高中数学会考模拟试题(附答案)

合集下载

高三数学会考试卷及答案

高三数学会考试卷及答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各式中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 3, 6, 9, 12, ...C. 2, 4, 8, 16, ...D. 1, 3, 5, 7, ...2. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像的对称轴是()A. x = 2B. y = 2C. x = 0D. y = 03. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是()A. 一条直线B. 一个圆C. 一条射线D. 两个点4. 已知向量a = (2, 3),向量b = (-1, 2),则向量a和向量b的夹角θ的余弦值是()A. 1/5B. 2/5C. 3/5D. 4/55. 下列各函数中,在其定义域内单调递减的是()A. y = x^2B. y = 2^xC. y = log2(x)D. y = x^36. 已知数列{an}的通项公式an = 2n - 1,则数列的前n项和S_n是()A. n^2B. n^2 - nC. n^2 + nD. n^2 + 2n7. 若函数f(x) = ax^2 + bx + c在x = 1时取得极值,则a + b + c的值是()A. 0B. 1C. -1D. 28. 在三角形ABC中,若∠A = 60°,∠B = 45°,则∠C的大小是()A. 75°B. 105°C. 120°D. 135°9. 已知等比数列{an}的前三项分别是1,-2,4,则该数列的公比q是()A. -1/2B. 1/2C. -2D. 210. 若函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(1, 2),则a、b、c的符号分别为()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b < 0, c < 0D. a < 0, b > 0, c < 011. 若复数z满足|z - 1| = |z + 1|,且z在复平面上的实部为2,则复数z是()A. 2 + iB. 2 - iC. 1 + iD. 1 - i12. 在直角坐标系中,若点P(2, 3)关于直线y = x的对称点为P',则点P'的坐标是()A. (2, 3)B. (3, 2)C. (3, -2)D. (-2, 3)二、填空题(本大题共8小题,每小题5分,共40分)13. 函数y = 3x^2 - 6x + 5的顶点坐标是______。

高中会考试题及答案数学

高中会考试题及答案数学

高中会考试题及答案数学一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-2x-3,那么f(-1)的值是:A. 0B. 4C. -4D. 6答案:B2. 已知等差数列的前三项为2,5,8,那么第10项的值是:A. 19B. 22C. 25D. 28答案:C3. 一个圆的直径为10cm,那么它的面积是:A. 25π cm^2B. 50π cm^2C. 100π cm^2D. 200π cm^2答案:B4. 如果a+b=7,ab=6,那么a^2+b^2的值是:A. 13B. 25C. 37D. 49答案:C5. 计算下列表达式的结果:(3x-2)(2x+3)是:A. 6x^2+7x-6B. 6x^2-7x+6C. 6x^2+7x+6D. 6x^2-7x-6答案:C6. 已知函数f(x)=x^3-3x^2+2x,求f'(x)的值:A. 3x^2-6x+2B. x^2-6x+2C. 3x^2-6xD. 3x^2-6x+1答案:A7. 一个三角形的三个内角之和是:A. 180°B. 360°C. 540°D. 720°答案:A8. 一个等腰三角形的两个底角相等,如果顶角是50°,那么每个底角的度数是:A. 65°B. 75°C. 80°D. 85°答案:B9. 一个数列的前四项为1,2,3,5,那么第五项是:A. 7B. 8C. 9D. 10答案:A10. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是2和-2,那么这个数是______。

答案:42. 计算:(2x+1)(3x-2)=______。

答案:6x^2-x-23. 一个圆的半径是5cm,那么它的周长是______。

答案:10π cm4. 已知一个等差数列的前四项为2,5,8,11,那么这个数列的公差是______。

高中数学会考模拟题(含答案)

高中数学会考模拟题(含答案)

一、选择题(共20个小题,每小题3分,共60分)1.若集合{}13A x x =≤≤,集合{}2B x x =<,则A B =(A ){}12x x ≤< (B ){}12x x << (C ){}3x x ≤ (D ){}23x x <≤2.tan330︒=(A(B(C) (D)3.已知lg2=a ,lg3=b ,则3lg 2=(A )a -b (B )b -a (C )ba(D )a b4.函数()2sin cos f x x x =的最大值为(A )2(B )2-(C )1(D )1-5.随机投掷1枚骰子,掷出的点数恰好是3的倍数的概率为(A )12 (B )13(C )15(D )166.在等比数列{}n a 中,若32a =,则12345a a a a a = (A )8(B )16(C )32(D )7.已知点()0,0O 与点()0,2A 分别在直线y x m =+的两侧,那么m 的取值范围是(A )20m -<< (B )02m << (C )0m <或2m >(D )0m >或2m <-8.如果直线ax +2y +1=0与直线x +3y -2=0互相垂直,那么a 的值等于(A )6(B )-32(C )- (D )-69.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是(A )(,0)12π- (B )(,0)6π-(C )(,0)6π(D )(,0)3π10.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是(A ) (B ) (C )(D )11.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是 (A )()()f x f x =-(B )()1f x f x ⎛⎫= ⎪⎝⎭(C )()f x x > (D )()2f x >12.如果一个几何体的三视图中至少有两个三角形,那么这个几何体不可能...是 (A )正三棱锥(B )正三棱柱(C )圆锥(D )正四棱锥13.如图,D 是△ABC 的边AB 的三等分点,则向量CD 等于(A )23CA AB + (B )13CA AB + (C )23CB AB +(D )13CB AB + 14.有四个幂函数:①()1f x x -=; ②()2f x x -=; ③()3f x x =; ④()13f x x =.某同学研究了其中的一个函数,他给出这个函数的两个性质: (1)定义域是{x | x ∈R ,且x ≠0}; (2)值域是{y | y ∈R ,且y ≠0}.如果这个同学给出的两个性质都是正确的, 那么他研究的函数是 (A )① (B )②(C )③(D )④15.如果执行右面的程序框图,那么输出的S 等于(A )45 (B )55 (C )90 (D )11016.若0(,)b a a b R <<∈,则下列不等式中正确的是(A )b 2<a 2(B )1b >1a(C )-b <-a (D )a -b >a +b17.某住宅小区有居民2万户,从中随机抽取200户,调查是否已接入宽带. 调查结果如下表所示:(A )3000户(B )6500户(C )9500户(D )19000户18.△ABC 中,45A ∠=︒,105B ∠=︒,A ∠的对边2a =,则C ∠的对边c 等于(A )2(B(C(D )119.半径是20cm 的轮子按逆时针方向旋转,若轮周上一点转过的弧长是40cm ,则轮子转过的弧度数是(A )2(B )-2(C )4(D )-4CADB20.如果方程x 2-4ax +3a 2=0的一根小于1,另一根大于1,那么实数a 的取值范围是(A )113a << (B )1a >(C )13a <(D )1a =二、填空题(共4道小题,每小题3分,共12分)21.函数()f x ________________________.22.在1-和4之间插入两个数,使这4个数顺次构成等差数列,则插入的两个数的和为____. 23.把函数sin 2y x =的图象向左平移6π个单位,得到的函数解析式为________________. 24.如图,单摆的摆线离开平衡位置的位移s (厘米)和时间t (秒)的函数关系是1sin 223s t ππ⎛⎫=+ ⎪⎝⎭,则摆球往复摆动一次所需要的时间是_____ 秒.ADBCB ;CBDAA ;BBBAB ;DCCAA ;[]1,1-;3;sin 23y x π⎛⎫=+⎪⎝⎭;1。

