高中物理竞赛训练题:奥赛训练《稳恒电流C》(含答案)
高考物理稳恒电流试题(有答案和解析)及解析
高考物理稳恒电流试题(有答案和解析)及解析一、稳恒电流专项训练1.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化).【答案】3.8×10-3m【解析】【分析】【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率.设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222L R Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为 12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨ 代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件2.一小型发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场方向的固定轴转动,线圈匝数100n =,穿过每匝线圈的磁通量ϕ随时间按正弦规律变化,如图所示,发电机内阻 5.0r =Ω,外电路电阻95R =Ω,已知感应电动势的最大值m m E n ω=Φ,其中m Φ为穿过每匝线圈磁通量的最大值,求串联在外电路的交流电流表(内阻不计)的读数。
高考物理稳恒电流专项训练及答案及解析
高考物理稳恒电流专项训练及答案及解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为mm.(2)用下列器材装成描绘电阻0R伏安特性曲线的电路,请将实物图连线成为实验电路.微安表μA(量程200μA,内阻约200Ω);电压表V(量程3V,内阻约10Ω);电阻0R(阻值约20 kΩ);滑动变阻器R(最大阻值50Ω,额定电流1 A);电池组E(电动势3V,内阻不计);开关S及导线若干.【答案】(1)1.880(1.878~1.882均正确)(2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm金属丝直径为(1.5+0.380) mm="1.880" mm.(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0V A 0100,0.5R RR R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.3.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯4.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量3310kg m =⨯.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电;(2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2);(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考.已知太阳辐射的总功率260410W P =⨯,太阳到地球的距离,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.【答案】(1)31.510W P =⨯电(2)/0.045f mg = (3)2101m S = 【解析】试题分析:⑴31.510W P IU 电==⨯⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg =⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积204πS r =若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则00P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-'由于15%P P =电,所以电池板的最小面积()00130%P SP S =-220004π101?m 0.70.150.7r P PS S P P ===⨯电考点:考查非纯电阻电路、电功率的计算点评:本题难度中等,对于非纯电阻电路欧姆定律不再适用,但消耗电功率依然是UI 的乘积,求解第3问时从能量守恒定律考虑问题是关键,注意太阳的发射功率以球面向外释放5.(18分) 如图所示,金属导轨MNC 和PQD ,MN 与PQ 平行且间距为L ,所在平面与水平面夹角为α,N 、Q 连线与MN 垂直,M 、P 间接有阻值为R 的电阻;光滑直导轨NC 和QD 在同一水平面内,与NQ 的夹角都为锐角θ。
高考物理稳恒电流试题(有答案和解析)含解析
高考物理稳恒电流试题(有答案和解析)含解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。
高考物理稳恒电流题20套(带答案)及解析
高考物理稳恒电流题20套(带答案)及解析一、稳恒电流专项训练1.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求:(1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l= 【解析】 【分析】细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得:122v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,EI R=③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、22223mgRv B l = 【点睛】能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻.2.要描绘某电学元件(最大电流不超过6m A,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。
高考物理稳恒电流题20套(带答案)含解析
高考物理稳恒电流题20套(带答案)含解析一、稳恒电流专项训练1.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R 【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.2.要描绘某电学元件(最大电流不超过6m A,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10m A,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。
(1)实验时有两个滑动变阻器可供选择:a、阻值0到200Ω,额定电流b、阻值0到20Ω,额定电流本实验应选的滑动变阻器是(填“a”或“b”)(2)正确接线后,测得数据如下表12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.400.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(mA)a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”)b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值)【答案】(1) a(2) a) Pb)【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。
高考物理稳恒电流题20套(带答案)含解析
高考物理稳恒电流题20套(带答案)含解析一、稳恒电流专项训练1.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻)E=I 2(r+R 1+R 2+R )由以上两式可解得R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.2.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化).【答案】3.8×10-3m【解析】【分析】【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率.设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222L R Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为 12R R R =+⑤,012L L L =+⑥式中0 1.0m L =联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨ 代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件3.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求:①电阻R ;②电源电动势E ;③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w =【解析】【分析】【详解】(1)由部分电路的欧姆定律,可得电阻为:5U R I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V(3)电源的输出功率为P =UI =20W【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.4.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:(1)流过灯泡的电流(2)固定电阻的发热功率(3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A (2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W 【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。
(物理)物理稳恒电流题20套(带答案)及解析
