垂径定理及推论教学设计

合集下载

九年级数学上册《垂径定理》教案、教学设计

九年级数学上册《垂径定理》教案、教学设计
3.培养学生克服困难的意志,使其在面对挑战时保持积极向上的心态。
4.通过解决实际问题,使学生认识到数学在生活中的重要作用,增强学生的社会责任感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了圆的基本概念和相关性质,能运用这些知识解决一些简单问题。但在垂径定理这一部分,学生可能会在理解与应用上存在一定的困难。因此,在教学过程中,要注意以下几点:
-在复杂问题中,如何识别和应用垂径定理,以及如何将垂径定理与圆的其他性质相结合解决综合问题。
(二)教学设想
1.教学策略:
-采用探究式教学法,引导学生通过观察、猜想、验证、总结的学习过程,自主发现垂径定理。
-利用多媒体和实物模型辅助教学,增强学生的直观体验,帮助学生建立起对圆的几何直觉。
-设计梯度性问题,由浅入深,逐步引导学生掌握垂径定理的运用,提高学生的解题技巧。
-总结反思:引导学生总结垂径定理的特点和应用方法,反思学习过程中的困惑和收获。
3.教学评价:
-采用形成性评价和终结性评价相结合的方式,关注学生的学习过程和结果。
-通过课堂问答、小组讨论、课后作业、阶段测试等多种形式,全面评估学生对垂径定理的理解和应用水平。
-鼓励学生自我评价和同伴评价,培养学生的自我反思能力和批判性思维。
3.关注学生的情感态度,激发学习兴趣,培养克服困难的意志。
4.突出数学与生活的联系,使学生认识到数学知识在实际生活中的重要性。
在此基础上,教师应制定针对性的教学策略,帮助学生在掌握垂径定理的基础上,提高解决实际问题的能力,培养他们热爱数学、勇于探索的精神。
五、作业布置
为了巩固学生对垂径定理的理解和应用,以及提高他们的解题技能,特此布置以下作业:
1.学生在理解垂径定理时,可能会对定理的证明过程感到困惑决问题时,可能会对如何找出垂径和弦的关系感到迷茫。教师应通过典型例题,帮助学生总结解题方法,提高解题能力。

垂径定理教学设计名师公开课获奖教案百校联赛一等奖教案

垂径定理教学设计名师公开课获奖教案百校联赛一等奖教案

垂径定理教学设计一、教学目标:1. 理解垂径定理的定义和几何意义;2. 掌握垂径定理的基本运用;3. 培养学生的几何思维和逻辑推理能力。

二、教学内容:垂径定理是平面几何中的重要定理,它为解决与圆相关的问题提供了有力的工具。

垂径定理是指,如果一个直径的两个端点与圆上的两点相连,并且这两条线段相互垂直,则这两条线段的中点一定在圆上。

三、教学过程:1. 理论讲解(15分钟)a. 引入垂径定理的概念,解释定理的定义和意义;b. 对与垂径定理相关的基本术语进行解释,如直径、垂直等;c. 展示垂径定理的证明过程,说明定理的正确性和普适性。

2. 实例演示(20分钟)a. 通过几个具体的实例,演示垂径定理的运用方法;b. 教师可以将实例分为直接应用和间接应用两种情况,让学生思考不同情况下如何运用垂径定理解决问题;c. 引导学生进行讨论和解答,帮助他们理解垂径定理的应用。

3. 案例分析(25分钟)a. 布置几个与垂径定理相关的问题;b. 学生以小组形式进行分析和解答,并展示他们的思路和解题过程;c. 教师根据学生的表现和分析结果,对解题思路进行点评和指导。

4. 提升拓展(20分钟)a. 强化学生对垂径定理的理解,通过练习题检验学生的掌握程度;b. 针对高阶问题和拓展思考,引导学生运用垂径定理解决更复杂的几何问题;c. 鼓励学生进行思考和讨论,培养他们的逻辑推理能力和创新思维。