高中会考试题数学及答案

高中会考试题数学及答案

高中会考试题数学及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 + 4x + 3,则f(-1)的值为:A. 0B. 2C. 4D. 6答案:B2. 已知等差数列{a_n}的前三项分别为1, 4, 7,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B3. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 若直线y = 2x + 1与直线y = -x + 3相交,则交点的横坐标为:A. -1B. 0C. 1D. 2答案:C5. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 13答案:B6. 函数y = x^3 - 3x^2 + 4x - 2的导数是:A. 3x^2 - 6x + 4B. 3x^2 - 6x + 2C. 3x^2 - 9x + 4D. 3x^2 - 9x + 2答案:A7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B8. 若sin(α) = 3/5,且α为第一象限角,则cos(α)的值为:A. 4/5B. -4/5C. 3/5D. -3/5答案:A9. 一个数列的前四项为2, 5, 8, 11,若该数列是等差数列,则第五项为:A. 14B. 15C. 16D. 17答案:A10. 已知函数f(x) = x^2 - 4x + 3,若f(x) = 0,则x的值为:A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的前三项分别为2, 6, 18,则该数列的公比为______。

答案:32. 一个矩形的长为10cm,宽为5cm,那么它的对角线长度为______。

答案:5√5 cm3. 函数y = √x的反函数是______。

答案:y = x^24. 已知一个抛物线的顶点为(2, -3),且开口向上,则它的标准方程为______。

高中数学会考模拟试题(附答案)

高中数学会考模拟试题(附答案)

高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则=)(B C A U ( )A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为( ) A .6π B .3π C .23π D .56π3.函数y = )A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞ 4.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图1所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为( ) A .14、12 B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为( )A .4π B .14π- C .8π D .18π- 6.已知向量a 与b 的夹角为120,且1==a b ,则-a b 等于( ) A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示(单位:cm ),( A .212cm π B. 215cm π C. 224cm πD. 236cm π8.若372log πlog 6log 0.8a b c ===,,,则( ) A . a b c >>B . b a c >>C . c a b >>D . b主视图6侧视图图2图19.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,则函数)(x f 的解析式是( )A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭ 10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是 最小角的2倍,则这个三角形最小角的余弦值为( )A .378 B .34 C .74 D .1811.在等差数列{}n a 中, 284a a +=,则 其前9项的和9S 等于 ( )A .18B .27C .36D .912.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1 B.0 C.-1 D.-213. 函数x y x +=2的根所在的区间是( )A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫ ⎝⎛-0,21C .⎪⎭⎫⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,2114.函数|2|sin xy =的周期是( ) A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+等于( ) A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x1 Oxy 1112π图3二、填空题:本大题共4小题,每小题5分,满分20分. 17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3, 则输出的()h x 的值为 .19.若函数84)(2--=kx x x f 在[]8,5上是单调函数,则k 的取值范围是20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是21.已知两条直线82:,2)3(:21-=+=++y mx l y m x l . 若21l l ⊥,则m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 24.(本小题满分10分)在△ABC 中,角A ,B ,C 成等差数列.(1)求角B 的大小;(2)若()sin A B +=sin A 的值.25.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (Ⅰ)若|c |52=,且a c //,求c 的坐标; (Ⅱ)若|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ 26.(本小题满分12分)如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.(1)求证://PB 平面ACE ;(2)若四面体E ACD -的体积为2,求AB 的长.图427.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人) (1)求x ,y 的值;(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. (本小题满分12分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. (本小题满分12分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.13.()22225x y ++=(或224210x y y ++-=) 14.915.()0,+∞(或[)0,+∞) 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.(2)方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=+⨯4=.25. 解(Ⅰ)设20,52,52||),,(2222=+∴=+∴==y x y x c y x c x y y x a a c 2,02),2,1(,//=∴=-∴= ……2分由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分(Ⅱ)0)2()2(),2()2(=-⋅+∴-⊥+b a b a b a b a ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……(※) ,45)25(||,5||222===b a 代入(※)中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分 ,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a b a θ26.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点,所以EO 是△DPB 的中位线.所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===.解得2x =.故AB 的长为2. 27.解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.28.解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++, ①即111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =, 所以21AB x x =-= 所以12S AB b==22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d=.因为圆的半径为2R =, 所以2AB ===. 于是241121k S AB dk =⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+2-,2-+2-。

(完整版)高中数学会考两套模拟试卷(附答案)

(完整版)高中数学会考两套模拟试卷(附答案)

