高二数学期末试卷人教版(有答案)
江苏省徐州市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题
2015-2016学年某某省某某市高二(上)期末数学试卷(理科)一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是.2.命题“∃x∈R,x2≤0”的否定为.3.底面边长为2,高为3的正三棱锥的体积为.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为.6.已知函数f(x)=xsinx,则f′(π)=.7.双曲线﹣=1的焦点到渐近线的距离为.8.“m<”是“方程+=1表示在y轴上的椭圆”的条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为.11.已知F为椭圆C: +=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为.13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值X围为.14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值X围为.二、解答题:本大题共6小题,共计90分.15.如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.16.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,某某数a的值;(2)若弦AB的长为4,某某数a的值;(3)求直线l的方程及实数a的取值X围.17.如图,在直三棱柱ABC﹣A1B1C1中,已知A1C1⊥B1C1,CC1=2BC=2.(1)当AC=2时,求异面直线BC1与AB1所成角的余弦值;(2)若直线AB1与平面A1BC1所成角的正弦值为,求AC的长.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?19.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值X围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.2015-2016学年某某省某某市高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共计70分)1.抛物线y2=12x的焦点坐标是(3,0).【考点】抛物线的简单性质.【分析】确定抛物线的焦点位置,进而可确定抛物线的焦点坐标.【解答】解:抛物线y2=12x的焦点在x轴上,且p=6,∴=3,∴抛物线y2=12x的焦点坐标为(3,0).故答案为:(3,0).2.命题“∃x∈R,x2≤0”的否定为∀x∈R,x2>0 .【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x∈R,x2≤0”的否定为:∀x∈R,x2>0.故答案为:∀x∈R,x2>0.3.底面边长为2,高为3的正三棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】求出正三棱锥的底面面积,然后求解体积.【解答】解:底面边长为2,高为3的正三棱锥的体积为: =.故答案为:.4.已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为18 .【考点】椭圆的简单性质.【分析】由题意知a=5,b=3,c=4,从而可得|PF1|+|PF2|=2a=10,|F1F2|=2c=8.【解答】解:由题意作图如右图,∵椭圆的标准方程为+=1,∴a=5,b=3,c=4,∴|PF1|+|PF2|=2a=10,|F1F2|=2c=8,∴△PF1F2的周长为10+8=18;故答案为:18.5.已知正方体的体积为64,则与该正方体各面均相同的球的表面积为16π.【考点】球内接多面体;球的体积和表面积.【分析】由已知求出正方体的棱长为4,所以正方体的内切球的半径为2,由球的表面积公式得到所求.【解答】解:因为正方体的体积为64,所以棱长为4,所以正方体的内切球的半径为2,所以该正方体的内切球的表面积为4π•22=16π.故答案为:16π.6.已知函数f(x)=xsinx,则f′(π)= ﹣π.【考点】导数的运算.【分析】直接求出函数的导数即可.【解答】解:函数f(x)=xsinx,则f′(x)=sinx+xcosx,f′(π)=sinπ+πcosπ=﹣π.故答案为:﹣π.7.双曲线﹣=1的焦点到渐近线的距离为 2 .【考点】双曲线的简单性质.【分析】求出双曲线的焦点坐标,渐近线方程,利用距离公式求解即可.【解答】解:双曲线﹣=1的一个焦点(,0),一条渐近线方程为:y=,双曲线﹣=1的焦点到渐近线的距离为: =2.故答案为:2.8.“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件.(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)【考点】必要条件、充分条件与充要条件的判断.【分析】根据椭圆的定义,求出m的X围,结合集合的包含关系判断充分必要性即可.【解答】解:若“方程+=1表示在y轴上的椭圆”,则,解得:1<m<,故“m<”是“方程+=1表示在y轴上的椭圆”的必要不充分条件,故答案为:必要不充分.9.若直线4x﹣3y=0与圆x2+y2﹣2x+ay+1=0相切,则实数a的值为﹣1或4 .【考点】圆的切线方程.【分析】把圆的方程化为标准方程后,找出圆心坐标和圆的半径,然后根据直线与圆相切得到圆心到直线的距离等于圆的半径,列出关于a的方程,求出方程的解即可得到a的值.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y+)2=,所以圆心坐标为(1,﹣),半径r=||,由已知直线与圆相切,得到圆心到直线的距离d==r=||,解得a=﹣1或4.故答案为:﹣1或4.10.若函数f(x)=e x﹣ax在(1,+∞)上单调增,则实数a的最大值为 e .【考点】变化的快慢与变化率.【分析】根据导数和函数单调性的关系,再分离参数,求出最值即可.【解答】解:f′(x)=e x﹣a∵函数f(x)在区间(1,+∞)上单调递增⇔函数f′(x)=e x﹣a≥0在区间(1,+∞)上恒成立,∴a≤[e x]min在区间(1,+∞)上成立.而e x>e,∴a≤e.故答案为:e.11.已知F为椭圆C: +=1(a>b>0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为.【考点】椭圆的简单性质.【分析】利用线段垂直平分线的性质可得线段BF的垂直平分线的方程,进而得出.【解答】解:由已知可得:A(﹣a,0),B(0,b),F(c,0),线段BF的中点M,k BF=,可得线段BF的垂直平分线的斜率为.∴线段BF的垂直平分线的方程为:y﹣=,∵BF的垂直平分线恰好过点A,∴0﹣=,化为:2e2+2e﹣1=0,解得e=.故答案为:.12.若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为(1,1),(﹣1,﹣1).【考点】利用导数研究曲线上某点切线方程.【分析】利用直线平行斜率相等求出切线的斜率,再利用导数在切点处的值是曲线的切线斜率求出切线斜率,列出方程解得即可.【解答】解:设切点P(m,m3),由y=x3的导数为y′=3x2,可得切线的斜率为k=3m2,由切线与直线y=3x+2平行,可得3m2=3,解得m=±1,可得P(1,1),(﹣1,﹣1).故答案为:(1,1),(﹣1,﹣1).13.在平面直角坐标系xOy中,已知圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值X围为(﹣,﹣)∪(0,2).【考点】圆的标准方程.【分析】由已知得圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,由此能求出实数m的取值X围.【解答】解:圆(x﹣m﹣1)2+(y﹣2m)2=4上有且只有两个点到原点O的距离为3,∴圆C:(x﹣m﹣1)2+(y﹣2m)2=4与圆O:x2+y2=9恰有两个交点,圆C的圆心C(m+1,2m),半径r1=2,圆O的圆心O(0,0),半径r2=3,圆心距离|OC|==,∴3﹣2<<3+2,解得﹣<m<﹣或0<m<2.∴实数m的取值X围为(﹣,﹣)∪(0,2).故答案为:(﹣,﹣)∪(0,2).14.已知函数f(x)=a(x﹣1)2﹣lnx,g(x)=,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).则实数a的取值X围为a≥.【考点】导数在最大值、最小值问题中的应用;函数与方程的综合运用.【分析】求导数,确定函数的单调性,即可求函数f(x)的值域;g(x)∈(0,e],分类讨论,研究f(x)的单调性,即可求a的取值X围.【解答】解:g′(x)=,令=0,解得x=1,∵e x>0,∴x∈(0,1)时,g′(x)>0;x∈(1,e]时,g′(x)<0,g(x)在(0,1]上单调递增,在(1,e]单调单调递减,根据极大值的定义知:g(x)极大值是g(1)=1,又g(0)=0,g(e)=,所以g(x)的值域是(0,1].函数f(x)=a(x﹣1)2﹣lnx,x>0,f′(x)=2ax﹣2a﹣=,令h(x)=2ax2﹣2ax﹣1,h(x)恒过(0,﹣1),当a=0时,f′(x)<0,f(x)是减函数,不满足题意.h(x)=0,可得2ax2﹣2ax﹣1=0,△=4a2+8a,△>0解得a<﹣2或a>0.当﹣2<a<0时,h(x)的对称轴为:x=,h(x)<0恒成立,f′(x)<0,f(x)是减函数,不满足题意.当a<﹣2时,x∈(0,),h(x)<0恒成立,f′(x)<0,f(x)是减函数,x∈,f′(x)>0,f(x)是增函数,x∈,f′(x)<0,f(x)是减函数,若对任意的x0∈(0,e],总存在两个不同的x1,x2∈(0,e],使得f(x1)=f(x2)=g(x0).可知f(x)极大值≥1,f(x)极小值≤0.可得,,∵f(x)=a(x﹣1)2﹣lnx,,不等式不成立.当a>0时,x∈(0,),h(x)<0恒成立,f′(x)<0,f(x)是减函数,x∈,f′(x)>0,f(x)是增函数,因为x=1时,f(1)=0,只需f (e)≥1.可得:a(e﹣1)2﹣1≥1,解得a≥.综上:实数a的取值X围为:a≥.二、解答题:本大题共6小题,共计90分.15.如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.【考点】直线与平面平行的判定.【分析】(1)连接AC,交BD与点O,连接OM,先证明出MO∥PA,进而根据线面平行的判定定理证明出PA∥平面MDB.(2)先证明出BC⊥平面PCD,进而根据线面垂直的性质证明出BC⊥PD.【解答】证明:(1)连接AC,交BD与点O,连接OM,∵M为PC的中点,O为AC的中点,∴MO∥PA,∵MO⊂平面MDB,PA⊄平面MDB,∴PA∥平面MDB.(2)∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PCD,∵PD⊂平面PCD,∴BC⊥PD.16.已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).(1)若圆C的半径为,某某数a的值;(2)若弦AB的长为4,某某数a的值;(3)求直线l的方程及实数a的取值X围.【考点】直线与圆的位置关系.【分析】(1)利用配方法得到圆的标准方程,根据圆C的半径为,某某数a的值;(2)求出直线l的方程,求出圆心到直线的距离,根据弦AB的长为4,某某数a的值;(3)点与圆的位置关系即可求出a的取值X围.【解答】解:(1)圆的标准方程为(x+1)2+(y﹣2)2=5﹣a,则圆心C(﹣1,2),半径r=,∵圆C的半径为,∴=,∴a=2;(2)∵弦的中点为M(0,1).∴直线CM的斜率k=﹣1,则直线l的斜率k=1,则直线l的方程为y﹣1=x,即x﹣y+1=0.圆心C到直线x﹣y+1=0的距离d==,若弦AB的长为4,则2+4=5﹣a=6,解得a=﹣1;(3)由(2)可得直线l的方程为x﹣y+1=0.∵弦AB的中点为M(0,1).∴点M在圆内部,即<,∴5﹣a>2,即a<3.17.如图,在直三棱柱ABC﹣A1B1C1中,已知A1C1⊥B1C1,CC1=2BC=2.(1)当AC=2时,求异面直线BC1与AB1所成角的余弦值;(2)若直线AB1与平面A1BC1所成角的正弦值为,求AC的长.【考点】异面直线及其所成的角;直线与平面所成的角.【分析】(1)以C1为原点,C1A1为x轴,C1B1为y轴,C1C为z轴,建立空间直角坐标系,利用向量法能求出异面直线BC1与AB1所成角的余弦值.(2)设AC=a,求出平面A1C1B的法向量,由直线AB1与平面A1BC1所成角的正弦值为,利用向量法能求出AC.【解答】解:(1)∵在直三棱柱ABC﹣A1B1C1中,A1C1⊥B1C1,CC1=2BC=2,∴以C1为原点,C1A1为x轴,C1B1为y轴,C1C为z轴,建立空间直角坐标系,∵AC=2,∴B(0,2,2),C1(0,0,0),A(2,0,2),B1(0,2,0),∴=(0,﹣2,﹣2),=(﹣2,2,0),设异面直线BC1与AB1所成角为θ,则cosθ=|cos<,>|===,∴θ=60°,∴异面直线BC1与AB1所成角的余弦值为60°.(2)设AC=a,则A1(a,0,0),B(0,2,2),C1(0,0,0),B1(0,2,0),A(a,0,2),=(a,0,0),=(0,2,2),=(﹣a,2,﹣2),设平面A1C1B的法向量=(x,y,z),则,取y=1,得=(0,1,﹣1),∵直线AB1与平面A1BC1所成角的正弦值为,∴==,解得a=.∴AC=.18.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?【考点】基本不等式在最值问题中的应用.【分析】(1)求出纸箱的侧面积S,利用基本不等式,求最大值;(2)求出纸箱的容积V,利用导数,求最大值.【解答】解:(1)S=2x(50﹣2x+80﹣2x)=2x≤•=,当且仅当4x=130﹣4x,即x=cm,纸箱的侧面积S(cm2)最大;(2)V=x(50﹣2x)(80﹣2x)(0<x<12.5),V′=(50﹣2x)(80﹣2x)﹣2x(80﹣2x)﹣2x(50﹣2x)=4(3x﹣100)(x﹣10),∴0<x<10,V′>0,10<x<12.5,V′<0,∴x=10cm时,V最大.19.在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4.(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.【分析】(1)由椭圆的离心率公式及菱形的面积公式求得a和b的值,可求得椭圆的方程;(2)利用椭圆方程及直线AM,AN的方程求得x M、x N、x P及x Q的值根据三角形面积公式求得k的值,求得直线方程.【解答】解:(1)由题意可知:e===,且2ab=4,且a2﹣b2=c2,解得a=2,b=,∴椭圆的标准方程:,(2)由(1)可知,A(0,﹣),则直线AM的方程为y=kx﹣,将直线方程代入椭圆方程得:消去并整理得:(3+4k2)x2﹣8kx=0,解得x M=,直线AN的方程y=﹣﹣,同理可得:x N=﹣,解得x P=k,同理可得x Q=﹣,∴==丨丨==,即3k4﹣10k2+3=0,解得k2=3或k2=,所以=或﹣,故存在直线l:y=x,y=﹣x,满足题意.20.已知函数f(x)=lnx﹣ax+1(a∈R).(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x∈(0,+∞),都有f(x)≤2x成立,求a的取值X围;(3)设h(x)=f(x)+ax,对任意的x1,x2∈(0,+∞),且x1>x2,证明:>恒成立.【考点】利用导数研究函数的极值;导数在最大值、最小值问题中的应用.【分析】(1)a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,对x分类讨论即可得出函数f(x)的单调性极值.(2)f(x)≤2x化为:a≥﹣2=g(x),利用导数研究函数g(x)的单调性极值最值即可得出.(3)h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.利用导数研究函数u(m)的单调性即可得出.【解答】(1)解:a=1时,f(x)=lnx﹣x+1,(x>0),f′(x)=﹣1=,∴0<x<1时,函数f(x)单调递增;1<x时,函数f(x)单调递减.因此x=1时函数f(x)取得极大值,f(1)=0.(2)解:f(x)≤2x化为:a≥﹣2=g(x),g′(x)=,可知:x∈(0,1)时,g′(x)>0,函数g(x)单调递增;x∈(1,+∞)时,g′(x)<0,函数g(x)单调递减.∴x=1时函数g(x)取得极大值即最大值,g(1)=1﹣2=﹣1.∴a≥﹣1,∴a的取值X围是[﹣1,+∞).(3)证明:h(x)=f(x)+ax=lnx+1,对任意的x1,x2∈(0,+∞),且x1>x2,>恒成立⇔>ln.令=t>1,上式等价于:>lnt.令=m>1,则上式等价于:u(m)=﹣2lnm>0.u′(m)=1+﹣==>0,因此函数u(m)在m∈(1,+∞)上单调递增,∴u(m)>u(1)=0,∴>恒成立.。
福建省厦门市高二数学下学期期末试卷 理(含解析)-人教版高二全册数学试题
2015-2016学年某某省某某市高二(下)期末数学试卷(理科)一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(1+i)(a+2i)(i为虚数单位)是纯虚数,则实数a等于()A.﹣2 B.﹣1 C.0 D.22.双曲线x2﹣=1的一个顶点到一条渐近线的距离是()A.B.C.D.3.已知随机变量X服从正态分布N(1,4),P(﹣1<X<3)=0.6826,则下列结论正确的是()A.P(X<﹣1)=0.6587 B.P(X>3)=0.1587C.P(﹣1<X<1)=0.3174 D.P(1<X<3)=0.18264.已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(e)﹣lnx,则f′(e)等于()A.1 B.﹣1 C.e D.5.由曲线y=,直线y=x及x=3所围成的图形的面积是()A.4﹣ln3 B.8﹣ln3 C.4+ln3 D.8+ln36.三棱柱ABC﹣A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=,则异面直线AC1与B1C所成的角的大小是()A.30° B.60° C.90° D.120°7.假设有两个分类变量X和Y的2×2列联表为:Yy1y2总计Xx1 a 10 a+10x2 c 50 c+50总计40 60 100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组是()A.a=10,c=30 B.a=15,c=25 C.a=20,c=20 D.a=30,c=108.甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,每人只能选择一个景点且甲、乙不能同去一个景点,则不同的选择方案的种数是()A.54 B.36 C.27 D.249.“m<1”是“函数y=x2+在[1,+∞)单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.甲、乙、丙三人,一人在看书,一人在画画,一人在听音乐.已知:①甲不看书;②若丙不画画,则乙不听音乐;③若乙在看书,则丙不听音乐.则()A.甲一定在画画 B.甲一定在听音乐C.乙一定不看书 D.丙一定不画画11.函数f(x)=e|x|cosx的图象大致是()A. B.C.D.12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值X围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)二、填空题:每小题5分,共20分.13.(2x+)n的二项式系数的和是32,则该二项展开式中x3的系数是(用数字填写答案).14.已知m∈R,p:方程+=1表示焦点在y轴上的椭圆;q:在复平面内,复数z=1+(m ﹣3)i对应的点在第四象限.若p∧q为真,则m的取值X围是.15.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2,则线段NB的长度是.16.设函数f(x)在R上的导函数是f′(x),对∀x∈R,f′(x)<x.若f(1﹣a)﹣f (a)≤﹣a,则实数a的取值X围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:广告费用x(万元) 2 3 4 5 6销售量y(万件) 5 7 8 9 11由散点图知可以用回归直线=x+来近似刻画它们之间的关系.(Ⅰ)求回归直线方程=x+;(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?参考公式: =, =﹣;R2=1﹣.18.函数f(x)=x3+ax2+bx﹣在x=2处的切线方程为x+y﹣2=0.(Ⅰ)某某数a,b的值;(Ⅱ)求函数f(x)的极值.19.如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)求二面角A﹣PC﹣D的平面角的余弦值.20.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生故障的概率分别为,,.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.(Ⅰ)求乙车间每天机器发生故障的台数的分布列;(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.21.已知圆C1:x2+y2=4与x轴左右交点分别为A1、A2,过点A1的直线l1与过点A2的直线l2相交于点D,且l1与l2斜率的乘积为﹣.(Ⅰ)求点D的轨迹C2方程;(Ⅱ)若直线l:y=kx+m不过A1、A2且与轨迹C2仅有一个公共点,且直线l与圆C1交于P、Q 两点.求△POA1与△QOA2的面积之和的最大值.22.已知函数f(x)=lnx﹣cx2(c∈R).(Ⅰ)讨论函数f(x)的零点个数;(Ⅱ)当函数f(x)有两个零点x1,x2时,求证:x1•x2>e.2015-2016学年某某省某某市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(1+i)(a+2i)(i为虚数单位)是纯虚数,则实数a等于()A.﹣2 B.﹣1 C.0 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘法运算化简复数z,又已知复数z是纯虚数,得到,求解即可得答案.【解答】解:复数z=(1+i)(a+2i)=(a﹣2)+(a+2)i,又∵复数z是纯虚数,∴,解得a=2.故选:D.2.双曲线x2﹣=1的一个顶点到一条渐近线的距离是()A.B.C.D.【考点】双曲线的简单性质.【分析】根据双曲线的方程求出一个顶点和渐近线,利用点到直线的距离公式进行求解即可.【解答】解:由双曲线的方程得a=1,b=,双曲线的渐近线为y=x,设双曲线的一个顶点为A(1,0),渐近线为y=x,即x﹣y=0,则顶点到一条渐近线的距离d==,故选:C.3.已知随机变量X服从正态分布N(1,4),P(﹣1<X<3)=0.6826,则下列结论正确的是()A.P(X<﹣1)=0.6587 B.P(X>3)=0.1587C.P(﹣1<X<1)=0.3174 D.P(1<X<3)=0.1826【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,由P(﹣1<X<3)可求出P(X>3).【解答】解:∵随机变量X服从正态分布N(1,4),∴曲线关于x=1对称,∵P(﹣1<X<3)=0.6826,∴P(X>3)=0.5﹣0.3413=0.1587.故选:B.4.已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(e)﹣lnx,则f′(e)等于()A.1 B.﹣1 C.e D.【考点】导数的运算.【分析】求函数的导数,直接令x=e进行求解即可.【解答】解:∵f(x)=2xf′(e)﹣lnx,∴函数的导数f′(x)=2f′(e)﹣,令x=e,则f′(e)=2f′(e)﹣,即f′(e)=,故选:D5.由曲线y=,直线y=x及x=3所围成的图形的面积是()A.4﹣ln3 B.8﹣ln3 C.4+ln3 D.8+ln3【考点】定积分在求面积中的应用.【分析】作出对应的图象,确定积分的上限和下限,利用积分的应用求面积即可.【解答】解:作出对应的图象,由得x=1,则阴影部分的面积S=∫(x﹣)dx=(x2﹣lnx)|=(﹣ln3)﹣(﹣ln1)=4﹣ln3,故选:A6.三棱柱ABC﹣A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=,则异面直线AC1与B1C所成的角的大小是()A.30° B.60° C.90° D.120°【考点】异面直线及其所成的角.【分析】取中点连接,由异面直线所成角的概念得到异面直线AC1与B1C所成的角,求解直角三角形得到三角形边长,再由余弦定理得答案.【解答】解:如图,分别取AC、B1C1、CC1、BC的中点E、F、G、K,连接EF、EG、FG、EK、FK,EK=,FK=,则EF=,EG=,.在△EFG中,cos∠EGF=.∴异面直线AC1与B1C所成的角的大小是90°.故选:C.7.假设有两个分类变量X和Y的2×2列联表为:Yy1y2总计Xx1 a 10 a+10x2 c 50 c+50总计40 60 100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组是()A.a=10,c=30 B.a=15,c=25 C.a=20,c=20 D.a=30,c=10【考点】独立性检验的应用.【分析】当ad与bc差距越大,两个变量有关的可能性就越大,检验四个选项中所给的ad与bc的差距,前三个选项都一样,只有第四个选项差距大,得到结果.【解答】解:根据观测值求解的公式可以知道,当ad与bc差距越大,两个变量有关的可能性就越大,选项A,|ad﹣bc|=200,选项B,|ad﹣bc|=500,选项C,|ad﹣bc|=800,选项D,|ad﹣bc|=1400,故选D8.甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,每人只能选择一个景点且甲、乙不能同去一个景点,则不同的选择方案的种数是()A.54 B.36 C.27 D.24【考点】排列、组合及简单计数问题.【分析】间接法:先求所有可能分派方法,先求所有可能的分派方法,甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,共有34=81种情况,甲、乙同去一个景点有33=27种情况,相减可得结论.【解答】解:间接法:先求所有可能的分派方法,甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,共有34=81种情况,甲、乙同去一个景点有33=27种情况,∴不同的选择方案的种数是81﹣27=54.故选:A9.“m<1”是“函数y=x2+在[1,+∞)单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】充要条件;函数的单调性与导数的关系.【分析】若函数y=x2+在[1,+∞)单调递增,则y′=2x﹣≥0在[1,+∞)上恒成立,求出m的X围,进而根据充要条件的定义,可得答案.【解答】解:∵函数y=x2+在[1,+∞)单调递增,∴y′=2x﹣≥0在[1,+∞)上恒成立,即m≤2,故“m<1”是“函数y=x2+在[1,+∞)单调递增”的充分不必要条件,故选:A.10.甲、乙、丙三人,一人在看书,一人在画画,一人在听音乐.已知:①甲不看书;②若丙不画画,则乙不听音乐;③若乙在看书,则丙不听音乐.则()A.甲一定在画画 B.甲一定在听音乐C.乙一定不看书 D.丙一定不画画【考点】进行简单的合情推理.【分析】由①开始,进行逐个判断,采用排除法,即可得到答案.【解答】解:由①可知:甲可能在画画或在听音乐,由③可知,乙在看书,丙在画画,甲只能在听音乐,由②丙可以听音乐或看书,乙只能看书或画画,结合①③可知:甲听音乐,乙画画,丙看书,所以甲一定在听音乐,故选:B.11.函数f(x)=e|x|cosx的图象大致是()A.B.C.D.【考点】函数的图象.【分析】根据函数的奇偶性,排除B;根据函数在(0,)上,为增函数,在(,)上,为减函数,排除A;再根据在(,)上,为增函数,f()>f(),排除C,可得结论.【解答】解:由于函数函数f(x)=e|x|cosx为偶函数,它的图象关于y轴对称,故排除B.当x>0时,f(x)=e x•cosx,f′(x)=e x•cosx﹣e x•sinx=2x(cosx﹣sinx),故函数在(0,)上,f′(x)>0,f(x)为增函数;在(,)上,f′(x)<0,f(x)为减函数,故排除A.在(,)上,f′(x)>0,f(x)为增函数,且f()>f(),故排除C,只有D满足条件,故选:D.12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值X围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)【考点】双曲线的简单性质.【分析】利用待定系数法设出双曲线和椭圆的方程,根据双曲线和椭圆的定义得到a1=4+c,a2=4﹣c,然后利用离心率的公式进行转化求解即可.【解答】解:设椭圆与双曲线的标准方程分别为:,.(a1,a2,b1,b2>0,a1>b1)∵△PF1F2是以PF1为底边的等腰三角形,|PF1|=8,∴8+2c=2a1,8﹣2c=2a2,即有a1=4+c,a2=4﹣c,(c<4),再由三角形的两边之和大于第三边,可得2c+2c>8,可得c>2,即有2<c<4.由离心率公式可得+====,∵2<c<4,∴<<,则2<<4,即2<+<4,故+的取值X围是(2,4),故选:C二、填空题:每小题5分,共20分.13.(2x+)n的二项式系数的和是32,则该二项展开式中x3的系数是80 (用数字填写答案).【考点】二项式系数的性质.【分析】由题意可得:2n=32,解得n.再利用其通项公式即可得出.【解答】解:由题意可得:2n=32,解得n=5.∴的通项公式T r+1=(2x)5﹣r=25﹣r x5﹣2r,令5﹣2r=3,解得r=1.∴该二项展开式中x3的系数=24=80.故答案为:80.14.已知m∈R,p:方程+=1表示焦点在y轴上的椭圆;q:在复平面内,复数z=1+(m﹣3)i对应的点在第四象限.若p∧q为真,则m的取值X围是(2,3).【考点】复合命题的真假.【分析】利用椭圆的标准方程、复数的几何意义、复合命题的真假的判定方法即可得出.【解答】解:p:方程+=1表示焦点在y轴上的椭圆,则m>2;q:在复平面内,复数z=1+(m﹣3)i对应的点在第四象限,∴m﹣3<0,解得m<3.∵p∧q为真,∴p与q都为真命题.∴2<m<3.则m的取值X围是(2,3).故答案为:(2,3).15.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2,则线段NB的长度是 3 .【考点】抛物线的简单性质.【分析】求出N,B的坐标,利用两点间的距离公式,即可得出结论.