四、教学评价:1. 在教学过程中,教师可以通过观察学生的参与度和回答问题的准确度,进行个别或整体评价;2. 在案例分析环节,教师可以根据学生的表现,评价他们的分析能力和解题思路;3. 练习题的考查结果可以用来评价学生对垂径定理掌握的程度。

五、教学反思:垂径定理是一个相对简单但重要的定理,通过教学设计和教学过程的安排,可以提高学生对该定理的理解和应用能力。

在教学中,要注意引导学生进行思辨和探究,并关注学生的自主学习能力的培养。

此外,可增加一些趣味性的教学方法,如游戏、实验等,以激发学生的学习兴趣和主动性。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标:让学生掌握垂径定理的内容及其应用。

1.2 过程与方法目标:通过观察、分析、推理等方法,引导学生发现垂径定理。

1.3 情感态度与价值观目标:培养学生对数学的兴趣,培养学生的观察能力和思考能力。

第二章:教学内容2.1 教材分析:本节课主要通过探究圆中的性质,引导学生发现垂径定理。

2.2 学情分析:学生在学习本节课之前,已经掌握了圆的基本性质和几何图形的观察分析能力。

第三章:教学过程3.1 导入:通过展示一些与圆有关的实际问题,引发学生对圆的性质的思考。

3.2 新课导入:引导学生观察圆中的垂径关系,引导学生发现垂径定理。

3.3 讲解与演示:通过几何画板或实物模型,讲解垂径定理的内容,并展示其应用。

3.4 练习与讨论:设计一些练习题,让学生巩固垂径定理的理解,并进行小组讨论。

第四章:教学策略4.1 教学方法:采用问题驱动法、观察分析法、小组合作法等教学方法。

4.2 教学媒体:几何画板、实物模型、PPT等。

第五章:教学评价5.1 评价标准:学生能够正确理解垂径定理,能够运用垂径定理解决实际问题。

5.2 评价方式:课堂问答、练习题、小组讨论等。

第六章:教学资源6.1 教具准备:几何画板、实物模型、PPT、练习题等。

6.2 教学环境:教室环境舒适,学生座位有序,教学设备齐全。

第七章:教学步骤7.1 回顾圆的性质:回顾已学过的圆的性质,如圆的周长、直径等。

7.2 观察垂径关系:引导学生观察圆中的垂径关系,发现垂径定理。

7.3 讲解垂径定理:详细讲解垂径定理的内容,解释其含义和应用。

7.4 演示应用实例:通过几何画板或实物模型,展示垂径定理的应用实例。

7.5 练习与巩固:设计一些练习题,让学生运用垂径定理解决问题,巩固所学知识。

第八章:作业布置8.1 设计一些相关的练习题,让学生巩固垂径定理的理解。

8.2 鼓励学生自主探究,寻找生活中的圆的性质应用,增强对数学的应用意识。

垂径定理教学设计

垂径定理教学设计

垂径定理教学设计一、教学目标:1. 理解垂径定理的概念和基本原理。

2. 熟练运用垂径定理解题。

3. 培养学生的逻辑思维和解题能力。

二、教学重点:1. 垂径定理的概念和基本原理。

2. 基于垂径定理的解题方法。

三、教学难点:基于垂径定理的解题方法。

四、教学过程设计:1. 激发兴趣(5分钟)通过引入一个有趣的问题或故事,激发学生对垂径定理的兴趣,引发学生思考。

2. 理解垂径定理的概念(10分钟)介绍垂径定理的概念,并通过示意图和实例解释清楚概念中的关键要素,确保学生对垂径定理的理解准确。

3. 讲解垂径定理的基本原理(15分钟)通过推导和解释,向学生介绍垂径定理的基本原理,并实际演示如何应用垂径定理解决几何问题。

4. 分组合作讨论(15分钟)将学生分成小组,每组给出一个几何问题,要求使用垂径定理解决。

鼓励学生彼此合作,共同思考解决问题的方法和步骤。

5. 整理归纳(10分钟)让不同小组的学生轮流分享他们的解题思路和答案,通过对比和讨论,整理归纳出解题的一般步骤和技巧。