高二数学会考模拟试卷一、选择题(本题有22小题,每小题2分,共44分.选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1、已知集合{}3,1,0=A ,{}2,1=B ,则B A ⋃等于( )A {}1B {}3,2,0C {}3,2,1,0D {}3,2,1 2、b a >,则下列各式正确的是( ) A 22+>+b aB b a ->-22C b a 22->-D 22b a >3、函数12)(2+=x x f 是( )A 奇函数B 偶函数C 既是奇函数又是偶函数D 既不是奇函数又不是偶函数4、 点A(0,1)且与直线25y x =-平行的直线的方程是( ) A 210x y -+=B 210x y --=C 210x y +-=D 210x y ++=5、在空间中,下列命题正确的是( )A 平行于同一平面的两条直线平行B 平行于同一直线的两个平面平行C 垂直于同一直线的两条直线平行D 垂直于同一平面的两条直线平行6、已知,a b R +∈,且1ab =,则a b +的最小值是( )A1 B2 C3 D47、如图,在正六边形ABCDEF 中,点O 为其中点,则下列判断错误的是( ) A OC AB = B AB ∥DE C BE AD = D FC AD =8、已知向量(3,1),(1,2)a b =-=-r r,则2a b -=r r ( )A (7,0)B (5,0)C (5,-4)D (7,-4)9、“0=x ”是“0=xy ”的( )A 充要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件 10、焦点为(1,0)的抛物线的标准方程是( ) A 22y x = B 22x y =C 24y x =D 24x y =11、不等式0)2)(1(<++x x 的解集是( ) A {}12-<<-x xB {}12->-<x x x 或C {}21<<x xD {}21><x x x 或12、函数中,在(-∞,0)上为增函数的是( )A 1y x =-+B 1y x =C 12xy ⎛⎫= ⎪⎝⎭D 21y x =-13、满足n n a a a 21,111==+,则=4a ( ) A 32 B 14 C 18 D 11614、5(12)x -的展开式中2x 的系数是 ( )A10B -10 C40 D -40 15、双曲线19422=-y x 的离心率是 ( )A32B 49C 25D 21316、用1,2,3,4,5组成没有重复数字的三位数,其中偶数共有 ( )A60个 B30个 C24个 D12个 17、若α∈(0,2π),且sin α=54,则cos2α等于( )A257 B —257C1 D 5718、把直线y =-2x 沿向量→a =(2,1)平移所得直线方程是( )A y =-2x +5B y =-2x -5 Cy =-2x +4 D y =-2x -4 19、若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为 A –1或3 B1或3C –2或6 D0或420、在︒60的二面角βα--l ,面α上一点到β的距离是2cm ,那么这个点到棱的距离为( )A3cm B C D 321、若2k <且0k ≠,则椭圆22132x y +=与22123x y k k+=--有( ) A 相等的长轴B 相等的短轴C 相同的焦点D 相等的焦距22、计算机是将信息换成二位制进行处理的二进制,即“逢二进一”。

山东省高中会考数学模拟试题两份带答案

山东省高中会考数学模拟试题两份带答案

B 至少一个白球;至少一个黑球
C 至少一个白球;一个白球一个黑球
D 至少一个白球,红球、黑球各一个
9、已知 sin cos 1 ,0 ,则sin cos 的值是
3
A
2
8
1
B
4
பைடு நூலகம்
2
2
B 2个
D 0个
B 四棱柱
0
0或1
C
3
深的入精贯习神彻中部和落纪选。要实委拔深锋求中机任入队,为央关用学员”特的和、工习装的别情省组中作《、标本是形、织央坚条中统准质“和市原组守例源国一和九处委则织为、》,共思条使个分关、部人遵等标 弘产想件命严规于优《做守法准 扬党行章;,禁定从良关事党规和 党地动党学进止。严作于的章制条 的方个,规习一、治风加基县、度件 优委全认。党步九党动,强准处维,。 良员面真着规明个的实牢换和级护学认 传会”学,眼确一重效记届底以党习教真 统工战习充明要“律大;入风线上章市育学 和作略习中分确掌四”决要党气。党,委、习 作条布近、展基握个纪策在充誓监员坚加全理《 风例局平五示本廉服律部学分词督领定强体论中 ;》、总中共标洁从要,署,发的导理领党武国 深《贯全全产准自”求做。关挥牢通(干想导员装共 刻中彻市会党、律的,合键机记知川部(区信班学。,产 汲国落X精人树准要重格在关党》委要二X域念子习根进党 取共实年神的立则求点党系做党的和办学)中;思党据一廉 违产五在,优行规掌员统。组宗中〔深学心认想章省步洁 纪党大全进良为定掌握”先要织旨央2一系全 关”真政,委坚自 违党0发体一风规的握“学深战,、1层列体 于提学治要办定律 法组6展党步貌范“四习〕入斗深省,讲党 在供习建深公理准 反工理题员巩和,四的个教1学堡入委系话员 全坚党设入4厅想则 面作念学中固时组个领廉育号习垒领、统。讲 体强的领个印信》 典条,习开拓代织必导洁实)贯作会市学着定党保历实会专。发念《 型例实讨展精和须干”施和彻用党委习眼理课 员证史施党题的,中(现一”论“党神引部方《习和员有领加想, 中。意的组《提国 的试X、学 制,的;导“必四案中近党条关悟强X信支 开学见性织关高共 教行二总习 度按党群要广四须个〉共事平员件严党理念部 展习等质讨于党产 训)、体讨 要照章众带大个具自的X业总先和肃章论,书 “革制、论照在性党 ,》主X要论 求“党路着坚备觉通“书锋义换,武学明记命度市宗,入全觉纪 自《要求” ,四规线问员持的知十记模务届深习确给 党先文委旨每党省悟律 觉内。 党个、教题逐”六,》三头开系范、纪刻教政支 章辈件办、个志党;处 讲政容,以 小讲学育条项(五落展列作权律把育治部 党和,公指专愿员要分 政领带党 组(系实,逐掌基X”于实“重用利握动方党 规先学室导题谈中坚条 治导X头组 每课一列践针句握本发“全两要,“委员向、进关思集理开持例 、干观严中 月”)讲活对通各条展七面学讲领明两办部”讲 学典于想中想展学》 讲,守心 底要学话动问读类件良定个从一话导确个〔署、党 系型印学、“用等 规温在政组求党,和题违好共有严做,带先2,“课 列发奋习谈学结党 矩入推0关治形 织,做“改章纪开产之治”全头合1以坚,用〈斗讨信党合内 、讲动6键纪式 一开合三,行局党”学面、格〕华党持邀好关目论念章、法 守话志改时律, 次展格严进明和人“责习贯以党2民支根请红于标不,党创规 纪愿革8刻和定 党三一确“性理五任教彻上号族部本党色在、得对规先, 律做和发保站政期 员组实步做决锻想个。育落率)优为宗校教全少照、争尊 ,合入展持得治组 集班”坚合胜,炼信必实下,三秀单旨教育市于入学优崇格党稳公出规织 中子学专持格全向和念须基党,结、,传位师资党1党系,誓定仆,矩集 学成习题问党天面党道,”础的为合主站统开敢、员讲誓列进章员词实情危,中 习员教题。小的德牢等十协我要稳美展于专中规词讲一”,践怀险带学 。到育导的康理修固重八调”局(措政德一担家开矩找话步学交中精,时头习 支联(成向、论养树要大推中实三施治,次当学展、标,强习流建神牢候, 部系以果建和,立论进奋际)全立筑主作者“有(准做化教思功,记豁固每区下;注成路心党述十“发,开面场牢题为给学国纪一、合宗育想立推共得树次 季县简要重线存的,八四有现展从,拒党”特律)找格旨实体业动产出立确 度X称突活方敬意认届为制“严把腐日、员章X色,开差党观施会。X党,和定 召“出述针畏识真三、定四局治理防活“干党X社讲展距员念方。《员在贯1开两正县,政、践中加建如个带个党想变动坚部规会道“。”案党永X彻一学面(处领策手党行、快功下讲头专等信的,守讲、X主德两党学干委远落次党一二级会看握员“四发立实党事讲题方念防组纪党学义、重支习部会是实全中做)以贯齐戒意三展业施课党开新面时线织律课系道有温部教要读的劳五体央”开上穿,尺识严、。方”“课展要的时;党底,列路品两书育讲本工动大党决学展其认,三科案。十,交中求深处始员线鼓讲全、行对记方话)作人发员定习“中真廉强实学习党三局流国,刻处终重励话体“,照作案精》方民展会,教三领的贯洁化”发系支五党研特坚内体保温树普党建五讲”学》神为法的理议2育个导马彻从党要展列部”组讨0理 情色持涵现入立通员位奉主习。基1》普念,)干克省政的求、讲要规书6。念 怀社以和为干党清要与一献题动本纳通,分县部思委、宗和话结划记按怎 、会知要行事志风员坚全体、党员教入一带别处要主、从旨好谐,合开给照么 务主促求动创愿正、持面”有日,材学员头围级义市严意干发要专局“办 实义行。的业、气学建总作活领,习,攻绕以做立委治识部展重起三、 思要力重”做成体为动导深内密坚“上结场决家,标。点步会新 想“知着量开温3结小的布。干入容切克坚党合观策,积准学、一战 作四行重;拓入(合康要局合4部学。联难员,月点部带极,习“课略 风个合学坚进党三,社求、格带习深系、干对底方署头践带《决怎 。全一习定取誓)坚会和“党头《入群敢部照前法,弘行头习胜么 要面,领正的词做相内四员重习领众于要习,做扬社坚近全干 深”做会确精,合适容个。近会,担以近结领政社会定平面” 入战讲习的气对格应;全引平关全当《平合会治主理总小学 领略政近神党、重面导总于心,习总贯上主义想书康习 会布治平,员有点”党书改全带近书穿的义核信记、研 我局、总方平。效学战员记革意平记其明核心念系建讨 国、有书向常着服习略强系发为谈关中白心价列成; 发五信记,时眼务习布化列展人治的人价值重区注 展大念来经候党国近局政重稳民国坚;值要域重 战发,川常看和家平、治要定服理定践体讲中同 略展视主得国治总五意讲、务政信行系话心X机理察动出家书大识话内;》X仰党和读遇念重向,事和记发,读工政加《追的中本、要党业“对展保本作外强习求宗(中社讲的五四理持(“交党近、旨2会话央新位川念政02存国平历,10主和看发一工、治61凭防总年史6义系齐展体年作全本、、书版担核列对”版的面色留治记)当心重党建)系深史党重》意价要员设》列化、治要,识值指的,改资国讲重、观示X要革政治话点真X和将、、事军文领挚全毛育业的章会为面泽人发重选理民从东”展要编想严同的体论(信治志作系领念党用。导、等结中全方合国体面起梦党来、员,学加快