(物理)物理稳恒电流题20套(带答案)及解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为mm.(2)用下列器材装成描绘电阻0R伏安特性曲线的电路,请将实物图连线成为实验电路.微安表μA(量程200μA,内阻约200Ω);电压表V(量程3V,内阻约10Ω);电阻0R(阻值约20 kΩ);滑动变阻器R(最大阻值50Ω,额定电流1 A);电池组E(电动势3V,内阻不计);开关S及导线若干.【答案】(1)1.880(1.878~1.882均正确)(2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm金属丝直径为(1.5+0.380) mm="1.880" mm.(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0V A 0100,0.5R RR R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.3.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯4.如图所示,闭合电路处于方向竖直向上的磁场中,小灯泡的电阻为10Ω,其它电阻不计.当磁通量在0. 1s 内从0.2Wb 均匀增加到0.4Wb 过程中,求:①电路中的感应电动势;②如果电路中的电流恒为0.2A ,那么小灯泡在10s 内产生的热量是多少. 【答案】(1)2V (2)4J 【解析】(1)当磁通量发生变化时,闭合电路中要产生感应电动势,根据法拉第电磁感应定律,感应电动势大小为:0.40.220.1E V V t ∆Φ-===∆ (2)当小灯泡上的电流为I=0.2A 时,根据焦耳定律,10s 钟内产生的热量为: Q=I 2Rt=0.22×10×10J=4J5.在现代生活中,充电宝是手机一族出行的必备品.当充电宝电量不足时,需要给充电宝充电,此时充电宝相当于可充电的电池,充电过程可简化为如图所示电路.先给一充电宝充电,充电电压为5V ,充电电流为1000mA ,充电宝的内阻为0.2.Ω试求:()1充电宝的输入功率;()2充电宝内阻消耗的热功率; ()3一分钟内充电宝储存的电能.【答案】()1 5W ;()2?0.2W ;()3 288. 【解析】 【分析】(1)根据P UI =求解充电宝的输入功率;(2)根据2P I r =求解热功率;(3)根据2Q Pt I rt =-求解一分钟内充电宝储存的电能. 【详解】(1)充电宝的输入功率为:351000105P UI W 入-==⨯⨯=; (2)充电宝内阻消耗的热功率为:2210.20.2P I r W ==⨯=热;(3)一分钟内充电宝储存的电能为:25600.260288Q P t I rt J =-=⨯-⨯=入.【点睛】注意本题中的充电宝是非纯电阻电路,输入功率不等于热功率,知道热功率只能用2P I r =求解.6.一交流电压随时间变化的图象如图所示.若用此交流电为一台微电子控制的电热水瓶供电,电热水瓶恰能正常工作.加热时的电功率P =880W ,保温时的电功率P ′=20W .求:①该交流电电压的有效值U ; ②电热水瓶加热时通过的电流I ;. ③电热水瓶保温5h 消耗的电能E . 【答案】①220V ②4A ③53.610J ⨯ 【解析】①根据图像可知,交流电电压的最大值为:2202m U V =, 则该交流电电压的有效值为:2202mU V ==; ②电热水瓶加热时,由P UI =得:8804220P I A A U === ③电热水瓶保温5h 消耗的电能为:52053600 3.610W P t J J ='=⨯⨯=⨯点睛:本题根据交流电图象要能正确求解最大值、有效值、周期、频率等物理量,要明确功率公式P UI =对交流电同样适用,不过U 、I 都要用有效值.7.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:(1)R 1大小、R 3发生断路前R 2上的电压、及R 2阻值各是多少?(R 3发生断路时R 2上没有电流)(2)电源电动势E 和内电阻r 各是多少? 【答案】(1)1V 1Ω(2)10 V ;2Ω 【解析】试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U2 + I2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】8.某校科技小组的同学设计了一个传送带测速仪,测速原理如图所示.在传送带一端的下方固定有间距为L、长度为d的平行金属电极.电极间充满磁感应强度为B、方向垂直传送带平面(纸面)向里、有理想边界的匀强磁场,且电极之间接有理想电压表和电阻R,传送带背面固定有若干根间距为d的平行细金属条,其电阻均为r,传送带运行过程中始终仅有一根金属条处于磁场中,且金属条与电极接触良好.当传送带以一定的速度v匀速运动时,(1)电压表的示数(2)电阻R产生焦耳热的功率(3)每根金属条经过磁场区域的全过程中克服安培力做功【答案】(1)BLvRUR r=+;(2)2222()B L v RPR r=+;(3)22B L vdWR r=+.【解析】试题分析:(1)金属条产生的感应电动势为E=BLv,电路中的感应电流为I=BLvR r+,故电压表的示数BLvRU IRR r==+;(2)电阻R产生焦耳热的功率P=I2R=2222 ()B L v RR r+;(3)每根金属条经过磁场区域的全过程中克服安培力做功W=F安d=BILd=22B L vdR r+.考点:电磁感应,欧姆定律,焦耳定律,安培力.9.平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m =1×10-14kg ,电荷量q =-1×10-14C 的微粒恰好静止不动.取g =10 m /s 2,在整个运动过程中金属棒与导轨接触良好.且速度保持恒定.试求:(1)匀强磁场的方向和MN 两点间的电势差 (2)ab 两端的路端电压; (3)金属棒ab 运动的速度.【答案】(1) 竖直向下;0.1 V (2)0.4 V . (3) 1 m /s . 【解析】 【详解】(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下. 微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq 又MNU E d=所以U MN =mgdq=0.1 V (2)由欧姆定律得通过R 3的电流为I =3MNU R =0.05 A 则ab 棒两端的电压为U ab =U MN +I ×0.5R 1=0.4 V . (3)由法拉第电磁感应定律得感应电动势E =BLv 由闭合电路欧姆定律得E =U ab +Ir =0.5 V 联立解得v =1 m /s .10.电源是通过非静电力做功把其他形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势来表明电源的这种特性。
高中物理稳恒电流试题(有答案和解析)
高中物理稳恒电流试题(有答案和解析)一、稳恒电流专项训练1.能量守恒是自然界基本规律,能量转化通过做功实现。
研究发现,电容器存储的能最表达式为c E =21CU 2,其中U 为电容器两极板间的电势差.C 为电容器的电容。
现将一电容器、电源和某定值电阻按照如图所示电路进行连接。
已知电源电动势为0E ,电容器电容为0C ,定值电阻阻值为R ,其他电阻均不计,电容器原来不带电。
现将开关S 闭合,一段时间后,电路达到稳定状态。
求:在闭合开关到电路稳定的过程中,该电路因电磁辐射、电流的热效应等原因而损失的能量。
【答案】2012CE 【解析】【详解】 根据电容定义,有C=Q U,其中Q 为电容器储存的电荷量,得:Q=CU 根据题意,电容器储存能量:E C =12CU 2 利用电动势为E 0的电源给电容器充电,电容器两极间电压最终为E 0, 所以电容器最终储存的能量为:E 充=2012CE , 则电容器最终储存的电荷量为:Q=CE 0, 整个过程中消耗消耗能量为:E 放=W 电源=E 0It=E 0Q=C 20E根据能量守恒得:E 损=E 放-E 充=C 20E -2012CE =2012CE2.如下左图所示,R1=14Ω,R2=9Ω,当S 扳到位置1时,电压表示数为2.8V ,当开关S 扳到位置2时,电压表示数为2.7V ,求电源的电动势和内阻?(电压表为理想电表)【答案】E=3V, r=1Ω【解析】试题分析:根据开关S 扳到位置1和2时,分别由闭合电路欧姆定律列出含有电动势和内阻的方程,联立组成方程组求解.解:根据闭合电路欧姆定律,可列出方程组:当开关S 扳到位置1时,E=U 1+I 1r=U 1+当开关S 扳到位置2时,E=U 2+I 2r=U 2+代入解得:E=3V ,r=1Ω答:电源的电动势和内阻分别为3V 和1Ω.【点评】本题提供了一种测量电源的电动势和内阻的方法,可以用电阻箱代替两个定值电阻,即由电压表和电阻箱并连接在电源上,测量电源的电动势和内阻,此法简称伏阻法.3.一小型发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场方向的固定轴转动,线圈匝数100n =,穿过每匝线圈的磁通量ϕ随时间按正弦规律变化,如图所示,发电机内阻 5.0r =Ω,外电路电阻95R =Ω,已知感应电动势的最大值m m E n ω=Φ,其中m Φ为穿过每匝线圈磁通量的最大值,求串联在外电路的交流电流表(内阻不计)的读数。
高考物理稳恒电流专项训练及答案含解析