6. 解题实践(20分钟)分发练习册或工作纸,让学生独立或小组合作解答一些基于垂径定理的练习题。

教师巡视并及时纠正学生的错误,引导他们找到正确的解题思路。

7. 知识拓展(15分钟)进一步引入一些拓展的几何问题,要求学生尝试使用垂径定理进行解题。

通过这些拓展问题,培养学生的创新思维和解决问题的能力。

8. 总结归纳(10分钟)老师对垂径定理的基本原理、解题方法进行总结和归纳,强化学生对垂径定理的理解和掌握。

五、教学评价:1. 参与度评价:观察学生在课堂讨论和小组合作中的积极程度。

2. 表现评价:通过练习题的完成情况评价学生对垂径定理的掌握程度。

3. 思维评价:评价学生解题时的思维逻辑和解题能力的发展程度。

六、教学延伸:1. 在课后布置相关作业,加深学生对垂径定理的理解和应用能力。

2. 鼓励学生自主学习和研究其他几何定理和原理,扩大他们的几何知识面。

九年级数学垂径定理教学设计x

九年级数学垂径定理教学设计x

05 学生自主探究活动设计
小组合作探究任务布置
分组并确定小组长
将班级学生按照数学能力、性别等因素进行异质分组,每组4-6人, 并选定一名小组长负责协调和组织小组活动。
明确探究任务
给每个小组布置垂径定理的探究任务,包括理解垂径定理的定义、 掌握垂径定理的证明方法、探讨垂径定理在几何问题中的应用等。
教学难点
垂径定理的推导和证明。
学情分析
学生基础
学习兴趣
学生已掌握圆的基本性质、弦、弧等 概念,以及圆的对称性和圆心角、弧、 弦之间的关系。
九年级学生已经具备一定的数学素养 和思维能力,对于挑战性的问题有较 高的兴趣。
学习困难
垂径定理的推导和证明需要学生具备 一定的逻辑思维能力和空间想象能力, 部分学生可能在这方面存在困难。
在几何图形中应用
圆的性质与垂径定理
01
通过垂径定理,可以推导出圆内接四边形的性质,如对角线互
相垂直且平分等。
弦、弧与垂径定理
02
利用垂径定理,可以解决与弦、弧相关的几何问题,如求弦长、
判断弧的相等关系等。
与圆有关的角
03
垂径定理可用于求解与圆有关的角,如圆心角、圆周角等,通
过构造直角三角形,利用三角函数求解。
应用两点间距离公式,计 算圆心到垂径两端点的距 离,证明其相等。
图示法证明
绘制图形
根据题目条件绘制出相应的图形, 包括圆、垂径、半径等要素。
标注信息
在图形上标注出已知的长度、角度 等信息,以及需要求解的未知量。
观察分析
通过观察分析图形中的线段、角度 关系,结合圆的性质进行推导证明。
04 垂径定理应用举例
圆心角、弧、弦之间的关系定理。

垂径定理及其推论的说课稿

垂径定理及其推论的说课稿

垂径定理及其推论的说课稿垂径定理及其推论的说课稿1各位专家、评委:你们好!很高兴能有机会参加这次活动,并得到您的指导。

我说课的题目是:圆的轴对称性——垂径定理及其推论。

它是人教版义务教育课程标准实验教科书《数学》九年级上册第二十四章第一节的第二部分《垂直于弦的直径》的内容。

这部分内容教材安排了两课时,其中第一课时讲圆的轴对称性,第二课时讲圆的旋转不变性。

结合我对教材的理解和我所任教班级学生的实际情况,我将圆的轴对称性一课时内容调整为两课时,今天我所讲的是第一课时——垂径定理及其推论。

下面,我就从教学内容,教学目标、教学方法与手段、教学过程设计等四个方面进行说明。

一、教学内容的说明教师只有对教材有较为准确、深刻、本质的理解,并从“假如我是学生”的角度审视学生的可接受性,才能处理好教材。

垂径定理及其推论反映了圆的重要性质,是证明线段相等、弧相等、垂直关系的重要依据,为进行圆的计算和作图提供了重要依据,因此这部分内容是学习的重点,垂径定理及其推论的题设和结论较为复杂,容易混淆,因此也是学习的难点。