高三数学会考试题及答案

高三数学会考试题及答案

高三数学会考试题及答案一、选择题(本题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一个是正确的。

)1. 若函数f(x) = x^2 - 4x + 3的图象关于x=2对称,则下列说法正确的是:A. f(0) = f(4)B. f(1) = f(3)C. f(-1) = f(5)D. f(2) = f(6)2. 已知等比数列{a_n}的首项为1,公比为2,求该数列前5项的和S_5:A. 31B. 16C. 15D. 31/23. 函数y = x^3 - 6x^2 + 9x + 1的导数为:A. 3x^2 - 12x + 9B. 3x^2 - 6x + 9C. 3x^2 - 12x + 3D. 3x^2 - 6x + 14. 若直线l与直线2x - y + 3 = 0平行,则直线l的斜率为:A. 2B. -2C. -1/2D. 1/25. 已知圆C的方程为(x - 1)^2 + (y + 2)^2 = 9,圆心C到直线2x + y - 3 = 0的距离为:A. √5B. 2√5C. √10D. 2√106. 已知向量a = (3, -2),向量b = (1, 2),则向量a与向量b的数量积为:A. -4B. 4C. -1D. 17. 已知双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程为y =±(√3/3)x,则双曲线的离心率为:A. √3B. 2C. 3D. √68. 若函数f(x) = ln(x + √(x^2 + 1))的定义域为:A. (-∞, 0)B. (-∞, 0]C. (0, +∞)D. [0, +∞)二、填空题(本题共4小题,每小题4分,共16分。

)9. 若复数z满足|z| = √2,且z的实部为1,则z的虚部为_________。

10. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = 0的根为_________。

11. 已知三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,若a = 3,b = 4,则c的长度为_________。

高中会考数学试题及答案

高中会考数学试题及答案

高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…(无限循环)B. πC. √2D. 1/32. 函数f(x) = 2x^2 - 3x + 1的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个3. 已知等差数列的前三项和为6,第二项为2,求该数列的首项a1和公差d:A. a1 = 1, d = 1B. a1 = 0, d = 2C. a1 = 2, d = 0D. a1 = 3, d = -14. 集合A={1, 2, 3},集合B={2, 3, 4},求A∩B:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}5. 已知三角形ABC的三边长分别为a=3, b=4, c=5,求其面积:B. 9C. 10D. 126. 根据题目所给的函数y=x^3-2x^2+x-2,求导数y':A. 3x^2-4x+1B. x^3-2x^2+1C. 3x^2-4x+2D. x^3-2x7. 已知sinθ=0.6,求cosθ的值(结果保留根号):A. √(1-0.36)B. -√(1-0.36)C. √(1-0.6^2)D. -√(1-0.6^2)8. 将下列二次方程x^2-4x+4=0进行因式分解:A. (x-2)(x-2)B. (x+2)(x-2)C. (x-1)(x-3)D. (x+1)(x+3)9. 已知圆的方程为(x-2)^2 + (y-3)^2 = 9,求圆心坐标:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)10. 根据题目所给的等比数列求和公式S_n = a1(1-q^n)/(1-q),当n=5,a1=2,q=2时,求S_5:B. 63C. 64D. 65二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 + bx + c,若f(1) = 2,则b + c =_______。