【解答】解:由题意,A(3,2),N(0,2),以点F为圆心,1为半径的圆的方程为(x﹣1)2+y2=1,直线AF的方程为y=(x﹣1)联立直线与圆的方程可得(x﹣1)2=,∴x=或,∴B(,),∴|NB|==3故答案为:3.16.设函数f(x)在R上的导函数是f′(x),对∀x∈R,f′(x)<x.若f(1﹣a)﹣f (a)≤﹣a,则实数a的取值X围是a≤.【考点】利用导数研究函数的单调性.【分析】令g(x)=f(x)﹣x2,求出g(x)的单调性,问题等价于f(1﹣a)﹣(1﹣a)2≤f(a)﹣a2,根据函数的单调性得到关于a的不等式,解出即可.【解答】解:令g(x)=f(x)﹣x2,则g′(x)=f′(x)﹣x,而f′(x)<x,∴g′(x)=f′(x)﹣x<0,故函数g(x)在R递减,∴f(1﹣a)﹣f(a)≤﹣a等价于f(1﹣a)﹣(1﹣a)2≤f(a)﹣a2,即g(1﹣a)≤g(a),∴1﹣a≥a,解得a≤,故答案为:a≤.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:广告费用x(万元) 2 3 4 5 6销售量y(万件) 5 7 8 9 11由散点图知可以用回归直线=x+来近似刻画它们之间的关系.(Ⅰ)求回归直线方程=x+;(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?参考公式: =, =﹣;R2=1﹣.【考点】线性回归方程.【分析】(Ⅰ)由数据求得样本中心点,利用最小二乘法求得系数,由线性回归方程过样本中心点,代入即可求得,即可求得回归直线方程;(Ⅱ)分别求得1, 2…,5,根据相关指数公式求得相关指数R2,即可求得广告费用解释了百分之多少的销售量变化.【解答】解:(Ⅰ) =×(2+3+4+5+6)=5, =×(5+7+8+9+11)=11,==1.4,=﹣=8﹣1.4×4=2.4,∴回归直线方程=1.4x+2.4;(Ⅱ)由(Ⅰ)可知:=1.4×2+2.4=5.2;1=1.4×3+2.4=6.6;2=1.4×4+2.4=8;3=1.4×5+2.4=9.4;4=1.4×6+2.4=10.8;5R2=1﹣=0.98,∴广告费用解释了98%的销售量变化.18.函数f(x)=x3+ax2+bx﹣在x=2处的切线方程为x+y﹣2=0.(Ⅰ)某某数a,b的值;(Ⅱ)求函数f(x)的极值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求导数得到f′(x)=x2+2ax+b,这样根据函数在切点处导数和切线斜率的关系以及切点在函数图象上便可得出关于a,b的方程组,解出a,b即可;(Ⅱ)上面已求出a,b,从而可以得出导函数f′(x),这样判断导数的符号,从而便可得出函数f(x)的极值.【解答】解:(Ⅰ)f′(x)=x2+2ax+b;由题意可得,切点为(2,0),切线斜率为k=﹣1;∴;解得;(Ⅱ)由上面得,f′(x)=x2﹣4x+3=(x﹣1)(x﹣3);∴x<1时,f′(x)>0,1<x<3时,f′(x)<0,x>3时,f′(x)>0;∴x=1时,f(x)取极大值,x=3时,f(x)取极小值.19.如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)求二面角A﹣PC﹣D的平面角的余弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【分析】(I)取AB中点E,连PE、CE,由等腰三角形的性质可得PE⊥AB.再利用勾股定理的逆定理可得PE⊥CE.利用线面垂直的判定定理可得PE⊥平面ABCD.再利用面面垂直的判定定理即可证明.(II)建立如图所示的空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.【解答】(Ⅰ)证明:如图1所示,取AB中点E,连PE、CE.则PE是等腰△PAB的底边上的中线,∴PE⊥AB.∵PE=1,CE=,PC=2,即PE2+CE2=PC2.由勾股定理的逆定理可得,PE⊥CE.又∵AB⊂平面ABCD,CE⊂平面ABCD,且AB∩CE=E,∴PE⊥平面ABCD.而PE⊂平面PAB,∴平面PAB⊥平面ABCD.(Ⅱ)以AB中点E为坐标原点,EC所在直线为x轴,EB所在直线为y轴,EP所在直线为z 轴,建立如图所示的空间直角坐标系.则A(0,﹣1,0),C(,0,0),D(,﹣2,0),P(0,0,1),=(,1,0),=(,0,﹣1),=(0,2,0).设是平面PAC的一个法向量,则,即.取x1=1,可得,.设是平面PCD的一个法向量,则,即.取x2=1,可得,.故,即二面角A﹣PC﹣D的平面角的余弦值是.20.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生故障的概率分别为,,.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.(Ⅰ)求乙车间每天机器发生故障的台数的分布列;(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)乙车间每天机器发生故障的台数ξ,可以取0,1,2,3,求出相应的概率,即可求乙车间每天机器发生故障的台数的分布列;(Ⅱ)设甲车间每台机器每天发生故障的台数η,获得的利润为X,则η~B(3,),求出甲乙的期望,比较,即可得出结论.【解答】解:(Ⅰ)乙车间每天机器发生故障的台数ξ,可以取0,1,2,3,P(ξ=0)=(1﹣)×(1﹣)×(1﹣)=,P(ξ=1)=C21××((1﹣)×(1﹣)2+(1﹣)×=,P(ξ=2)=C21××((1﹣)×+()2×(1﹣)=,P(ξ=3)=××=,∴乙车间每天机器发生故障的台数ξ的分布列;ξ0 1 2 3P(Ⅱ)设甲车间每台机器每天发生故障的台数η,获得的利润为X,则η~B(3,),P(η=k)=(k=0,1,2,3),∴EX=2P(η=0)+1×P(η=1)+0×P(η=2)﹣3×P(η=3)=,由(Ⅰ)得EY=2P(ξ=0)+1×P(ξ=1)+0×P(ξ=2)﹣3×P(ξ=3)=,∵EX<EY,∴甲车间停产比较合理.21.已知圆C1:x2+y2=4与x轴左右交点分别为A1、A2,过点A1的直线l1与过点A2的直线l2相交于点D,且l1与l2斜率的乘积为﹣.(Ⅰ)求点D的轨迹C2方程;(Ⅱ)若直线l:y=kx+m不过A1、A2且与轨迹C2仅有一个公共点,且直线l与圆C1交于P、Q 两点.求△POA1与△QOA2的面积之和的最大值.【考点】直线与圆的位置关系.【分析】(Ⅰ)设点D的坐标为(x,y),求出A1、A2的坐标,由题意和斜率公式列出方程化简,可得点D的轨迹C2的方程;(Ⅱ)设P(x1,y1),Q(x2,y2),联立直线方程和C2的方程消去y,由条件可得△=0并化简,联立直线l与圆C1的方程消去x,利用韦达定理写出表达式,由图象和三角形的面积公式表示出,化简后利用基本不等式求出△POA1与△QOA2的面积之和的最大值.【解答】解:(Ⅰ)设点D的坐标为(x,y),∵圆C1:x2+y2=4与x轴左右交点分别为点A1(﹣2,0),A2(2,0),且l1与l2斜率的乘积为﹣,∴,化简得,∴点D的轨迹C2方程是;(Ⅱ)设P(x1,y1),Q(x2,y2),联立得,(1+4k2)x2+8kmx+4m2﹣4=0,由题意得,△=64k2+16﹣16m2=0,化简得,m2=4k2+1,联立消去x得,(1+k2)y2﹣2my+1=0,∴△=4m2﹣4(1+k2)=12k2>0,y1+y2=,>0,则y1,y2同号,由r=2得,+=+====≤=,当且仅当3=1+4k2,即k=时取等号,∴的最大值是.22.已知函数f(x)=lnx﹣cx2(c∈R).(Ⅰ)讨论函数f(x)的零点个数;(Ⅱ)当函数f(x)有两个零点x1,x2时,求证:x1•x2>e.【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】(Ⅰ)求出函数的定义域,函数的导数,通过a≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增;a>0时,求出极值点,然后通过导数的符号,判断函数的单调性,从而求出函数的零点的个数;(Ⅱ)设x1>x2,求出关于c的表达式,利用分析法证明x1x2>e,转化为证明ln>(x1>x2>0),令=t,则t>1,设g(t)=lnt﹣=lnt+﹣1(t>1),利用函数的导数求解函数的最小值利用单调性证明即可.【解答】解:(Ⅰ)定义域为(0,+∞),f′(x)=﹣2cx=,当c≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增,x→0时,f(x)→﹣∞,x→+∞时,f(x)→+∞,f(x)有且只有1个零点;当c>0时,由f'(x)=0,得x=,当0<x<时,f'(x)>0,f(x)单调递增,当x>时,f'(x)<0,f(x)单调递减,∴f(x)最大值=f()=ln﹣,令ln﹣>0,解得:c>,∴c>时,f(x)有2个零点,c=时,f(x)有1个零点,0<c<时,f(x)没有零点,综上:c≤0或c=时,f(x)有1个零点,0<c<时,f(x)没有零点,c>时,f(x)有2个零点.(Ⅱ)证明:设x1>x2,∵lnx1﹣cx12=0,lnx2﹣cx22=0,∴lnx1+lnx2=cx12+cx22,lnx1﹣lnx2=cx12﹣cx22,则c=,欲证明x1x2>e,即证lnx1+lnx2>1,因为lnx1+lnx2=c(x12+x22),∴即证c>,∴原命题等价于证明>,即证:ln>(x1>x2>0),令=t,则t>1,设g(t)=lnt﹣=lnt+﹣1(t>1),∴g′(t)=≥0,∴g(t)在(1,+∞)单调递增,又因为g(1)=0,∴g(t)>g(1)=0,∴lnt>,所以x1x2>e.。
高中高二数学下学期期末复习试卷(含解析)-人教版高二全册数学试题
2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q=.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2=.3.命题:∀x∈R,sinx<2的否定是.4.复数z=(1+3i)i(i是虚数单位),则z的实部是.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为.6.已知则满足的x值为.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为.11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是.14.观察下面的数阵,第20行第20个数是.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷参考答案与试题解析一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q={0,2} .考点:交集及其运算.专题:计算题.分析:通过理解集合的表示法化简集合P和集合Q,两集合的交集是集合P和Q中的共同的数.解答:解:∵P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},∴P∩Q={0,2}故答案为:{0,2}点评:本题考查集合的表示法、集合交集的求法.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2= 2+2i .考点:复数代数形式的加减运算.专题:计算题.分析:根据复数减法的运算法则,当且仅当实部与虚部分别相减可求.解答:解:Z1﹣Z2=(3+4i)﹣(1+2i)=2+2i故答案为:2+2i点评:本题主要考查了复数减法的基本运算,运算法则:当且仅当实部与虚部分别相减,属于基础试题.3.命题:∀x∈R,sinx<2的否定是“∃x∈R,sinx≥2”.考点:命题的否定.分析:根据命题“∀x∈R,sinx<2”是全称命题,其否定为特称命题,即“∃x∈R,sinx≥2”.从而得到本题答案.解答:解:∵命题“∀x∈R,sinx<2”是全称命题.∴命题的否定是存在x值,使sinx<2不成立,即“∃x∈R,sinx≥2”.故答案为:“∃x∈R,sinx≥2”.点评:本题给出全称命题,求该命题的否定形式.着重考查了含有量词的命题的否定、全称命题和特称命题等知识点,属于基础题.4.复数z=(1+3i)i(i是虚数单位),则z的实部是﹣3 .考点:复数的基本概念.专题:计算题.分析:利用两个复数代数形式的乘法,虚数单位i的幂运算性质,化简=(1+3i)i,依据使不得定义求得z的实部.解答:解:复数z=(1+3i)i=﹣3+i,故实部为﹣3,故答案为﹣3.点评:本题考查两个复数代数形式的乘法,虚数单位i的幂运算性质,以及复数为实数的条件.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为[0,π].考点:函数的单调性与导数的关系.专题:数形结合.分析:根据据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减;从图中找到f′(x)≥0的区间即可.解答:解:据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减由图得到x∈[0,π]时,f′(x)≥0故y=f (x)的单调增区间为[0,π]故答案为[0,π]点评:本题考查函数的单调性与导函数符号的关系:f′(x)≥0时,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减6.已知则满足的x值为 3 .考点:分段函数的解析式求法及其图象的作法;函数的值.分析:分x≤1和x>1两段讨论,x≤1时,得,x>1时,得,分别求解.解答:解:x≤1时,f(x)=,x=2,不合题意,舍去;x>1时,,=3综上所示,x=3故答案为:3点评:本题考查分段函数求值问题,属基本题.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.考点:利用导数研究函数的单调性;必要条件、充分条件与充要条件的判断.专题:计算题.分析:先求导函数,要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,故可建立不等式,解之即可求得m的取值X围.解答:解:求导函数要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,构建函数g(x)=﹣x2+mx+2,因为函数图象恒过点(0,2),所以﹣x2+mx+2≥0在[2,4]上恒成立,只需m根据函数的单调递增,解得,即所求m的X围为故答案为:点评:本题考查利用导数研究函数的单调性,解题的关键是求导函数,将问题转化为﹣x2+mx+2≥0在[2,4]上恒成立.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是﹣1≤a<7 .考点:函数在某点取得极值的条件.专题:计算题.分析:首先利用函数的导数与极值的关系求出a的值,由于函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,所以f′(﹣1)f′(1)<0,进而验证a=﹣1与a=7时是否符合题意,即可求答案.解答:解:由题意,f′(x)=3x2+4x﹣a,当f′(﹣1)f′(1)<0时,函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,解得﹣1<a<7,当a=﹣1时,f′(x)=3x2+4x+1=0,在(﹣1,1)上恰有一根x=﹣,当a=7时,f′(x)=3x2+4x﹣7=0在(﹣1,1)上无实根,则a的取值X围是﹣1≤a<7,故答案为﹣1≤a<7.点评:考查利用导数研究函数的极值问题,体现了数形结合和转化的思想方法.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为8 .考点:简单线性规划.专题:计算题;压轴题;数形结合.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再根据目标函数z=abx+y(a>0,b>0)的最大值为35,求出a,b的关系式,再利用基本不等式求出a+b的最小值.解答:解:满足约束条件的区域是一个四边形,如图4个顶点是(0,0),(0,1),(,0),(2,3),由图易得目标函数在(2,3)取最大值35,即35=2ab+3∴ab=16,∴a+b≥2 =8,在a=b=8时是等号成立,∴a+b的最小值为8.故答案为:8点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为e2.考点:定积分在求面积中的应用.专题:计算题.分析:先利用复合函数求导法则求已知函数的导函数,再利用导数的几何意义求切线斜率,进而利用直线的点斜式写出切线方程,最后求直线与坐标轴的交点,计算直角三角形的面积即可解答:解:y′=,y′|x=4=e2∴曲线在点(4,e2)处的切线方程为y﹣e2=e2(x﹣4)即y=e2x﹣e2令x=0,得y=﹣e2,令y=0,得x=2∴此切线与坐标轴所围三角形的面积为×2×e2=e2故答案为e2点评:本题主要考查了导数的几何意义,求曲线在某点出的切线方程的方法,利用导数求切线方程是解决本题的关键11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:由已知直线y=2a与函数y=|x﹣a|﹣1的图象特点分析一个交点时,两个图象的位置,确定a.解答:解:由已知直线y=2a是平行于x轴的直线,函数y=|x﹣a|﹣1的图象是折线,所以直线y=2a过折线顶点时满足题意,所以2a=﹣1,解得a=﹣;故答案为:.点评:本题考查了函数的图象;考查利用数形结合求参数.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是[1,5].考点:函数最值的应用.专题:计算题;综合题.分析:根据a+b+c=9,ab+bc+ca=24,得到a+c=9﹣b,并代入ab+bc+ca=24,得到ac=24﹣(a+c)b,然后利用基本不等式ac,即可求得b的取值X围.解答:解:∵a+b+c=9,∴a+c=9﹣b,∵ab+ac+bc=(a+c)b+ac=24,得ac=24﹣(a+c)b;又∵ac,∴24﹣(a+c)b,即24﹣(9﹣b)b,整理得b2﹣6b+5≤0,∴1≤b≤5;故答案为[1,5].点评:此题考查了利用基本不等式求最值的问题,注意基本不等式成立的条件为一正、二定、三等,以及消元思想的应用,属中档题.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).考点:利用导数研究函数的单调性;函数奇偶性的性质.专题:导数的概念及应用.分析:构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.解答:解:令h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函数h(x)在R上是奇函数.①∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,故函数h(x)在R上单调递增.∵h(﹣3)=f(﹣3)g(﹣3)=0,∴h(x)=f(x)g(x)<0=h(﹣3),∴x<﹣3.②当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h (3)=﹣h(﹣3)=0,∴h(x)<0,的解集为(0,3).∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).故答案为(﹣∞,﹣3)∪(0,3).点评:恰当构造函数,熟练掌握函数的奇偶性单调性是解题的关键.14.观察下面的数阵,第20行第20个数是381 .12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…考点:归纳推理.专题:综合题;推理和证明.分析:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,由此可求出第20行第20个数.解答:解:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,∴第20行第20个数是361+20=381.故答案为:381.点评:本题给出三角形数阵,求第20行第20个数,着重考查了递归数列和归纳推理等知识点,属于基础题.二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.考点:复合命题的真假.专题:简易逻辑.分析:根据二次函数恒成立的充要条件,我们可以求出命题p为真时,实数a的取值X围,根据二次函数有实根的充要条件,我们可以求出命题q为真时,实数a的取值X围,则命题p,q中一个为真,分类讨论后,即可得到实数a的取值X围.解答:解:对任意实数x都有ax2+ax+1>0恒成立⇔a=0或⇔0≤a<4;关于x的方程x2﹣x+a=0有实数根⇔△=1﹣4a≥0⇔a≤;p和q中至少有一个为真命题如果p真q假,则有0≤a<4,且a>,∴<a<4;如果p假q真,则有a<0,或a≥4,且a≤∴a<0;如果p真q真,则有0≤a<4,且a≤,∴0≤a≤;所以实数a的取值X围为(﹣∞,4)点评:本题考查的知识点是命题的真假判断与应用,复合命题的真假,函数恒成立问题,其中判断出命题p与命题q为真时,实数a的取值X围,是解答本题的关键.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.考点:复数代数形式的混合运算.专题:计算题.分析:利用复数的除法运算法则求出z1,设出复数z2;利用复数的乘法运算法则求出z1•z2;利用当虚部为0时复数为实数,求出z2.解答:解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1•z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1•z2是实数∴4﹣a=0解得a=4所以z2=4+2i点评:本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.考点:利用导数研究函数的极值.专题:计算题.分析:(1)观察图象满足f′(x)=0的点附近的导数的符号的变化情况,来确定极大值,求出x0的值;(2)根据图象可得f'(1)=0,f'(2)=0,f(1)=5,建立三个方程,联立方程组求解即可.解答:解:(Ⅰ)由图象可知,在(﹣∝,1)上f'(x)>0,在(1,2)上f'(x)<0.在(2,+∝)上f'(x)>0.故f(x)在(﹣∝,1),(2,+∝)上递增,在(1,2)上递减.因此f(x)在x=1处取得极大值,所以x0=1.(Ⅱ)f'(x)=3ax2+2bx+c,由f'(1)=0,f'(2)=0,f(1)=5,得解得a=2,b=﹣9,c=12.点评:本题主要考查了利用导数研究函数的极值,以及观察图形的能力,属于基础题.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(Ⅰ)通过a=4可知y=,分别令每段对应函数值大于等于4,计算即得结论;(Ⅱ)通过化简、利用基本不等式可知y=2•(5﹣x)+a[﹣1]=(14﹣x)+﹣a﹣4≥﹣a﹣4,再令﹣a﹣4≥4,计算即得结论.解答:解:(Ⅰ)∵a=4,∴y=,当0≤x≤4时,由﹣4≥4,解得x≥0,∴此时0≤x≤4;当4<x≤10时,由20﹣2x≥4,解得x≤8,∴此时4<x≤8;综上所述,0≤x≤8,即若一次投放4个单位的制剂,则有效治污时间可达8天;(Ⅱ)当6≤x≤10时,y=2•(5﹣x)+a[﹣1]=10﹣x+﹣a=(14﹣x)+﹣a﹣4,∵14﹣x∈[4,8],而1≤a≤4,∴∈[4,8],∴y=(14﹣x)+﹣a﹣4≥2﹣a﹣4=﹣a﹣4,当且仅当14﹣x=即x=14﹣4时,y有最小值为﹣a﹣4,令﹣a﹣4≥4,解得24﹣16≤a≤4,∴a的最小值为24﹣16≈1.6.点评:本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.考点:数学归纳法.专题:点列、递归数列与数学归纳法.分析:本题考查的知识点是归纳推理与数学归纳法,我们可以列出n n+1与(n+1)n(n∈N*)的前若干项,然后分别比较其大小,然后由归纳推理猜想出一个一般性的结论,然后利用数学归纳法进行证明.解答:解:当n=1时,n n+1=1,(n+1)n=2,此时,n n+1<(n+1)n,当n=2时,n n+1=8,(n+1)n=9,此时,n n+1<(n+1)n,当n=3时,n n+1=81,(n+1)n=64,此时,n n+1>(n+1)n,当n=4时,n n+1=1024,(n+1)n=625,此时,n n+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.证明:①当n=3时,n n+1=34=81>(n+1)n=43=64即n n+1>(n+1)n成立.②假设当n=k时,k k+1>(k+1)k成立,即:>1则当n=k+1时,=(k+1)()k+1>(k+1)()k+1=>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.点评:本题考查了数学归纳法的应用,证明步骤的应用,归纳推理,考查计算能力,属于中档题.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.考点:函数恒成立问题;函数单调性的性质.专题:证明题;综合题;压轴题.分析:(1)构造函数,通过研究h(x)的导数得出其单调性,从而得出其在区间[[1,e]上的值域,可以证出f(x)能被g(x)替代;(2)构造函数k(x)=f(x)﹣g(x)=x﹣lnx,可得在区间上函数k(x)为减函数,在区间(1,m)上为增函数,因此函数k(x)在区间的最小值为k(1)=1,最大值是k(m)大于1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)根据题意得出不等式,去掉绝对值,再根据x﹣lnx的正负转化为或,通过讨论右边函数的最值,得出实数a的X围解答:解:(1)∵,令,∵,∴h(x)在[1,e]上单调增,∴.∴|f(x)﹣g(x)|≤1,即在区间[[1,e]]上f(x)能被g(x)替代.(2)记k(x)=f(x)﹣g(x)=x﹣lnx,可得当时,k′(x)<0,在区间上函数k(x)为减函数,当1<x<m时,k′(x)>0,在区间(1,m)上函数k(x)为增函数∴函数k(x)在区间的最小值为k(1)=1,最大值是k(m)>1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)∵f(x)在区间[1,e]上能被g(x)替代,即|f(x)﹣g(x)|≤1对于x∈[1,e]恒成立.∴.,由(2)知,当x∈[1,e]时,x﹣lnx>0恒成立,∴有,令,∵=,由(1)的结果可知,∴F'(x)恒大于零,∴.②,令,∵=,∵,∴G'(x)恒大于零,∴,即实数a的X围为点评:本题考查了利用导数研究函数的单调性,通过分类讨论解决了不等式恒成立的问题,属于难题.。
人教版(2019)高二数学第二学期期末复习测试题(含答案)