高考物理稳恒电流专项训练及答案含解析一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力.(1)通过ad 边的电流I ad 是多大?(2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgr B B dL【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mg B L ④ (2)由(1)可得I =22mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.如图所示的电路中,电源电动势E=10V,内阻r=0.5Ω,电动机的电阻R0=1.0Ω,电阻R1=1.5Ω.电动机正常工作时,电压表的示数U1=3.0V,求:(1)电源释放的电功率;(2)电动机消耗的电功率.将电能转化为机械能的功率;【答案】(1)20W (2)12W 8W.【解析】【分析】(1)通过电阻两端的电压求出电路中的电流I,电源的总功率为P=EI,即可求得;(2)由U内=Ir可求得电源内阻分得电压,电动机两端的电压为U=E-U1-U内,电动机消耗的功率为P电=UI;电动机将电能转化为机械能的功率为P机=P电-I2R0.【详解】(1)电动机正常工作时,总电流为:I=1URI=3.01.5A=2 A,电源释放的电功率为:P=EI =10×2 W=20 W;(2)电动机两端的电压为: U= E﹣Ir﹣U1则U=(10﹣2×0.5﹣3.0)V=6 V;电动机消耗的电功率为: P电=UI=6×2 W=12 W;电动机消耗的热功率为: P热=I2R0 =22×1.0 W=4 W;电动机将电能转化为机械能的功率,据能量守恒为:P机=P电﹣P热P机=(12﹣4)W=8 W;【点睛】对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路.对于电动机的输出功率,往往要根据能量守恒求解.3.一电路如图所示,电源电动势E=28v,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C为平行板电容器,其电容C=3.0pF,虚线到两极板距离相等,极板长L=0.20m,两极板的间距d=1.0×10-2m.(1)闭合开关S稳定后,求电容器所带的电荷量为多少?(2)当开关S闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】【分析】【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++; 电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/q C kg m-=⨯4.守恒定律是自然界中某种物理量的值恒定不变的规律,它为我们解决许多实际问题提供了依据.在物理学中这样的守恒定律有很多,例如:电荷守恒定律、质量守恒定律、能量守恒定律等等.(1)根据电荷守恒定律可知:一段导体中通有恒定电流时,在相等时间内通过导体不同截面的电荷量都是相同的.a .己知带电粒子电荷量均为g ,粒子定向移动所形成的电流强度为,求在时间t 内通过某一截面的粒子数N .b .直线加速器是一种通过高压电场使带电粒子加速的装置.带电粒子从粒子源处持续发出,假定带电粒子的初速度为零,加速过程中做的匀加速直线运动.如图l 所示,在距粒子源l 1、l 2两处分别取一小段长度相等的粒子流I ∆.已知l l :l 2=1:4,这两小段粒子流中所含的粒子数分别为n 1和n 2,求:n 1:n 2.(2)在实际生活中经常看到这种现象:适当调整开关,可以看到从水龙头中流出的水柱越来越细,如图2所示,垂 直于水柱的横截面可视为圆.在水柱上取两个横截面A 、B ,经过A 、B 的水流速度大小分别为v I 、v 2;A 、B 直径分别为d 1、d 2,且d 1:d 2=2:1.求:水流的速度大小之 比v 1:v 2.(3)如图3所示:一盛有水的大容器,其侧面有一个水平的短细管,水能够从细管中喷出;容器中水面的面积S l 远远大于细管内的横截面积S 2;重力加速度为g .假设 水不可压缩,而且没有粘滞性.a .推理说明:容器中液面下降的速度比细管中的水流速度小很多,可以忽略不计:b .在上述基础上,求:当液面距离细管的高度为h 时, 细管中的水流速度v .【答案】(1)a. Q It N q q== ;b. 21:2:1n n =;(2)221221::1:4v v d d ==;(3)a.设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =,由12S S >>,可得12v v <<.所以:液体面下降的速度1v 比细管中的水流速度可以忽略不计. b. 2v gh 【解析】【分析】【详解】(1)a.电流Q I t=, 电量Q Nq = 粒子数Q It N q q==b.根据2v ax =, 可知在距粒子源1l 、2l 两处粒子的速度之比:12:1:2v v =极短长度内可认为速度不变,根据x v t∆=∆, 得12:2:1t t = 根据电荷守恒,这两段粒子流中所含粒子数之比:12:2:1n n =(2)根据能量守恒,相等时间通过任一截面的质量相等,即水的质量相等.也即:2··4v d π处处相等 故这两个截面处的水流的流速之比:221221::1:4v v d d == (3)a .设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =由12S S >>,可得:12v v <<.所以液体面下降的速度1v 比细管中的水流速度可以忽略不计.b.根据能量守恒和机械能守恒定律分析可知:液面上质量为m 的薄层水的机械能等于细管中质量为m 的小水柱的机械能.又根据上述推理:液面薄层水下降的速度1v 忽略不计,即10v =.设细管处为零势面,所以有:21002mgh mv +=+ 解得:2v gh =5.微波炉的工作应用了一种电磁波——微波(微波的频率为2.45×106Hz ).食物中的水分子在微波的作用下加剧了热运动,内能增加,温度升高,食物增加的能量是微波给它的.右下表是某微波炉的部分技术参数,问:(1)该微波炉内磁控管产生的微波波长是多少?(2)该微波炉在使用微波挡工作时的额定电流是多少?(3)如果做一道菜,使用微波挡需要正常工作30min ,则做这道菜需消耗的电能为多少?【答案】(1)0.12m (2)5A (3)61.9810J ⨯【解析】【分析】由c=λf求得λ;额定电流=额定功率除以额定电压;消耗的电能等于功率与时间的乘积.【详解】(1)波长为863100.12 245010cm mfλ⨯===⨯.(2)额定电流:11005220PI A AU===.(3)消耗的电能E=W=Pt=1100×1800=1.98×106J.【点睛】本题主要考查了电功率和电能的计算,属于基础题.6.已知电流表的内阻R g=120 Ω,满偏电流I g=3 mA,要把它改装成量程是6 V的电压表,应串联多大的电阻?要把它改装成量程是3 A的电流表,应并联多大的电阻?【答案】改装成量程是6 V的电压表,应串联1 880 Ω的电阻;要把它改装成量程是3 A的电流表,应并联0.12 Ω的电阻.【解析】【分析】【详解】根据欧姆定律和串联电路特点可知,需串联的电阻1880ggUR RI=-=Ω;同理,根据欧姆定律的并联电路的特点可知,改装成3A电流表需并联的电阻0.12g ggI RRI I==Ω-.7.如图所示,处于匀强磁场中的两根足够长、电阻不计的光滑平行金属导轨相距L =1m ,导轨平面与水平面成θ= 30 0角,下端连接阻值为R = 0.8Ω的电阻,匀强磁场方向与导轨平面垂直,磁感应强度大小为 B=1T;质量为m = 0.1kg 、电阻r = 0.2Ω金属棒放在两导轨上,棒与导轨垂直并保持良好接触.g 取 10m/s2,求:(1)金属棒沿导轨由静止开始下滑时的加速度大小;(2)金属棒ab 所能获得的最大速度;(3)若金属棒ab沿斜面下滑0.2m 时恰好获得最大速度,求在此过程中回路一共生热多少焦?【答案】(1)5m/s2(2)0.5m/s(3)0.0875J【解析】试题分析:(1)金属棒开始下滑的初速度为零,根据牛顿第二定律得:mgsin ma θ= 代人数据解得:25/a m s =.(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡有:A mgsin F θ=,22A BlvB L v F BIL B L R r R r===++,()22m B L v mgsin R r θ=+, 最大速度为:()220.5/m mgsin R r v m s B L θ+==.(3)根据全过程中能的转化和守恒规律,有:212mgxsin mv Q θ=+, 所以全过程中系统产生的热为:210.08752Q mgxsin mv J θ=-=. 考点:导体切割磁感线时的感应电动势 【名师点睛】电磁感应中导体切割引起的感应电动势在考试中涉及较多,关键要正确分析导体棒受力情况,运用平衡条件、牛顿第二定律和功能关系进行求解.8.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:(1)R 1大小、R 3发生断路前R 2上的电压、及R 2阻值各是多少?(R 3发生断路时R 2上没有电流)(2)电源电动势E 和内电阻r 各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R 3断开时 电表读数分别变为5v 和2.5A 可知R 1=2欧R 3断开前R 1上电压U 1=R 1I=4VU 1= U 2 + U 3所以 U 2=1VU 2:U 3 = R 2:R 3 =1:3R 2=1Ω(2)R 3断开前 总电流I 1=3AE = U 1 + I 1rR 3断开后 总电流I 2=2.5A E = U 2 + I 2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】9.如图所示,一矩形线圈在匀强磁场中绕OO′轴匀速转动,磁场方向与转轴垂直.线圈匝数n=100匝,电阻r=1Ω,长l1=0.5m,宽l2=0.4m,角速度ω=10rad/s.磁场的磁感强度B=0.2T.线圈两端外接电阻R=9Ω的用电器,和一个理想交流电流表.试分析求解:(1)线圈中产生感应电动势的最大值;(2)电流表的读数;(3)电阻R上消耗的电功率.【答案】(1)40V;(2)2.82A;(3)72W.【解析】试题分析:(1)线圈中产生感应电动势的最大值E=NBSω=40V;(2)线圈中产生感应拘泥于的最大值I=ER r+=4A2=2.82A;(3)电阻R上消耗的电功率P=(2.82A)2×9Ω=72W.考点:感应电动势,欧姆定律,电功率的计算.10.如图所示,粗糙斜面的倾角θ=37°,半径r=0.5 m的圆形区域内存在着垂直于斜面向下的匀强磁场.一个匝数n=10匝的刚性正方形线框abcd,通过松弛的柔软导线与一个额定功率P=1.25 W的小灯泡A相连,圆形磁场的一条直径恰好过线框bc边.已知线框质量m=2 kg,总电阻R0=1.25 Ω,边长L>2r,与斜面间的动摩擦因数μ=0.5.从t=0时起,磁场的磁感应强度按B=2-2πt(T)的规律变化.开始时线框静止在斜面上,在线框运动前,灯泡始终正常发光.设最大静摩擦力等于滑动摩擦力,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小灯泡正常发光时的电阻R ;(2)线框保持不动的时间内,小灯泡产生的热量Q .【答案】(1)1.25 Ω (2)3.14 J【解析】【分析】(1)根据法拉第电磁感应定律,即可求解感应电动势;由功率表达式,结合闭合电路欧姆定律即可;(2)对线框受力分析,并结合平衡条件,及焦耳定律,从而求得.【详解】(1)由法拉第电磁感应定律有E =n t Φ∆∆得22121100.5 2.5?22B E n r V V t πππ∆⨯⨯⨯⨯∆=== 小灯泡正常发光,有P =I 2R由闭合电路欧姆定律有E =I (R 0+R )则有P =(0E R R+)2R ,代入数据解得R =1.25 Ω. (2)对线框受力分析如图设线框恰好要运动时,磁场的磁感应强度大小为B ′,由力的平衡条件有mg sin θ=F 安+f =F 安+μmg cos θF 安=nB ′I ×2r联立解得线框刚要运动时,磁场的磁感应强度大小B ′=0.4 T线框在斜面上可保持静止的时间 1.642/5t s s ππ== 小灯泡产生的热量Q =Pt =1.25×45πJ =3.14 J.11.