高三会考数学模拟试卷答案

高三会考数学模拟试卷答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各式中,绝对值最小的是()A. |3|B. |-3|C. |2|D. |-2|答案:B2. 函数f(x) = 2x + 3的图像是()A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像答案:A3. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项a10 =()A. 29B. 28C. 27D. 26答案:A4. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则a^3 > b^3C. 若a > b,则a^2 > b^2D. 若a > b,则a^3 < b^3答案:B5. 若log2x + log2y = 3,则xy的值为()A. 2B. 4C. 8D. 16答案:C6. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则该圆的半径为()A. 1B. 2C. 3D. 4答案:B7. 函数y = (x - 1)^2 + 3的图像是()A. 抛物线B. 直线C. 双曲线D. 椭圆答案:A8. 已知等比数列{an}的首项a1 = 3,公比q = 2,则第5项a5 =()A. 24B. 12C. 6D. 3答案:A9. 下列函数中,有最大值的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^3答案:B10. 已知函数f(x) = |x| + 1,则f(-1)的值为()A. 0B. 1C. 2D. 3答案:C11. 若log2x - log2y = 1,则x与y的比值为()A. 2B. 1/2C. 4D. 1/4答案:A12. 圆的标准方程为(x - 2)^2 + (y - 3)^2 = 25,则该圆的圆心坐标为()A. (2, 3)B. (2, -3)C. (-2, 3)D. (-2, -3)答案:A二、填空题(本大题共8小题,每小题5分,共40分)13. 若等差数列{an}的首项a1 = 3,公差d = 2,则第n项an = _______。

高二数学会考模拟试卷(附答案)

高二数学会考模拟试卷(附答案)

1x高二数学会考模拟试卷(二)一、选择题(本题有22小题,每小题2分,共44分.选出各题中一个符合题意的正确选项, 不选、多选、错选均不给分)2、a b ,则下列各式正确的是()y 1 x 21已知集合A 0,1,3, B1,2,则A B 等于(A 1B 0,2,3C 0,1,2,3D 1,2,3A a 2 b 2B 2 a 2 bC 2a 2bD a 2 3、 函数 f (x ) 2x 2 1 是( )A 奇函数B 偶函数C 既是奇函数又是偶函数数4、点A (0,1)且与直线y 2x 5平行的直线的方程是(D 既不是奇函数又不是偶函)A 2x y 1B 2x y 10 C x 2y 1 D x 2y 15、在空间中, A 平行于同一平面的两条直线平行C 垂直于同一直线的两条直线平行F 列命题正确的是( B 平行于同一直线的两个平面平行 D 垂直于同一平面的两条直线平行6、已知a,b R ,且ab 1,则a b 的最小值是(D4A1B2C37、如图,在正六边形 ABCDEF 中,点O 为其中点,则下列判断错误的是( A AB OC B AB // DE C AD BE D AD FC&已知向量 (3, 1),b1,2),则 2aA (7 0)C (5,— 4)D ( 7,— 4)9、“ x 0 ”“ xy 0 ”A 充要条件10、焦点为(1,B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件0)的抛物线的标准方程是( A y 2 2xB x 2 2yC y 24xD x 24y11、不等式(x 1)(x2) 0的解集是(B xxx112、函数中,在OO0)上为增函数的是)13、满足a 1 1,a n 1’a n ,则 a 4 (2)3 1 c 11A -B_C-D248 1614、(1 2x)525的展开式中x 的系数是(A102 ,2B — 10C40 D — 4015、双曲线%1的离心率是 ( )49A 29 B —C ,13 D -34 2216、用1 , 2, 3, 4, 5组成没有重复数字的三位数,其中偶数共有 (A60个 B30个 C24个 D12个17、若久€ (0,),且 sin a = 4 则C0S2 a 等于()25777A -B —C1 D -25 255A y = — 2x + 5B y = — 2x — 5 Cy = — 2x + 4D y = — 2x — 42被圆(x a)2y 24所截得的弦长为2、. 2,则实数a 的值为A -1或聶B1或320、在 60 的二面角l()A 4 '3 A cm B2 \ 3cm 321、若 k2且k0,则椭圆 C —或6 ,面上一点到的距离是C 4、3cm D2 2 2 2互y- 1与——y-322 k3 kDO 或42cm ,那么这个点到棱的距离为2、、3 cm31有( )B 相等的短轴C 相同的焦点D 相等的焦距19、若直线 A 相等的长轴22、计算机是将信息换成二位制进行处理的二进制,即“逢二进一”。

会考数学模拟题训练与答案解析

会考数学模拟题训练与答案解析

会考数学模拟题训练与答案解析一、选择题1. 已知函数f(x) = 3x + 2,那么f(4)的值是多少?A. 10B. 12C. 14D. 16解析:代入x = 4,可得f(4) = 3(4) + 2 = 14,因此答案选C。

2. 若5x - 3 = 7x + 1,那么x的值是多少?A. -1B. -2C. 1D. 2解析:移项整理得5x - 7x = 1 + 3,化简得-2x = 4,两边同时除以-2可得x = -2,因此答案选B。

二、填空题1. 设a是一个正整数,满足4a + 3 = 19,则a的值是多少?解析:移项得4a = 16,因此a = 16 / 4 = 4,因此填空的答案是4。

2. 若(x + 2)(x - 3) = 0,则x的值是多少?解析:根据零乘法可知(x + 2)(x - 3) = 0 时,x + 2 = 0 或者 x - 3 = 0,解得x = -2 或者 x = 3,因此填空的答案是-2和3。