人教版(2019)高二数学第二学期期末复习测试题(含答案)满分150分,答题时间120分钟第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,满分60分)1.以下六个关系式:{}00∈;{}0⊇∅;0.3Q ∉;0N ∈; {},a b {},b a ⊆;{}2|20,x xx Z -=∈是空集,错误的个数是( )A .4B .3C .2D .12.若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为( ) A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-3.下列四个结论中不正确的结论是( )A .命题:“(02)x ∀∈,,33x x >”的否定是:“(02)x ∃∈,,33x x ≤” B .1ln 2<21<12e - C .幂函数()2()33mf x m m x =-+的图象关于y 轴对称,则1m =D .设随机变量2~(1,)X N δ,若(2)0.2P X >=,则(0)P X >=0.84.新能源汽车的核心部件是动力电池,电池占了新能源整车成本的大头,而其中的原材料碳酸锂又是电池的主要成分.从2020年底开始,碳酸锂的价格一路水涨船高,下表是2021年我国江西某企业的前5个月碳酸锂价格与月份的统计数据:由上表可知其线性回归方程为ˆˆ0.16ybx =+,则ˆb =( ) A .0.28 B .0.29 C .0.30 D .0.315.设2P a a=+,则下列说法正确的是( )A .P ≥.“3P >”是“2a >”的充分不必要条件C .“1a >”是“P ≥D .()2,a ∃∈+∞,使得3P <6.中国的5G 技术处于领先地位,5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭.它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升到4000,则C 大约增加了( )(lg 20.301)≈ A .10% B .20%C .30%D .50%7.函数()()2,,R ax bf x a b c x c+=∈+的图象不可能为( )A .B .C .D .8.已知函数()22f x -的定义域为{}|1x x <,则函数()211f x x --的定义域为( ) A .(,1)-∞ B .(,1)-∞- C .()(),11,0-∞-- D .()(),11,1-∞--9.已知函数()f x ,若在其定义域内存在实数x 满足()()f x f x -=-,则称函数()f x 为“局部奇函数”,若函数()423x xf x m =-⋅-是定义在R 上的“局部奇函数”,则实数m 的取值范围是( ) A .3,3⎡-⎣B .[)2,-+∞C .(,22⎤-∞⎦D .23,3⎡-⎣10.新冠疫情期间,网上购物成为主流.因保管不善,五个快递ABCDE 上送货地址模糊不清,但快递小哥记得这五个快递应分别送去甲乙丙丁戊五个地方,全部送错的概率是( ) A .1130B .13C .310 D .2511.(多选)设函数()f x 的定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当(]1,1x ∈-时,()21f x x =-+,则下列结论正确的是( )A .7839f ⎛⎫=- ⎪⎝⎭B .()f x 在()6,8上为减函数C .点()3,0是函数()f x 的一个对称中心D .方程()lg 0f x x +=仅有6个实数解12.(多选)下列命题中,正确的命题是( )A .长时间玩手机可能影响视力,据调查,某校学生大约40%的人近视,而该校大约有20%的学生每天玩手机超过1h ,这些人的近视率约为50%.现从每天玩手机不超过1h 的学生中任意调查一名学生,则他近视的概率为38B.在三位数中,形如“aba ()b a <”的数叫做“对称凹数”,如:212,434,⋯,则在所有三位数中共有37个对称凹数C.北京2022年冬奥会即将开幕,北京某大学5名同学报名到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,每个场馆至少安排1名志愿者,则不同的安排方法共有150种 D .用数字0,1,2,3,4组成没有重复数字且比1000大的四位奇数共有36个第II 卷二、填空题:(本大题共4小题,每小题5分,共20分.)13.已知2212~,,()()~,X N Y N μσμσ,则“12σσ<”是“X 的密度曲线的峰值比Y 的密度曲线的峰值高”的________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)14.已知函数()(),1123,1xa x f x a x a x -⎧<-⎪=⎨-+≥-⎪⎩在定义域上是增函数,则实数a 的取值范围是_______.15.若正实数a ,b 满足a b ab +=,则16b a a ab++的最小值为________. 16.购买某种意外伤害保险,每个投保人年度向保险公司交纳保险费20元,若被保险人在购买保险的一年度内出险,可获得赔偿金50万元.已知该保险每一份保单需要赔付的概率为510-,某保险公司一年能销售10万份保单,且每份保单相互独立,则一年度内该保险公司此项保险业务需要赔付的概率约为________;一年度内盈利的期望为________万元.(参考数据:()51051100.37--≈)(第一空2分,第二空3分)三、解答题:(共70分,解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)在下列三个条件中任选一个条件,补充在问题中的横线上,并解答. 条件①:展开式中前三项的二项式系数之和为22;条件②:展开式中所有项的二项式系数之和减去展开式中所有项的系数之和等于64; 条件③:展开式中常数项为第三项.问题:已知二项式1nx ⎫⎪⎭,若______,求:(1)展开式中二项式系数最大的项; (2)展开式中所有的有理项.18.(本小题满分12分)国际学生评估项目(PISA ),是经济合作与发展组织(OECD )举办的,该项目的内容是对15岁学生的阅读、数学、科学能力进行评价研究.在2018年的79个参测国家(地区)的抽样测试中,中国四省市(北京、上海、江苏、浙江作为一个整体在所有参测国家(地区)取得全部3项科目中第一的好成绩,某机构为了分析测试结果优劣的原因,从参加测试的中国学生中随机抽取了200名参赛选手进行调研,得到如下统计数据:若从上表“家长高度重视学生教育”的参测选手中随机抽取一人,则选到的是“成绩一般”的选手的概率为413. (1)依据小概率值001.0=α的独立性检验,能否认为“学生取得的成绩情况”与“家长对学生的教育重视程度”有关;(2)现从成绩优秀的选手中按照分层抽样的方法抽取20人.进行“家长对学生情感支持”的调查,再从这20人中抽取3人进行“学生家庭教育资源保障”的调查.记进行“学生家庭教育资源保障”调查中抽取到“家长高度重视学生教育”的人数为X ,求X 的分布列和数学期望. 附:()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.19.(本小题满分12分) 已知函数212e ()x f x x-=.(1)求曲线()y f x =在点1(,4)2P 处的切线方程;(2)求()f x 在闭区间13[,]22上的最大值和最小值.20.(本小题满分12分)抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上所得的数字分别为x ,y .记x y ⎡⎤⎢⎥⎣⎦表示x y 的整数部分,如:312⎡⎤=⎢⎥⎣⎦,设ξ为随机变量,x y ξ⎡⎤=⎢⎥⎣⎦. (1)求概率(1)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.21. (本小题满分12分)2022年冬奥会在北京举行,冬奥会吉祥物“冰墩墩”自亮相以来就好评不断,出现了“一墩难求”的现象.主办方现委托某公司推出一款以“冰墩墩”为原型的纪念品在专卖店进行售卖.已知这款纪念品的生产成本为80元/件,为了确定其销售价格,调查了对这款纪念品有购买意向的消费者(以下把对该纪念品有购买意向的消费者简称为消费者)的心理价位,并将收集的100名消费者的心理价位整理如下:假设当且仅当这款纪念品的销售价格小于或等于某位消费者的心理价位时,该消费者就会购买该纪念品.公司为了满足更多消费者的需求,规定每位消费者最多只能购买一件该纪念品.设这款纪念品的销售价格为x (单位:元/件),90120x <≤,且每位消费者是否购买该纪念品相互独立.用样本的频率分布估计总体的分布,频率视为概率.(1)若100x =,试估计消费者购买该纪念品的概率;已知某时段有4名消费者进店,X 为这一时段该纪念品的购买人数,试求X 的分布列和数学期望()E X ;(2)假设共有M 名消费者,设该公司售卖这款纪念品所得总利润为Y (单位:元),当该纪念品的销售价格x 定为多少时,Y 的数学期望()E Y 达到最大值?22.(本小题满分12分)已知函数()()ln 1f x x ax a =-+∈R . (1)讨论函数()f x 的单调性;(2)若12,x x 是()f x 的两个零点,求证:121211x x x x +>+参考答案一、选择题:二、填空题:13.__充要__ 14.___11,42⎡⎫⎪⎢⎣⎭____15.___7____ 16.___0.63__;__150___.(第一空2分,第二空3分)三、解答题:17.(本小题满分10分) 【详解】(1)解:选①,由012C C C 22n n n ++=,得6n =(负值舍去).选②,令1x =,可得展开式中所有项的系数之和为0.由010264n n n n n C C C +++-==,得6n =.选③,设第1r +项为常数项,()321C 1n r r r r nT x-+=-,由2302r n r =⎧⎪⎨-=⎪⎩,得6n =.由6n =得展开式的二项式系数最大为36C ,则展开式中二项式系数最大的项为()33332246C 120T xx --=-=-.(2)解:设第1r +项为有理项,()63216C 1r r r r T x-+=-,因为06r ≤≤,r ∈N ,632rZ -∈,所以0,2,4,6r =, 则有理项为03316C T x x ==,2036C 15T x ==,43356C 15T x x --==,66676C T x x --==.18.(本小题满分12分) 【详解】 解:(1)由条件知49013x x =+,解得40x =,所以130y =,40z =,70ω=,22200(90403040)120013.18710.8281307012080137K ⨯⨯-⨯==≈>⨯⨯⨯⨯,依据小概率值001.0=α的独立性检验,有把握认为“学生取得的成绩情况”与“家长对学生的教育重视程度”有关.(2)从成绩优秀的选手中按照分层抽样的方法抽取20人,则“家长高度重视学生教育”的应抽取15人,“家长重视学生教育度一般”的应抽取5人. 由题意,X 的所有可能取值为0,1,2,3.353201(0)114C P X C ===,121553205(1)38C C P X C ===,2115532035(2)76C C P X C ===31532091(3)228C P X C ===. 所以X 的分布列为1535915139()012311438762282284E X =⨯+⨯+⨯+⨯==.19.(本小题满分12分) 【详解】(1) 由212e ()x f x x -=,得2132(1)e ()x x f x x --'=,则1()82f '=-, 又切点为1(,4)2P ,所求切线方程为88y x =-+;(2)令()0f x '=得:1x =,又13[,]22x ∈,所以1[,1]2x ∈时()0f x '<,()f x 单调递减,3[1,]2x ∈时()0f x '>,()f x 单调递增,所以()()min 1e f x f ==,()2max 13max ,max 224e 4,49f f x f⎧⎫⎛⎫⎛⎫==⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎧⎫⎨⎩⎭=⎬⎭⎩ 20.(本小题满分12分) 【详解】(1)依题意,实数对(x ,y )共有16种,使1x y ξ⎡⎤==⎢⎥⎣⎦的实数对(x ,y )有以下6种: ()()()()()()1,1,2,2,3,2,3,3,4,3,4,4,所以()631168P ξ===; (2)随机变量ξ的所有取值为0,1,2,3,4.0ξ=有以下6种:()()()()()()1,2,1,3,1,4,2,3,2,4,3,4,所以()630168P ξ===;2ξ=有以下2种:()()2,1,4,2,所以()212168P ξ===;3ξ=有以下1种:()3,1,所以()1316P ξ==;4ξ=有以下1种:()4,1,所以()1416P ξ==;所以ξ的分布列为:()331111701234888161616E ξ=⨯+⨯+⨯+⨯+⨯=,答:ξ的数学期望为1716.21.(本小题满分12分) 【详解】(1)100x =时,消费者购买该纪念品的概率900.9100P ==, 由题意(4,0.9)XB ,44()0.9(10.9)ii i P X i C -==-,0,1,2,3,4i =,41(0)0.110000P X ===,同理9(1)2500P X ==,243(2)5000P X ==,729(3)2500P X ==,6561(4)10000P X ==,X 的分布列为:()40.9 3.6E X =⨯=;(2)由(1)知90100x <≤时,90()(80)18100E Y M x M =⨯⨯-≤(100x =时等号成立), 100110x <≤时,70()(80)21100E Y M x M =⨯⨯-≤(110x =时等号成立), 110120x <≤时,20()(80)8100E Y M x M =⨯⨯-≤(120x =时等号成立), 0M >,因此()E Y =21M 最大,此时110x =.所以当该纪念品的销售价格定为110元时,Y 的数学期望()E Y 达到最大值21M . 22.(本小题满分12分) 【详解】(1)()f x 定义域为()0,∞+.当0a ≤时,对()0,x ∀∈+∞均成立,∴()f x 在()0,∞+上单调递增当0a >时,令,解得10x a<<;令,解得1x a >∴()f x 在10,a ⎛⎫⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.综上所述,0a ≤时,()f x 在()0,∞+上单调递增:0a >时,()f x 在10,a ⎛⎫⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)12,x x 是()f x 的两个零点,由(1)可知:0a ≤时,()f x 在()0,∞+上单调递增,()f x 最多存在一个零点,不合题意;故只考虑0a >的情况,此时()f x 在10,a ⎛⎫⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.又∵12,x x 是()f x 的两个零点,则12,x x 必有一个在10,a ⎛⎫⎪⎝⎭上,一个在1,a ⎛⎫+∞ ⎪⎝⎭上不妨令110x a <<,21x a>, 要证121211x x x x +>+,即证121212x x x x x x ++>,即证121x x >,即证12ln ln 0x x +>由题意有:()1112122210210lnx ax lnx lnx a x x lnx ax -+=⎧⇒+=+-⎨-+=⎩ 要证120lnx lnx +>,即证()1220a x x +->即证122x x a+> 法一:即证212x x a>-∵110x a <<∴121x a a ->又因为21x a >且()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减 要证212x x a >-只需证()212f x f x a ⎛⎫<- ⎪⎝⎭而()()12f x f x =即证()1120f x f x a ⎛⎫--< ⎪⎝⎭令()()222ln ln g x f x f x x ax x a x a a a ⎛⎫⎛⎫⎛⎫=--=---+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2ln ln 22x x ax a ⎛⎫=---+ ⎪⎝⎭ 10,x a ⎛⎫∈ ⎪⎝⎭∵22112x ax a x a a ⎛⎫-=--+ ⎪⎝⎭ 10,x a ⎛⎫∈ ⎪⎝⎭时,21110,a x a a a ⎛⎫⎛⎫--+∈ ⎪ ⎪⎝⎭⎝⎭∴2222a x ax >- ∴对10,x a ⎛⎫∀∈ ⎪⎝⎭都成立∴()g x 在上10,a ⎛⎫ ⎪⎝⎭单调递增,∴()10g x g a ⎛⎫<= ⎪⎝⎭从而命题得证. 法二:即证122x x a +>,由()1112121222121010lnx ax lnx lnx lnx lnx a x x a lnx ax x x -+=⎧-⇒-=-⇒=⎨-+=-⎩ 即证()121212ln ln x x x x x x -+>2-即证()121212ln ln x x x x x x --<+ 即证1211221ln 21x x x x x x ⎛⎫- ⎪⎝⎭<+令12x t x =,()0,1t ∈即证()21ln 1t t t -<+ 令()()21ln 1t h t t t -=-+,()0,1t ∈ ∴()h t 在()0,1t ∈上单调递增.∴()()10h t h <=从而命题得证。
2021年高二数学下学期期末考试 理(含解析)新人教A版
2021年高二数学下学期期末考试 理(含解析)新人教A 版注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释) 1.复数等于( )A .B .C .D .【答案】C【解析】试题分析:.考点:复数的四则运算法则.2.如果复数是纯虚数,则的值为( )A .B .C .D .【答案】B【解析】试题分析:由于,因为复数为纯虚数,,即.考点:复数的概念和复数的模. 3.已知函数,则它的导函数是( ) A . B .C .D .【答案】B【解析】试题分析:,()()12112121--=-=='⋅'='x x x u u u y 考点:复合函数的导数.4.( )A .B .C .D .【答案】A【解析】试题分析:()()()πππππππ--------=-+-=+=+=+⎰⎰⎰e e e x dx e xdx dx e x x x x 1100||sin cos cos 00000 考点:微积分基本定理的应用.5.如图,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A .3对B .4对C .5对D .6对【答案】D【解析】试题分析:由于,与相似;与相似;由于,所以与相似,与相似,与相似,由相似三角形的传递性当与相似.考点:相似三角形.6.曲线经过伸缩变换T 得到曲线,那么直线经过伸缩变换T 得到的直线方程为( )A .B .C .D .【答案】C【解析】试题分析:由题意得直线经过伸缩变换得到的直线方程为,整理得考点:图象的伸缩变换.7.圆的圆心坐标是( )A .B .C .D .【答案】A【解析】试题分析:方程两边同时乘以得,即,圆心坐标为,因此,,因此极坐标,与之等价的是考点:极坐标的应用.8.在极坐标系中与圆相切的一条直线的方程为( )A .B .C .D .【答案】A【解析】试题分析:由题意知,化简得,,其中一条切线方程为,极坐标方程考点:极坐标方程与直角坐标方程的转化.9.设随即变量服从正态分布,,则等于 ( )A .B .C .D .【答案】D【解析】试题分析:正态曲线关于直线对称,,因此.考点:正态分布下的概率.10.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序只能出现在第一步或最后一步,程序实施时必须相邻,请问实验顺序的编排方法共有()A.种 B.种 C.种 D.种【答案】B【解析】试题分析:先安排程序,从第一步或最后一步选一个,有种,把看成一个整体和其余三个程序编排,最后换位置,共有种.考点:排列的应用11.某盏吊灯上并联着3个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是则在这段时间内吊灯能照明的概率是()A. B. C. D.【答案】C【解析】试题分析:这段时间内吊灯不能照明的概率,因此这段时间内吊灯能照明的概率考点:独立事件的概率.12.已知是定义在上的非负可导函数,且满足,对任意正数,若,则必有()A. B.C. D.【答案】A【解析】试题分析:设,则,因此函数在区间上是减函数,,已知是定义在上的非负可导函数,且满足因此所以是减函数,,当等号成立.考点:函数的单调性与导数第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.函数的最大值是 .【答案】5【解析】试题分析:由于,可设,则,因此最大值为5考点:辅助角公式的应用.14.由曲线,,所围成的图形面积为 .【答案】【解析】试题分析:直线与曲线的交点为;直线与曲线的交点,因此面积为()()313|3123|33313210210312=⎪⎭⎫ ⎝⎛-+=-+-⎰⎰x x x dx x x dx x x 考点:定积分的应用.15.二项式的展开式中含的项的系数是 .【答案】【解析】试题分析:由于,因此的系数为考点:二项展开式的通项公式.16.已知函数表示过原点的曲线,且在处的切线的倾斜角均为,有以下命题:①的解析式为;②的极值点有且只有一个;③的最大值与最小值之和等于零;其中正确命题的序号为_ .【答案】①③【解析】试题分析:由于函数过原点因此,由于在处的切线的倾斜角均为,,,,解得所以,,得,极值点有2个,由于是奇函数,因此最大值和最小值之和为零.考点:函数的导数与切线方程.三、解答题(题型注释)17.设函数.(1)当时,解关于的不等式;(2)如果,,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)理解绝对值的几何意义,表示的是数轴的上点到原点的距离;(2)对分类讨论,分三部分进行讨论;(3)掌握一般不等式的解法:,.(4)对于恒成立的问题,常用到以下两个结论:(1),(2).试题解析:解:(1)当时,原不等式可变为,可得其解集为 4分(2)因对任意都成立.∴对任何都成立.∵解集为.∴ 8分考点:(1)含绝对值不等式的解法;(2)恒成立的问题.18.设,其中为正整数.(1)求,,的值;(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想.【答案】(1);(2)【解析】试题分析:(1)数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题;(2)用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值是多少;(3)由时等式成立,推出时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,由于“猜想”是“证明”的前提和“对象”,务必保证猜想的正确性,同时必须严格按照数学归纳法的步骤书写.试题解析:解:(1) 3分(2)猜想: 4分证明:①当时,成立 5分②假设当时猜想正确,即∴ 由于)111()11()111()111(1111+++<++++=⎪⎭⎫ ⎝⎛+++k k k k k k k k 8分∴,即成立由①②可知,对成立 10分考点:数学归纳法及其应用.19.经过点,倾斜角为的直线,与曲线:(为参数)相交于两点.(1)写出直线的参数方程,并求当时弦的长;(2)当恰为的中点时,求直线的方程;(3)当时,求直线的方程;(4)当变化时,求弦的中点的轨迹方程.【答案】(1);(2);(3)或(4)【解析】试题分析:(1)将参数方程转化为直角坐标系下的普通方程;掌握常见的将参数方程转化为直角坐标系下的普通方程;(2)解决直线和曲线的综合问题:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与曲线的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.(4)根据题意设点根据点到直线的距离公式.试题解析:解:(1)的参数方程(为参数). 1分曲线化为:,将直线参数方程的代入,得∵恒成立, 3分∴方程必有相异两实根,且,. ∴55)sin cos 2(94)(22122121++=--=-=ααt t t t t t BC∴当时,. 5分(2)由为中点,可知,∴,故直线的方程为. 7分(3)∵,得∴,∴或故直线的方程为或 9分(4)∵中点对应参数∴( 参数 ),消去,得弦的中点的轨迹方程为;轨迹是以为圆心,为半径的圆. 10分考点:(1)求弦长问题;(2)求直线方程;(3)中点弦的轨迹方程.20.设在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片,标号分别记为,设随机变量.(1)写出的可能取值,并求随机变量的最大值;(2)求事件“取得最大值”的概率;(3)求的分布列和数学期望与方差.【答案】(1)的可能取值为1,2,3;的最大值3;(2);(3),【解析】试题分析:(1)求随机变量的分布列的主要步骤:一是明确随机变量的取值,并确定随机变量服从何种概率分布;二是求每一个随机变量取值的概率,三是列成表格;(2)求出分布列后注意运用分布列的两条性质检验所求的分布列是否正确;(3)求解离散随机变量分布列和方差,首先要理解问题的关键,其次要准确无误的找出随机变量的所有可能值,计算出相对应的概率,写成随机变量的分布列,正确运用均值、方差公式进行计算.试题解析:解:(1)的可能取值都为1,2,3.,∴,∴当或时,取最大值. 3分(2)有放回地先后抽得两张卡片的所有情况的种数,∴ 4分(3)的所有取值为0,1,2,3,当时,只有这1种情况,∴;当时,只有或或或,共4种情况,∴;当时,只有这2种情况,∴;当时,; 7分∴ 随机变量的分布列为:∴ 数学期望方差98)9143(92)9142(94)9141(92)9140(912222=-+-+-+-=ξD 9分 考点:求离散型随机变量的分布列、数学期望、方差.21.如图,已知⊙与⊙外切于点,是两圆的外公切线,,为切点,与 的延长线相交于点,延长交⊙于 点,点在延长线上.(1)求证:是直角三角形;(2)若,试判断与能否一定垂直?并说明理由. (3)在(2)的条件下,若,,求的值.【答案】(1)证明略;(2);(3)【解析】试题分析:(1)从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角;(2)判断三角形相似:一是平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似;二是如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似;三是如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似;四是如果两个三角形的三组对应边的比相等,那么这两个三角形相似;五是对应角相等,对应边成比例的两个三角形叫做相似三角;(3)切割线定理:切割线定理,是圆幂定理的一种,从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.试题解析:解:(1)证明:过点作两圆公切线交于,由切线长定理得,∴为直角三角形 3分(2)证明:∵,∴,又,∴∽∴即. 6分(3)由切割线定理,,∴∴. 9分考点:(1)切线长定理;(2)相似三角形的应用;(3)切割线定理的应用.22.已知函数在处取得极值,其中为常数.(1)求的值;(2)讨论函数的单调区间;(3)若对任意,不等式恒成立,求的取值范围.【答案】(1)(2)单调递减区间为,单调递增区间为(3)或【解析】试题分析:(1)利用函数的极值与导数的关系;(2)解决类似的问题时,函数在极值点处的导数为零,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)恒成立的问题关键是分离参数,把所求问题转化为求函数的最值问题.(4)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到.试题解析:解:(1),,∴,又,∴; 5分(2)(∴由得,当时,,单调递减;当时,,单调递增;∴单调递减区间为,单调递增区间为 9分由(2)可知,时,取极小值也是最小值,依题意,只需,解得或 10分考点:(1)函数的导数与极值;(2)函数的导数与单调性;(3)函数恒成立的问题.O29653 73D5 珕38667 970B 霋)24017 5DD1 巑 36881 9011 逑A35457 8A81 誁33756 83DC 菜M26250 668A 暊S4。
人教版高二上学期期末数学试卷(理)(有答案)
黑龙江省大庆高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.32.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣23.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.104.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A .B .C .D .7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为.15.(5分)执行如图所示的程序框图,输出的S值是.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为.三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.大庆高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.3【解答】解:∵向量,,∴=﹣4+4x﹣8=0,解得x=3.故选:D.2.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵f(x)=x+lnx,∴f′(x)=1+∴f′(1)=1+=2故选B3.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10【解答】解:设高一学生有x人,则高三有2x,高二有x+300,∵高一、高二、高三共有学生3500人,∴x+2x+x+300=3500,∴x=800,∵按的抽样比用分层抽样的方法抽取样本,∴应抽取高一学生数为=8故选A.4.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.【解答】解:对于A,函数f(x)为奇函数,若f(0)有意义,则f(0)=0,则“函数f(x)为奇函数”是“f(0)=0”的非充分非必要条件,故A错误;对于B,已知A,B,C不共线,若=,可得+==2,(D为AB的中点),即有P在AB的中线上,同理P也在BC的中线上,在CA的中线上,则P是△ABC的重心,故B正确;对于C,命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”,由命题的否定形式,可得C 正确;对于D,由逆否命题的形式可得,命题“若α=,则cosα=”的逆否命题为“若cosα≠,则α≠”,故D正确.故选:A.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或【解答】解:设双曲线的右焦点F2(c,0),令x=﹣c,可得y=±,可得A(c,﹣),B(c,),又设D(0,b),△ABD为直角三角形,可得∠DBA=90°,即b=或∠BDA=90°,即=0,解:b=可得a=b,c=,所以e==;由=0,可得:(c,)(c,﹣)=0,可得c2+b2﹣=0,可得e4﹣4e2+2=0,e>1,可得e=,综上,e=或.故选:D.9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.【解答】解:根据题意,双曲线x2+my2=m(m∈R)的焦距4,可得=2c=4,解可得m=﹣3,则双曲线的方程为:,其渐近线方程为:y=±x;故选:D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]【解答】解:∵f(x)=x2﹣9lnx,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=.【解答】解:连接OP,AB,OA,OB,∵PA,PB是单位圆O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∴∠OPA=∠OPB=∠APB=60°,又OA=OB=1,∴OP=,∴P点轨迹为以O为圆心,以为半径的圆,∴P点轨迹方程为x2+y2=.故答案为:x2+y2=.15.(5分)执行如图所示的程序框图,输出的S值是.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+sin+ (i)的值,由于sin,k∈Z的取值周期为6,且2017=336×6+1,所以S=sin+sin+…sin=336×(sin+sin+…+sin)+sin=.故答案为:.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f(4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,需a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为3×3=9个.满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1)共5个,所以所求概率.(Ⅱ)如图,求得区域的面积为.由,求得.所以区域内满足a>0且2b≤a的面积为.所以所求概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.【解答】解:(Ⅰ)依题意,,a2﹣b2=2,∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,∴b=|OM|=1,∴.…(3分)∴椭圆的方程为.…(4分)(II)①当直线l的斜率不存在时,由解得.设,,则为定值.…(5分)②当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1).将y=k(x﹣1)代入整理化简,得(3k2+1)x2﹣6k2x+3k2﹣3=0.…(6分)依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则,.…(7分)又y1=k(x1﹣1),y2=k(x2﹣1),所以=====..….…(13分)综上得k1+k2为常数2..….…(14分)22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。
四川省眉山市高二数学下学期期末试卷 理(含解析)-人教版高二全册数学试题