如图所示,一电荷量q=3×10-5C 带正电的小球,用绝缘细线悬于竖直放置足够大的平行金属板中的O 点.电键S 合上后,当小球静止时,细线与竖直方向的夹角α=37°.已知两板相距d=0.1m ,电源电动势=15V ,内阻r=0.5Ω,电阻R 1=3Ω,R 2=R 3= R 4=8Ω.g 取10m/s 2,已知,.求:(1)电源的输出功率;(2)两板间的电场强度的大小;(3)带电小球的质量.【答案】(1)28W (2)140V/m (3)45.610kg -【解析】(1)R 外=7.0Ω R 总=7.5Ω I="15/7.5=2A " 2’P 出=I2R 外=22×7.="28w " 2’(2) U 外=IR=2×7="14V " 2’E="U/d=14/0.1=140V/m " 2’(3) Eq="mgtg37° " 2’m=Eq/gtg37°=(140×3×10-5)/(10×0.75)=5.6×10-4kg12.如图甲所示,表面绝缘、倾角θ=30°的斜面固定在水平地面上,斜面所在空间有一宽度D=0.40m 的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上.一个质量m=0.10kg 、总电阻R=0.25W 的单匝矩形金属框abcd ,放在斜面的底端,其中ab 边与斜面底边重合,ab 边长L=0.50m .从t=0时刻开始,线框在垂直cd 边沿斜面向上大小恒定的拉力作用下,从静止开始运动,当线框的ab 边离开磁场区域时撤去拉力,线框继续向上运动,线框向上运动过程中速度与时间的关系如图乙所示.已知线框在整个运动过程中始终未脱离斜面,且保持ab 边与斜面底边平行,线框与斜面之间的动摩擦因数,重力加速度g 取10 m/s 2.求:(1)线框受到的拉力F 的大小;(2)匀强磁场的磁感应强度B 的大小;(3)线框在斜面上运动的过程中产生的焦耳热Q .【答案】(1)F="1.5" N (2)(3)【解析】试题分析:(1)由v-t图象可知,在0~0.4s时间内线框做匀加速直线运动,进入磁场时的速度为v1=2.0m/s,所以:………………①………………②联解①②代入数据得:F="1.5" N ………………③(2)由v-t图象可知,线框进入磁场区域后以速度v1做匀速直线运动,由法拉第电磁感应定律和欧姆定律有:E=BLv1…④由欧姆定律得:…⑤对于线框匀速运动的过程,由力的平衡条件有:…⑥联解④⑤⑥代入数据得:…⑦(3)由v-t图象可知,线框进入磁场区域后做匀速直线运动,并以速度v1匀速穿出磁场,说明线框的宽度等于磁场的宽度,即为:⑧线框在减速为零时,有:所以线框不会下滑,设线框穿过磁场的时间为t,则:…⑨…⑩联解④⑤⑥代人数据得: (11)考点:导体切割磁感线时的感应电动势;力的合成与分解的运用;共点力平衡的条件及其应用;闭合电路的欧姆定律.13.如图所示,两足够长的平行光滑的金属导轨相距为1m,导轨平面与水平面的夹角θ=37°,其上端接一阻值为3Ω的灯泡D.在虚线L1、L2间有一与导轨所在平面垂直的匀强磁场B,且磁感应强度B=1T,磁场区域的宽度为d=3.75m,导体棒a的质量m a=0.2kg、电阻R a=3Ω;导体棒b的质量m b=0.1kg、电阻R b=6Ω,它们分别从图中M、N处同时由静止开始沿导轨向下滑动,b恰能匀速穿过磁场区域,当b 刚穿出磁场时a正好进入磁场.不计a、b之间的作用,g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)b棒进入磁场时的速度?(2)当a棒进入磁场区域时,小灯泡的实际功率?(3)假设a 棒穿出磁场前已达到匀速运动状态,求a 棒通过磁场区域的过程中,回路所产生的总热量?【答案】(1)b棒进入磁场时的速度为4.5m/s;(2)当a棒进入磁场区域时,小灯泡的实际功率为;(3)假设a 棒穿出磁场前已达到匀速运动状态,求a 棒通过磁场区域的过程中,回路所产生的总热量为3.4J【解析】试题分析:(1)设b棒进入磁场时速度V b,对b受力分析,由平衡条件列式即可求解;(2)b棒穿出磁场前,a棒一直匀加速下滑,根据牛顿第二定律求出下滑的加速度,根据运动学公式求出时间和a进入磁场时速度,进而求出a棒切割磁感线产生感应电动势,根据串并联电路的特点及P=求解灯泡功率;(3)由平衡条件求出最终匀速运动的速度,对a棒穿过磁场过程应用动能定理即可求解.解:(1)设b棒进入磁场时速度V b,对b受力分析,由平衡条件可得由电路等效可得出整个回路的等效电阻所以v b=4.5m/s(2)b棒穿出磁场前,a棒一直匀加速下滑,下滑的加速度a=gsinθ=6m/s2b棒通过磁场时间t=a进入磁场时速度v a=v b+at=9.5m/sa棒切割磁感线产生感应电动势E a=BLv a=9.5V灯泡实际功率P=(3)设a棒最终匀速运动速度为v′a,a受力分析,由平衡条件可得解得:v′a=6m/s对a棒穿过磁场过程应用动能定理﹣W 安=3.4J由功能关系可知,电路中产生的热量Q=W 安=3.4J答:(1)b 棒进入磁场时的速度为4.5m/s ;(2)当a 棒进入磁场区域时,小灯泡的实际功率为;(3)假设a 棒穿出磁场前已达到匀速运动状态,求a 棒通过磁场区域的过程中,回路所产生的总热量为3.4J【点评】(1)解答这类问题的关键是通过受力分析,正确分析安培力的变化情况,找出最大速度的运动特征.(2)电磁感应与电路结合的题目,明确电路的结构解决问题.14.(10分)如图所示,倾角θ=30°、宽L=1m 的足够长的U 形光滑金属导轨固定在磁感应强度大小B=IT 、范围足够大的匀强磁场中,磁场方向垂直导轨平面向上。
高考物理稳恒电流专项训练及答案含解析
高考物理稳恒电流专项训练及答案含解析一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】 (1)(a )电流QI t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总=设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.3.如图所示的电路中,电源电动势E =10V ,内阻r =0.5Ω,电动机的电阻R 0=1.0Ω,电阻R 1=1.5Ω.电动机正常工作时,电压表的示数U 1=3.0V ,求:(1)电源释放的电功率;(2)电动机消耗的电功率.将电能转化为机械能的功率; 【答案】(1)20W (2)12W 8W . 【解析】 【分析】(1)通过电阻两端的电压求出电路中的电流I ,电源的总功率为P=EI ,即可求得; (2)由U 内=Ir 可求得电源内阻分得电压,电动机两端的电压为U=E-U 1-U 内,电动机消耗的功率为P 电=UI ;电动机将电能转化为机械能的功率为P 机=P 电-I 2R 0. 【详解】(1)电动机正常工作时,总电流为:I=1U RI=3.01.5A=2 A , 电源释放的电功率为:P=EI =10×2 W=20 W ; (2)电动机两端的电压为: U= E ﹣Ir ﹣U 1 则U =(10﹣2×0.5﹣3.0)V=6 V ;电动机消耗的电功率为: P 电=UI=6×2 W=12 W ; 电动机消耗的热功率为: P 热=I 2R 0 =22×1.0 W=4 W ;电动机将电能转化为机械能的功率,据能量守恒为:P机=P电﹣P热P机=(12﹣4)W=8 W;【点睛】对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路.对于电动机的输出功率,往往要根据能量守恒求解.4.如图所示的电路中,电阻R1=6 Ω,R2=3 Ω.S断开时,电流表示数为0.9 A;S闭合时,电流表示数为0.8 A,设电流表为理想电表,则电源电动势E=________V,内电阻r=________Ω.【答案】E=5.76V r=0.4Ω【解析】根据闭合电路欧姆定律,两种状态,列两个方程,组成方程组,就可求解.当S断开时(1)当S闭合时(2)由(1)、(2)式联立,解得E=5.76Vr=0.4Ω5.如图所示,已知电源电动势E=16 V,内阻r=1 Ω,定值电阻R=4 Ω,小灯泡上标有“3 V,4.5 W”字样,小型直流电动机的线圈电阻r′=1 Ω,开关闭合时,小灯泡和电动机均恰好正常工作.求:(1)电路中的电流强度;(2)电动机两端的电压;(3)电动机的输出功率.【答案】(1)1.5A ;(2)5.5V;(3)6W.【解析】试题分析:(1)电路中电流LLP I U ==1.5A (2)电动机两端的电压()M L U E U I R r =--+=5.5V (3)电动机的总功率电动机线圈热功率2/2.25W P I r==热 电动机的输出功率考点:电功率6.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:(1)R 1大小、R 3发生断路前R 2上的电压、及R 2阻值各是多少?(R 3发生断路时R 2上没有电流)(2)电源电动势E 和内电阻r 各是多少? 【答案】(1)1V 1Ω(2)10 V ;2Ω 【解析】试题分析:(1)R 3断开时 电表读数分别变为5v 和2.5A 可知R 1=2欧 R 3断开前R 1上电压U 1=R 1I=4V U 1= U 2 + U 3 所以 U 2=1V U 2:U 3 = R 2:R 3 =1:3 R 2=1Ω(2)R 3断开前 总电流I 1=3A E = U 1 + I 1rR 3断开后 总电流I 2=2.5AE = U 2 + I 2r联解方程E= 10 V r=2Ω 考点:闭合电路的欧姆定律 【名师点睛】7.平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m =1×10-14kg ,电荷量q =-1×10-14C 的微粒恰好静止不动.取g =10 m /s 2,在整个运动过程中金属棒与导轨接触良好.且速度保持恒定.试求:(1)匀强磁场的方向和MN 两点间的电势差 (2)ab 两端的路端电压; (3)金属棒ab 运动的速度.【答案】(1) 竖直向下;0.1 V (2)0.4 V . (3) 1 m /s . 【解析】 【详解】(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下. 微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq 又MNU E d=所以U MN =mgdq=0.1 V (2)由欧姆定律得通过R 3的电流为I =3MNU R =0.05 A 则ab 棒两端的电压为U ab =U MN +I ×0.5R 1=0.4 V . (3)由法拉第电磁感应定律得感应电动势E =BLv 由闭合电路欧姆定律得E =U ab +Ir =0.5 V 联立解得v =1 m /s .8.