三、解答题1. 解方程组:2x - y = 3x + 3y = 7解析:可以采用消元法来解决这个方程组。

首先,将第二个方程乘以2,得到2x + 6y = 14。

然后将这个式子与第一个方程相加,得到5y= 11,解得y = 11 / 5。

将y的值代入其中一个方程,解得x = 4 / 5。

因此,方程组的解为x = 4 / 5,y = 11 / 5。

2. 某数的一半加上3等于这个数的四分之一减去5,求这个数是多少?解析:设这个数为x,根据题意可以得到以下方程:(1/2)x + 3 =(1/4)x - 5。

移项整理得到(1/2)x - (1/4)x = -5 - 3,化简得(1/4)x = -8。

两边同时乘以4可得x = -32。

因此,这个数是-32。

四、解析题1. 已知等差数列的首项为a,公差为d,前n项和为Sn。

如下图所示,求Sn的值。

解析:在等差数列中,首项为a,公差为d,第n项为a + (n-1)d。

数学会考高中试题及答案

数学会考高中试题及答案

数学会考高中试题及答案一、选择题(每题3分,共30分)1. 已知函数\( f(x) = 2x^2 - 4x + 3 \),下列说法正确的是:A. 函数的图像是开口向上的抛物线B. 函数的图像是开口向下的抛物线C. 函数的图像与x轴有两个交点D. 函数的图像与x轴没有交点答案:A2. 圆的方程为\( (x-2)^2 + (y-3)^2 = 9 \),圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A3. 已知等差数列的前三项依次为1,3,5,则该数列的第五项为:A. 7B. 9C. 11D. 13答案:B4. 函数\( y = \log_2(x) \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)答案:A5. 集合\( A = \{1, 2, 3\} \)和集合\( B = \{2, 3, 4\} \)的交集为:A. \( \{1\} \)B. \( \{2, 3\} \)C. \( \{2, 4\} \)D. \( \{3, 4\} \)答案:B6. 直线\( y = 2x + 1 \)与直线\( y = -x + 4 \)的交点坐标为:A. (1, 3)B. (-1, 3)C. (1, -1)D. (-1, -1)答案:A7. 已知\( \sin \alpha = \frac{1}{2} \),\( \alpha \)是第二象限角,则\( \cos \alpha \)的值为:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{\sqrt{3}}{2} \)D. \( -\frac{\sqrt{3}}{2} \)答案:D8. 函数\( f(x) = x^3 - 3x^2 + 3x - 1 \)的单调递增区间为:A. \( (-\infty, 1) \)B. \( (1, +\infty) \)C. \( (-\infty, 2) \)D. \( (2, +\infty) \)答案:B9. 向量\( \vec{a} = (1, 2) \)和向量\( \vec{b} = (2, 1) \)的夹角为:A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{3} \)C. \( \frac{\pi}{2} \)D. \( \frac{2\pi}{3} \)答案:A10. 已知等比数列的前三项依次为2,4,8,则该数列的公比为:A. 2B. 4C. 1D. 0.5答案:A二、填空题(每题4分,共20分)1. 已知\( \tan \theta = 3 \),\( \theta \)是第一象限角,则\( \sin \theta \)的值为______。

高中数学会考模拟题(含答案)

高中数学会考模拟题(含答案)

一、选择题(本大题共19个小题,每小题3分,共57分;在每小题给出的四个选项中,只有一项是符合题目要求的) 1.集合P={0,2,4},Q={0,1,3,5},则P∪Q=A){0} B){7} C){0,1,2,3,4,5} D)φ 2.函数y =A)[2,+∞) B )[-2,+∞) C)(-∞,-2] D)(-∞,2] 3.在正方体ABCD -A1B1C1D1中,BC1与AC 所成角为A)30° B)45° C)60° D)90°4.函数11||y x =-A)是奇函数但不是偶函数 B)是偶函数但不是奇函数 C)既是奇函数又是偶函数 D)既不是奇函数又不是偶函数 5.已知数列{}n a 满足11a =,12n n a a +=+,则4a =A)5 B)6 C)7 D)86.函数cos()42xy π=-的最小正周期为A)2πB)π C)2π D)4π7.圆22210x y x ++-=的圆心和半径为A)(1,0),2B)(-1,0),2C)(1,0),2 D)(—1,0),2 8.1tan 151tan 15-+的值为A)3 B)33C)1 D)229.设0b a >>,则下列各式中正确的是A)2a b a b+>>>B)2a b b a+>>>C)2a b a b +>>>D)2a b b a +>>>10.函数21(0)y x x =+<的反函数为A))y x R =∈B) )y x R =∈C)1)y x =≥D) 1)y x =≥11.已知数列{}n a 满足前n项和21()nn sa n N *=-∈则3a =A)2 B)4 C)8 D)1612.已知向量()1,sin a θ=- ,1,cos 2b θ⎛⎫= ⎪⎝⎭ ,若a b ⊥ ,且θ为锐角,则θ= A)12πB)6πC)4π D)3π13.“0ab <”是“方程22ax by c +=表示双曲线”的 A) 充分不必要条件 B)必要不充分条件 C)充要条件 D)既不充分也不必要条件14.由数字0,1,2,3,4,5组成没有重复数字的五位数中,偶数的个数为A)120 B)240 C)96 D)312 15.在(1-x)4展开式的各项中,系数最大是A)—4 B)4 C)—6 D)6 16.已知G为△ABC所在平面上一点,若GCGB GA ++=0 ,则G 为△ABC 的A)内心 B)外心 C)重心 D)垂心17.将函数()y f x =的图象按(,2)4a π=-- 平移得到函数sin y x =的图象,则函数()f x 为 A)sin()24x π++ B)sin()24x π+-C)sin()24x π-+ D)sin()24x π--18.椭圆2214xym+=的离心率为0.5,则m的值为A)3 B)316 C)3或316 D)-3或-31619.从甲口袋内摸出1个白球的概率是31,从乙口袋内摸出1个白球的概率是21,从两个口袋内各摸出1个球,至少有一个是白球的概率为A)61B)23 C)65 D)21第Ⅱ卷(非选择题,共43分)二、填空题(本大题共5个小题,每小题3分,共15分;请直接在每小题的横线上填写结果) 20.已知球面的表面积为36π,则此球的半径为21.已知3cos 5θ=,且θ∈(—2π,0),则sin2θ=________22.61⎛⎝的展开式的常数项为_________(用数字作答)23.函数f (x) =2-x -x1(x>0)的最大值为________24.过点A(—1,1)的一束光线射向x 轴,经反射后与圆()2211x y -+=(相切,则入射线所在直线的方程为______________三、解答题(本大题共4小题,共28分;要求写出必要的文字说明、演算步骤或推理过程) 26.(本题满分6分)甲、乙二人独立地破译一个密码,他们能译出密码的概率分别为13和14,求: (Ⅰ)恰有1人译出密码的概率; (Ⅱ)至多有1人译出密码的概率.参考答案选择题CDCBC , DBBBD , BCADD , CCCB 填空题:20.3; 21.2425-; 22.52-; 23.0; 24.4310x y ++=解答题26.解:设甲、乙二人独立破译密码分别为事件A 、B.则11(),()34P A P B ==(Ⅰ)恰有1人译出密码概率为11115()()()()()(1)(1)343412P A B A B P A P B P A P B +=⋅+⋅=⋅-+-⋅=(Ⅱ)至少有1人译出密码的概率为11111()1()()13412P A B P A P B -⋅=-⋅=-⋅=。