某某省眉山市2014-2015学年高二下学期期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.在复平面内,复数对应的点的坐标为()A.(3,﹣1)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣3,﹣1)2.用反证法证明“若x<y,则x3<y3”时,假设内容是()A.x3=y3B.x3>y3C.x3=y3或x3>y3D.x3=y3或x3<y3 3.设随机变量ξ~N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=()A.+p B.1﹣p C.1﹣2p D.﹣p4.(1+)6的展开式中有理项系数之和为()A.64 B.32 C.24 D.165.有3位同学参加测试,假设每位同学能通过测试的概率都是,且各人能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为()A.B.C.D.6.若离散型随机变量ξ的分布列为:则随机变量ξ的期望为()ξ 0 1 2 3P 0.15 0.4 0.35 XA.1.4 B.0.15 C.1.5 D.0.147.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减B.函数y=f(x)的图象是中心对称图形C.∃x0∈R,f(x0)=0D.若x0是f(x)的极值点,则f′(x0)=08.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数有()A.6 B.8 C.12 D.169.正方体ABCD﹣A1B1C1D1的棱长为1,M是棱AB的中点,点P是平面ABCD上的动点,P到直线A1D1的距离为d,且d2﹣|PM|2=1,则动点P的轨迹是()A.圆B.抛物线C.椭圆D.双曲线10.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是()A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人11.设双曲线﹣=1(0<a<b)的半焦距为c,(a,0),(0,b)为直线l上两点,已知原点到直线l的距离为c,则双曲线的离心率为()A.B.或2 C.2或D.212.已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是()A.(0,)B.(1,2)C.(,1)D.(2,3)二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在题中横线上13.复数z=的共轭复数为.14.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).15.已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1、x2都有>2恒成立,则a的取值X围是.16.方程x|x|﹣y|y|=﹣1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:①f(x)在R上单调递减;②函数F(x)=f(x)﹣x﹣存在3个零点;③函数y=f(x)的值域是R;④函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程x|x|﹣y|y|=1确定的曲线.其中所有正确的命题序号是.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知书架中甲层有英语书2本和数学书3本,乙层有英语书1本和数学书4本.现从甲、乙两层中各取两本书.(1)求取出的4本书都是数学书的概率.(2)求取出的4本书中恰好有1本是英语书的概率.18.已知函数f(x)=ln(x+1)+.(1)当函数f(x)在点(0,f(0))处的切线与直线4y﹣x+1=0垂直时,某某数m的值;(2)若x≥0时,f(x)≥1恒成立,某某数m的取值X围.19.已知平面内一动点P(x,y)(x≥0)到点F(1,0)的距离与点P到y轴的距离的差等于1,(1)求动点P的轨迹C的方程;(2)过点F的直线l与轨迹C相交于不同于坐标原点O的两点A,B,求△OAB面积的最小值.20.某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X的分布列与数学期望E(X).21.已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线x2=4y的焦点.(I)求椭圆C的方程;(Ⅱ)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.(i)若直线AB的斜率为,求四边形APBQ面积的最大值;(ii)当点A,B运动时,满足∠APQ=∠BPQ,问直线AB的斜率是否为定值,请说明理由.22.已知函数f(x)=lnx,g(x)=,F(x)=f(x)+g(x).(1)当a<0时,求函数F(x)的单调区间;(2)若函数F(x)在区间[1,e]上的最小值是,求a的值;(3)设A(x1,y1),B(x2,y2)是函数f(x)图象上任意不同的两点,线段AB的中点为C (x0,y0),直线AB的斜率为k,证明:k>f′(x0)某某省眉山市2014-2015学年高二下学期期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.在复平面内,复数对应的点的坐标为()A.(3,﹣1)B.(1,﹣3)C.(﹣1,﹣3)D.(﹣3,﹣1)考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的基本运算和复数的几何意义进行化简即可.解答:解:===1﹣3i,对应的坐标为(1,﹣3),故选:B点评:本题主要考查复数的几何意义,利用复数的基本运算进行化简是解决本题的关键.2.用反证法证明“若x<y,则x3<y3”时,假设内容是()A.x3=y3B.x3>y3C.x3=y3或x3>y3D.x3=y3或x3<y3考点:反证法与放缩法.专题:证明题;推理和证明.分析:由于用反证法证明命题时,应先假设命题的否定成立,而“x3<y3”的否定为:“x3≥y3”,由此得出结论.解答:解:∵用反证法证明命题时,应先假设命题的否定成立,而“x3<y3”的否定为:“x3≥y3”,故选:C.点评:本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.3.设随机变量ξ~N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=()A.+p B.1﹣p C.1﹣2p D.﹣p考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题.分析:根据随机变量ξ~N(0,1),正态曲线关于x=0对称,得到对称区间对应的概率相等,根据大于1的概率得到小于﹣1的概率,根据对称轴一侧的区间的概率是,得到结果.解答:解:∵随机变量ξ~N(0,1),∴正态曲线关于x=0对称,∵P(ξ>1)=p,∴P(ξ<﹣1)=p,∴P(﹣1<ξ<0)=﹣p,故选D.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查正态曲线的对称性的应用,考查关于对称轴对称的区间上的概率相等,本题是一个基础题,题目中所处的字母p可以变式为实数.4.(1+)6的展开式中有理项系数之和为()A.64 B.32 C.24 D.16考点:二项式定理.专题:二项式定理.分析:在二项展开式的通项公式中,令x的幂指数为有理数,求出r的值,再利用二项式系数的性质,即可求得展开式中有理项系数之和.解答:解:(1+)6的展开式的通项公式为 T r+1=•,令为整数,可得r=0,2,4,6,故展开式中有理项系数之和为+++=25=32,故选:B.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.5.有3位同学参加测试,假设每位同学能通过测试的概率都是,且各人能否通过测试是相互独立的,则至少有一位同学能通过测试的概率为()A.B.C.D.考点:相互独立事件的概率乘法公式;互斥事件的概率加法公式.专题:概率与统计.分析:先求出所有的同学都没有通过的概率,再用1减去此概率,即得所求.解答:解:所有的同学都没有通过的概率为=,故至少有一位同学能通过测试的概率为 1﹣=故选:D.点评:本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,属于中档题.6.若离散型随机变量ξ的分布列为:则随机变量ξ的期望为()ξ 0 1 2 3P 0.15 0.4 0.35 XA.1.4 B.0.15 C.1. 5 D.0.14考点:离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:利用随机变量的期望公式、随机变量的分布列的概率和为1,即可得出结论.解答:解:由题意,x=1﹣0.15﹣0.4﹣0.35=0.1数学期望Eξ=0×0.15+1×0.4+2×0.35+3×0.1=1.4,故选:A.点评:本题考查随机变量的期望公式及分布列的概率和为1,是一道基础题.7.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减B.函数y=f(x)的图象是中心对称图形C.∃x0∈R,f(x0)=0D.若x0是f(x)的极值点,则f′(x0)=0考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:导数的综合应用.分析:对于A,采用取特殊函数的方法,若取a=﹣1,b=﹣1,c=0,则f(x)=x3﹣x2﹣x,利用导数研究其极值和单调性进行判断;对于B:因为函数f (x )=x3+ax2+bx+c,都可能经过中心对称图形的y=x3的图象平移得到,故其函数y=f(x)的图象是中心对称图形;对于C:对于三次函数f (x )=x3+ax2+bx+c,由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故在区间(﹣∞,+∞)肯定存在零点;D:若x0是f(x)的极值点,根据导数的意义,则f′(x0)=0,正确.解答:解:对于三次函数f (x )=x3+ax2+bx+c,A:若取a=﹣1,b=﹣1,c=0,则f(x)=x3﹣x2﹣x,对于f(x)=x3﹣x2﹣x,∵f′(x)=3x2﹣2x﹣1∴由f′(x)=3x2﹣2x﹣1>0得x∈(﹣∞,﹣)∪(1,+∞)由f′(x)=3x2﹣2x﹣1<0得x∈(﹣,1)∴函数f(x)的单调增区间为:(﹣∞,﹣),(1,+∞),减区间为:(﹣,1),故1是f(x)的极小值点,但f(x )在区间(﹣∞,1)不是单调递减,故错;B:∵f(﹣﹣x)+f(x)=(﹣﹣x)3+a(﹣﹣x)2+b(﹣﹣x)+c+x3+ax2+bx+c =﹣+2c,f(﹣)=(﹣)3+a(﹣)2+b(﹣)+c=﹣+c,∵f(﹣﹣x)+f(x)=2f(﹣),∴点P(﹣,f(﹣))为对称中心,故B正确.C:由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故∃x0∈R,f(x0)=0,正确;D:若x0是f(x)的极值点,根据导数的意义,则f′(x0)=0,正确.故答案为:A点评:本题考查了导数在求函数极值中的应用,利用导数求函数的单调区间,及导数的运算.8.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数有()A.6 B.8 C.12 D.16考点:排列、组合及简单计数问题.专题:计算题.分析:若第一门安排在开头或结尾,则第二门有3种安排方法.若第一门安排在中间的3天中,则第二门有2种安排方法,根据分步计数原理分别求出安排方案种数,相加即得所求.解答:解:若第一门安排在开头或结尾,则第二门有3种安排方法,这时,共有×3=6种方法.若第一门安排在中间的3天中,则第二门有2种安排方法,这时,共有3×2=6种方法.综上可得,所有的不同的考试安排方案种数有 6+6=12种,故选C.点评:本题考查排列、组合及简单计数问题,体现了分类讨论的数学思想,属于中档题.9.正方体ABCD﹣A1B1C1D1的棱长为1,M是棱AB的中点,点P是平面ABCD上的动点,P到直线A1D1的距离为d,且d2﹣|PM|2=1,则动点P的轨迹是()A.圆B.抛物线C.椭圆D.双曲线考点:轨迹方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:作PQ⊥AD,作QR⊥D1A1,PR即为点P到直线A1D1的距离,由勾股定理得PR2﹣PQ2=RQ2=1,又已知PR2﹣PM2=1,PM=PQ,即P到点M的距离等于P到AD的距离.解答:解:如图所示:正方体ABCD﹣A1B1C1D1中,作PQ⊥AD,Q为垂足,则PQ⊥面ADD1A1,过点Q作QR⊥D1A1,则D1A1⊥面PQR,PR即为点P到直线A1D1的距离,由题意可得PR2﹣PQ2=RQ2=1.又已知PR2﹣PM2=1,∴PM=PQ,即P到点M的距离等于P到AD的距离,根据抛物线的定义可得,点P的轨迹是抛物线,故选:B.点评:本题考查抛物线的定义,求点的轨迹方程的方法,体现了数形结合的数学思想,得到PM=PQ是解题的关键.10.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是()A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人考点:排列、组合的实际应用.专题:计算题.分析:设出男学生有x人,根据一共有8人得到女学生有8﹣x人,根据从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,得到关于x的等式C x2C8﹣x1A33=90,解出x即可.解答:解:设男学生有x人,则女学生有8﹣x人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案∴C x2C8﹣x1A33=90,∴x(x﹣1)(8﹣x)=30=2×3×5,∴x=3故选B.点评:本题考查排列组合数的实际应用,是一个综合题,解题时思考方法同一般的排列组合一样,根据题意列出等式,得到结果.11.设双曲线﹣=1(0<a<b)的半焦距为c,(a,0),(0,b)为直线l上两点,已知原点到直线l的距离为c,则双曲线的离心率为()A.B.或2 C.2或D.2考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先求出直线l的方程,利用原点到直线l的距离为c,及c2=a2+b2,求出离心率的平方e2,进而求出离心率.解答:解:∵直线l过(a,0),(0,b)两点,∴直线l的方程为:,即 bx+ay ﹣ab=0,∵原点到直线l的距离为c,∴=c.又c2=a2+b2,∴3e4﹣16e2+16=0,∴e2=4,或e2=.∵a>b>0,∴c2=a2+b2<2a2,∴e=,故离心率为e=,故选:A.点评:本题主要考查双曲线的标准方程,以及简单性质的应用,属于中档题.12.已知定义在(0,+∞)上的单调函数f(x),对∀x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是()A.(0,)B.(1,2)C.(,1)D.(2,3)考点:导数的运算.专题:导数的综合应用.分析:设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t 的值,可得f(x)的解析式,由二分法分析可得h(x)的零点所在的区间为(1,2),结合函数的零点与方程的根的关系,即可得答案.解答:解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)﹣log2x为定值,设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,f′(x)=,将f(x)=log2x+2,f′(x)=代入f(x)﹣f′(x)=2,可得log2x+2﹣=2,即log2x﹣=0,令h(x)=log2x﹣,分析易得h(1)=<0,h(2)=1﹣>0,则h(x)=log2x﹣的零点在(1,2)之间,则方程log2x﹣=0,即f(x)﹣f′(x)=2的根在(1,2)上,故选:B.点评:本题考查二分法求函数的零点与函数零点与方程根的关系的应用,关键点和难点是求出f(x)的解析式.二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在题中横线上13.复数z=的共轭复数为﹣i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的基本运算法则进行化简即可.解答:解:z==+i,则z=的共轭复数为=﹣i,故答案为:﹣i点评:本题主要考查复数的共轭复数的计算,比较基础.14.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可.解答:解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2中选择故有且仅有两人选择的项目完全相同的概率是=故答案为:点评:本题主要考查了古典概型及其概率计算公式,解题的关键求出有且仅有两人选择的项目完全相同的个数,属于基础题.15.已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1、x2都有>2恒成立,则a的取值X围是[1,+∞).考点:函数恒成立问题.专题:函数的性质及应用.分析:依题意知,f′(x)=+x≥2(x>0)恒成立⇔a≥2x﹣x2恒成立,令g(x)=2x﹣x2=﹣(x﹣1)2+1,利用二次函数的对称性、单调性与最值,可求得g(x)max,于是可得a的取值X围.解答:解:∵f(x)=alnx+x2(a>0),对任意两个不等的正实数x1、x2都有>2恒成立,∴f′(x)=+x≥2(x>0)恒成立,∴a≥2x﹣x2恒成立,令g(x)=2x﹣x2=﹣(x﹣1)2+1,则a≥g(x)max,∵g(x)=2x﹣x2为开口方向向下,对称轴为x=1的抛物线,∴当x=1时,g(x)=2x﹣x2取得最大值g(1)=1,∴a≥1.即a的取值X围是[1,+∞).故答案为:[1,+∞).点评:本题考查函数恒成立问题,考查导数的几何意义与二次函数的对称性、单调性与最值,考查转化思想.16.方程x|x|﹣y|y|=﹣1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:①f(x)在R上单调递减;②函数F(x)=f(x)﹣x﹣存在3个零点;③函数y=f(x)的值域是R;④函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程x|x|﹣y|y|=1确定的曲线.其中所有正确的命题序号是②③④.考点:函数的图象.专题:函数的性质及应用.分析:分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给的命题的真假性.解答:解:(1)x≥0,y≥0,x2﹣y2=﹣1即y2﹣x2=1,此为a=b=1,实轴为y轴的双曲线在第1象限的部分,增函数;(2)x≥0,y<0,x2+y2=﹣1不存在;(3)x<0,y≥0,﹣x2﹣y2=﹣1,x2+y2=1,此为圆心在原点,半径为1的圆在第2象限的部分,增函数;(4)x<0,y<0,﹣x2+y2=﹣1,x2﹣y2=1,此为a=b=1,实轴为x轴的双曲线在第3象限的部分,增函数;根据上述情况作出相应的图象,如图所示,故:①f(x)在R上单调递减,错误;②函数f(x)的图象与函数y=x+在第二象限相切,在第一,三象限延长后各有一个交点,即函数f(x)的图象与函数y=x+共有三个交点,即函数F(x)=f(x)﹣x﹣存在3个零点,正确;③函数y=f(x)的值域是R,正确;④函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程﹣x|﹣x|+y|﹣y|=﹣1,即方程x|x|﹣y|y|=1确定的曲线,正确.即正确的命题序号是:②③④,故答案为:②③④点评:本题主要考查了含有绝对值的函数的图象,以及有关圆锥曲线的问题,利用了数形结合的思想,属于中档题三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.已知书架中甲层有英语书2本和数学书3本,乙层有英语书1本和数学书4本.现从甲、乙两层中各取两本书.(1)求取出的4本书都是数学书的概率.(2)求取出的4本书中恰好有1本是英语书的概率.考点:相互独立事件的概率乘法公式;古典概型及其概率计算公式;排列、组合及简单计数问题.专题:计算题.分析:(1)设“从甲层取出的2本书均为数学书”的事件为A,“从乙层取出的2本书均为数学书”的事件为B,则所求的事件的概率等于P(A)P(B)=×,运算求得结果.(2)利用互斥事件的概率加法公式,所求的事件的概率等于×+×,运算求得结果.解答:解:(1)设“从甲层取出的2本书均为数学书”的事件为A,“从乙层取出的2本书均为数学书”的事件为B,由于A、B相互独立,记“取出的4本书都是数学书的概率”P1,则P1=P(AB)=P(A)P(B)=×=.(2)设“从甲层取出的2本书均为数学书,从乙层取出的2本书中,1本是英语,1本是数学”的事件为C,“从甲层取出的2本书中,1本是英语,1本是数学,从乙层取出的2本书中均为数学”的事件为D,由于C,D互斥,记“取出的4本书中恰好有1本是英语书的概率”为P2P2=P(C+D)=P(C)+P(D)=×+×=.点评:本题主要考查相互独立事件的概率乘法公式,互斥事件的概率加法公式,排列与组合及两个基本原理的应用,属于中档题.18.已知函数f(x)=ln(x+1)+.(1)当函数f(x)在点(0,f(0))处的切线与直线4y﹣x+1=0垂直时,某某数m的值;(2)若x≥0时,f(x)≥1恒成立,某某数m的取值X围.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:导数的概念及应用;导数的综合应用;不等式的解法及应用.分析:(1)求出导数,求得切线的斜率,由两直线垂直的条件:斜率之积为﹣1,即可得到所求m的值;(2)不等式ln(x+1)+≥1在x≥0时恒成立,即m≥x+1﹣(x+1)ln(x+1)在x≥0时恒成立.令g(x)=x+1﹣(x+1)ln(x+1)(x≥0),求出导数,求得单调区间,即可得到最大值,令m不小于最大值即可.解答:解:(1)∵f′(x)=﹣,∴函数f(x)在点(0,f(0))处的切线的斜率k=f′(0)=1﹣m,∵函数f(x)在点(0,f(0))处的切线与直线4y﹣x+1=0垂直,∴1﹣m=﹣4,∴m=5;(2)依题意不等式ln(x+1)+≥1在x≥0时恒成立,即m≥x+1﹣(x+1)ln(x+1)在x≥0时恒成立.令g(x)=x+1﹣(x+1)ln(x+1)(x≥0),则g′(x)=1﹣[ln(x+1)+1]=﹣ln(x+1),∴x≥0时,g′(x)≤0,∴函数g(x)在[0,+∞)时为减函数,∴g(x)≤g(0)=1,∴m≥1即实数m的取值X围是[1,+∞).点评:本题考查导数的运用:求切线方程和单调区间,主要考查导数的几何意义和不等式恒成立问题,注意运用分离参数和函数的单调性是解题的关键.19.已知平面内一动点P(x,y)(x≥0)到点F(1,0)的距离与点P到y轴的距离的差等于1,(1)求动点P的轨迹C的方程;(2)过点F的直线l与轨迹C相交于不同于坐标原点O的两点A,B,求△OAB面积的最小值.考点:轨迹方程;直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)根据平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1,可得当x≥0时,点P到F的距离等于点P到直线x=﹣1的距离,所以动点P的轨迹为抛物线;(2)过点F的直线l的方程为x=my+1,代入y2=4x,可得y2﹣4my﹣4=0,利用韦达定理,结合△OAB面积=|y1﹣y2|,即可求△OAB面积的最小值.解答:解:(1)∵平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1,∴当x≥0时,点P到F的距离等于点P到直线x=﹣1的距离,∴动点P的轨迹为抛物线,方程为y2=4x(x≥0);∴动点P的轨迹C的方程为y2=4x(x≥0);(2)设A点坐标为(x1,y1),B点坐标为(x2,y2),过点F的直线l的方程为x=my+1,代入y2=4x,可得y2﹣4my﹣4=0,∴y1+y2=4m,y1y2=﹣4,∴△OAB面积=|y1﹣y2|=,∴m=0时,△OAB面积的最小值为2.点评:本题考查轨迹方程,考查直线与抛物线的位置关系,解题的关键是确定抛物线的方程,利用韦达定理解题.20.某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X的分布列与数学期望E(X).考点:离散型随机变量的期望与方差;条件概率与独立事件.专题:应用题;概率与统计.分析:(1)利用条件概率公式,即可求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)确定X的可能取值,利用概率公式即可得到总分X的分布列,代入期望公式即可.解答:解:(1)记“该考生在第一次抽到理科题”为事件A,“该考生第二次和第三次均抽到文科题”为事件B,则P(A)=,P(AB)=.…∴该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率为P(B|A)=.…(2)X的可能取值为:0,10,20,30,则P(X=0)==,P(X=10)=+=,P(X=20)==,P(X=30)=1﹣﹣﹣=.…∴X的分布列为X 0 10 20 30p…∴X的数学期望为EX=0×+10×+20×+30×=.…点评:此题考查了独立事件,条件概率的概率公式,随机变量的分布列及其期望,重点考查了学生对于题意的正确理解及准确的计算能力.21.已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线x2=4y的焦点.(I)求椭圆C的方程;(Ⅱ)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.(i)若直线AB的斜率为,求四边形APBQ面积的最大值;(ii)当点A,B运动时,满足∠APQ=∠BPQ,问直线AB的斜率是否为定值,请说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线中的最值与X围问题.分析:(I)设椭圆C的方程为+=1(a>b>0),由条件利用椭圆的性质求得 b和a的值,可得椭圆C的方程.(Ⅱ)(i)设AB的方程为y=x+t,代入椭圆C的方程化简,由△>0,求得t的X围,再利用利用韦达定理可得 x1+x2以及x1+x2的值.再求得P、Q的坐标,根据四边形APBQ的面积S=S△APQ+S△BPQ=•PQ•|x1﹣x2|,计算求得结果.(ii)当∠APQ=∠BPQ时,PA、PB的斜率之和等于零,PA的方程为y﹣1=k(x﹣2),把它代入椭圆C的方程化简求得x2+2=.再把直线PB的方程椭圆C的方程化简求得x2+2 的值,可得 x1+x2以及x1﹣x2的值,从而求得AB的斜率K的值.解答:解:设椭圆C的方程为+=1(a>b>0),由题意可得它的一个顶点恰好是抛物线x2=4y的焦点(0,),∴b=.再根据离心率===,求得a=2,∴椭圆C的方程为+=1.(Ⅱ)(i)设A( x1,y1),B( x2,y2),AB的方程为y=x+t,代入椭圆C的方程化简可得 x2+2tx+2t2﹣4=0,由△=4t2﹣4(2t2﹣4)>0,求得﹣2<t<2.利用韦达定理可得 x1+x2=﹣2t,x1+x2=2t2﹣4.在+=1中,令x=2求得P(2,1),Q(2,﹣1),∴四边形APBQ的面积S=S△APQ+S△BPQ=•PQ•|x1﹣x2|=×2×|x1﹣x2|=|x1﹣x2|===,故当t=0时,四边形APBQ的面积S取得最小值为4.(ii)当∠APQ=∠BPQ时,PA、PB的斜率之和等于零,设PA的斜率为k,则 PB的斜率为﹣k,PA的方程为y﹣1=k(x﹣2),把它代入椭圆C的方程化简可得(1+4k2)x2+8k(1﹣2k)x+4(1﹣2k)2﹣8=0,∴x2+2=.同理可得直线PB的方程为y﹣1=﹣k(x﹣2),x2+2=,∴x1+x2=,x1﹣x2=,∴AB的斜率K======.点评:本题主要考查求圆锥曲线的标准方程,圆锥曲线的定义、性质的应用,直线和圆锥曲线相交的性质,直线的斜率公式、韦达定理的应用,属于难题.22.已知函数f(x)=lnx,g(x)=,F(x)=f(x)+g(x).(1)当a<0时,求函数F(x)的单调区间;(2)若函数F(x)在区间[1,e]上的最小值是,求a的值;(3)设A(x1,y1),B(x2,y2)是函数f(x)图象上任意不同的两点,线段AB的中点为C (x0,y0),直线AB的斜率为k,证明:k>f′(x0)考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:综合题;导数的综合应用.分析:(1)求出F(x)=lnx+的导数,导数大于0,即可求函数的增区间;(2)对a进行分类讨论,分别求出各种情况下的函数在[1,e]上的最小值令其为,解方程求得a的值;(3)对于当a=0时,先把f(x)=lnx具体出来,然后求导函数,得到f′(x0),在利用斜率公式求出过这两点的斜率公式,利用构造函数并利用构造函数的单调性比较大小.解答:(1)解:F(x)=lnx+,则F′(x)=,∵a<0,x>0,∴F′(x)>0,∴函数F(x)的单调增区间是(0,+∞);(2)解:在[1,e]上,分如下情况讨论:1.当a<1时,f'(x)>0,函数f(x)单调递增,其最小值为f(1)=a<1,这与函数在[1,e]上的最小值是相矛盾;2.当a=1时,函数f(x)在(1,e]单调递增,其最小值为f(1)=1,同样与最小值是相矛盾;3.当1<a<e时,函数f(x)在[1,a)上有f'(x)<0,单调递减,在(a,e]上有f'(x)>0,单调递增,∴函数f(x)的最小值为f(a)=lna+1=,得a=.4.当a=e时,函数f(x)在[1,e)上有f'(x)<0,单调递减,其最小值为f(e)=225,还与最小值是相矛盾;5.当a>e时,显然函数f(x)在[1,e]上单调递减,其最小值为f(e)=1+>2,仍与最小值是相矛盾.综上所述,a的值为.(3)证明:当a=0时,f(x)=lnx∴f′(x)=∴f'(x0)=又k==不妨设x2>x1,要比较k与f'(x0)的大小,即比较与的大小,又∵x2>x1,∴即比较ln与=的大小.令h(x)=lnx﹣(x≥1),则h′(x)=≥0∴h(x)在[1,+∞)上是增函数.又>1,∴h()>h(1)=0,∴ln>,即k>f'(x0).点评:此题考查了利用导函数求函数的单调的增区间,还考查了构造函数并利用构造的函数的单调性把问题转化为恒成立的问题,重点考查了学生的转化的思想及构造的函数与思想.。
高二数学下学期期末考试试卷含答案(共3套)