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B 、R 0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B ,需先测量磁敏电阻处于磁场中的电阻值R B .请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在9.如图所示,粗糙斜面的倾角θ=37°,半径r=0.5 m的圆形区域内存在着垂直于斜面向下的匀强磁场.一个匝数n=10匝的刚性正方形线框abcd,通过松弛的柔软导线与一个额定功率P=1.25 W的小灯泡A相连,圆形磁场的一条直径恰好过线框bc边.已知线框质量m=2 kg,总电阻R0=1.25 Ω,边长L>2r,与斜面间的动摩擦因数μ=0.5.从t=0时起,磁场的磁感应强度按B=2-2t(T)的规律变化.开始时线框静止在斜面上,在线框运动前,灯泡始终正常发光.设最大静摩擦力等于滑动摩擦力,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小灯泡正常发光时的电阻R ;(2)线框保持不动的时间内,小灯泡产生的热量Q . 【答案】(1)1.25 Ω (2)3.14 J 【解析】 【分析】(1)根据法拉第电磁感应定律,即可求解感应电动势;由功率表达式,结合闭合电路欧姆定律即可;(2)对线框受力分析,并结合平衡条件,及焦耳定律,从而求得. 【详解】(1)由法拉第电磁感应定律有E =n tΦ∆∆得22121100.5 2.5?22B E nr V V t πππ∆⨯⨯⨯⨯∆=== 小灯泡正常发光,有P =I 2R 由闭合电路欧姆定律有E =I (R 0+R ) 则有P =(0ER R+)2R ,代入数据解得R =1.25 Ω. (2)对线框受力分析如图设线框恰好要运动时,磁场的磁感应强度大小为B ′,由力的平衡条件有 mg sin θ=F 安+f =F 安+μmg cos θ F 安=nB ′I ×2r联立解得线框刚要运动时,磁场的磁感应强度大小B ′=0.4 T 线框在斜面上可保持静止的时间 1.642/5t s s ππ== 小灯泡产生的热量Q =Pt =1.25×45πJ =3.14 J.10.如图所示,在两光滑平行金属导轨之间存在方向垂直纸面向里的匀强磁场,磁感应强度大小为B ,导轨的间距为L ,电阻不计.金属棒垂直于导轨放置,质量为m ,重力和电阻可忽略不计.现在导轨左端接入一个电阻为R 的定值电阻,给金属棒施加一个水平向右的恒力F ,经过时0t 后金属棒达到最大速度.()1金属棒的最大速度max v 是多少?()2求金属棒从静止达到最大速度的过程中.通过电阻R 的电荷量q ;()3如图乙所示,若将电阻换成一个电容大小为C 的电容器(认为电容器充放电可瞬间完成).求金属棒由静止开始经过时间t 后,电容器所带的电荷量Q .【答案】()221FR B L ;()0332Ft FmR BL B L -;()223FCBLt m CB L +. 【解析】 【分析】(1)当速度最大时,导体棒受拉力与安培力平衡,根据平衡条件、安培力公式、切割公式列式后联立求解即可;(2)根据法律的电磁感应定律列式求解平均感应电动势、根据欧姆定律列式求解平均电流、再根据电流定义求解电荷量;(3)根据牛顿第二定律和电流的定义式,得到金属棒的加速度表达式,再分析其运动情况.由法拉第电磁感应定律求解MN 棒产生的感应电动势,得到电容器的电压,从而求出电容器的电量. 【详解】(1)当安培力与外力相等时,加速度为零,物体速度达到最大,即F=BIL=22maxB L v R由此可得金属棒的最大速度:v max =22FRB L (2)由动量定律可得:(F-F )t 0=mv max其中:F =220xRt B L解得金属棒从静止达到最大速度的过程中运动的距离:x=022Ft R B L -244FmR B L通过电阻R 的电荷量:q=BLx R =0Ft BL -33FmRB L (3)设导体棒运动加速度为a ,某时装金属棒的速度为v 1,经过n t 金属体的速度为v 2,导体棒中流过的电流(充电电流)为I ,则:F-BIL=ma 电流:I=Q t V V =C EtV V其中:n E=BLv 2-BLv 1=BL n v ,a=vtn n 联立各式得:a=22Fm CB L +因此,导体棒向右做匀加速直线运动.由于所有电阻均忽略,平行板电容器两板间电压U 与导体棒切割磁感线产生的感应电动势E 相等,电容器的电荷量:Q=CBLat=22FCBLtm CB L +答:(1)金属棒的最大速度max v 是22FRB L; (2)金属棒从静止达到最大速度的过程中,通过电阻R 的电荷量q 为033Ft FmRBL B L-; (3)金属棒由静止开始经过时间t 后,电容器所带的电荷量Q 为22FCBLtm CB L +.【点睛】解决本题的关键有两个:一是抓住电流的定义式,结合牛顿第二定律分析金属棒的加速度.二是运用微元法,求解金属棒的位移,其切入口是加速度的定义式.11.如图甲所示,发光竹蜻蜓是一种常见的儿童玩具,它在飞起时能够发光.某同学对竹蜻蜓的电路作如下简化:如图乙所示,半径为L 的金属圆环绕垂直于圆环平面、通过圆心O 的金属轴O 1O 2以角速度ω匀速转动,圆环上接有电阻均为r 的三根导电辐条OP 、OQ 、OR ,辐条互成120°角.在圆环内,圆心角为120°的扇形区域内存在垂直圆环平面向下磁感应强度为B 的匀强磁场,在转轴O 1O 2与圆环的边缘之间通过电刷M 、N 与一个LED 灯(可看成二极管,发光时电阻为r ).圆环及其它电阻不计,从辐条OP 进入磁场开始计时.(1)顺磁感线方向看,圆盘绕O 1O 2轴沿什么方向旋转,才能使LED 灯发光?在不改变玩具结构的情况下,如何使LED 灯发光时更亮?(2)在辐条OP 转过60°的过程中,求通过LED 灯的电流; (3)求圆环每旋转一周,LED 灯消耗的电能.【答案】(1)逆时针;增大角速度(2)28BL r ω(3)2432B L rωπ【解析】试题分析:(1)圆环转动过程,始终有一条导电辐条在切割磁感线,产生感应电动势,并通过M.N 和二极管构成闭合回路.由于二极管的单向导电性,只有转轴为正极,即产生指向圆心的感应电流时二极管才发光,根据右手定则判断,圆盘逆时针旋转. 要使得LED 灯发光时更亮,就要使感应电动势变大,即增大转速增大角速度ω. (2)导电辐条切割磁感线产生感应电动势212E BL ω=此时O 点相当于电源正极,P 点为电源负极,电源内阻为r 电源外部为二个导体辐条和二极管并联,即外阻为3r . 通过闭合回路的电流343E E I r r r ==+带入即得22133248BL BL I r rωω⨯==流过二极管电流为238I BL rω=(3)转动过程始终有一个导电辐条在切割磁感线,所以经过二极管的电流不变 转过一周所用时间2T πω=所以二极管消耗的电能2422'()332I B L Q I rT rT rωπ===考点:电磁感应 串并联电路12.如图25甲为科技小组的同学们设计的一种静电除尘装置示意图,其主要结构有一长为L 、宽为b 、高为d 的矩形通道,其前、后板使用绝缘材料,上、下板使用金属材料.图25乙是该主要结构的截面图,上、下两板与输出电压可调的高压直流电源(内电阻可忽略不计)相连.质量为m 、电荷量大小为q 的分布均匀的带负电的尘埃无初速度地进入A 、B 两极板间的加速电场.已知A 、B 两极板间加速电压为U0,尘埃加速后全都获得相同的水平速度,此时单位体积内的尘埃数为n .尘埃被加速后进入矩形通道,当尘埃碰到下极板后其所带电荷被中和,同时尘埃被收集.通过调整高压直流电源的输出电压U 可以改变收集效率η(被收集尘埃的数量与进入矩形通道尘埃的数量的比值).尘埃所受的重力、空气阻力及尘埃之间的相互作用均可忽略不计.在该装置处于稳定工作状态时:(1)求在较短的一段时间Δt 内,A 、B 两极板间加速电场对尘埃所做的功; (2)若所有进入通道的尘埃都被收集,求通过高压直流电源的电流;(3)请推导出收集效率η随电压直流电源输出电压U 变化的函数关系式. 【答案】(1)nbd ΔtqU(2)(3)若y <d ,即204L U dU <d ,则收集效率η=y d =2204L U d U (U < 2024d U L) ;若y ≥d 则所有的尘埃都到达下极板,收集效率η=100% (U ≥2024d U L) 【解析】试题分析:(1)设电荷经过极板B 的速度大小为0v ,对于一个尘埃通过加速电场过程中,加速电场做功为00W qU =在t ∆时间内从加速电场出来的尘埃总体积是0V bdv t =∆ 其中的尘埃的总个数()0N nV n bdv t ==∆总故A 、B 两极板间的加速电场对尘埃所做的功()000W N qU n bdv t qU ==∆总 对于一个尘埃通过加速电场过程,根据动能定理可得20012qU mv =故解得W nbd tqU =∆(2)若所有进入矩形通道的尘埃都被收集,则t ∆时间内碰到下极板的尘埃的总电荷量()0Q N q nq bdv t ∆==∆总通过高压直流电源的电流0QI nQbdv t ∆===∆ (3)对某一尘埃,其在高压直流电源形成的电场中运动时,在垂直电场方向做速度为0v 的匀速直线运动,在沿电场力方向做初速度为0的匀加速直线运动 根据运动学公式有:垂直电场方向位移0x v t =,沿电场方向位移212y at = 根据牛顿第二定律有F qE qU a m m md=== 距下板y 处的尘埃恰好到达下板的右端边缘,则x=L解得204L Uy dU =若y d <,即204L U d dU <,则收集效率2202204()4d U y L UU d d U Lη==< 若y d ≥,则所有的尘埃都到达下极板,效率为100%2024()d U U L≥ 考点:考查了带电粒子在电场中的运动【名师点睛】带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同.先分析受力情况再分析运动状态和运动过程(平衡、加速、减速,直 线或曲线),然后选用恰当的规律解题.解决这类问题的基本方法有两种,第一种利用力和运动的观点,选用牛顿第二定律和运动学公式求解;第二种利用能量转化 的观点,选用动能定理和功能关系求解13.如图所示,宽度m L 1=的足够长的U 形金属框架水平放置,框架中连接电阻Ω=8.0R ,框架处在竖直向上的匀强磁场中,磁感应强度T B 1=,框架导轨上放一根质量为kg m 2.0=、电阻Ω=2.0r ,的金属棒ab ,棒ab 与导轨间的动摩擦因数5.0=μ,现用功率恒定W P 6=的牵引力F 使棒从静止开始沿导轨运动(ab 棒始终与导轨接触良好且垂直),当整个回路产生热量J Q 8.5=时刚好获得稳定速度,此过程中,通过棒的电量C q 8.2=(框架电阻不计,g 取2/10s m )求:(1)当导体棒的速度达到s m V /11=时,导体棒上ab 两点电势的高低?导体棒ab 两端的电压?导体棒的加速度? (2)导体棒稳定的速度2V ?(3)导体棒从静止到刚好获得稳定速度所用的时间? 【答案】(1)b 点的电势高,0.8V ,220/m s (2)s m V /22=;(3)s t 5.1= 【解析】试题分析:(1)当11/V V m s ==时,根据法拉第电磁感应定律:BLV E = 则rR EI +=根据欧姆定律:V IR U 8.0==,则:BIL F =安 FV p =。
