运算,也适合用在各种科学的可视化表示(Scientific Visualization)。
本节将介绍MATLAB基本xy平面的一些绘图命令。
1.Plot作图 plot是绘制一维曲线的基本函数,但在使用此函数之前,我们需先定义
曲线上每一点的x及y坐标。
下例可画出一条正弦曲线:
close all; %关闭所有的图形视窗
x=linspace(0, 2*pi, 100); % 100个点的x坐标
y=sin(x); % 对应的y坐标
plot(x,y);
若要画出多条曲线,只需将坐标对依次放入plot函数即可:plot(x, sin(x), x, cos(x))
若要改变颜色,在坐标对后面加上相关字串即可:
plot(x, sin(x), 'c', x, cos(x), 'g')
若要同时改变颜色及图线型态(Line style),也是在坐标对后面加上相关字串即可:plot(x, sin(x), 'co', x, cos(x), 'g*')
图形完成后,我们可用axis([xmin,xmax,ymin,ymax])函数来调整图轴的范围:axis([0, 6, -1.2, 1.2]);
对上述图形还可以加上各种注解与处理:
xlabel('Input Value'); % x轴注解
ylabel('Function Value'); % y轴注解
title('Two Trigonometric Functions'); % 图形标题
legend('y = sin(x)','y = cos(x)'); % 图形注解
grid on; % 显示格线
1
2
3
4
5
6
Input Value
F u n c t i o n V a l u e
Two Trigonometric Functions
此外,我们可用subplot 来同时画出数个小图形于同一个视窗之中:
其语法为 subplot(m,n,p),其中 m , n 代表绘图成 m * n 个子图,m 表示在 y 方向有 m 个图, n 表示在 x 方向有 n 个图,p 是代表第几个子图。
subplot(2,2,1); plot(x, sin(x)); subplot(2,2,2); plot(x, cos(x)); subplot(2,2,3); plot(x, sinh(x)); subplot(2,2,4); plot(x, cosh(x));
02468
02468
实验材料下载地址:
ftp://172. 21.73.244
用户名:kly
密码:kly
数学\07级\09专。