B .C .D .8.若 S = ⎰ 2 x 2dx , S = ⎰ 2 dx, S = ⎰ 2 e x d x ,则 S , S , S 的大小关系为( )1 x 1 1高二年级下学期期末考试数学试卷(考试时间:120 分钟;满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设 Z = 10i3 + i,则 Z 的共轭复数为( )A . -1 + 3iB . -1 - 3iC .1+ 3iD .1- 3i2.6 把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24v v v v3.已知 a = (1- t,2 t - 1,0), b = (2, t, t ), 则 b - a 的 最小值是( )A . 5B . 6C . 2D . 3uuuv uuuv uuuv v4.已知正三棱锥 P - ABC 的外接球 O 的半径为1 ,且满足OA + OB + OC = 0, 则正三棱锥的体积为()A .344 2 45.已知函数 f ( x ) = - x, 且a < b < 1,则 ( )e x A .f (a) = f (b )B . f (a) < f (b )C . f (a) > f (b )D . f (a),f (b )大小关系不能确定6.若随机变量 X ~ B(n, p ), 且 E( X ) = 6, D( X ) = 3,则P( X = 1) 的值为()A . 3 2-2B . 2-4C . 3 2-10D . 2-8作检验的产品件数为()A.6B.7C.8D.91123123A.S<S<S123B.S<S<S213C.S<S<S231D.S<S<S3211A . n + 1B . 2nC .D . n 2 + n + 112.设点 P 在曲线 y = e x 上,点 Q 在曲线 y = ln(2 x) 上,则 PQ 的最小值为()13.已知复数 z = (i 是虚数单位) ,则 z = __________;15.二项式 (x- )8的展开式中,x 2 y 2的系数为 __________; 16.已知 f (n ) = 1 + + + … + (n ∈ N * ), 经计算得f (4) > 2, f (8) > , f (16) > 3 ,f (32) > , 则有__________(填上合情推理得到的式子).17.已知曲线 C 的极坐标方程是 ρ = 2cos(θ + ) ,以极点为平面直角坐标系的原点,极轴为 x,9.平面内有 n 条直线,最多可将平面分成 f (n) 个区域,则 f (n) 的表达式为()n 2 + n + 2 210.设m 为正整数,( x + y)2m 展开式的二项式系数的最大值为 a ,( x + y)2m +1 展开式的二项式系数的最大值为 b .若13a = 7b ,则 m = ( )A .5B .6C .7D .811.已知一系列样本点 ( x , y ) (i = 1,2,3, … , n) 的回归直线方程为 y = 2 x + a, 若样本点 (r,1)与(1,s) ii的残差相同,则有( ) A . r = s B . s = 2r C . s = -2r + 3 D . s = 2r + 112A .1- ln2B . 2(1 - ln 2)C .1+ ln2D . 2(1 + ln2)二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)5i1 + 2i14.直线 2 ρcos θ = 1 与圆 ρ = 2cos θ 相交的弦长为__________;y y x1 1 1 52 3 n 272三、解答题(本大题共 6 小题,17 小题 10 分, 18-22 题每小题 12 分,共 70 分;解答应写出文字说明、证明过程或演算步骤)π 3轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线 l 的参数方程是⎧⎪ x = -1 - t, ⎨⎪⎩ y = 2 + 3t(t 是参数) 设点 P(-1,2) .(Ⅰ)将曲线 C 的极坐标方程化为直角坐标方程,将直线 l 的参数方程化为普通方程;(Ⅱ)设直线 l 与曲线 C 相交于 M , N 两点,求 PM PN 的值.已知从该班随机抽取1人为喜欢的概率是.(参考公式:K2=,其中n=a+b+c+d)20.已知数列{x}满足x=,xn+1=18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的2⨯2列联表:喜欢不喜欢合计男生18女生6合计6013(Ⅰ)请完成上面的2⨯2列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.参考临界值表:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.072 2.7063.841 5.024 6.6357.87910.828n(ad-bc)2(a+b)(c+d)(a+c)(b+d)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设a,a,a分别表123示甲,乙,丙3个盒中的球数.(Ⅰ)求a=2,a=1,a=0的概率;123(Ⅱ)记ξ=a+a,求随机变量ξ的概率分布列和数学期望.1211n121+xn,其中n∈N*.(Ⅰ)写出数列{x}的前6项;n(Ⅱ)猜想数列{x}的单调性,并证明你的结论.2na21 .如图,四棱锥 P - ABCD 中,底面 ABCD 是梯形, AD / / B C , AD > BC , ∠BAD = 900 ,P A ⊥ 底面ABCD, P A = AB, 点 E 是PB 的中点 .(Ⅰ)证明: PC ⊥ AE ;(Ⅱ)若 AB = 1, AD = 3, 且P A 与平面 PCD 所成角的大小为 450 ,求二面角 A - PD - C 的正弦值.22.已知函数 g ( x ) =x, f ( x ) = g ( x ) - ax .ln x(Ⅰ)求函数 g ( x ) 的单调区间;(Ⅱ)若函数 f ( x ) 在 (1, +∞)上是减函数,求实数 的最小值;(Ⅲ)若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a(a > 0) 成立,求实数 a 的取值范围.12 1 2( x - )2 + ( y + )2 = 1 ;⎪⎪ (Ⅱ) 直线 l 的参数方程化为标准形式为 ⎨ (m 是参数) ,①19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为 , , .下学期高二年级期末考试数学参考答案一、选择题题号答案1D 2D 3C 4A 5C 6C 7C 8B9C10B 11C 12B二、填空题13.514.315.7016. f (2n) >n + 22(n ≥ 2, n ∈ N * )三、解答题17 . 解 : ( Ⅰ ) 曲 线 C 的 极 坐 标 方 程 化 为 直 角 坐 标 方 程 为 : x 2 + y 2 = x - 3 y,即1 32 2直线 l 的参数方程化为普通方程为: 3x + y + 3 - 2 = 0 .⎧1 x = -1 - m ,2 ⎪ y = 2 +3 m ⎪⎩ 2将①式代入 x 2 + y 2 = x - 3 y ,得: m 2 + (2 3 + 3)m + 6 + 2 3 = 0 ,②由题意得方程②有两个不同的根,设 m , m 是方程②的两个根,由直线参数方程的几何意义知:1 2PM PN = m m = 6 + 2 3 .1218.解:(Ⅰ)列联表如下;喜欢 男生 14 女生 6 合计20 不喜欢18 22 40 合计 32 28 60(Ⅱ)根据列联表数据,得到 K 2 = 60(14⨯ 22 - 6 ⨯18)2 32 ⨯ 28 ⨯ 20 ⨯ 40≈ 3.348 > 2.706,所以有 90%的可靠性认为“喜欢与否和学生性别有关”.1 1 16 3 2p=p(a=2,a=1,a=0)=C1()2()=.3633683323628 3626323328p(a=3,a=0,a=0)=.8期望E(ξ)=0⨯+1⨯+2⨯+3⨯=.20.解:(Ⅰ)由x=,得x==;21+x3由x=,得x==;31+x5由x=,得x==;51+x8由x=,得x==;81+x13由x=8,得x==;131+x21(Ⅰ)由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,111123(Ⅱ)由题意知,ξ可能的取值是0,1,2,3.1p(ξ=0)=p(a=0,a=0,a=3)=,12311113 p(ξ=1)=p(a=0,a=1,a=2)+p(a=1,a=0,a=2)=C1()()2+C1()()2= 123123p(ξ=2)=p(a=2,a=0,a=1)+p(a=1,a=1,a=1)+p(a=0,a=2,a=1)123123123 11111113=C1()2()+A3()()()+C1()2()=3p(ξ=3)=p(a=0,a=3,a=0)+p(a=1,a=2,a=0)+p(a=2,a=1,a=0)+ 1231231231123故ξ的分布列为:ξ0123P13883818 1331388882112121213232315343518454113565(Ⅱ)由(Ⅰ)知x>x>x,猜想:数列{x}是递减数列.2462n下面用数学归纳法证明:①当n=1时,已证命题成立;(Ⅰ)证明: AE = ⎛ 0, b , b ⎫⎪ , PC = (c, b , - b ) , 所以 AE ⋅ PC = 0 ⨯ c + b ⋅ b + b ⋅ (-b ) = 0 , r 由 ⎪⎨ur uuur即 ⎪⎨ 令 z = 1 ,得 m = ⎛ 1 , 1 - c , 1⎫⎪ . ⎩ ⎩ 1 ⎛ c ⎫2 3 ⎝ 3 ⎭ ur AP r |②假设当 n = k 时命题成立,即 x > x2k 2k +2易知 x > 0 ,当 n = k + 1时,2k.x2k +2- x 2k +4=11 + x2k +1-11 + x2k +3==x- x2k +32k +1(1+ x)(1+ x)2k +12k +3x - x2k 2k +2(1+ x )(1+ x )(1+ x2k 2k +1 2k +2)(1+ x2k +3)> 0即 x2( k +1)> x2( k +1)+ 2.也就是说,当 n = k + 1时命题也成立.根据①②可知,猜想对任何正整数 n 都成立.21. 解:解法一(向量法):建立空间直角坐标系 A - xyz ,如图所示.根据题设,可设 D(a, 0, 0), B(0, b , 0), P(0, 0, b ), C (c, b , 0) ,uuuruuu⎝2 2 ⎭ uuur uuur22uuur uuur所以 AE ⊥ PC ,所以 PC ⊥ AE .uuur(Ⅱ)解:由已知,平面 P AD 的一个法向量为 AB = (0, 1, 0) .ur设平面 PCD 的法向量为 m = ( x , y , z) ,ur uuur⎧m ⋅ PC = 0,⎪m ⋅ PD = 0,⎧cx + y - z = 0,⎪ 3x + 0 ⋅ y - z = 0,ur⎝ 3 3 ⎭uuur而 AP = (0, 0, 1) ,依题意 P A 与平面 PCD 所成角的大小为 45︒ ,ur uuur所以 sin 45︒ = 2 = | m ⋅ uuuu ,即 2 | m || AP | 1 1 = 2+ 1 - ⎪ + 17,, 1⎪⎪ . 3 cos θ = ur uuur = PG ⋅ DF 3解得 BC = c = 3 - 2 ( BC = c = 3 + 2 舍去),所以ur ⎛ 1m = 3 ,⎝2 ⎫⎭设二面角 A - PD - C 的大小为 θ ,则ur uuur m ⋅ AB | m || AB | 2 31 2+ + 1 3 3= 3 , 3所以 sin θ = 6 ,所以二面角 A - PD - C 的正 3弦值为6 3 . 解法二(几何法): Ⅰ)证明:因为 P A ⊥ 平面 ABCD ,BC ⊂ 平面 ABCD ,所以 BC ⊥ P A .又由 ABCD 是梯形, AD ∥ BC , ∠BAD = 90︒ ,知 BC ⊥ AB ,而 AB I AP = A , AB ⊂ 平面 P AB , AP ⊂ 平面 P AB ,所以 BC ⊥ 平面 P AB .因为 AE ⊂ 平面 P AB ,所以 AE ⊥ BC .又 P A = AB ,点 E 是 PB 的中点,所以 AE ⊥ PB .因为 PB I BC = B , PB ⊂ 平面 PBC , BC ⊂ 平面 PBC ,所以 AE ⊥ 平面 PBC .因为 PC ⊂ 平面 PBC ,所以 AE ⊥ PC .(Ⅱ)解:如图 4 所示,过 A 作 AF ⊥ CD 于 F ,连接 PF ,因为 P A ⊥ 平面 ABCD , CD ⊂ 平面 ABCD ,所以 CD ⊥ P A ,则 CD ⊥ 平面 PAF ,于是平面 PAF ⊥ 平面 PCD ,它们的交线是 PF .过 A 作 AG ⊥ PF 于 G ,则 AG ⊥ 平面 PCD ,即 P A 在平面 PCD 上的射影是 PG ,所以 P A 与平面 PCD 所成的角是 ∠APF .由题意, ∠APF = 45︒ .在直角三角形 APF 中, P A = AF = 1 ,于是 AG = PG = FG = 2 .2在直角三角形 ADF 中, AD = 3 ,所以 DF = 2 .方法一:设二面角 A - PD - C 的大小为 θ ,则 cos θ = △S PDG △SAPD 2 = = 2=P A ⋅ AD 1⨯ 3 3⨯ 2,8x = ln x - 1,+ 2 = , 即 x = e 2时, f '( x ) max = - a .所以 - a ≤ 0, 于是a ≥, 故a 的最小值为 .=1+ a = . 4 4所以 sin θ = 6 ,所以二面角 A - PD - C 的正弦值为 6 .33方法二:过 G 作 GH ⊥ PD 于 H ,连接 AH ,由三垂线定理,得 AH ⊥ PD ,所以 ∠AHG 为二面角 A - PD - C 的平面角,在直角三角形 APD 中, PD = P A 2 + AD 2 = 2 , AH = P A ⋅ AD = 1⨯ 3 = 3 .PD2 22在直角三角形 AGH 中, sin ∠AHG = AG = 2 = 6 ,AH 33 2所以二面角 A - PD - C 的正弦值为 6 .322.解:由已知,函数 g ( x ) , f ( x ) 的定义域为 (0,1) U (1,+∞),且 f ( x ) =x- ax .ln x(Ⅰ)函数 g '( x ) = 1ln x - x ⋅(ln x)2 (ln x)2当 0 < x < e 且x ≠ 1时,g '( x ) < 0 ;当 x > e 时,g '( x ) > 0 .所以函数 g ( x ) 的单调减区间是 (0,1),(1,e), 增区间是(e , ∞) .(Ⅱ)因 f ( x ) 在 (1, +∞) 上为减函数,故 f '( x ) =所以当 x ∈ (1,+∞) 时, f '( x )max ≤ 0 .ln x - 1 (ln x)2- a ≤ 0 在 (1, +∞) 上恒成立.又 f '( x ) = ln x - 1 1 1 1 1 1- a = -( )2 + - a = -( - )2 + - a,(ln x) ln x ln x ln x 2 4故当1 1 1ln x 2 4 1 1 1 4 4 4(Ⅲ)命题“若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a 成立 ”等价于1212“当 x ∈ [e , e 2 ]时, 有f ( x ) min≤ f '( x )max + a ” .由(Ⅱ)知,当 x ∈ [e , e 2 ]时, 有f '( x )- a,∴ f '( x )max1min≤”.①当a≥时,由(Ⅱ)知,f(x)在[e,e2]上为减函数,=f(e)=-ae2≤,故a≥-②当0<a<时,由于f'(x)=-(-)2+-a在[e,e2]上为增函数,故f'(x)的值域为[f'(e),f'(e2)],即[-a,-a].,ln x -ax≤,x∈(e,e2).4->->-=,与0<a<综上,得a≥1问题等价于:“当x∈[e,e2]时,有f(x)1 41 4则f(x)min2e21112424e2. 1111 4ln x2414由f'(x)的单调性和值域知,∃唯一x∈(e,e2)使f'(x)=0,且满足:00当x∈(e,x)时,f'(x)<0,f(x)为减函数;当x∈(x,e2)时,f'(x)>0,f(x)为增函数;所以,f(x)min =f(x)=x001所以,a≥1ln x11111114x ln e24e2444矛盾,不合题意.1-24e2.1.已知集合 M = x x 2 < 2x + 3 , N = x x < 2 ,则 M ⋂ N = (){}3⎩- log 2 ( x + 1) f ( x ) = ⎨ “ 12 ,则可以利用方程 x = 求得 x ,高二年级第二学期期末考试数学试题一、选择题(每小题 5 分,共 50 分){ }A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式 e i x = cos x + i sin x ( i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。
人教版高二数学期末试卷
人教版高二数学期末试卷人教版高二数学期末试卷 【试题】一、选择题:本大题共8小题,每小题4分,共32分。
在每小题列出的四个选项中,选出符合题目要求的一项。
符合题目要求的一项。
1、已知抛物线的准线方程是y=-1,则a 的值为( ) A. 4 B. C. -4 D. 2、若展开式中含有常数项,则n 的最小值为( ) A. 3 B. 4 C. 5 D. 10 3、已知点M 到定点(0,-10)与到定直线的距离之比等于,则点M 的轨迹方程是(程是( )) A. B. C. D. 4、三个学校分别有1名,2名,3名学生获奖,这六名获奖者站成一排合影留念,要求同校的任两名学生都不相邻,则不同的排法种数为( ) A. 144种 B. 108种 C. 120种 D. 36种 6、由数字1,1,2,2,8排列组成的五位数密码中,任取一个密码正好是“11228”的概率是( ) A. B. C. D. 7、已知双曲线的右准线与一条渐近线交于点A ,右焦点为F , A. 30° B. 45° C. 60° D. 90°命中的概率是( )二、填空题:本大题共6小题,每小题4分,共24分。
把答案填在题中横线上。
分。
把答案填在题中横线上。
9、从5名男生和4名女生中选出4人主持元旦联欢会节目,其中男生甲与男生乙至少有1(用数字作答)。
人在内,女生丙必须在内,则可选择的方案种数为____________(用数字作答)。
10、顶点在坐标原点,焦点在x轴上的抛物线上一点(-3,y0)与其焦点间的距离等于5,则y0=____________。
项。
且系数最大的项是第__________项。
原点,则△AOB的面积等于____________。
13、如图所示电路中,四个方框处均为保险闸,框内数据为通电后保险闸跳闸的概率,假定各保险闸间是否跳闸是相互独立的,则通电后该电路不跳闸的概率是____________(用分数作答)。
人教版高二(理科)第一学期期末考试数学试题-含答案
2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
上海市浦东新区高二数学下学期期末试卷(含解析)-人教版高二全册数学试题
2015-2016学年某某市浦东新区高二(下)期末数学试卷一、填空题(共12小题,每小题3分,满分36分)1.抛物线x2=﹣8y的准线方程为.2.如果直线ax+y+1=0与直线3x﹣y﹣2=0垂直,则系数a=.3.双曲线9x2﹣4y2=﹣36的渐近线方程是.4.已知复数z=(3+i)2(i为虚数单位),则|z|=.5.已知点A(﹣4,﹣5),B(6,﹣1),则以线段AB为直径的圆的方程为.6.设复数z(2﹣i)=11+7i(i为虚数单位),则z=.7.若椭圆C的焦点和顶点分别是双曲线的顶点和焦点,则椭圆C的方程是.8.一动点在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点轨迹方程是.9.若复数z满足|z+3i|=5(i是虚数单位),则|z+4|的最大值=.10.设F1和F2是双曲线﹣y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是.11.已知抛物线型拱桥的顶点距离水面2米时,测量水的宽为8米,当水面上升米后,水面的宽度是米.12.已知圆x2+y2+2x﹣4y+a=0关于直线y=2x+b成轴对称,则a﹣b的取值X围是.二、选择题(共4小题,每小题3分,满分12分)13.直线倾斜角的X围是()A.(0,]B.[0,]C.[0,π) D.[0,π]14.平面内有两定点A、B及动点P,设命题甲:“|PA|+|PB|是定值”,命题乙:“点P的轨迹是以A、B为焦点的椭圆”,则甲是乙的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件15.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣116.对于抛物线C:y2=4x,我们称满足y02<4x0的点M(x0,y0)在抛物线的内部.若点M(x0,y0)在抛物线内部,则直线l:y0y=2(x+x0)与曲线C ()A.恰有一个公共点B.恰有2个公共点C.可能有一个公共点,也可能有两个公共点D.没有公共点三、解答题(共5小题,满分52分)17.已知直线l平行于直线3x+4y﹣7=0,并且与两坐标轴围成的三角形的面积为24,求直线l的方程.18.设复数z满足|z|=1,且(3+4i)•z是纯虚数,求.19.已知圆C和y轴相切,圆心在直线x﹣3y=0上,且被直线y=x截得的弦长为,求圆C的方程.20.已知F1,F2为椭圆C: +=1(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M,设|MF2|=d.(1)证明:b2=ad;(2)若M的坐标为(,1),求椭圆C的方程.21.已知双曲线C1:.(1)求与双曲线C1有相同焦点,且过点P(4,)的双曲线C2的标准方程;(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当•=3时,某某数m 的值.2015-2016学年某某市浦东新区高二(下)期末数学试卷参考答案与试题解析一、填空题(共12小题,每小题3分,满分36分)1.抛物线x2=﹣8y的准线方程为y=2 .【考点】抛物线的简单性质.【分析】由于抛物线x2=﹣2py的准线方程为y=,则抛物线x2=﹣8y的准线方程即可得到.【解答】解:由于抛物线x2=﹣2py的准线方程为y=,则有抛物线x2=﹣8y的准线方程为y=2.故答案为:y=2.2.如果直线ax+y+1=0与直线3x﹣y﹣2=0垂直,则系数a=.【考点】直线的一般式方程与直线的垂直关系.【分析】利用相互垂直的直线的斜率之间关系即可得出.【解答】解:由ax+y+1=0得y=﹣ax﹣1,直线3x﹣y﹣2=0得到y=3x﹣2,又直线ax+y+1=0与直线3x﹣y﹣2=0垂直,∴﹣a•3=﹣1,∴a=,故答案为:3.双曲线9x2﹣4y2=﹣36的渐近线方程是y=±x .【考点】双曲线的简单性质.【分析】求出双曲线的标准方程,结合双曲线渐近线的方程进行求解即可.【解答】解:双曲线的标准方程为﹣=1,则双曲线的渐近线方程为y=±x,故答案为:y=±x4.已知复数z=(3+i)2(i为虚数单位),则|z|= 10 .【考点】复数求模;复数代数形式的乘除运算.【分析】利用复数的模的平方等于复数的模的乘积,直接计算即可.【解答】解:复数z=(3+i)2(i为虚数单位),则|z|=|3+i||3+i|==10.故答案为:10.5.已知点A(﹣4,﹣5),B(6,﹣1),则以线段AB为直径的圆的方程为(x﹣1)2+(y+3)2=29 .【考点】圆的标准方程.【分析】由点A和点B的坐标,利用中点坐标公式求出线段AB的中点C的坐标,因为线段AB为所求圆的直径,所以求出的中点C的坐标即为圆心坐标,然后由圆心C的坐标和点A 的坐标,利用两点间的距离公式求出|AC|的长即为圆的半径,根据圆心和半径写出圆的标准方程即可.【解答】解:由中点坐标公式得线段AB的中点坐标为C(1,﹣3),即圆心的坐标为C(1,﹣3);,故所求圆的方程为:(x﹣1)2+(y+3)2=29.故答案为:(x﹣1)2+(y+3)2=29.6.设复数z(2﹣i)=11+7i(i为虚数单位),则z= 3+5i .【考点】复数代数形式的乘除运算.【分析】等式两边同乘2+i,然后化简,即可求出复数z.【解答】解:因为z(2﹣i)=11+7i(i为虚数单位),所以z(2﹣i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i.故答案为:3+5i.7.若椭圆C的焦点和顶点分别是双曲线的顶点和焦点,则椭圆C的方程是.【考点】椭圆的标准方程;双曲线的简单性质.【分析】先确定双曲线的顶点和焦点坐标,可得椭圆C的焦点和顶点坐标,从而可得椭圆C 的方程【解答】解:双曲线的顶点和焦点坐标分别为(±,0)、(±3,0)∵椭圆C的焦点和顶点分别是双曲线的顶点和焦点,∴椭圆C的焦点和顶点坐标分别为(±,0)、(±3,0)∴a=3,c=∴∴椭圆C的方程是故答案为:8.一动点在圆x2+y2=1上移动时,它与定点B(3,0)连线的中点轨迹方程是x2+y2﹣3x+2=0 .【考点】轨迹方程;中点坐标公式.【分析】设出中点坐标,利用中点坐标公式求出与之有关的圆上的动点坐标,将圆上的动点坐标代入圆的方程,求出中点轨迹方程.【解答】解:设中点坐标为(x,y),则圆上的动点坐标为(2x﹣3,2y)所以(2x﹣3)2+(2y)2=1即x2+y2﹣3x+2=0故答案为:x2+y2﹣3x+2=09.若复数z满足|z+3i|=5(i是虚数单位),则|z+4|的最大值= 10 .【考点】复数求模.【分析】由复数模的几何意义可得复数z对应的点在以(0,﹣3)为圆心,以5为半径的圆周上,由此可得|z+4|的最大值是点(0,﹣3)与点(﹣4,0)的距离加上半径 5.【解答】解:由|z+3i|=5,所以复数z对应的点在以(0,﹣3)为圆心,以5为半径的圆周上,所以|z+4|的最大值是点(0,﹣3)与点(﹣4,0)的距离加上半径5,点(0,﹣3)与点(﹣4,0)的距离: =5.|z+4|的最大值:5+5=10故答案为:10.10.设F1和F2是双曲线﹣y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是 1 .【考点】双曲线的应用;双曲线的简单性质.【分析】设|PF1|=x,|PF2|=y,根据根据双曲线性质可知x﹣y的值,再根据∠F1PF2=90°,求得x2+y2的值,进而根据2xy=x2+y2﹣(x﹣y)2求得xy,进而可求得△F1PF2的面积.【解答】解:设|PF1|=x,|PF2|=y,(x>y)根据双曲线性质可知x﹣y=4,∵∠F1PF2=90°,∴x2+y2=20∴2xy=x2+y2﹣(x﹣y)2=4∴xy=2∴△F1PF2的面积为xy=1故答案为:1.11.已知抛物线型拱桥的顶点距离水面2米时,测量水的宽为8米,当水面上升米后,水面的宽度是4米.【考点】双曲线的标准方程.【分析】以拱顶为坐标原点,拱的对称轴为y轴,水平轴为x轴建立平面直角坐标系,设抛物线方程为:x2=ay,由x=4,y=﹣2,解得a=﹣8,由此能求出当水面上升米后,水面的宽度.【解答】解:以拱顶为坐标原点,拱的对称轴为y轴,水平轴为x轴建立平面直角坐标系,设抛物线方程为:x2=ay,由x=4,y=﹣2,解得a=﹣8,当水面上升米后,y=﹣2+=﹣,x2=(﹣8)•(﹣)=12.解得x=2,或x=﹣2,∴水面宽为4(米).故答案为:4.12.已知圆x2+y2+2x﹣4y+a=0关于直线y=2x+b成轴对称,则a﹣b的取值X围是(﹣∞,1).【考点】直线与圆相交的性质.【分析】求出圆的圆心,由题意圆心在直线上,求出a,b的关系,然后确定a﹣b的X围.【解答】解:圆的方程变为(x+1)2+(y﹣2)2=5﹣a,∴其圆心为(﹣1,2),且5﹣a>0,即a<5.又圆关于直线y=2x+b成轴对称,∴2=﹣2+b,∴b=4.∴a﹣b=a﹣4<1.故答案为:(﹣∞,1)二、选择题(共4小题,每小题3分,满分12分)13.直线倾斜角的X围是()A.(0,]B.[0,]C.[0,π) D.[0,π]【考点】直线的倾斜角.【分析】根据直线倾斜角的定义判断即可.【解答】解:直线倾斜角的X围是:[0,π),故选:C.14.平面内有两定点A、B及动点P,设命题甲:“|PA|+|PB|是定值”,命题乙:“点P的轨迹是以A、B为焦点的椭圆”,则甲是乙的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】结合椭圆的定义,利用充分条件和必要条件的定义进行判断.【解答】解:若点P的轨迹是以A、B为焦点的椭圆,则根据椭圆的定义可知动点P到两定点A,B的距离之和|PA|+|PB|=2a (a>0,且a为常数)成立是定值.若动点P到两定点A,B的距离之和|PA|+|PB|=2a (a>0,且a为常数),当2a≤|AB|,此时的轨迹不是椭圆.∴甲是乙的必要不充分条件.故选:B.15.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=﹣2,c=3 C.b=﹣2,c=﹣1 D.b=2,c=﹣1【考点】复数相等的充要条件.【分析】由题意,将根代入实系数方程x2+bx+c=0整理后根据得数相等的充要条件得到关于实数a,b的方程组,解方程得出a,b的值即可选出正确选项【解答】解:由题意1+i是关于x的实系数方程x2+bx+c=0∴1+2i﹣2+b+bi+c=0∴,解得b=﹣2,c=3故选B16.对于抛物线C:y2=4x,我们称满足y02<4x0的点M(x0,y0)在抛物线的内部.若点M(x0,y0)在抛物线内部,则直线l:y0y=2(x+x0)与曲线C ()A.恰有一个公共点B.恰有2个公共点C.可能有一个公共点,也可能有两个公共点D.没有公共点【考点】抛物线的简单性质.【分析】先把直线与抛物线方程联立消去y,进而根据y02<4x0判断出判别式小于0进而判定直线与抛物线无交点.【解答】解:由y2=4x与y0y=2(x+x0)联立,消去x,得y2﹣2y0y+4x0=0,∴△=4y02﹣4×4x0=4(y02﹣4x0).∵y02<4x0,∴△<0,直线和抛物线无公共点.故选D三、解答题(共5小题,满分52分)17.已知直线l平行于直线3x+4y﹣7=0,并且与两坐标轴围成的三角形的面积为24,求直线l的方程.【考点】直线的一般式方程与直线的平行关系.【分析】设直线l的方程为:3x+4y+m=0,分别令x=0,解得y=﹣;y=0,x=﹣.利用l 与两坐标轴围成的三角形的面积为24,可得=24,解得m即可.【解答】解:设直线l的方程为:3x+4y+m=0,分别令x=0,解得y=﹣;y=0,x=﹣.∵l与两坐标轴围成的三角形的面积为24,∴=24,解得m=±24.∴直线l的方程为3x+4y±24=0.18.设复数z满足|z|=1,且(3+4i)•z是纯虚数,求.【考点】复数的基本概念;复数求模.【分析】设出复数z,|z|=1可得一个方程,化简(3+4i)•z是纯虚数,又得到一个方程,求得z,然后求.【解答】解:设z=a+bi,(a,b∈R),由|z|=1得;(3+4i)•z=(3+4i)(a+bi)=3a﹣4b+(4a+3b)i是纯虚数,则3a﹣4b=0,,.19.已知圆C和y轴相切,圆心在直线x﹣3y=0上,且被直线y=x截得的弦长为,求圆C的方程.【考点】圆的标准方程;直线与圆的位置关系.【分析】由圆心在直线x﹣3y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,然后过圆心作出弦的垂线,根据垂径定理得到垂足为弦的中点,利用点到直线的距离公式求出圆心到直线y=x的距离d,由弦长的一半,圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【解答】解:设圆心为(3t,t),半径为r=|3t|,则圆心到直线y=x的距离d==|t|,由勾股定理及垂径定理得:()2=r2﹣d2,即9t2﹣2t2=7,解得:t=±1,∴圆心坐标为(3,1),半径为3;圆心坐标为(﹣3,﹣1),半径为3,则(x﹣3)2+(y﹣1)2=9或(x+3)2+(y+1)2=9.20.已知F1,F2为椭圆C: +=1(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M,设|MF2|=d.(1)证明:b2=ad;(2)若M的坐标为(,1),求椭圆C的方程.【考点】椭圆的简单性质.【分析】(1)x=c代入椭圆方程求得y,进而求得d,可知d×a=b2,原式得证;(2)由M坐标可得c,再把M再把代入椭圆方程求得a和b的关系,结合隐含条件得到a 和b的方程组,求得a,b,则椭圆的方程可求.【解答】(1)证明:把x=c代入椭圆方程: +=1,得,则d=|y|=,∴d×a=b2,即b2=ad;(2)解:∵M的坐标为(,1),∴c=,则,解得b2=2,a2=4.故椭圆的方程为.21.已知双曲线C1:.(1)求与双曲线C1有相同焦点,且过点P(4,)的双曲线C2的标准方程;(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当•=3时,某某数m 的值.【考点】直线与圆锥曲线的综合问题;双曲线的标准方程.【分析】(1)先确定双曲线C1:的焦点坐标,根据双曲线C2与双曲线C1有相同焦点,且过点P(4,),建立方程组,从而可求双曲线C2的标准方程;(2)直线方程与双曲线C1的两条渐近线联立,求出A、B两点的坐标用坐标,利用数量积,即可求得实数m的值.【解答】解:(1)∵双曲线C1:,∴焦点坐标为(,0),(,0)设双曲线C2的标准方程为(a>0,b>0),∵双曲线C2与双曲线C1有相同焦点,且过点P(4,)∴,解得∴双曲线C2的标准方程为(2)双曲线C1的两条渐近线为y=2x,y=﹣2x由,可得x=m,y=2m,∴A(m,2m)由,可得x=﹣m,y=m,∴B(﹣m, m)∴∵∴m2=3∴。