高中物理稳恒电流题20套(带答案)含解析
高中物理稳恒电流题20套(带答案)含解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】 (1)(a )电流QI t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总=设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆ 又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为 mm .(2)用下列器材装成描绘电阻0R 伏安特性曲线的电路,请将实物图连线成为实验电路. 微安表μA (量程200μA ,内阻约200Ω); 电压表V (量程3V ,内阻约10Ω); 电阻0R (阻值约20 kΩ);滑动变阻器R (最大阻值50Ω,额定电流1 A ); 电池组E (电动势3V ,内阻不计);开关S 及导线若干.【答案】(1)1.880(1.878~1.882均正确) (2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm 金属丝直径为(1.5+0.380) mm="1.880" mm .(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0VA 0100,0.5R R R R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.3.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W【点睛】部分电路欧姆定律U=IR和闭合电路欧姆定律E=U+Ir是电路的重点,也是考试的热点,要熟练掌握.4.超导现象是20世纪人类重大发现之一,日前我国己研制出世界传输电流最大的高温超导电缆并成功示范运行.(l)超导体在温度特别低时电阻可以降到几乎为零,这种性质可以通过实验研究.将一个闭合超导金属圈环水平放置在匀强磁场中,磁感线垂直于圈环平面向上,逐渐降低温度使环发生由正常态到超导态的转变后突然撤去磁场,若此后环中的电流不随时间变化.则表明其电阻为零.请指出自上往下看环中电流方向,并说明理由.(2)为探究该圆环在超导状态的电阻率上限ρ,研究人员测得撤去磁场后环中电流为I,并经一年以上的时间t未检测出电流变化.实际上仪器只能检测出大于△I的电流变化,其中△I<<I,当电流的变化小于△I时,仪器检测不出电流的变化,研究人员便认为电流没有变化.设环的横截面积为S,环中定向移动电子的平均速率为v,电子质量为m、电荷量为e.试用上述给出的各物理量,推导出ρ的表达式.(3)若仍使用上述测量仪器,实验持续时间依旧为t.为使实验获得的该圆环在超导状态的电阻率上限ρ的准确程度更高,请提出你的建议,并简要说明实现方法.【答案】(1)见解析(2)(3)见解析【解析】(1)逆时针方向。
高中物理稳恒电流题20套(带答案)及解析
高中物理稳恒电流题20套(带答案)及解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。
如图所示:一段横截面积为S 、长为l 的金属电阻丝,单位体积内有n 个自由电子,每一个电子电量为e 。
该电阻丝通有恒定电流时,两端的电势差为U ,假设自由电子定向移动的速率均为v 。
(1)求导线中的电流I ;(2)有人说“导线中电流做功,实质上就是导线中的恒定电场对自由电荷的静电力做功”。
这种说法是否正确,通过计算说明。
(3)为了更好地描述某个小区域的电流分布情况,物理学家引入了电流密度这一物理量,定义其大小为单位时间内通过单位面积的电量。
若已知该导线中的电流密度为j ,导线的电阻率为ρ,试证明:U j lρ=。
【答案】(1)I neSv =;(2)正确,说明见解析;(3)证明见解析 【解析】【详解】(1)电流的定义式Q I t =,在t 时间内,流过横截面的电荷量Q nSvte = 因此I neSv =(2)这种说法正确。
在电路中,导线中电流做功为:W UIt = 在导线中,恒定电场的场强U E l=,导体中全部自由电荷为q nSle =, 导线中的恒定电场对自由电荷力做的功:U U W qEvt qvt nSel vt nSevUt l l ==== 又因为I neSv =,则W UIt =故“导线中电流做功,实质上就是导线中的恒定电场对自由电荷的静电力做功”是正确的。
(3)由欧姆定律:U IR = 由电阻定律:l R S ρ= 则l U I S ρ=,则有:U I l Sρ= 电流密度的定义:Q I j St S == 故U j lρ=2.如图所示的电路中,R 1=4Ω,R 2=2Ω,滑动变阻器R 3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V 和0~15V 两挡,理想电流表的量程有0~0.6A 和0~3A 两挡.闭合开关S ,将滑片P 从最左端向右移动到某位置时,电压表、电流表示数分别为2V 和0.5A ;继续向右移动滑片P 至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V ,2.0Ω.【解析】【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势.【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A =0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A 由闭合电路欧姆定律得E =I 总r+U 1+U 3,即E =1.5r+2+2①当电流表示数为0.2 A 时,R 1两端的电压为U 1′=I 1′R 1=0.2×4V =0.8 V回路的总电流为I 总′=I 1′+12U R =0.2+0.82A =0.6A 由闭合电路欧姆定律得E =I 总′r+U 1′+U 3′,即E =0.6r+0.8+5②联立①②解得E =7.0 V ,r =2.0Ω【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.3.如图所示,闭合电路处于方向竖直向上的磁场中,小灯泡的电阻为10Ω,其它电阻不计.当磁通量在0. 1s 内从0.2Wb 均匀增加到0.4Wb 过程中,求:①电路中的感应电动势;②如果电路中的电流恒为0.2A ,那么小灯泡在10s 内产生的热量是多少.【答案】(1)2V (2)4J【解析】(1)当磁通量发生变化时,闭合电路中要产生感应电动势,根据法拉第电磁感应定律,感应电动势大小为: 0.40.220.1E V V t ∆Φ-===∆ (2)当小灯泡上的电流为I=0.2A 时,根据焦耳定律,10s 钟内产生的热量为: Q=I 2Rt=0.22×10×10J=4J4.在现代生活中,充电宝是手机一族出行的必备品.当充电宝电量不足时,需要给充电宝充电,此时充电宝相当于可充电的电池,充电过程可简化为如图所示电路.先给一充电宝充电,充电电压为5V ,充电电流为1000mA ,充电宝的内阻为0.2.Ω试求:()1充电宝的输入功率;()2充电宝内阻消耗的热功率;()3一分钟内充电宝储存的电能.【答案】()1 5W ;()2?0.2W ;()3 288. 【解析】【分析】(1)根据P UI =求解充电宝的输入功率;(2)根据2P I r =求解热功率;(3)根据2Q Pt I rt =-求解一分钟内充电宝储存的电能.【详解】(1)充电宝的输入功率为:351000105P UI W 入-==⨯⨯=;(2)充电宝内阻消耗的热功率为:2210.20.2P I r W ==⨯=热;(3)一分钟内充电宝储存的电能为:25600.260288Q P t I rt J =-=⨯-⨯=入.【点睛】注意本题中的充电宝是非纯电阻电路,输入功率不等于热功率,知道热功率只能用2P I r =求解.5.如图所示的电路中,电炉电阻R =10Ω,电动机线圈的电阻r =1Ω,电路两端电压U =100V ,电流表的示数为30A ,问:(1)通过电动机的电流为多少?(2)通电一分钟,电动机做的有用功为多少?【答案】(1)I 2=20A (2)W =9.6×104J【解析】【详解】根据欧姆定律,通过电炉的电流强度为:11001010U I A A R === 根据并联电路中的干路电流和支路电流的关系,则通过电动机的电流强度为:I 2=I -I 1=20A.电动机的总功率为P =UI 2=100×20 W =2×103W.因发热而损耗的功率为P ′=I 22r =400 W.电动机的有用功率(机械功率)为P ″=P -P ′=1.6×103W ,电动机通电1 min 做的有用功为W =P ″t =1.6×103×60 J =9.6×104J.【点睛】题图中的两个支路分别为纯电阻电路(电炉)和非纯电阻电路(电动机).在纯电阻电路中可运用欧姆定律I =U/R 直接求出电流强度,而非纯电阻电路中的电流强度只能运用干路和支路中电流强度的关系求出.在非纯电阻电路中,电功大于电热,两者的差值才是有用功.6.一交流电压随时间变化的图象如图所示.若用此交流电为一台微电子控制的电热水瓶供电,电热水瓶恰能正常工作.加热时的电功率P =880W ,保温时的电功率P ′=20W .求:①该交流电电压的有效值U ;②电热水瓶加热时通过的电流I ;.③电热水瓶保温5h 消耗的电能E .【答案】①220V ②4A ③53.610J ⨯【解析】①根据图像可知,交流电电压的最大值为:2202m U V =,则该交流电电压的有效值为:2202m U V ==; ②电热水瓶加热时,由P UI =得:8804220P I A A U === ③电热水瓶保温5h 消耗的电能为:52053600 3.610W P t J J ='=⨯⨯=⨯点睛:本题根据交流电图象要能正确求解最大值、有效值、周期、频率等物理量,要明确功率公式P UI =对交流电同样适用,不过U 、I 都要用有效值.7.如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有电阻值为R 的电阻,一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.