会考数学模拟试题与答案解析

会考数学模拟试题与答案解析

会考数学模拟试题与答案解析高中会考数学模拟试题与答案解析一、选择题1. 若函数 f(x) = 2x^2 - 5x + 3,求 f(2) 的值。

解析:将 x=2 代入函数 f(x),得 f(2) = 2(2)^2 - 5(2) + 3 = 8 - 10 + 3 = 1。

2. 设直线 y = mx + c 与曲线 y = 2x^2 - x + 1 相切,则常数 m 的值为多少?解析:相切的直线与曲线有且仅有一个交点。

首先,求出曲线的导函数 f'(x) = 4x - 1。

然后,令导函数与直线的斜率相等,即 4x - 1 = m。

由于相切,令导函数与直线在交点处的函数值相等,即 2x^2 - x + 1 = mx + c。

联立两个方程,求解得 m = 2,c = 2。

二、填空题1. 直线 x - 3y - 3 = 0 与直线 5x + ky - 7 = 0 平行,则 k 的值为______。

解析:两条直线平行,斜率相等。

将两条直线的方程转化为一般式,得到 y = (1/3)x - 1 和 y = -(5/k)x + 7/k。

比较斜率,得 (1/3) = -(5/k),解得 k = -15。

2. 已知集合 A={1, 3, 5, 7},集合 B={2, 4, 6, 8},则 A ∪ B = ______。

解析:集合的并集是指将两个集合中的元素合并,形成一个新的集合,不包括重复的元素。

将集合 A 和集合 B 合并,得到集合 A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}。

三、解答题1. 解方程 3x + 2 = 4x - 1,并判断方程的解是否正确。

解析:将方程化简,得到 x = 3。

验证解是否正确,将 x = 3 代入方程,两边相等,方程的解是正确的。

2. 函数 y = 2x^2 + bx + 3 与 x 轴交于两个点 A(-1, 0) 和 B(2, 0),求常数 b 的值。

解析:由题意得到两个方程,-1:0 = 2(-1)^2 + b(-1) + 3 和 2:0 =2(2)^2 + b(2) + 3。

高中数学会考模拟试题一

高中数学会考模拟试题一

5.直线Q 与两条直线y = 1, (1,—1),那么直线Q 的斜率是 23 A. - B. - C. 32) 23 - D.—— 32兀6.为了得到函数y = 3sin2x , x e R 的图象,只需将函数y = 3sm (2x - -3), x e R 的9.如果a = (—2,3), b = (x , — 6),而且a 1 b ,那么x 的值是( )C. 9D. —9 a 2 二 3,a 7 =13,则 $ 1。

等于()高中数学会考模拟试题(一)一. 选择题:(每小题2分,共40分) 1.已知I 为全集,P 、Q 为非空集合,且P 5 Q ^ I ,则下列结论不正确的是( )A. P u Q = IB. 2.若 sin(180o+a ) = 3 P u Q =Q C. P c Q =。

D .P c Q =。

贝 U cos(2700+a )=( ) 1 A. 3 1 B. - 3 2%: 2 2<2C. ——D.——— 33 x 2 3,椭圆天十乙J 标是( ) y 2y = 1上一点P 到两焦点的距离之积为m 。

则当m 取最大值时,点P 的坐A. (5,0)和(—5,0) 卢3V 巨、工,5 3工;3、B. (2,)和(2,一下)C. (0,3)和(0, — 3) z 5;3 3、 / D .(—,2) 和 ( 4,函数y = 2sin x - cos x +1 - 2sin 2 x 的最小正周期是5 <3 3二,2)() 兀A.一 2B.九C. 2兀D. 4兀 x - y — 7 = 0分别交于P 、 Q 两点。

线段PQ 的中点坐标为图象上所有的点( )兀A.向左平行移动y 个单位长度兀C.向左平行移动下个单位长度 611 A.30。

B.45。

8.如果a > b则在①11C.1兀B.向右平行移动y 个单位长度兀D.向右平行移动下个单位长度61160o D. 90o② a 3 > b 3,③ lg(a 2 +1) > lg(b 2 +1),④ 2 a > 2 b中,正确的只有 ( B. ) ①和③ C. ③和④ D. ②和④ A. 4 B. —410.在等差数列{a j 中,A. 19B. 50C. 100D. 12011 . a > 1,且 \ > :是 log |x |> log bl 成立的()I xy 丰 0 a aB. 必要而不充分条件 D. 既不充分也不必要条件12 .设函数 f (xg (x ) = lg1-x ,则()21 + xA. 3或 9 B. 6 或 9 C, 3 或 6 D. 6 14 .函数y = - ;x 2-1 (x < -1)的反函数是()…、x +1..................... ,、15 .若 f (x ) = ,g (x ) = f -1(—x ),贝U g (x )( )x -1A.在R 上是增函数 B,在(-8 , -1)上是增函数 C.在(1, +8)上是减函数 D.在(-8,-1)上是减函数16 .不等式log 1 (x + 2) > 10g l x 2的解集是()22A. { x I x < -1 或 x > 2 }B. { x I -1 < x < 2 }C. { x I -2 < x < -1}D. { x I -2 < x < -1 或 x > 2 }17 . 把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为( )A. 12B. 24C. 36D. 2818 .若a 、b 是异面直线,则一定存在两个平行平面a 、p ,使( )A. a u a , b u pB. a ±a , b ± pC. a //a , b ± PD. a u a , b ± P—b-19.将函数 y = f (x )按 a = (-2,3)平移后,得到 y = 4x2-2x +4,则 f (x )=()A . 4x 2+2x +4 + 3B . 4 x 2 -6x +12 + 3C . 4x 2-6x +12 - 3D . 4 x 2-6x +920.已知函数f (x ) , x e R ,且f (2 - x ) = f (2 + x ),当x > 2时,f (x )是增函数,设 a = f(1.2。