高二数学下学期期末考试试题 理(含解析)新人教版 新 版
2019学年度下学期期末考试高二数学(理)试卷一、选择题(在每小题给出的四个选项中,只有一个正确.每小题5分,共60分)1.1.设全集U={1,3,5,7},集合M={1,|a-5|},M U,M={5,7},则实数a的值为( )A. 2或-8B. -8或-2C. -2或8D. 2或8【答案】D【解析】分析:利用全集,由,列方程可求的值.详解:由,且,又集合,实数的值为或,故选D.点睛:本题考查补集的定义与应用,属于简单题. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.2.2.已知命题,则命题的否定为( )A. B.C. D.【答案】D【解析】分析:根据全称命题的否定是特称命题即可得结果.详解:因为全称命题的否定是特称命题,所以命题的否定为,故选D.点睛:本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.3.3.函数,则的定义域为( )A. B. C. D.【答案】B【解析】试题分析:由题意知,,∴的定义域是,故:且,解得或,故选B.考点:对数的运算性质.4.4.已知幂函数的图象关于y轴对称,且在上是减函数,则()A. -B. 1或2C. 1D. 2【答案】C【解析】分析:由为偶数,且,即可得结果.详解:幂函数的图象关于轴对称,且在上是减函数,为偶数,且,解得,故选C.点睛:本题考查幂函数的定义、幂函数性质及其应用,意在考查综合利用所学知识解决问题的能力.5.5.方程至少有一个负实根的充要条件是()A.B.C.D. 或【答案】C【解析】试题分析:①时,显然方程没有等于零的根.若方程有两异号实根,则;若方程有两个负的实根,则必有.②若时,可得也适合题意.综上知,若方程至少有一个负实根,则.反之,若,则方程至少有一个负的实根,因此,关于的方程至少有一负的实根的充要条件是.故答案为:C考点:充要条件,一元二次方程根的分布6.6.已知定义域为R的函数满足:对任意实数有,且,若,则=( )A. 2B. 4C.D.【答案】B【解析】分析:令,可求得,再令,可求得,再对均赋值,即可求得.详解:,令,得,又,再令,得,,令,得,故选B.点睛:本题考查利用赋值法求函数值,正确赋值是解题的关键,属于中档题.7.7.已知A=B={1,2,3,4,5},从集合A到B的映射满足:①;②的象有且只有2个,求适合条件的映射的个数为( )A. 10B. 20C. 30D. 40【答案】D【解析】分析:将元素按从小到大的顺序排列,然后按照元素在中的象有且只有两个进行讨论.详解:将元素按从小到大的顺序排列,因恰有两个象,将元素分成两组,从小到大排列,有一组;一组;一组;一组,中选两个元素作象,共有种选法,中每组第一个对应集合中的较小者,适合条件的映射共有个,故选D.点睛:本题考查映射问题并不常见,解决此类问题要注意:()分清象与原象的概念;()明确对应关系.8.8.函数的大致图象为()A. B. C. D.【答案】B【解析】分析:利用函数的解析式,判断大于时函数值的符号,以及小于时函数值的符号,对比选项排除即可.详解:当时,函数,排除选项;当时,函数,排除选项,故选B.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.9.9.函数是定义在R上的奇函数,函数的图象与函数的图象关于直线对称,则的值为()A. 2B. 1C. 0D. 不能确定【答案】A【解析】试题分析:∵函数是定义在上的奇函数,∴,令代入可得,函数关于对称,由函数的图象与函数的图象关于直线对称,函数关于对称从而有,故选A.考点:奇偶函数图象的对称性.【思路点睛】利用奇函数的定义可把已知转化为,从而可得函数关于对称,函数的图象与函数的图象关于直线对称,则关于对称,代入即可求出结果.10.10.若函数在区间内单调递增,则a的取值范围是()A. B. C. D.【答案】B【解析】设由,可得,函数在上单调递增,在上单调递减,当时,函数在上单调递减,不合题意,当时,函数在上单调递增,函数,在区间内单调递增,,,a的取值范围是,故选B.11.11.对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数,则( )A. 2016B. 2017C. 2018D. 2019【答案】C【解析】分析:对已知函数求两次导数可得图象关于点对称,即,利用倒序相加法即可得到结论.详解:函数,函数的导数,,由得,解得,而,故函数关于点对称,,故设,则,两式相加得,则,故选C.点睛:本题主要考查初等函数的求导公式,正确理解“拐点”并利用“拐点”求出函数的对称中心是解决本题的关键,求和的过程中使用了倒序相加法,属于难题.12.12.已知函数,函数有四个不同的零点,且满足:,则的取值范围是()A. B. C. D.【答案】D【解析】分析:结合函数图象可得,,可化为,换元后利用单调性求解即可.详解:作出的解析式如图所示:根据二次函数的对称性知,且,,,因为所以当时,函数等号成立,又因为在递减,在递增,所以,所以的取值范围是,故选D.点睛:本题考查函数的图象与性质,函数的零点以及数形结合思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.二、填空题(本大题共4小题,每小题5分,满分20分)13.13.已知条件:;条件:,若是的必要不充分条件,则实数的取值范围是________________【答案】【解析】分析:条件化为,化为,由是的必要不充分条件,根据包含关系列不等式求解即可.详解:条件,化为,解得,,解得,若是的必要不充分条件,则是的充分不必要条件,,解得,则实数的取值范围是,故答案为.点睛:本题主要考查绝对值不等式的解法、一元二次不等式的解法以及充分条件与必要条件的定义,意在考查综合运用所学知识解决问题的能力,属于简单题.14.14.已知函数,对任意,都有,则____________【答案】-20【解析】分析:令,知,,从而可得,进而可得结果.详解:令,知,,,,,,故答案为.点睛:本题主要考查赋值法求函数的解析式,令,求出的值,从而求出函数解析式,是解题的关键,属于中档题.15.15.已知函数,则函数的值域为__________【答案】【解析】【分析】化为,时,,时,,从而可得结果.【详解】,当时,,当时,,函数,则函数的值域为,故答案为.【点睛】本题考查函数的值域,属于中档题. 求函数值域的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法:常用代数或三角代换法,用换元法求值域时需认真分析换元参数的范围变化;③不等式法:借助于基本不等式求函数的值域,用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图象法:画出函数图象,根据图象的最高和最低点求最值.16.16.设是定义在R上的奇函数,在上单调递减,且,给出下列四个结论:①;②是以2为周期的函数;③在上单调递减;④为奇函数.其中正确命题序号为____________________【答案】①②④【解析】分析:①由,用赋值法求解即可;②由奇函数和,可得;③可得函数关于对称,可得在上单调递增;④结合②,可得为奇函数.详解:①函数是定义在上的奇函数,,又,,正确.②奇函数和,,,函数的周期是,正确.③是奇函数,,,即函数关于对称,因为在上单调递减,所以在上单调递增,不正确.④是奇函数, 函数的周期是,所以,所以是奇函数,正确, 故答案为①②④.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.三、解答题(共70分)17.17.已知集合P=,函数的定义域为Q.(Ⅰ)若P Q,求实数的范围;(Ⅱ)若方程在内有解,求实数的范围.【答案】(1) (2)【解析】分析:(1)只需即可;(2)在有解,即求,的范围就是函数的值域,求出函数值域即可.详解:(1)P=,P Q,不等式在上有解,由得,而,(2)在有解,即求的值域,点睛:(1)是一个存在性的问题,此类题求参数一般转化为求最值,若是存在大于函数的值成立,一般令其大于函数的最小值;(2)也是一个存在性的问题,其与(1)不一样的地方是其为一个等式,故应求出解析式对应函数的值域,让该参数是该值域的一个元素即可保证存在性.18.18.如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(Ⅰ)求证:平面;(Ⅱ)求锐二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ);【解析】试题分析:(Ⅰ)本题考查线面垂直的判定定理.可由勾股定理证明;另外平面即可;(Ⅱ)过程为作---证---算.根据二面角的定义找到角,注意不要忽略了证明的过程.试题解析:(Ⅰ)证明:由条件知平面,令,经计算得,即,又因为平面;(Ⅱ)过作,连结由已知得平面就是二面角的平面角经计算得,考点:1.线面垂直的判定定理;2.二面角;19.19.某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为、、三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.【答案】(Ⅰ)见解析;(Ⅱ)元.【解析】试题分析:(I)设工种每份保单的保费,则需赔付时,收入为,根据概率分布可计算出保费的期望值为,令解得.同理可求得工种保费的期望值;(II)按照每个工种的人数计算出份数然后乘以(1)得到的期望值,即为总的利润.试题解析:(Ⅰ)设工种的每份保单保费为元,设保险公司每单的收益为随机变量,则的分布列为保险公司期望收益为根据规则解得元,设工种的每份保单保费为元,赔付金期望值为元,则保险公司期望利润为元,根据规则,解得元,设工种的每份保单保费为元,赔付金期望值为元,则保险公司期望利润为元,根据规则,解得元.(Ⅱ)购买类产品的份数为份,购买类产品的份数为份,购买类产品的份数为份,企业支付的总保费为元,保险公司在这宗交易中的期望利润为元.20.20.已知二次函数,设方程有两个实根(Ⅰ)如果,设函数的图象的对称轴为,求证:;(Ⅱ)如果,且的两实根相差为2,求实数的取值范围.【答案】(1)见解析(2)【解析】分析:(1)有转化为有两根:一根在与之间,另一根小于,利用一元二次方程的根分布可证;(2)先有,知两根同号,在分两根均为正和两根均为负两种情况的讨论,再利用两个之和与两根之积列不等式可求的取值范围.详解:(1)设,且,则由条件x 1<2< x2<4得(2),又或综上:点睛:利用函数的零点求参数范围问题,通常有两种解法:一种是利用方程中根与系数的关系或利用函数思想结合图象求解;二种是构造两个函数分别作出图象,利用数形结合求解,此类题目也体现了函数与方程,数形结合的思想.21.21.已知函数的图象关于原点对称.(Ⅰ)求,的值;(Ⅱ)若函数在内存在零点,求实数的取值范围.【答案】(1),;(2)【解析】试题分析:(Ⅰ)题意说明函数是奇函数,因此有恒成立,由恒等式知识可得关于的方程组,从而可解得;(Ⅱ)把函数化简得,这样问题转化为方程在内有解,也即在内有解,只要作为函数,求出函数的值域即得.试题解析:(Ⅰ)函数的图象关于原点对称,所以,所以,所以,即,所以,解得,;(Ⅱ)由,由题设知在内有解,即方程在内有解.在内递增,得.所以当时,函数在内存在零点.22.22.(本小题满分12分)已知,函数.(I)当为何值时,取得最大值?证明你的结论;(II)设在上是单调函数,求的取值范围;(III)设,当时,恒成立,求的取值范围.【答案】(Ⅰ)答案见解析;(Ⅱ) ;(Ⅲ).【解析】试题分析:(I)求得f’(x)=[-x2+2(a-1)x+2a]e x,取得-x2+2(a-1)x+2a=0的根,即可得到数列的单调性,进而求解函数的最大值.(II)由(I)知,要使得在[-1,1]上单调函数,则:,即可求解a的取值范围;(III)由,分类参数得,构造新函数(x≥1),利用导数求得函数h(x)的单调性和最值,即得到a的取值范围.试题解析:(I)∵,,∴,由得,则,∴在和上单调递减,在上单调递增,又时,且在上单调递增,∴,∴有最大值,当时取最大值.(II)由(I)知:,或,或;(III)当x≥1时f(x)≤g(x),即(-x2+2ax)e x,,令,则,∴h(x)在上单调递增,∴x≥1时h(x)≥h(1)=1,,又a≥0所以a的取值范围是.点睛:本题主要考查导数在函数中的应用,不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题;(4)考查数形结合思想的应用.。
高二数学第二学期期末试卷 理(含解析)-人教版高二全册数学试题
2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤34.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=15.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 76.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>18.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2} 11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 812.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°考点:直线的参数方程.专题:直线与圆.分析:设直线的倾斜角为α,则α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.可得直线的斜率,即可得出.解答:解:设直线的倾斜角为α,α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.∴直线的斜率,则直线的倾斜角α=150°.故选D.点评:本题考查了把直线的参数方程化为普通方程、直线的斜率与倾斜角的关系,属于基础题.2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:因为“x2﹣x>0”可以求出x的X围,再根据充分必要条件的定义进行求解;解答:解:∵x2﹣2x<0⇔0<x<2,若0<x<2可得0<x<4,反之不成立.∴“x2﹣2x<0”是“0<x<4”的充分非必要条件,故选B.点评:此题主要考查一元二次不等式的解法,以及充分必要条件的定义,是一道基础题;3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤3考点:特称命题.分析:根据所给的特称命题写出其否定命题:任意实数x,使x2+ax+1≥0,根据命题否定是假命题,得到判别式大于0,解不等式即可.解答:解:∵命题“存在x∈R,使x2+(a﹣1)x+1<0”的否定是“任意实数x,使x2+ax+1≥0”命题否定是真命题,∴△=(a﹣1)2﹣4≤0,整理得出a2﹣2a﹣3≤0∴﹣1≤a≤3故选D.点评:本题考查命题的否定,解题的关键是写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况.4.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=1考点:简单曲线的极坐标方程;圆的切线方程.专题:直线与圆.分析:利用圆的极坐标方程和直线的极坐标方程即可得出.解答:解:如图所示,在极坐标系中圆ρ=2cosθ是以(1,0)为圆心,1为半径的圆.故圆的两条切线方程分别为(ρ∈R),ρcosθ=2.故选B.点评:正确理解圆的极坐标方程和直线的极坐标方程是解题的关键》5.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 7考点:基本不等式.专题:计算题.分析:将x用y表示出来,代入3x+27y+1,化简整理后,再用基本不等式,即可求最小值.解答:解:由x+3y﹣2=0得x=2﹣3y代入3x+27y+1=32﹣3y+27y+1=+27y+1∵,27y>0∴+27y+1≥7当=27y时,即y=,x=1时等号成立故3x+27y+1的最小值为7故选D.点评:本题的考点是基本不等式,解题的关键是将代数式等价变形,构造符合基本不等式的使用条件.6.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]考点:绝对值不等式的解法.专题:综合题.分析:本题为含有参数的分式不等式,若直接求解,比较复杂,可直接由条件2∉M出发求解.2∉M即2不满足不等式,从而得到关于a的不等关系即可求得a的取值X围.解答:解:依题意2∉M,即2不满足不等式,得:||≤a,解得a≥,则a的取值X围为[,+∞).故选B.点评:本题考查绝对值不等式的解法和等价转化思想,属于基础题.7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>1考点:绝对值不等式的解法.专题:函数的性质及应用.分析:利用绝对值的意义求得|x﹣3|+|x﹣4|的最小值为1,再结合条件求得实数a的取值X围.解答:解:|x﹣3|+|x﹣4|表示数轴上的x对应点到3、4对应点的距离之和,它的最小值为1,故a>1,故选:D.点评:本题主要考查绝对值的意义,属于基础题.8.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程化为直角坐标方程,求出圆心到直线的距离,再与半径比较大小即可得出.解答:解:圆ρ=2cosθ即ρ2=2ρcosθ,化为x2+y2=2x,配方为(x﹣1)2+y2=1,∴圆心C (1,0),半径r=1.直线2ρcos(θ+)=﹣1展开为=﹣1,化为x﹣y+1=0.∴圆心C到直线的距离d==1=r.∴直线与圆相切.故选:B.点评:本题考查了把极坐标方程化为直角坐标方程的方法、点到直线的距离公式、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题考点:命题的真假判断与应用.专题:简易逻辑.分析:由指数函数的单调性和命题的否命题,即可判断A;由含有一个量词的命题的否定,即可判断B;运用对数函数的单调性和充分必要条件的定义,即可判断C;由复合命题的真假,结合真值表,即可判断D.解答:解:A.命题“若x>y,则2x>2y”的否命题是“若x≤y,则2x≤2y”是真命题,故A错;B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1≥0”,故B错;C.设x,y为实数,x>1可推出lgx>lg1=0,反之,lgx>0也可推出x>1,“x>1”是“lgx>0”的充要条件,故C正确;D.若“p∧q”为假命题,则p,q中至少有一个为假命题,故D错.故选C.点评:本题主要考查简易逻辑的基础知识:四种命题及关系、命题的否定、充分必要条件和复合命题的真假,注意否命题与命题的否定的区别,是一道基础题.10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2}考点: Venn图表达集合的关系及运算.专题:计算题;新定义.分析:利用函数的定义域、值域的思想确定出集合A,B是解决本题的关键.弄清新定义的集合与我们所学知识的联系:所求的集合是指将A∪B除去A∩B后剩余的元素所构成的集合.解答:解:依据定义,A#B就是指将A∪B除去A∩B后剩余的元素所构成的集合;对于集合A,求的是函数的定义域,解得:A={x|0≤x≤2};对于集合B,求的是函数y=3x(x>0)的值域,解得B={y|y>1};依据定义,借助数轴得:A#B={x|0≤x≤1或x>2},故选D.点评:本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确定.11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 8考点:平均值不等式.专题:计算题;转化思想.分析:利用题设中的等式,把n+的表达式转化成++后,利用平均值不等式求得最小值.解答:解:∵n+=++∴n+=++(当且仅当n=4时等号成立)故选C点评:本题主要考查了平均值不等式求最值.注意把握好一定,二正,三相等的原则.12.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P考点:基本不等式.专题:不等式的解法及应用.分析:由于a+b>c,a+c>b,c+b>a,可得ac+bc>c2,ab+bc>b2,ac+ab>a2,可得SP >S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,可得S≥P,即可得出.解答:解:∵a+b>c,a+c>b,c+b>a,∴ac+bc>c2,ab+bc>b2,ac+ab>a2,∴2(ac+bc+ab)>c2+b2+a2,∴SP>S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,∴S≥P>0.∴P≤S<2P.故选:D.点评:本题考查了基本不等式的性质、三角形三边大小关系,考查了变形能力与计算能力,属于中档题.二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为{x|﹣1<x<1} .考点:绝对值不等式的解法.专题:计算题;转化思想.分析:首先分析题目求不等式|2x﹣1|﹣|x﹣2|<0的解集,可以考虑平方去绝对的方法,先移向,平方,然后转化为求解一元二次不等式即可得到答案.解答:解:|2x﹣1|﹣|x﹣2|<0移向得:丨2x﹣1丨<丨x﹣2丨两边同时平方得(2x﹣1)2<(x﹣2)2即:4x2﹣4x+1<x2﹣4x+4,整理得:x2<1,即﹣1<x<1故答案为:{x|﹣1<x<1}.点评:此题主要考查绝对值不等式的解法的问题,其中涉及到平方去绝对值的方法,对于绝对值不等式属于比较基础的知识点,需要同学们掌握.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为 3 .考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:直接划参数方程为普通方程得到直线和椭圆的普通方程,求出椭圆的右顶点,代入直线方程即可求得a的值.解答:解:由直线l:,得y=x﹣a,再由椭圆C:,得,①2+②2得,.所以椭圆C:的右顶点为(3,0).因为直线l过椭圆的右顶点,所以0=3﹣a,所以a=3.故答案为3.点评:本题考查了参数方程和普通方程的互化,考查了直线和圆锥曲线的关系,是基础题.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为{﹣1,0,1} .考点:集合的包含关系判断及应用.专题:阅读型.分析:根据B⊆A,利用分类讨论思想求解即可.解答:解:当a=0时,B=∅,B⊆A;当a≠0时,B={﹣}⊆A,﹣=1或﹣=﹣1⇒a=1或﹣1,综上实数a的所有可能取值的集合为{﹣1,0,1}.故答案是{﹣1,0,1}.点评:本题考查集合的包含关系及应用.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为[2,4] .考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:先求出命题p,q的等价条件,然后利用p是¬q的必要非充分条件,建立条件关系即可求出m的取值X围.解答:解:∵log2|1﹣|>1;∴:|x﹣3|≤2,即﹣2≤x﹣3≤2,∴1≤x≤5,设A=[1,5],由:(x﹣m+1)(x﹣m﹣1)≤0,得m﹣1≤x≤m+1,设B=[m﹣1,m+1],∵¬p是¬q的充分而不必要条件,∴q是p的充分而不必要条件,则B是A的真子集,即,∴,即2≤m≤4,故答案为:[2,4].点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题p,q的等价条件是解决本题的关键.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,代入两个圆的极坐标方程,化简后可得⊙O1和⊙O2的直角坐标方程;(2)把两个圆的直角坐标方程相减可得公共弦所在的直线方程,再化为极坐标方程.解答:解:(1)∵圆O1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,∴化为直角坐标方程为(x﹣2)2+y2=4,∵圆O2的极坐标方程ρ=﹣sinθ,即ρ2=﹣ρsinθ,∴化为直角坐标方程为 x2+(y+)2=.(2)由(1)可得,圆O1:(x﹣2)2+y2=4,①圆O2:x2+(y+)2=,②①﹣②得,4x+y=0,∴公共弦所在的直线方程为4x+y=0,化为极坐标方程为:4ρcosθ+ρsinθ=0.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,求直线的极坐标方程,属于基础题.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.考点:带绝对值的函数.专题:计算题;证明题;函数的性质及应用.分析:(I)利用绝对值不等式即可证得f(x)≥1;(II)利用基本不等式可求得≥2,要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2即可.解答:解:(Ⅰ)证明:由绝对值不等式得:f(x)=|x﹣1|+|x﹣2|≥|(x﹣1)﹣(x﹣2)|=1 …(5分)(Ⅱ)∵==+≥2,∴要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2,即,或,或,解得x≤,或x≥.故x的取值X围是(﹣∞,]∪[,+∞).…(10分)点评:本题考查带绝对值的函数,考查基本不等式的应用与绝对值不等式的解法,求得≥2是关键,属于中档题.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.考点:参数方程化成普通方程;直线与圆的位置关系.专题:直线与圆.分析:(1)将极坐标方程两边同乘ρ,进而根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可求出C的直角坐标方程;(2)将直线l的参数方程,代入曲线C的直角坐标方程,求出对应的t值,根据参数t的几何意义,求出|EA|+|EB|的值.解答:解:(1)∵曲线C的极坐标方程为ρ=2(cosθ+sinθ)∴ρ2=2ρcosθ+2ρsinθ∴x2+y2=2x+2y即(x﹣1)2+(y﹣1)2=2﹣﹣﹣﹣﹣﹣(5分)(2)将l的参数方程代入曲线C的直角坐标方程,得t2﹣t﹣1=0,所以|EA|+|EB|=|t1|+|t2|=|t1﹣t2|==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题考查的知识点是参数方程与普通方程,直线与圆的位置关系,极坐标,熟练掌握极坐标方程与普通方程之间互化的公式,及直线参数方程中参数的几何意义是解答的关键.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.考点:圆的参数方程;函数的图象与图象变化;直线与圆相交的性质;直线的参数方程.专题:计算题.分析:(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.解答:解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d==[sin()+2]当sin()=﹣1时,d取得最小值.点评:此题考查了直线与圆的位置关系,涉及的知识有直线与圆的参数方程与普通方程的互化,点到直线的距离公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,根据曲线C2的参数方程设出所求P的坐标,根据点到直线的距离公式表示出d,进而利用三角函数来解决问题是解本题的思路.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.考点:分段函数的应用.专题:函数的性质及应用.分析:(1)原不等式可化为|2x﹣a|≤6﹣a,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,从而求得a的值.(2)由题意可得|n﹣1|+|2n﹣1|+2≤m,构造函数y=|n﹣1|+|2n﹣1|+2,求得y的最小值,从而求得m的X围.解答:解:(1)原不等式可化为|2x﹣a|≤6﹣a,∴,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,∴a=1.(2)∵f(x)=|2x﹣1|+1,f(n)≤m﹣f(﹣n),∴|n﹣1|+1≤m﹣(|﹣2n﹣1|+1),∴|n﹣1|+|2n﹣1|+2≤m,∵y=|n﹣1|+|2n﹣1|+2,当n≤时,y=﹣3n+4≥,当≤n≤1时,y=n+2≥,当n≥1时,y=3n≥3,故函数y=|n﹣1|+|2n﹣1|+2的最小值为,∴m≥,即m的X围是[,+∞).点评:本题主要考查绝对值不等式的解法,带有绝对值的函数,体现了转化的数学思想,属于中档题.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.考点:简单曲线的极坐标方程;轨迹方程.专题:坐标系和参数方程.分析:设出点M的极坐标(ρ,θ),表示出OP、PB,列出的极坐标方程,再化为普通方程,求出点M的轨迹长度即可.解答:解:设M(ρ,θ),θ∈(0,),则OP=2cosθ,PB=2sinθ;∴ρ=OP+PM=OP+PB=2cosθ+2sinθ,∴ρ2=2ρcosθ+2ρsinθ;化为普通方程是x2+y2=2x+2y,∴M的轨迹方程是(x﹣1)2+(y﹣1)2=2(x>0,y>0);∴点M的轨迹长度是l=×2π×=π.点评:本题考查了极坐标的应用问题,解题时应根据题意,列出极坐标方程,再化为普通方程,从而求出解答来,是基础题.。
全新人教高二数学(理)下学期期末试卷含答案
全新人教高二数学(理)下学期期末试卷含答案
一、单选题
1.如果关于的不等式在上恒成立,则实数的取值范围为()A.B.C.D.
2.已知三棱锥的四个顶点均在球的球面上,,且,,
两两互相垂直,则球的体积为()
A .B.C.D.
3.执行如图所示的程序框图,若输出的k的值为,则过定点的直线与圆,截得的最短弦长为()
A .B.C.D.
4.设集合,,则()
A.B.C.D.
5.的三边,,的对角分别为,,,若是与的等差中项,,则的最大值为()
A .B.C.D.
6.某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为()
A .B.C.D.
7.已知,是双曲线的左、右焦点,点M在E上,与x轴垂直,,则E的离心率为()
A.B.C.D.2
8.在中,,则()
A.B.C.D.
9.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现从这70人中用分层抽样的方法抽取一个容量为14的样本,则在高二年级的学生中应抽取的人数为
A.12B.10C.8D.6
10.已知i为虚数单位,若,则复数z的虚部是()
A.B.C.3D.
11.已知向量,,且,则向量与夹角为
A.B.C.D.