求:(1)在加速下滑过程中,当ab 杆的速度大小为v 时杆中的电流及杆的加速度大小; (2)在下滑过程中,ab 杆可以达到的速度最大值.【答案】(1)BLv R 22B L v gsin mRθ- (2)22sin mgR B L θ 【解析】(1)当ab 加速下滑时,速度大小为v 时,则 E BLv =根据闭合电路欧姆定律,有: E I R=故BLv I R =,方向由a 到b 由安培力公式: F BIL =根据牛顿第二定律:mgsin F ma θ-=整理可以得到:2222 )/sin B L v B L v a mgsin m g R mR(θθ=-=- (2)当0a =时ab 杆的速度可以达到最大值即: m BLv mgsin BLR θ= 所以:22sin m mgR v B L θ=.8.如图所示,一矩形线圈在匀强磁场中绕OO′轴匀速转动,磁场方向与转轴垂直.线圈匝数n =100匝,电阻r =1Ω,长l 1=0.5m ,宽l 2=0.4m ,角速度ω=10rad/s .磁场的磁感强度B =0.2T .线圈两端外接电阻R =9Ω的用电器,和一个理想交流电流表.试分析求解:(1)线圈中产生感应电动势的最大值;(2)电流表的读数;(3)电阻R 上消耗的电功率.【答案】(1)40V ;(2)2.82A ;(3)72W .【解析】试题分析:(1)线圈中产生感应电动势的最大值E=NBSω=40V ;(2)线圈中产生感应拘泥于的最大值I=E R r+=4A 2=2.82A ; (3)电阻R 上消耗的电功率P=(2.82A )2×9Ω=72W .考点:感应电动势,欧姆定律,电功率的计算.9.某校科技小组的同学设计了一个传送带测速仪,测速原理如图所示.在传送带一端的下方固定有间距为L 、长度为d 的平行金属电极.电极间充满磁感应强度为B 、方向垂直传送带平面(纸面)向里、有理想边界的匀强磁场,且电极之间接有理想电压表和电阻R ,传送带背面固定有若干根间距为d 的平行细金属条,其电阻均为r ,传送带运行过程中始终仅有一根金属条处于磁场中,且金属条与电极接触良好.当传送带以一定的速度v 匀速运动时,(1)电压表的示数(2)电阻R产生焦耳热的功率(3)每根金属条经过磁场区域的全过程中克服安培力做功【答案】(1)BLvRUR r=+;(2)2222()B L v RPR r=+;(3)22B L vdWR r=+.【解析】试题分析:(1)金属条产生的感应电动势为E=BLv,电路中的感应电流为I=BLvR r+,故电压表的示数BLvRU IRR r==+;(2)电阻R产生焦耳热的功率P=I2R=2222 ()B L v RR r+;(3)每根金属条经过磁场区域的全过程中克服安培力做功W=F安d=BILd=22B L vdR r+.考点:电磁感应,欧姆定律,焦耳定律,安培力.10.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L,导轨的两端分别与电源(串有一滑动变阻器 R)、定值电阻、电容器(原来不带电)和开关K相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B.一质量为m,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E,内阻为r,电容器的电容为C,定值电阻的阻值为R0,不计导轨的电阻.(1)当K接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L + 【解析】【详解】(1)金属棒ab 在磁场中恰好保持静止,由BIL=mgE I R r=+ 得 EBL R r mg=- (2)由 220B L v mg R = 得 022mgR v B L = 由动量定理,得mgt BILt mv -= 其中0BLs q It R ==得44220220B L s m gR t mgR B L+= (3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t ∆∆∆∆=====∆∆∆∆ mg-BIL=ma 得22mg a m CB L =+=常数 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的.v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=-- 解得:2222mgsCB L E m cB L∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.11.如图所示,某一新型发电装置的发电管是横截面为矩形的水平管道,管道宽为d ,管道高度为h ,上、下两面是绝缘板,前后两侧M N 、是电阻可忽略的导体板,两导体板与开关S 和定值电阻R 相连。
(物理)物理稳恒电流题20套(带答案)及解析
(物理)物理稳恒电流题20套(带答案)及解析一、稳恒电流专项训练1.如图所示的电路中,电源电动势E=10V,内阻r=0.5Ω,电动机的电阻R0=1.0Ω,电阻R1=1.5Ω.电动机正常工作时,电压表的示数U1=3.0V,求:(1)电源释放的电功率;(2)电动机消耗的电功率.将电能转化为机械能的功率;【答案】(1)20W (2)12W 8W.【解析】【分析】(1)通过电阻两端的电压求出电路中的电流I,电源的总功率为P=EI,即可求得;(2)由U内=Ir可求得电源内阻分得电压,电动机两端的电压为U=E-U1-U内,电动机消耗的功率为P电=UI;电动机将电能转化为机械能的功率为P机=P电-I2R0.【详解】(1)电动机正常工作时,总电流为:I=1URI=3.01.5A=2 A,电源释放的电功率为:P=EI =10×2 W=20 W;(2)电动机两端的电压为: U= E﹣Ir﹣U1则U=(10﹣2×0.5﹣3.0)V=6 V;电动机消耗的电功率为: P电=UI=6×2 W=12 W;电动机消耗的热功率为: P热=I2R0 =22×1.0 W=4 W;电动机将电能转化为机械能的功率,据能量守恒为:P机=P电﹣P热P机=(12﹣4)W=8 W;【点睛】对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路.对于电动机的输出功率,往往要根据能量守恒求解.2.如图所示,已知电源电动势E=20V,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L和内阻R D=1Ω的小型直流电动机D都恰能正常工作.试求:(1)流过灯泡的电流(2)固定电阻的发热功率(3)电动机输出的机械功率【答案】(1)2A(2)7V(3)12W【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U和额定功率P的数值可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。
高考物理稳恒电流题20套(带答案)含解析
高考物理稳恒电流题20套(带答案)含解析一、稳恒电流专项训练1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于x VA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.2.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。
高中物理稳恒电流专项训练及答案
高中物理稳恒电流专项训练及答案一、稳恒电流专项训练1.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R 【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.2.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量3310kg m =⨯.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电;(2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2);(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考.已知太阳辐射的总功率260410W P =⨯,太阳到地球的距离,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.【答案】(1)31.510W P =⨯电(2)/0.045f mg = (3)2101m S = 【解析】试题分析:⑴31.510W P IU 电==⨯⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg =⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积204πS r =若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则00P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-'由于15%P P =电,所以电池板的最小面积()00130%P SP S =-220004π101?m 0.70.150.7r P PS S P P ===⨯电考点:考查非纯电阻电路、电功率的计算点评:本题难度中等,对于非纯电阻电路欧姆定律不再适用,但消耗电功率依然是UI 的乘积,求解第3问时从能量守恒定律考虑问题是关键,注意太阳的发射功率以球面向外释放3.在现代生活中,充电宝是手机一族出行的必备品.当充电宝电量不足时,需要给充电宝充电,此时充电宝相当于可充电的电池,充电过程可简化为如图所示电路.先给一充电宝充电,充电电压为5V ,充电电流为1000mA ,充电宝的内阻为0.2.Ω试求:()1充电宝的输入功率;()2充电宝内阻消耗的热功率; ()3一分钟内充电宝储存的电能.【答案】()1 5W ;()2?0.2W ;()3 288. 【解析】 【分析】(1)根据P UI =求解充电宝的输入功率;(2)根据2P I r =求解热功率;(3)根据2Q Pt I rt =-求解一分钟内充电宝储存的电能. 【详解】(1)充电宝的输入功率为:351000105P UI W 入-==⨯⨯=; (2)充电宝内阻消耗的热功率为:2210.20.2P I r W ==⨯=热;(3)一分钟内充电宝储存的电能为:25600.260288Q P t I rt J =-=⨯-⨯=入.【点睛】注意本题中的充电宝是非纯电阻电路,输入功率不等于热功率,知道热功率只能用2P I r =求解.4.如图所示,已知电源电动势E=16 V ,内阻r=1 Ω,定值电阻R=4 Ω,小灯泡上标有“3 V ,4.5 W”字样,小型直流电动机的线圈电阻r′=1 Ω,开关闭合时,小灯泡和电动机均恰好正常工作.