高中数学会考试题及答案

高中数学会考试题及答案

高中数学会考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 圆答案:B2. 函数f(x) = 3x^2 - 5x + 2的顶点坐标是?A. (1, -2)B. (-1, 2)C. (2, -1)D. (-2, 1)答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 4}答案:B4. 已知方程x^2 + 6x + 9 = 0的根是?A. x = 0B. x = 3C. x = -3D. x = ±3答案:D二、填空题(每题5分,共20分)5. 函数y = 2x + 3的斜率是______。

答案:26. 一个等差数列的前三项是2, 5, 8,那么它的公差是______。

答案:37. 圆的方程为(x - 2)^2 + (y - 3)^2 = 9,那么它的半径是______。

答案:38. 已知向量a = (3, -4),向量b = (-2, 5),则向量a与向量b的点积是______。

答案:-29三、解答题(每题10分,共20分)9. 解方程:2x^2 - 5x + 2 = 0。

答案:x = 1/2 或 x = 210. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,求证:三角形ABC是直角三角形。

答案:根据勾股定理,如果三角形的三边长满足a^2 + b^2 = c^2,则该三角形为直角三角形。

已知a^2 + b^2 = c^2,所以三角形ABC是直角三角形。

四、证明题(每题10分,共20分)11. 证明:如果一个角的正弦值等于1/2,那么这个角是30°或150°。

答案:设这个角为α,根据正弦函数的性质,当α = 30°时,sin(30°) = 1/2;当α = 150°时,sin(150°) = 1/2。

高中数学会考试题及答案

高中数学会考试题及答案

高中数学会考试题及答案第一部分:选择题1. 下列哪个不是一次函数?A. f(x) = 2x + 3B. f(x) = 5x^2 - 3C. f(x) = 4x - 1D. f(x) = x/2 + 12. 已知直角三角形ABC,∠A = 90°,AB = 5 cm,AC = 12 cm,求BC的长度。

A. 10 cmB. 11 cmC. 13 cmD. 15 cm3. 解方程2x + 5 = 17的解为:A. x = 6B. x = 7C. x = 8D. x = 94. 已知函数f(x) = 3x - 2,求f(a + b)的值。

A. 4a + b - 2B. 2a + 3b - 2C. 3a + 3b - 2D. 3a + 3b + 25. 若三角形的三边分别为a, b, c,且满足c^2 = a^2 + b^2,这个三角形是:A. 等腰三角形B. 锐角三角形C. 直角三角形D. 钝角三角形第二部分:填空题6. 一个几何中心名为 ____________。

7. 一条直线和一个平面相交,交点个数为 ____________。

8. 未知数的指数为负数,表示 ____________。

9. 若两个角的和等于180°,则这两个角称为 ____________。

10. 在一个等边三角形中,每个内角大小为 ____________。

第三部分:解答题11. 用二分法求方程x^2 - 4x + 3 = 0在区间[1, 3]上的一个根的精确值。

12. 已知函数f(x) = 3x^2 - 12x + 9,求f(x)的最小值。

13. 若平面内通过点A(-2, 3)和点B(4, 1)的直线与x轴交于点C,求直线AC的斜率和方程。

答案:1. B2. C3. A4. B5. C6. 几何中心7. 一个8. 负数9. 互补角10. 60°11. 使用二分法可得根的精确值为2。

12. f(x)的最小值为 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则=)(B C A U ( )A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为( ) A .6π B .3π C .23π D .56π3.函数y = )A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞ 4.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图1所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为( ) A .14、12 B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为( )A .4π B .14π- C .8π D .18π- 6.已知向量a 与b 的夹角为120,且1==a b ,则-a b 等于( ) A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示(单位:cm ),( A .212cm π B. 215cm π C. 224cm πD. 236cm π8.若372log πlog 6log 0.8a b c ===,,,则( ) A . a b c >>B . b a c >>C . c a b >>D . b主视图6侧视图图2图19.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,则函数)(x f 的解析式是( )A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭ 10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是 最小角的2倍,则这个三角形最小角的余弦值为( )A .378 B .34 C .74 D .1811.在等差数列{}n a 中, 284a a +=,则 其前9项的和9S 等于 ( )A .18B .27C .36D .912.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1 B.0 C.-1 D.-213. 函数x y x +=2的根所在的区间是( )A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫ ⎝⎛-0,21C .⎪⎭⎫⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,2114.函数|2|sin xy =的周期是( ) A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+等于( ) A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x1 Oxy 1112π图3二、填空题:本大题共4小题,每小题5分,满分20分. 17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3, 则输出的()h x 的值为 .19.若函数84)(2--=kx x x f 在[]8,5上是单调函数,则k 的取值范围是20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是21.已知两条直线82:,2)3(:21-=+=++y mx l y m x l . 若21l l ⊥,则m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 24.(本小题满分10分)在△ABC 中,角A ,B ,C 成等差数列.(1)求角B 的大小;(2)若()sin A B +=sin A 的值.25.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (Ⅰ)若|c |52=,且a c //,求c 的坐标; (Ⅱ)若|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ 26.(本小题满分12分)如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.(1)求证://PB 平面ACE ;(2)若四面体E ACD -的体积为2,求AB 的长.图427.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人) (1)求x ,y 的值;(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. (本小题满分12分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. (本小题满分12分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.13.()22225x y ++=(或224210x y y ++-=) 14.915.()0,+∞(或[)0,+∞) 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.(2)方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=+⨯4=.25. 解(Ⅰ)设20,52,52||),,(2222=+∴=+∴==y x y x c y x c x y y x a a c 2,02),2,1(,//=∴=-∴= ……2分由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分(Ⅱ)0)2()2(),2()2(=-⋅+∴-⊥+b a b a b a b a ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……(※) ,45)25(||,5||222===b a 代入(※)中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分 ,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a b a θ26.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点,所以EO 是△DPB 的中位线.所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===.解得2x =.故AB 的长为2. 27.解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.28.解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++, ①即111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =, 所以21AB x x =-= 所以12S AB b==22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d=.因为圆的半径为2R =, 所以2AB ===. 于是241121k S AB dk =⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+2-,2-+2-。

相关文档
最新文档