12.已知定义在R上的奇函数满足,且当时,,则()
A.2B.-18C.18D.-2。
高二数学第二学期期末复习试卷 文(二)(含解析)-人教版高二全册数学试题
2014-2015学年某某省某某市罗湖区翠圆中学高二(下)期末数学复习试卷(文科)(二)一、选择题(本大题共10小题,每小题5分,满分50分)1.已知集合A={x|x+1>0},B={x|x2﹣x<0},则A∪B=()A. {x|x>﹣1} B. {x|﹣1<x<1} C. {x|0<x<1} D. {x|﹣1<x<0}2.角α的终边过点(﹣1,2),则cosα的值为()A. B. C.﹣ D.﹣3.(文)设a∈R,则a>1是<1的()A.必要但不充分条件 B.充分但不必要条件C.充要条件 D.既不充分也不必要条件4.如图所示为一个简单几何体的三视图,则其对应的几何体是()A. B. C.D.5.一个容量为 n 的样本,分成若干组,已知某组频数和频率分别为 36 和0.25,则n=() A. 9 B. 36 C. 72 D. 1446.已知函数y=xlnx,则其在点x=1处的切线方程是()A. y=2x﹣2 B. y=2x+2 C. y=x﹣1 D. y=x+17.已知向量=(2,1),+=(1,k),若⊥,则实数k等于()A. B. 3 C.﹣7 D.﹣28.已知等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,则a2等于()A.﹣4 B.﹣6 C.﹣8 D. 89.若函数f(x)=x2+2x+3a没有零点,则实数a的取值X围是()A. B. C. D.10.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()A. B. C. D.二、填空题(本大题共3小题,每小题5分,满分15分,其中11-13题是必做题,14-15题是选做题,考生只能选做一题,两题都答的,只计算前一题得分)11.若函数y=sin(ωx+)(ω>0)的最小正周期是,则ω=.12.定义运算,复数z满足,则复数z=.13.在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=.类比到空间,在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ则有正确的式子是.【极坐标与参数方程选做题】14.在极坐标系中,ρ=4sinθ是圆的极坐标方程,则点A(4,)到圆心C的距离是.【几何证明选讲选做题】15.(几何证明选讲选做题)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,切线AP长为,则圆O的直径长为.三、解答题(本大题共6小题,满分80分,解答须出文字说明、证明过程和演算步骤)16.设函数f(x)=2cosx(sinx+cosx)﹣1将函数f(x)的图象向左平移a个单位,得到函数y=g(x)的图象.(1)求函数f(x)的最小正周期;(2)若0<a<,且g(x)是偶函数,求a的值.17.已知集合A={﹣2,0,1,3},在平面直角坐标系中,点M的坐标(x,y)满足x∈A,y ∈A.(Ⅰ)请列出点M的所有坐标;(Ⅱ)求点M不在y轴上的概率;(Ⅲ)求点M正好落在区域上的概率.18.如图(1)所示,正△ABC的边长为2a,CD是AB边上的高,E,F分别是AC,BC的中点.现将△ABC沿CD翻折,使翻折后平面ACD⊥平面BCD(如图(2)),(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;(2)求三棱锥C﹣DEF的体积.19.已知椭圆的中心在原点,焦点在x轴上,离心率为,且椭圆经过圆C:x2+y2﹣4x+2y=0的圆心C.(1)求椭圆的方程;(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.20.已知函数f(x)=(1)求函数f(x)的单调递增区间;(2)求函数f(x)的零点.21.数列{a n}的前n项和为S n,已知.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{}满足,求数列{}的前n项和T n.(Ⅲ)X三同学利用第(Ⅱ)题中的T n设计了一个程序流程图,但李四同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意李四同学的观点?请说明理由.2014-2015学年某某省某某市罗湖区翠圆中学高二(下)期末数学复习试卷(文科)(二)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分)1.已知集合A={x|x+1>0},B={x|x2﹣x<0},则A∪B=()A. {x|x>﹣1} B. {x|﹣1<x<1} C. {x|0<x<1} D. {x|﹣1<x<0}考点:并集及其运算.专题:计算题.分析:分别求出A与B中不等式的解集确定出A与B,找出两集合的并集即可.解答:解:由A中不等式解得:x>﹣1,即A={x|x>﹣1},由B中不等式变形得:x(x﹣1)<0,解得:0<x<1,即B={x|0<x<1},则A∪B={x|x>﹣1},故选:A.点评:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.角α的终边过点(﹣1,2),则cosα的值为()A. B. C.﹣ D.﹣考点:任意角的三角函数的定义.专题:计算题.分析:先求出 x=﹣1,y=2,r=,利用cosα的定义,求出cosα的值.解答:解:∵角α的终边过点(﹣1,2),∴x=﹣1,y=2,r=,cosα===﹣,故选D.点评:本题考查任意角的三角函数的定义,两点间的距离公式的应用.3.(文)设a∈R,则a>1是<1的()A.必要但不充分条件 B.充分但不必要条件C.充要条件 D.既不充分也不必要条件考点:不等关系与不等式;充要条件.专题:计算题.分析:根据由a>1,一定能得到<1.但当<1时,不能推出a>1 (如 a=﹣1时),从而得到结论.解答:解:由a>1,一定能得到<1.但当<1时,不能推出a>1 (如 a=﹣1时),故a>1是<1 的充分不必要条件,故选 B.点评:本题考查充分条件、必要条件的定义,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.4.如图所示为一个简单几何体的三视图,则其对应的几何体是()A. B. C.D.考点:由三视图还原实物图.专题:计算题;空间位置关系与距离.分析:根据题意,B、D两项的视图中都应该有对角线为虚线的矩形,故不符合题意;C项的正视图矩形的对角线方向不符合,也不符合题意,而A项符合题意,得到本题答案.解答:解:对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,不符合题意故选:A点评:本题给出三视图,要求我们将其还原为实物图,着重考查了对三视图的理解与认识,考查了空间想象能力,属于基础题.5.一个容量为 n 的样本,分成若干组,已知某组频数和频率分别为 36 和0.25,则n=() A. 9 B. 36 C. 72 D. 144考点:频率分布表.专题:计算题.分析:根据一个容量为n的样本,某组频数和频率分别为 36 和0.25,写出这三者之间的关系式,得到关于n的方程,解方程即可.解答:解:∵一个容量为n的样本,某组频数和频率分别为 36 和0.25,∴0.25=∴n=144故选D.点评:本题考查频率分布表,本题解题的关键是知道频率,频数和样本容量之间的关系,这三者可以做到知二求一.6.已知函数y=xlnx,则其在点x=1处的切线方程是()A. y=2x﹣2 B. y=2x+2 C. y=x﹣1 D. y=x+1考点:导数的几何意义.分析:运用求导公式计算x=1时的斜率,再结合曲线上一点求出切线方程.解答:解:y=xlnx y'=1×lnx+x•=1+lnx y'(1)=1 又当x=1时y=0∴切线方程为y=x﹣1 故选C.点评:此题主要考查导数的计算,比较简单.7.已知向量=(2,1),+=(1,k),若⊥,则实数k等于()A. B. 3 C.﹣7 D.﹣2考点:数量积判断两个平面向量的垂直关系.专题:计算题.分析:先根据+=(1,k),⊥,求出坐标,再代入+=(1,k),即可求出k值.解答:解:设=(x,y),则=(2+x,1+y)=(1,k),∴2+x=1,1+y=k∵,∴=0,即2x+y=0,∴y=2,∴k=3故选B点评:本题考查向量加法的坐标运算,以及向量的数量积判断两个向量的垂直关系,考查计算能力,是基础题.8.已知等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,则a2等于()A.﹣4 B.﹣6 C.﹣8 D. 8考点:等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:根据等差数列与等比数列的通项公式与性质,列出方程,求出且a2的值.解答:解:等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,∴=a2•a5,即=a2•(a2﹣6),解得a2=8.故选:D.点评:本题考查了等差与等比数列的通项公式与应用问题,是基础题目.9.若函数f(x)=x2+2x+3a没有零点,则实数a的取值X围是()A. B. C. D.考点:函数的零点;二次函数的性质.专题:计算题.分析:函数f(x)=x2+2x+3a没有零点,等价于方程x2+2x+3a=0无解,由根的判别式能求出结果.解答:解:∵函数f(x)=x2+2x+3a没有零点,∴x2+2x+3a=0无解,∴△=4﹣12a<0,∴a>.故选C.点评:本题考查函数的零的求法和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.10.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:由△ABF2是等腰直角三角形可知|AF1|=|F1F2|,即=2c,由此推导出这个椭圆的离心率.解答:解:由△ABF2是等腰直角三角形可知|AF1|=|F1F2|,∴=2c又∵c2=a2﹣b2∴a2﹣c2﹣2ac=0∴e2+2e﹣1=0解之得:e=﹣1或e=﹣﹣1 (负值舍去).故选C点评:题主要考查了椭圆的简单性质.椭圆的离心率是高考中选择填空题常考的题目.应熟练掌握圆锥曲线中a,b,c和e的关系.二、填空题(本大题共3小题,每小题5分,满分15分,其中11-13题是必做题,14-15题是选做题,考生只能选做一题,两题都答的,只计算前一题得分)11.若函数y=sin(ωx+)(ω>0)的最小正周期是,则ω= 6 .考点:三角函数的周期性及其求法;正弦函数的图象.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的周期为,可得结论.解答:解:函数y=sin(ωx+)(ω>0)的最小正周期是=,则ω=6,故答案为:6.点评:本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.12.定义运算,复数z满足,则复数z= 2﹣i .考点:复数代数形式的乘除运算.专题:新定义.分析:根据给出的定义把化简整理后,运用复数的除法运算求z.解答:解:由,得.故答案为2﹣i.点评:本题考查了复数的代数形式的乘除运算,复数的除法采用分子分母同时乘以分母的共轭复数,是基础题.13.在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β= 1 .类比到空间,在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ则有正确的式子是cos2α+cos2β+cos2γ=1 .考点:类比推理.专题:探究型.分析:本题考查的知识点是类比推理,由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们根据平面性质可以类比推断出空间性质,我们易得答案.解答:解:我们将平面中的两维性质,类比推断到空间中的三维性质.由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们楞根据平面性质可以类比推断出空间性质,即在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ,则有cos2α+cos2β+cos2γ=1.故答案为:1,cos2α+cos2β+cos2γ=1点评:本题考查的知识点是类比推理,在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质,或是将平面中的两维性质,类比推断到空间中的三维性质.【极坐标与参数方程选做题】14.在极坐标系中,ρ=4sinθ是圆的极坐标方程,则点A(4,)到圆心C的距离是2.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标化为直角坐标,利用两点之间的距离公式即可得出.解答:解:由ρ=4sinθ化为ρ2=4ρsinθ,∴x2+y2=4y,化为x2+(y﹣2)2=4,可得圆心C (0,2).点A(4,)化为A.∴点A到圆心C的距离d==2.故答案为:2.点评:本题考查了把极坐标化为直角坐标、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.【几何证明选讲选做题】15.(几何证明选讲选做题)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,切线AP长为,则圆O的直径长为 4 .考点:与圆有关的比例线段;圆的切线的判定定理的证明.专题:计算题;压轴题;直线与圆.分析:连接PN,由题设条件推导出△MPN中,ON=r,PM=2,MN=2r,∠MPN=90°,由此能求出圆O的直径长.解答:解:连接PN,∵MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,∠M=30°,切线AP长为,∴∠MPN=∠APO=90°,∠PNO=∠PON=60°,∴∠A=30°,PM=2,∴△MPN中,ON=r,PM=2,MN=2r,∠MPN=90°,∴(4r)2=r2+(2)2,解得r=2.∴圆O的直径长为4.故答案为:4.点评:本题考查与圆有关的比例线段的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.三、解答题(本大题共6小题,满分80分,解答须出文字说明、证明过程和演算步骤)16.设函数f(x)=2cosx(sinx+cosx)﹣1将函数f(x)的图象向左平移a个单位,得到函数y=g(x)的图象.(1)求函数f(x)的最小正周期;(2)若0<a<,且g(x)是偶函数,求a的值.考点:三角函数的周期性及其求法;函数奇偶性的性质;函数y=Asin(ωx+φ)的图象变换.专题:计算题;综合题.分析:(1)利用降次以及两角和的正弦,化简为一个角的一个三角函数的形式,求函数f (x)的最小正周期;(2)0<a<,化简g(x)利用它是偶函数,根据0<a<,求a的值.解答:解:(1)∵f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=sin(2x+)∴f(x)的最小正周期T==π(2)g(x)=f(x+a)=sin[2(x+α)+]=sin(2x+2α+)g(x)是偶函数,则g(0)=±=sin(2α+)∴2α+=kπ+,k∈Zα=( k∈Z)∵0<a<,∴α=点评:本题考查三角函数的周期性及其求法,函数奇偶性的应用,函数y=Asin(ωx+φ)的图象变换,考查计算能力,逻辑思维能力,是基础题.17.已知集合A={﹣2,0,1,3},在平面直角坐标系中,点M的坐标(x,y)满足x∈A,y ∈A.(Ⅰ)请列出点M的所有坐标;(Ⅱ)求点M不在y轴上的概率;(Ⅲ)求点M正好落在区域上的概率.考点:等可能事件的概率.专题:计算题.分析:(Ⅰ)根据题意,依次列举符合条件的M即可,(Ⅱ)由(Ⅰ)列举的结果,分析可得在y轴的点有4个,即可得不在y轴上的点的个数,由等可能事件的概率公式,计算可得答案;(Ⅲ)由(Ⅰ)列举的结果,验证可得符合不等式组的点的个数,由等可能事件的概率公式,计算可得答案.解答:解:(Ⅰ)根据题意,符合条件的点M有:(﹣2,﹣2)、(﹣2,0)、(﹣2,1)、(﹣2,3)、(0,﹣2)、(0,0)、(0,1)、(0,3)、(1,﹣2)、(1,0)、(1,1)、(1,3)、(3,﹣2)、(3,0)、(3,1)、(3,3);共16个;(Ⅱ)其中在y轴上,有(﹣2,0)、(0,0)、(1,0)、(3,0),共4个,则不在y轴的点有16﹣4=12个,点M不在y轴上的概率为=;(Ⅲ)根据题意,分析可得,满足不等式组的点有(1,1)、(1,3)、(3,1),共3个;则点M正好落在区域上的概率为.点评:本题考查等可能事件的概率计算,关键是用列举法得到符合条件的点的个数,注意(Ⅲ)中是古典概型,而不是几何概型.18.如图(1)所示,正△ABC的边长为2a,CD是AB边上的高,E,F分别是AC,BC的中点.现将△ABC沿CD翻折,使翻折后平面ACD⊥平面BCD(如图(2)),(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;(2)求三棱锥C﹣DEF的体积.考点:平面与平面垂直的性质;棱柱、棱锥、棱台的体积;空间中直线与平面之间的位置关系.专题:计算题.分析:(1)判断:AB∥平面DEF,再由直线与平面平行的判定定理进行证明.(2)过点E作EM⊥DC于点M,由面ACD⊥面BCD,面ACD∩面BCD=CD,而EM⊂面ACD,知EM是三棱锥E﹣CDF的高,由此能求出三棱锥C﹣DEF的体积.解答:解:(1)判断:AB∥平面DEF,(2分)证明:因在△ABC中,E,F分别是AC,BC的中点,∴EF∥AB,(5分)又因AB⊄平面DEF,∴EF⊂平面DEF,(6分)所以AB∥平面DEF,(7分)(2)过点E作EM⊥DC于点M,∵面ACD⊥面BCD,面ACD∩面BCD=CD,而EM⊂面ACD故EM⊥平面BCD 于是EM是三棱锥E﹣CDF的高,(9分)又△CDF的面积为S△CDF====,EM=,(11分)故三棱锥C﹣DEF的体积==.点评:本题考查直线与平面的位置关系的判断,考查三棱锥的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.19.已知椭圆的中心在原点,焦点在x轴上,离心率为,且椭圆经过圆C:x2+y2﹣4x+2y=0的圆心C.(1)求椭圆的方程;(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.考点:椭圆的标准方程;直线的一般式方程.专题:计算题.分析:(1)把圆C的方程化为标准方程,进而求得圆心和半径,设椭圆的标准方程,根据题设得方程组求得a和b,则椭圆的方程可得.(2)跟椭圆方程求得焦点坐标,根据两点间的距离求得|F2C|小于圆的半径,判断出F2在圆C内,过F2没有圆C的切线,设直线的方程,求得点C到直线l的距离进而求得k,则直线方程可得.解答:解:(1)圆C方程化为:(x﹣2)2+(y+)2=6,圆心C(2,﹣),半径r=设椭圆的方程为=1(a>b>0),则所以所求的椭圆的方程是:=1.(2)由(1)得到椭圆的左右焦点分别是F1(﹣2,0),F2(2,0),|F2C|==<∴F2在C内,故过F2没有圆C的切线,设l的方程为y=k(x+2),即kx﹣y+2k=0点C(2,﹣)到直线l的距离为d=,由d=得=解得:k=或k=﹣,故l的方程为x﹣5y+2=0或x+y+2=0点评:本题主要考查了椭圆的标准方程.考查了学生综合运用所学知识解决问题的能力.20.已知函数f(x)=(1)求函数f(x)的单调递增区间;(2)求函数f(x)的零点.考点:利用导数研究函数的单调性;函数零点的判定定理.分析:(1)当x>时,对函数f(x)求导,令导函数大于0求x的X围;当x≤时根据二次函数的图象和性质可得答案.(2)当x>时根据函数的单调性与极值点可求出零点;当x≤时对函数判别式进行分析可得答案.解答:解(1)当x>时,f′(x)=1﹣=由f′(x)>0得x>1.∴f(x)在(1,+∞)上是增函数.当x≤时,f(x)=x2+2x+a﹣1=(x+1)2+a﹣2,∴f(x)在上是增函数∴f(x)的递增区间是(﹣1,)和(1,+∞).(2)当x>时,由(1)知f(x)在(,1)上递减,在(1,+∞)上递增且f′(1)=0.∴f(x)有极小值f(1)=1>0,此时f(x)无零点.当x≤时,f(x)=x2+2x+a﹣1,△=4﹣4(a﹣1)=8﹣4a.当△<0,即a>2时,f(x)无零点.当△=0,即a=2时,f(x)有一个零点﹣1.当△>0,且f()≥0时,即∴时f(x)有两个零点:x=或x=,即x=﹣1+或x=﹣1﹣当△>0且f()<0,即∴a<﹣时,f(x)仅有一个零点﹣1﹣点评:本题主要考查函数的单调性与其导函数的正负之间的关系和函数零点的求法.属中档题.21.数列{a n}的前n项和为S n,已知.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{}满足,求数列{}的前n项和T n.(Ⅲ)X三同学利用第(Ⅱ)题中的T n设计了一个程序流程图,但李四同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意李四同学的观点?请说明理由.考点:数列的求和;等差数列的前n项和.专题:综合题;等差数列与等比数列.分析:(Ⅰ)利用,a1=S1;当n>1时,a n=S n﹣S n﹣1可求(Ⅱ)根据题意需要分类讨论:当n为偶数和n为奇数两种情况,结合等差数列与等比数列的求和公式可求(Ⅲ)记d n=T n﹣P,结合(II)中的求和可得d n,进而可判断d n的单调性,分n为偶数,奇数两种情况讨论d n的X围,结合所求d n可判断其循环规律,从而可知判断解答:解:(Ⅰ)当n=1时,a1=S1=2;当n>1时,a n=S n﹣S n﹣1=n+1,则(Ⅱ)当n为偶数时,当n为奇数时,n﹣1为偶数,则(Ⅲ)记d n=T n﹣P当n为偶数时,.所以从第4项开始,数列{d n}的偶数项开始递增,而且d2,d4,…,d10均小于2012,d12>2012,则d n≠2012(n为偶数).当n为奇数时,.所以从第5项开始,数列{d n}的奇数项开始递增,而且d1,d3,…,d11均小于2012,d13>2012,则d n≠2012(n为奇数).故李四同学的观点是正确的.点评:本题以程序框图为载体综合考查了利用数列的递推公式求解数列的通项公式及数列的和的求解,体现了分类讨论思想的应用,。
2020-2021人教版高二下学期数学期末检测试卷附答案解析[最新]
一、选择题:本大题共13小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的
1.已知集合A={x|log2x<1},B={x|x2+x﹣2<0},则A∪B( )
A.(﹣∞,2)B.(0,1)C.(﹣2,2)D.(﹣∞,1)
2.在复平面内,复数g(x)满足 ,则z的共轭复数对应的点位于( )
(Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.
21.已知函数f(x)= x3﹣ax2+(a2﹣1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y﹣3=0.
(1)求a,b的值;
(2)求函数f(x)的单调区间,并求出f(x)在区间[﹣2,4]上的最大值.
(Ⅱ)若该地1月份某天的最低气温为6℃,预测该店当日的营业额
(参考公式: = = , = ﹣ ).
20.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4; 白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).
(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率.
A.375B.﹣375C.15D.﹣15
8.若函数h(x)=2x﹣ + 在(1,+∞)上是增函数,则实数k的取值范围是( )
A.[﹣2,+∞)B.[2,+∞)C.(﹣∞,﹣2]D.(﹣∞,2]
9.设随机变量X~B(10,0.8),则D(2X+1)等于( )
A.1.6B.3.2C.6.4D.12.8
10.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为0.7,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
四川省成都市高二数学上学期期末试卷 理(含解析)-人教版高二全册数学试题
2014-2015学年某某省某某市高二(上)期末数学试卷(理科)一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1) B.(﹣2,1,﹣1) C.(2,﹣1,1) D.(﹣2,﹣1,﹣1)2.如图是某样本数据的茎叶图,则该样本数据的众数为()A. 10 B. 21 C. 35 D. 463.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为() A.﹣2 B. 2 C.﹣ D.4.根据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A. 4 B. 6 C. 8 D. 105.经过点(2,1),且倾斜角为135°的直线方程为()A. x+y﹣3=0 B. x﹣y﹣1=0 C. 2x﹣y﹣3=0 D. x﹣2y=06.已知圆C1:x2+y2+2x﹣4y+1=0,圆C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是() A.相交 B.相离 C.外切 D.内含7.如图,在平行六面体ABCD﹣A1B1C1D1中,E为BC1与B1C的交点,记=,=,=,则=()A.++ B.++ C.++ D.﹣﹣8.已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,一定能得到l⊥m的是()A.α∩β=l,m与α,β所成角相等B.α⊥β,l⊥α,m∥βC. l,m与平面α所成角之和为90°D.α∥β,l⊥α,m∥β9.已知直线l:xsinα﹣ycosα=1,其中α为常数且α∈[0,2π).有以下结论:①直线l的倾斜角为α;②无论α为何值,直线l总与一定圆相切;③若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;④若P(x,y)是直线l上的任意一点,则x2+y2≥1.其中正确结论的个数为()A. 1 B. 2 C. 3 D. 410.在Rt△ABC中,已知D是斜边AB上任意一点(如图①),沿直线CD将△ABC折成直二面角B﹣CD﹣A(如图②).若折叠后A,B两点间的距离为d,则下列说法正确的是()A.当CD为Rt△ABC的中线时,d取得最小值B.当CD为Rt△ABC的角平分线时,d取得最小值C.当CD为Rt△ABC的高线时,d取得最小值D.当D在Rt△ABC的AB边上移动时,d为定值二、填空题(每小题5分,共25分)11.在空间直角坐标系Oxyz中,已知点P(1,0,5),Q(1,3,4),则线段PQ的长度为.12.某单位有1200名职工,其中年龄在50岁以上的有500人,35~50岁的400人,20~35岁的300人.为了解该单位职工的身体健康状况,现采用分层抽样的方法,从1200名职工抽取一个容量为60的样本,则在35~50岁年龄段应抽取的人数为.13.执行如图所示的程序框图,则输出的结果为.14.在正方体ABCD﹣A1B1C1D1的12条面对角线所在的直线中,与A1B所在的直线异面而且夹角为60°的直线有条.15.记空间向量=,=,=,其中,,均为单位向量.若⊥,且与,的夹角均为θ,θ∈[0,π].有以下结论:①⊥(﹣);②直线OC与平面OAB所成角等于向量与+的夹角;③若向量+所在直线与平面ABC垂直,则θ=60°;④当θ=90°时,P为△ABC内(含边界)一动点,若向量与++夹角的余弦值为,则动点P的轨迹为圆.其中,正确的结论有(写出所有正确结论的序号).三、解答题(共75分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2014秋•某某期末)如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,求证:(Ⅰ)平面MNP∥平面BDD1B1;(Ⅱ)MN⊥AC.17.(12分)(2014秋•某某期末)某校要调查高中二年级男生的身高情况,现从全年级男生中随机抽取一个容量为100的样本.样本数据统计如表,对应的频率分布直方图如图所示.(1)求频率分布直方图中a,b的值;(2)用样本估计总体,若该校高中二年级男生共有1000人,求该年级中男生身高不低于170cm的人数.身高(单位:cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)人数 2 8 15 20 25 18 10 218.(12分)(2014秋•某某期末)如图,在三棱柱ABC﹣A1B1C1中,向量,,两两垂直,||=1,||=2,E,F分别为棱BB1,BC的中点,且•=0.(Ⅰ)求向量的模;(Ⅱ)求直线AA1与平面A1EF所成角的正弦值.19.(12分)(2014秋•某某期末)已知直线l1:mx﹣(m+1)y﹣2=0,l2:x+2y+1=0,l3:y=x ﹣2是三条不同的直线,其中m∈R.(Ⅰ)求证:直线l1恒过定点,并求出该点的坐标;(Ⅱ)若l2,l3的交点为圆心,2为半径的圆C与直线l1相交于A,B两点,求|AB|的最小值.20.(13分)(2014秋•某某期末)如图,在四棱锥P﹣ABCD中,△PAB是边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,PC⊥AB,E为PD上一点,且PD=3PE.(Ⅰ)求异面直线AB与CE所成角的余弦值;(Ⅱ)求平面PAC与平面ABCD所成的锐二面角的余弦值.21.(14分)(2014秋•某某期末)已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.(Ⅰ)若•=0,求b的值;(Ⅱ)若|AB|=2,且直线l与两坐标轴围成的三角形的面积为,求直线l的斜率k的值;(Ⅲ)当|PA|•|PB|=4时,是否存在一定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.2014-2015学年某某省某某市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.在空间直角坐标系Oxyz中,已知点A(2,1,﹣1),则与点A关于原点对称的点A1的坐标为()A.(﹣2,﹣1,1) B.(﹣2,1,﹣1) C.(2,﹣1,1) D.(﹣2,﹣1,﹣1)考点:空间中的点的坐标.专题:空间位置关系与距离.分析:利用关于原点对称的点的特点即可得出.解答:解:与点A关于原点对称的点A1的坐标为(﹣2,﹣1,1),故选:A.点评:本题考查了关于原点对称的点的特点,属于基础题.2.如图是某样本数据的茎叶图,则该样本数据的众数为()A. 10 B. 21 C. 35 D. 46考点:众数、中位数、平均数.专题:概率与统计.分析:通过样本数据的茎叶图直接读出即可.解答:解:通过样本数据的茎叶图发现,有3个数据是35,最多,故选:C.点评:本题考查了样本数据的众数,考查了茎叶图,是一道基础题.3.