求:(1)电路中的电流强度; (2)电动机两端的电压; (3)电动机的输出功率.【答案】(1)1.5A ;(2)5.5V ;(3)6W. 【解析】试题分析:(1)电路中电流LLP I U ==1.5A (2)电动机两端的电压()M L U E U I R r =--+=5.5V (3)电动机的总功率电动机线圈热功率2/2.25W P I r ==热 电动机的输出功率考点:电功率5.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L ,导轨的两端 分别与电源(串有一滑动变阻器 R )、定值电阻、电容器(原来不带电)和开关K 相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B .一质量为m ,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E ,内阻为r ,电容器的电容为C ,定值电阻的阻值为R0,不计导轨的电阻.(1)当K 接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L +【解析】 【详解】(1)金属棒ab 在磁场中恰好保持静止,由BIL=mgE I R r=+ 得 EBLR r mg=- (2)由 220B L vmg R =得 022mgR v B L =由动量定理,得mgt BILt mv -= 其中0BLsq It R ==得4422220B L s m gR t mgR B L +=(3)K 接3后的充电电流q C U CBL v v I CBLCBLa t t t t∆∆∆∆=====∆∆∆∆ mg-BIL=ma 得22mga m CB L =+=常数所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的. v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=--解得:2222mgsCB L E m cB L ∆=+【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.6.如图所示,电源电动势E =27 V ,内阻r =2 Ω,固定电阻R 2=4 Ω,R 1为光敏电阻.C 为平行板电容器,其电容C =3pF ,虚线到两极板距离相等,极板长L =0.2 m ,间距d =1.0×10-2 m .P 为一圆盘,由形状相同透光率不同的二个扇形a 、b 构成,它可绕AA′轴转动.当细光束通过扇形a 、b 照射光敏电阻R 1时,R 1的阻值分别为12 Ω、3 Ω.有带电量为q =-1.0×10-4 C 微粒沿图中虚线以速度v 0=10 m/s 连续射入C 的电场中.假设照在R 1上的光强发生变化时R 1阻值立即有相应的改变.重力加速度为g =10 m/s 2.(1)求细光束通过a 照射到R 1上时,电容器所带的电量;(2)细光束通过a 照射到R 1上时,带电微粒刚好沿虚线匀速运动,求细光束通过b 照射到R 1上时带电微粒能否从C 的电场中射出.【答案】(1)111.810C Q -=⨯(2)带电粒子能从C 的电场中射出【解析】 【分析】由闭合电路欧姆定律求出电路中电流,再由欧姆定律求出电容器的电压,即可由Q=CU 求其电量;细光束通过a 照射到R 1上时,带电微粒刚好沿虚线匀速运动,电场力与重力二力平衡.细光束通过b 照射到R 1上时,根据牛顿第二定律求粒子的加速度,由类平抛运动分位移规律分析微粒能否从C 的电场中射出. 【详解】(1)由闭合电路欧姆定律,得12271.5A 1242E I R R r ===++++又电容器板间电压22C U U IR ==,得U C =6V 设电容器的电量为Q ,则Q=CU C 解得111.810C Q -=⨯(2)细光束通过a 照射时,带电微粒刚好沿虚线匀速运动,则有CU mg qd= 解得20.610m kg -=⨯细光束通过b 照射时,同理可得12C U V '=由牛顿第二定律,得C U q mg ma d'-= 解得210m/s a =微粒做类平抛运动,得212y at =, 0l t v =解得20.210m 2dy -=⨯<, 所以带电粒子能从C 的电场中射出. 【点睛】本题考查了带电粒子在匀强电场中的运动,解题的关键是明确带电粒子的受力情况,判断其运动情况,对于类平抛运动,要掌握分运动的规律并能熟练运用.7.如图所示,某一新型发电装置的发电管是横截面为矩形的水平管道,管道宽为d ,管道高度为h ,上、下两面是绝缘板,前后两侧M N 、是电阻可忽略的导体板,两导体板与开关S 和定值电阻R 相连。
高考物理稳恒电流题20套(带答案)(1)
高考物理稳恒电流题20套(带答案)(1)一、稳恒电流专项训练1.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件2.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线.(2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.3.四川省“十二五”水利发展规划指出,若按现有供水能力测算,我省供水缺口极大,蓄引提水是目前解决供水问题的重要手段之一。
高考物理稳恒电流题20套(带答案)
高考物理稳恒电流题20套(带答案)一、稳恒电流专项训练1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.2.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件3.如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电.改变变阻器R的阻值,路端电压U与电流I均随之变化.(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义.(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;b.请推导该电源对外电路能够输出的最大电功率及条件.(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.【答案】(1)U–I图象如图所示:图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a如图所示:b.2 4 E r(3)见解析【解析】(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示b.电源输出的电功率:2222 ()2E EP I R RrR rR rR===+++当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)电动势定义式:WEq=非静电力根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即22W I rt I Rt Irq IRq=+=+E Ir IR U U=+=+外内本题答案是:(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a .如图所示当外电路电阻R =r 时,电源输出的电功率最大,为2max =4E P r(3)E U U =+外内点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.4.能量守恒是自然界基本规律,能量转化通过做功实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稳恒电流 C
13、电解硝酸银溶液时,在阴极上1分钟内析出67.08毫克银,银的原子量为107.9 ,求电路中的电流。
已知法拉第恒量F =9.68×104C/mol 。
14、一铜导线横截面积为4毫升2,20秒内有80库仑的电量通过该导线的某一截面。
已知铜内自由电子密度为8.5×1022厘米−3,每个电子的电量为1.6×10−19库仑,求电子的定向移动的平均速率。
15、通常气体是不导电的,为了使之能够导电,首先必须使之;产生持续的自激放电的条件是和;通常气体自激放电现象可分为四大类:、、和,如雷电现象属,霓虹灯光属,高压水银灯发光属。
16、一个电动势为ε、内阻为r的电池给不同的灯泡供电。
试证:灯泡电阻R =r时亮度最大,且最大功率P m=ε2/4r 。
17、用万用表的欧姆档测量晶体二极管的正向电阻时,会出现用不同档测出的阻值不相同的情况,试解释这种现象。
18、某金属材料,其内自由电子相继两次碰撞的时间间隔平均值为τ,其单位体积内自由电子个数为n ,设电子电量为e,质量为m ,试推出此导体的电阻率表达式。
19、用戴维南定理判断:当惠斯登电桥中电流计与电源互换位置后的电流计读数关系(自己作图)。
视电流计内阻趋于无穷小,电源内阻不计。
20、图示为电位差计测电池内阻的电路图。
实际的电位差计在标准电阻RAB上直接刻度的不是阻值,也不是长度,而是各长度所对应的电位差值,RM为被测电池的负载电阻,其值为100Ω。
实验开始时,K2打开,K1拨在1处,调节R N使流过R AB的电流准确地达到某标定值,然后将K1拨至2处,滑动C,当检流计指针
指零时,读得UAC= 1.5025V;再闭合K
2
,滑动C,检流计指针再指零时读得U
AC′= 1.4455V,试据以上数据计算电池
内阻r 。
稳恒电流C答案与提示
13、I = mFn/M t = 67.08×10−6×9.65×1/107.9×10−3×60 答案:约为1.00A 。
14、v =
neS
I 答案:7.63×10−5m/s
15 、解略
答案:电离;气体电离;电子发射;辉光放电;弧光放电;火花放电;电晕放电;火花放电;辉光放电;弧光放电。
16、略。
17、解答:从(右图的)二极管的伏安特性曲线知,不论正向或反向使用二极管,均不遵从欧姆定律。
18、v = vt /2 = a τ/2 = e Eτ/2m
= eU τ/2mL neS v = I = R U = L
US ρ ρ =
L
v ne U =
neL U ·τeU mL 2 = τ
2ne m 2 答案:ρ =
τ
2ne m
2 。
19、电路变换过程如下
I = g
2143432121433241R )R R )(R R ()R R (R R )R R (R R )R R R R (++++++ε
-
I ′=
g
3142423131423241R )R R )(R R ()R R (R R )R R (R R )R R R R (++++++ε
-
当Rg → 0时,I ′→ I 答案:趋于相等。
20、εx = 1.5025V M
x
M R r R +ε = 1.4455V 答案:r ≈ 3.943Ω 。