已知点A(﹣1,2),B(1,3),若直线l与直线AB平行,则直线l的斜率为() A.﹣2 B. 2 C.﹣ D.考点:直线的斜率.专题:直线与圆.分析:直接由两点坐标求得直线AB的斜率,再由两直线平行斜率相等得答案.解答:解:∵A(﹣1,2),B(1,3),∴,又直线l与直线AB平行,则直线l的斜率为.故选:D.点评:本题考查了由直线上的两点的坐标求直线的斜率公式,是基础的计算题.4.根据如图的程序语句,当输入的x的值为2时,则执行程序后输出的结果是()A. 4 B. 6 C. 8 D. 10考点:选择结构.专题:算法和程序框图.分析:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,将x=2代入即可求值.解答:解:执行程序语句,可得程序的功能是计算并输出分段函数y=的值,故当x=2时,y=2×(2+1)=6.故选:B.点评:本题主要考查了程序与算法,正确理解程序的功能是解题的关键,属于基础题.5.经过点(2,1),且倾斜角为135°的直线方程为()A. x+y﹣3=0 B. x﹣y﹣1=0 C. 2x﹣y﹣3=0 D. x﹣2y=0考点:直线的点斜式方程.专题:直线与圆.分析:由直线的倾斜角求出直线的斜率,代入直线的点斜式方程得答案.解答:解:∵直线的倾斜角为135°,∴直线的斜率k=tan135°=﹣1.又直线过点(2,1),由直线的点斜式可得直线方程为y﹣1=﹣1×(x﹣2),即x+y﹣3=0.故选:A.点评:本题考查了直线的倾斜角与斜率的关系,考查了直线的点斜式方程,是基础题.6.已知圆C1:x2+y2+2x﹣4y+1=0,圆C2:(x﹣3)2+(y+1)2=1,则这两圆的位置关系是() A.相交 B.相离 C.外切 D.内含考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:把圆的方程化为标准方程,分别找出两圆的圆心坐标和半径R与r,利用两点间的距离公式求出两圆心的距离d,由d>R+r得到两圆的位置关系为相离.解答:解:由圆C1:x2+y2+2x﹣4y+1=0,化为(x+1)2+(y﹣2)2=4,圆心C1(﹣1,2),R=2圆C2:(x﹣3)2+(y+1)2=1,圆心C2(3,﹣1),r=1,∴两圆心间的距离d==5>2+1,∴圆C1和圆C2的位置关系是相离.故选:B.点评:此题考查了圆与圆的位置关系及其判定,以及两点间的距离公式.圆与圆位置关系的判定方法为:0≤d<R﹣r,两圆内含;d=R﹣r,两圆内切;R﹣r<d<R+r时,两圆相交;d=R+r时,两圆外切;d>R+r时,两圆相离(d为两圆心间的距离,R和r分别为两圆的半径).7.如图,在平行六面体ABCD﹣A1B1C1D1中,E为BC1与B1C的交点,记=,=,=,则=()A.++ B.++ C.++ D.﹣﹣考点:空间向量的加减法.专题:空间向量及应用.分析:利用向量三角形法则、平行四边形法则即可得出.解答:解:,,,∴=+=.故选:C.点评:本题考查了向量三角形法则、平行四边形法则,属于基础题.8.已知l,m是两条不同的直线,α,β是两个不同的平面,则在下列条件中,一定能得到l⊥m的是()A.α∩β=l,m与α,β所成角相等B.α⊥β,l⊥α,m∥βC. l,m与平面α所成角之和为90°D.α∥β,l⊥α,m∥β考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用面面垂直和面面平行的性质定理对选项分别分析选择.解答:解:对于A,α∩β=l,m与α,β所成角相等,当m∥α,β时,m∥l,得不到l⊥m;对于B,α⊥β,l⊥α,得到l∥β或者l⊂β,又m∥β,所以l与m不一定垂直;对于C,l,m与平面α所成角之和为90°,当l,m与平面α都成45°时,可能平行,故C错误;对于D,α∥β,l⊥α,得到l⊥β,又m∥β,所以l⊥m;故选D.点评:本题考查了直线垂直的判断,用到了线面垂直、线面平行的性质定理和判定定理,熟练运用相关的定理是关键,属于中档题目.9.已知直线l:xsinα﹣ycosα=1,其中α为常数且α∈[0,2π).有以下结论:①直线l的倾斜角为α;②无论α为何值,直线l总与一定圆相切;③若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;④若P(x,y)是直线l上的任意一点,则x2+y2≥1.其中正确结论的个数为()A. 1 B. 2 C. 3 D. 4考点:命题的真假判断与应用.专题:简易逻辑.分析:举例说明①错误;由点到直线的距离公式求得(0,0)到直线的距离判断②;求出三角形面积公式,结合三角函数的有界性判断③;由②说明④正确.解答:解:直线l:xsinα﹣ycosα=1,当α=时,直线方程为:x=﹣1,直线的倾斜角为,命题①错误;∵坐标原点O(0,0)到直线xsinα﹣ycosα=1的距离为,∴无论α为何值,直线l总与一定圆x2+y2=1相切,命题②正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积S=≥1,故③正确;∵无论α为何值,直线l总与一定圆x2+y2=1相切,∴④正确.∴正确的命题是3个.故选:C.点评:本题考查了命题的真假判断与应用,考查了直线的倾斜角,点与直线的关系,直线与圆的位置关系,三角函数的值域等,是中档题.10.在Rt△ABC中,已知D是斜边AB上任意一点(如图①),沿直线CD将△ABC折成直二面角B﹣CD﹣A(如图②).若折叠后A,B两点间的距离为d,则下列说法正确的是()A.当CD为Rt△ABC的中线时,d取得最小值B.当CD为Rt△ABC的角平分线时,d取得最小值C.当CD为Rt△ABC的高线时,d取得最小值D.当D在Rt△ABC的AB边上移动时,d为定值考点:平面与平面之间的位置关系.专题:空间位置关系与距离.分析:过A作CD的垂线AG,过B作CD的延长线的垂线BH,设BC=a,AC=b,∠ACD=θ,利用两条异面直线上两点间的距离转化为含有θ的三角函数求得最值.解答:解:如图,设BC=a,AC=b,∠ACD=θ,则(0),过A作CD的垂线AG,过B作CD的延长线的垂线BH,∴AG=bsinθ,BH=acosθ,CG=bcosθ,CH=asinθ,则HG=CH﹣CG=asinθ﹣bcosθ,∴d=|AB|====.∴当,即当CD为Rt△ABC的角平分线时,d取得最小值.故选:B.点评:本题考查平面与平面之间的位置关系,考查了两条异面直线上两点间的距离,运用数学转化思想方法是解答该题的关键,是中档题.二、填空题(每小题5分,共25分)11.在空间直角坐标系Oxyz中,已知点P(1,0,5),Q(1,3,4),则线段PQ的长度为.考点:空间两点间的距离公式.专题:空间位置关系与距离.分析:直接利用空间两点间距离公式求解即可.解答:解:空间直角坐标系中,P(1,0,5),Q(1,3,4),则线段|PQ|==.故答案为:.点评:本题考查空间两点间的距离公式的应用,基本知识的考查.12.某单位有1200名职工,其中年龄在50岁以上的有500人,35~50岁的400人,20~35岁的300人.为了解该单位职工的身体健康状况,现采用分层抽样的方法,从1200名职工抽取一个容量为60的样本,则在35~50岁年龄段应抽取的人数为20 .考点:分层抽样方法.专题:概率与统计.分析:根据题意,求出抽取样本的比例,计算抽取的人数即可.解答:解:根据题意,得;抽样比例是=,∴在35~50岁年龄段应抽取的人数为400×=20.故答案为:20.点评:本题考查了分层抽样方法的应用问题,是基础题目.13.执行如图所示的程序框图,则输出的结果为 4 .考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的x,y的值,当x=8时,不满足条件x≤4,输出y的值为4.解答:解:执行程序框图,可得x=1,y=1满足条件x≤4,x=2,y=2满足条件x≤4,x=4,y=3满足条件x≤4,x=8,y=4不满足条件x≤4,输出y的值为4.故答案为:4.点评:本题主要考查了程序框图和算法,准确执行循环得到y的值是解题的关键,属于基础题.14.在正方体ABCD﹣A1B1C1D1的12条面对角线所在的直线中,与A1B所在的直线异面而且夹角为60°的直线有 4 条.考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:作出正方体,利用正方体的空间结构,根据异面直线的定义进行判断解答:解:如图,在正方体ABCD﹣A1B1C1D1中,与A1B异面而且夹角为60°的有:AC,AD1,CB1,B1D1,共有4条.故答案为:4.点评:本题考查异面直线的定义,是基础题,解题时要熟练掌握异面直线的概念.15.记空间向量=,=,=,其中,,均为单位向量.若⊥,且与,的夹角均为θ,θ∈[0,π].有以下结论:①⊥(﹣);②直线OC与平面OAB所成角等于向量与+的夹角;③若向量+所在直线与平面ABC垂直,则θ=60°;④当θ=90°时,P为△ABC内(含边界)一动点,若向量与++夹角的余弦值为,则动点P的轨迹为圆.其中,正确的结论有①③④(写出所有正确结论的序号).考点:平面向量数量积的运算.专题:平面向量及应用.分析:①•(﹣)==cosθ﹣cosθ=0,可得⊥(﹣);②当时,直线OC与平面OAB所成角的补角等于向量与+的夹角,即可判断出正误;③向量+所在直线OD与平面ABC垂直于点D,又BC=AC,D为AB的中点,则CD⊥AB,可得OD⊥CD,可得AC=1=OC=OA,可得θ=60°,即可判断出正误;④补全正方体,对角线OD与平面ABC相交于点M,点M为等边三角形的中心,可得OM=,OP=,MP=.即可得出动点P的轨迹为圆,点M为圆心,MP为半径的圆.解答:解:①∵•(﹣)==cosθ﹣cosθ=0,∴⊥(﹣),正确;②当时,直线OC与平面OAB所成角等于向量与+的夹角;当时,直线OC与平面OAB所成角的补角等于向量与+的夹角,因此不正确;③向量+所在直线OD与平面ABC垂直于点D,又BC=AC,D为AB的中点,则CD⊥AB,∴OD⊥CD,又OD=DA==CD,∴AC=1=OC=OA,则θ=60°,正确;④当θ=90°时,P为△ABC内(含边界)一动点,补全正方体,对角线OD与平面ABC相交于点M,点M为等边三角形的中心,OM==,∵向量与++(即与)的夹角的余弦值为,∴=,∴=.∴动点P的轨迹为圆,点M为圆心,MP为半径的圆,因此正确.其中,正确的结论有①③④.故答案为:①③④.点评:本题考查了向量的数量积运算性质、空间线面位置关系、空间角、正方体的性质,考查了空间想象能力,考查了推理能力与计算能力,属于难题.三、解答题(共75分,解答应写出文字说明、证明过程或演算步骤)16.(12分)(2014秋•某某期末)如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,求证:(Ⅰ)平面MNP∥平面BDD1B1;(Ⅱ)MN⊥AC.考点:空间中直线与直线之间的位置关系;平面与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)只要证明MP∥BD,NP∥DD1,利用面面平行的判定定理可证;(Ⅱ)由已知容易得到NP⊥底面ABCD,利用射影定理,只要证明MP⊥AC即可.解答:证明:(Ⅰ)∵在正方体ABCD﹣A1B1C1D1中,M,N,P分别是棱AB,A1D1,AD的中点,∴MP∥BD,NP∥DD1,∴平面MNP∥平面BDD1B1;(Ⅱ)由已知,可得NP∥DD1,又DD1⊥底面ABCD,∴NP⊥底面ABCD,∴MN在底面ABCD的射影为MP,∵M,N是AB,A1D1的中点,∴MP∥BD,又BD⊥AC,∴MP⊥AC,∴MN⊥AC.点评:本题考查了正方体的性质以及线面平行、面面平行的判定定理和性质定理的运用.17.(12分)(2014秋•某某期末)某校要调查高中二年级男生的身高情况,现从全年级男生中随机抽取一个容量为100的样本.样本数据统计如表,对应的频率分布直方图如图所示.(1)求频率分布直方图中a,b的值;(2)用样本估计总体,若该校高中二年级男生共有1000人,求该年级中男生身高不低于170cm的人数.身高(单位:cm) [150,155) [155,160) [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)人数 2 8 15 20 25 18 10 2考点:频率分布直方图.专题:概率与统计.分析:(1)根据频率、频数与样本容量的关系,结合频率分布直方图中小矩形的高,求出a、b的值;(2)求出该年级中男生身高不低于170cm的频率,计算对应的频数即可.解答:解:(1)身高在[160,165)的频率为=0.15,∴==0.03,即a=0.03;身高在[170,175)的频率为=0.25,∴==0.05,即b=0.05;(2)该年级中男生身高不低于170cm的频率为0.25+0.036×5+0.02×5+0.004×5=0.55,∴估计该年级中男生身高不低于170cm的人数是1000×0.55=550.点评:本题考查了频率分布表与频率分布直方图的应用问题,是基础题目.18.(12分)(2014秋•某某期末)如图,在三棱柱ABC﹣A1B1C1中,向量,,两两垂直,||=1,||=2,E,F分别为棱BB1,BC的中点,且•=0.(Ⅰ)求向量的模;(Ⅱ)求直线AA1与平面A1EF所成角的正弦值.考点:平面向量数量积的运算;直线与平面所成的角.专题:平面向量及应用.分析:(Ⅰ)分别以AC,AB,AA1为x,y,z轴建立空间直角坐标系,设A1(0,0,z),得到•=4﹣=0,解出即可.(Ⅱ)分别求出,,的坐标,设平面A1EF的法向量=(x,y,z),得到方程组,求出一个,从而求出直线AA1与平面A1EF所成角的正弦值.解答:解:(Ⅰ)分别以AC,AB,AA1为x,y,z轴建立空间直角坐标系,如图示:,∴C(1,0,0),B(0,2,0),F(1,1,0),设A1(0,0,z),则E(0,2,),B1(0,2,z),∴=(﹣1,2,z),=(0,2,﹣),∴•=4﹣=0,解得:z=2,∴||=2;(Ⅱ)由(Ⅰ)得:=(0,0,2),=(1,1,﹣2),=(0,2,﹣),设平面A1EF的法向量=(x,y,z),∴,令z=2,∴=(3,,2),设直线AA1与平面A1EF所成的角为θ,∴sinθ===.点评:本题考查了平面向量的数量积的运算及应用,考查了线面角问题,是一道中档题.19.(12分)(2014秋•某某期末)已知直线l1:mx﹣(m+1)y﹣2=0,l2:x+2y+1=0,l3:y=x ﹣2是三条不同的直线,其中m∈R.(Ⅰ)求证:直线l1恒过定点,并求出该点的坐标;(Ⅱ)若l2,l3的交点为圆心,2为半径的圆C与直线l1相交于A,B两点,求|AB|的最小值.考点:直线与圆相交的性质;恒过定点的直线.专题:计算题;直线与圆.分析:(Ⅰ)直线l1:mx﹣(m+1)y﹣2=0,可化为m(x﹣y)﹣(y+2)=0,可得,即可得出直线l1恒过定点,及该点的坐标;(Ⅱ)求|AB|的最小值,即求圆心到直线的距离的最大值,此时CD⊥直线l1.解答:(Ⅰ)证明:直线l1:mx﹣(m+1)y﹣2=0,可化为m(x﹣y)﹣(y+2)=0,∴,∴x=y=﹣2,∴直线l1恒过定点D(﹣2,﹣2);(Ⅱ)解:l2:x+2y+1=0,l3:y=x﹣2联立可得交点坐标C(1,﹣1),求|AB|的最小值,即求圆心到直线的距离的最大值,此时CD⊥直线l1,∵|CD|==,∴|AB|的最小值为2=2.点评:本题考查直线l1恒过定点,考查弦长的计算,考查学生分析解决问题的能力,比较基础.20.(13分)(2014秋•某某期末)如图,在四棱锥P﹣ABCD中,△PAB是边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,PC⊥AB,E为PD上一点,且PD=3PE.(Ⅰ)求异面直线AB与CE所成角的余弦值;(Ⅱ)求平面PAC与平面ABCD所成的锐二面角的余弦值.考点:二面角的平面角及求法;异面直线及其所成的角.专题:空间角.分析:(Ⅰ)建立空间坐标系,利用向量法即可求异面直线AB与CE所成角的余弦值;(Ⅱ)建立空间坐标系,利用向量法即可求平面PAC与平面ABCD所成的锐二面角的余弦值.解答:解:(I)取AB的中点O,连接PO,OC∵△PAB为边长为2的正三角形,∴PO⊥AB又∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PO⊂平面PAB∴PO⊥平面ABCD,又∵PC⊥AB,PO∩PC=P,PO,PC⊂平面POC∴AB⊥平面POC又∵OC⊂平面POC∴AB⊥OC以O为坐标原点,建立如图所示的空间坐标系,则A(﹣1,0,0),C(0,,0),P(0,0,),D(﹣2,,0),B(1,0,0),∵PD=3PE,∴E(,,)则=(2,0,0),=(,﹣,),则||=,则cos<,>===﹣,即异面直线AB与CE所成角的余弦值为.(2)设平面PAC的法向量为=(x,y,z),∵=(1,,0),=(0,﹣,),∴由,即,令z=1,则y=1,x=,即=(,1,1),平面ABCD的法向量为=(0,0,1),则cos<,>===,故平面PAC与平面ABCD所成的锐二面角的余弦值为.点评:本题主要考查异面直线所成角的求解,以及二面角的求解,建立空间坐标系,利用向量法是解决二面角的常用方法.考查学生的运算和推理能力.21.(14分)(2014秋•某某期末)已知点P(0,2),设直线l:y=kx+b(k,b∈R)与圆C:x2+y2=4相交于异于点P的A,B两点.(Ⅰ)若•=0,求b的值;(Ⅱ)若|AB|=2,且直线l与两坐标轴围成的三角形的面积为,求直线l的斜率k的值;(Ⅲ)当|PA|•|PB|=4时,是否存在一定圆M,使得直线l与圆M相切?若存在,求出该圆的标准方程;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;平面向量数量积的运算.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(1)由P在圆上,且•=0,可知直线l过圆心O,由此求出b的值;(2)由|AB|=2得到原点O到直线l的距离,再由面积为得另一关于k和b的等式,联立方程组求得满足条件的k值;(3)联立直线方程和圆的方程,化为关于x的一元二次方程,由|PA|•|PB|=4得到A,B两点横坐标的关系,结合根与系数的关系得到直线l的斜率和截距的关系,由点到直线的距离公式求出P到直线l的距离为定值,由此可得存在一定圆M,方程是x2+(y﹣2)2=1,使得直线l与圆M相切.解答:解:(Ⅰ)∵点P(0,2)在圆C:x2+y2=4上,且直线l:y=kx+b与圆C交于A,B 两点,当•=0时,,∴直线l过圆心O(0,0),则b=0;(Ⅱ)由题意可知,直线l不过原点O,不妨设k>0,b>0,由|AB|=2,得,①取x=0,得y=b,取y=0,得x=﹣,∴,②联立①②解得:或k=,由对称性可得满足条件的直线l的斜率的值为或;(Ⅲ)联立,消去y,得(k2+1)x2+2kbx+b2﹣4=0.设A(x1,y1),B(x2,y2),∴x1+x2=﹣,x1x2=,∵|PA|•|PB|=4,∴,∴=16,即(2﹣y1)(2﹣y2)=1,∴y1y2﹣2(y1+y2)+3=0,则(kx1+b)(kx2+b)﹣2(kx1+b+kx2+b)+3=0,k2x1x2+(kb﹣2k)(x1+x2)﹣4b+3=0,∴k2•+(kb﹣2b)•(﹣)﹣4b+3=0.化简得:化简得k2=b2﹣4b+3,即k2+1=(b﹣2)2,∴.∵点P(0,2)到直线l:y=kx+b的距离d==1,∴存在一定圆M,方程是x2+(y﹣2)2=1,使得直线l与圆M相切.点评:本题考查了平面向量的应用,考查了直线与圆的位置关系,考查了定值的应用问题,综合性强,属难题.。
四川省广安市高二数学下学期期末考试试题 理(含解析)-人教版高二全册数学试题
广安市2017年春高二期末试题数学(理工类)一、选择题(每小题5分,共12小题60分。
每个小题给出的四个选项中只有一项是符合题目要求的)1. ( )A. B. C. D.【答案】A【解析】根据排列数公式,所以,故选择A。
2. 已知随机变量服从正态分布,若,则()A. 0.477B. 0.625C. 0.954D. 0.977【答案】C【解析】试题分析:根据题意,由于随机变量服从正态分布,若,则可知1-0.023-0.023=0.954,故可知答案为C.考点:正态分布点评:主要是考查了正态分布的概率的计算,利用对称性来解得。
属于基础题。
3. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A. 60种B. 70种C. 75种D. 105种【答案】C【解析】试题分析:因,故应选C.考点:排列数组合数公式及运用.4. 利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好某项运动,利用列联表,由计算可得,参照附表,得到的正确结论是()A. 有以上的把握认为“爱好该项运动与性别无关”B. 有以上的把握认为“爱好该项运动与性别有关”C. 在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过的前提下,认为“爱好该项运动与性别无关”【答案】B【解析】解:计算K2≈8.806>7.879,对照表中数据得出有0.005的几率说明这两个变量之间的关系是不可信的,即有1−0.005=99.5%的把握说明两个变量之间有关系,本题选择B选项....5. 用数学归纳法证明,则当时,左端应在n=k的基础上加( )A. B.C. D.【答案】D【解析】当时,左边=,当时,左边=,所以观察可知,增加的项为,故选择D。
6. 曲线在点处的切线方程是()A. B. C. D.【答案】C【解析】试题分析:,则,则所求切线方程为. 考点:导数几何意义.【方法点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.7. 已知某人每天早晨乘坐的某一班公共汽车的准时到站的概率为,则他在3天乘车中,此班车恰有2天准时到站的概率为()A. B. C. D.【答案】B【解析】由题意,恰有2天准时到站的概率为,故选择B。
人教版高二下学期数学期末试卷
【解析】
试题分析: .故选D.
考点:二倍角公式,同角关系.
16.C
【解析】由题设有 ,令 ,解得 ,故选C.
17.B
【解析】由题意,记“第一次抽到奇数”为事件A,记“第二次抽到偶数”为事件B,则 , ,所以 .故选B.
18.A
【解析】分析: 可化为 ,然后分子分母同时除以 ,即可得到关于 的关系式,进而得到结论.
A. B. C. D.
二、填空题
21.设向量 ,若 ⊥ ,则实数 的值为______.
22.已知 , ,则 的值为.
23.已知平面向量α,β(α≠0)满足|β|=1,且α与β-α的夹角为120°,则|α|的取值范围________.
24.若 ,则 __________.
25.已知向量 , ,若向量 ,则 __________.
4.A
【解析】分析:首先根据题中所给的 和角的范围,以及同角三角函数关系式中的平方关系,求得 ,之后应用差角公式求得 ,再利用平方关系求得结果.
详解:根据 为锐角,且 ,
所以 ,
所以 ,
所以 ,故选A.
点睛:该题考查的是三角函数求值问题,涉及的知识点有同角三角函数关系式、正弦的差角公式、余弦的倍角公式,在求解的过程中,需要认真运算,注意角的取值范围,在开放时,对应的正负号做好相应的取舍.
6.已知函数 在一个周期内的图象如图所示,则 ( )
A. B. C. D.
7.对两个变量 和 进行回归分析,得到一组样本数据 ,则下列说法中不正确的是( )
A.由样本数据得到的回归方程 必过样本点的中心
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数 来刻画回归效果, 越小说明拟合效果越好
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B、是偶函数,在 R 上是减函数
C、是奇函数,在 R 上是增函数 D、是奇函数,在 R 上是减函数
8、函数 y sin x cos x
cosx sin x 的最小正周期为(
)
3
3
A 、2
B、
C、
D、
2
4
9 、半径为 5 的球,截面面积为 9π,则截面与球心距离为(
)
A、 1
B、 2
C、 3
D、 4
10、要得到函数 y sin 2x 的图象,只要把函数 y sin 2x的图象( ) 5
2
n2
3
n
∴选 C
12 、 由题意 c 25 16 3
c 又e
3
a
a 3, b c2 a2 6 所求双曲线方程为 x 2 y 2 1
36
∴选 A
13 、 由余弦定理 cosC 32 52 72
1
235
2
∴ C=120°
14 、圆心坐标为(- 1, 2),半径为 3
15 、 y 32 42 sin(x ) 5sin(x )
10 分
2
6
CO
OF
2
6
第 6页共 9页
CO
在 Rt COF 中,tan CFO
3
OF
CFO 60 , 二面角 C — PB — D大小为 60
12 分
20 、解: (1) Sn an
1 1,an 0,n N *
2 an
a1
a1 2
1 a1
1, (a1 1) 2
3, a1
31
又 3 1 a2
a2 2
第 5页共 9页
2
C
2 3
3
1
44
0
3
C
0 3
2
1
33
3
0
1
2
C
3 3
3
1
C
1 3
2
1
44
33
2
3
3 11
3
4 43
3
2
3
21
7
3
4
3 3 64
7 甲恰好比乙多击中目标 2次的概率为
64
19 、解:( 1)∵底面 ABCD是边长为 1 的正方形
10 分
∴ AD=1,又 PD=1, PA 2 AD 2 PD2 PA 2, PD
( 1)建立适当的平面直角坐标系,求曲线 C 的方程;
( 2)过 D点的直线 l 与曲线 C 交于不同的两点 M、N,且 M在 D、N 之间, DM DM ,
求λ的取值范围。
第 3页共 9页
[ 参考答案 ] 一、选择题:
1 、 由 | 2x 1| 3 2x 1 3或 2x 1 3 x 1或 x 2 不等式解集为 { x | x 1或x 2}
; 半径为
。
15 、函数 y=3sinx+4cosx 的值域为 __________。 16 、用 0、 1、2、 3 这四个数字组成没有重复数字的三位数的个数为
________ (用数字作
答)。
三、解答题:本大题共 5 小题,共 56 分。解答应写出文字说明,证明过程或演算步骤。
17 、(本题满分 10 分)
BC PC 2
及PD 1 2
7分
2 d
1, d
2
2
2
2
即 A 到面 PBC 的距离为 2
8分
2
法 2:∴ AD//BC, BC 面 PBC, AD / 面 PBC,∴ AD// 面 PBC
∴ A 点到面 PBC的距离即为 D 点到面 PBC的距离
5分
取 E 为 PC中点,连 DE,∵ PD=DC,∴ DE⊥ PC,∵ BC⊥CD, BC⊥PD
f ( x )为奇函数
∴选 C
8 、 y sin( x x ) sin(2x )
3
3
2 T
2
∴选 B
9 、设截面的半径为 r ,则 r 2 9 , r 3
d 52 32 4
∴选 D
第 4页共 9页
向左移
10 、 y sin 2x
10
y sin 2( x ) 10
sin( 2x ) 5
∴选 D
1
6
11 、 原式 lim n
1) n
21 n
22 1
22
12 分
21 、解:( 1)以 AB为 x 轴, OD为 y 轴建立平面直角坐标系,如图
2n 1 1
第 7页共 9页
yl D2 M1
N
O
5
x
设 P(x, y),又 A(- 2, 0), B(2, 0),Q( 1, 0)
| PA | | PB | | QA | | QB | 2 5 | AB | 4
19 、(本题满分 12 分)
如图,四棱锥 P— ABCD中,底面 ABCD是边长为 1 的正方形,侧棱 PD=1, PA=PC= 2 。
(1)求证: PD⊥平面 ABCD;( 2)求点 A 到平面 PBC的距离;( 3)求二面角 C— PB— D 的大
小。
20 、(本题满分 12 分)
已知数列 { an }中,前 n项的和 Sn 满足 Sn
1 1
a2
a
2 2
2 3a2
2
(a2 3) 2 2 3 a2 5 3 同理 a3 7 5
3分
(2)猜想 an 2n 1 2n 1(n N*)
证明: 1°当 n=1 时,已验证结论成立。
5分 6分
2°假设 n=k 时,结论成立,即 ak 2k 1 2k 1
则当 n k 1时, ak 1 Sk 1 Sk
A、向右平移 个单位 5
B、向左平移 个单位 5
C、向右平移 个单位 10
D、向左平移 个单位 10
11、lim n n 2n
6n 2 3n 2
的值为(
)
1
1
A 、0
B、
C、 2
D、
2
2
x2 y2
12、与椭圆
1有公共焦点,离心率 e 3的双曲线方程为( )
25 16
第 1页共 9页
A、x 2 3 y2
x1 x2
Hale Waihona Puke 20k151 5k 2 , x 1x 2 1 5k 2
又 DM DN, (x 1, y1 2) (x 2,y 2 2), x 1 x 2
M 在DN 之间,0
x 1,
1
x2
400k 2
2
(x x 2 )
x1 x 2 2
1
(1 5k 2 )2
80
2
9分
x 1x 2
x2 x1
15 1 5k 2
3 k 2 15
x2
该函数定义域为 B { x | 3 x 2}
3x 2
6分
A B { x | 3 x 2或1 x 2}
8分
ABR
10 分
2
3
18 、解: (1)
C
2 3
3 4
1 4
C
3 3
3 4
27 32
∴甲至少击中目标两次的概率为 27
5分
32
( 2)甲恰好比乙多击中目标 2 次,包括“甲中
2 次乙中 0 次”,“甲中 3 次乙中 1 次”
C、 3
y2 1
6 x2
1 6
B、x 2 6 y2
D、 6
y2 1
3 x2
1 3
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分。把答案填在题中横线上。
13 、在△ ABC中, BC=3, AC=5, AB=7,则∠ C=________。
14、圆( x 1) 2 ( y 2) 2 3的圆心坐标为
4 其中 tan
3
16 、
A
4 4
A
3 3
24 6
y 18
[ 5,5]
∴可以组成 18 个没有重复数字的三位数。
∴填 18。
17 、解: 由y lg( x 2 x 2),知 x 2 x 2 0 x
2或x 1 ,
该函数定义域为 A { x | x 2或x 1} 3 分
x3 x3
x3
由y
知
0即
0
2x 2x
PD DC D , C 面 PDC, BC DE
6分
BC PC=C, DE 面PBC,且 DE 2 为所求
8分
2
( 3)连结 AC∩BD=O,则 CO⊥ BD,又 CO⊥ PD,∴ CO⊥面 PBD,过 O作 OF⊥ PB于 F,
连结 CF,则 CF⊥ PB,∴∠ CFO为二面角 C—PB— D 的平面角
设函数 y lg x 2 x 2 的定义域为 A,函数 y B、 A B, A B。
x 3的定义域为 B,求 A 、 2x
18 、(本题满分 10 分)
甲、乙两人各进行 3次射击,甲每次击中目 标的概率为 3 ,乙每次击中目标的 4
概率为 2,求:(1)甲至少击中目标 2次的概率 ; (2)甲恰好比乙多击中目标 2次的概率。 3
同理 PD⊥ DC
又 AD BD D , PD
AD 面 ABCD
2分 4分
( 2)法 1:设 A 到面 PBC的距离为 d,
V A PBC V P ABC
又 S ABC
1,及 BC 2
1
1
S PBC d
S ABC PD
5分
3
3
CD , CD 为 PC在面 ABCD 内的射影
1
2
BC