鉴于这种理解,通览教材,我确定出如下教学内容:(1)了解圆的轴对称性。

(2) 弄清垂径定理及其推论的题设和结论。

(3)运用垂径定理及其推论进行有关的计算和证明。

(4)学会与垂径定理有关的添加辅助线的方法。

教学重点:垂径定理及其推论教学难点:垂径定理的证明方法,其中圆的轴对称性是理解垂径定理的关键。

二、教学目标的确立根据本课的具体内容、学生的实际情况,我确立了如下的教学目标:1、通过直观演示了解圆的轴对称性。

2、通过“试验——观察——猜想——证明”掌握垂径定理及其推论。

3、运用垂径定理解决有关的证明、计算和作图问题。

4、培养学生的数学直觉能力、抽象概括能力。

激发学生的探索精神。

三、教学方法与手段的选择在教学方法方面:本节课主要采用了教师启发引导下的学生自主探究、小组合作学习以及分层教学、分层评价的方法。

在教学过程中,遵循“实验-观察-猜想-证明-讨论-总结-应用”这一思路,使学生由感性认识上升到理性认识,再到实际应用。

垂径定理优秀教学设计(教案)

垂径定理优秀教学设计(教案)

垂径定理优秀教学设计(教案)一、教学内容本节课为人教版数学四年级下册第七单元《几何图形》中的“垂径定理”。

教材通过生活中的实例,引导学生探究圆的性质,掌握垂径定理,并运用该定理解决实际问题。

二、教学目标1. 让学生通过观察、操作、探究,掌握垂径定理,提高空间想象能力。

2. 培养学生运用数学知识解决实际问题的能力。

3. 培养学生合作学习、积极思考的良好学习习惯。

三、教学难点与重点重点:掌握垂径定理及运用。

难点:理解并证明垂径定理。

四、教具与学具准备教具:PPT、黑板、粉笔。

学具:圆、直尺、三角板、圆规。

五、教学过程1. 情境引入:利用PPT展示生活中的圆形物体,如地球、篮球等,引导学生关注圆的性质。

提问:“你们知道圆有哪些性质吗?”2. 自主探究:3. 小组交流:4. 例题讲解:利用PPT展示例题,如:“在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。

”让学生独立思考,然后讲解解题思路,引导学生运用垂径定理解决问题。

5. 随堂练习:出示随堂练习题,如:“已知圆的直径为10cm,求证:垂直于直径的线段也是10cm。

”学生独立完成练习,教师巡回指导,及时纠正错误。

6. 巩固提高:出示拓展题目,如:“在圆中,已知一条弦长为8cm,求证:垂直于该弦的线段也是8cm。

”学生分组讨论,运用垂径定理解决问题。

7. 课堂小结:六、板书设计板书垂径定理板书内容:1. 圆的性质:圆中心到圆上任意一点的距离相等。

2. 垂径定理:垂直于直径的线段也是直径。

七、作业设计1. 请用文字和图形描述垂径定理。

答案:垂径定理:垂直于直径的线段也是直径。

在圆中,已知直径AB,求证:垂直于AB的线段CD也是直径。

答案:略。

八、课后反思及拓展延伸本节课通过生活中的实例,引导学生探究圆的性质,掌握垂径定理。

在教学过程中,注重培养学生的动手操作能力、观察能力和空间想象能力。

课堂练习和拓展延伸环节,让学生运用所学知识解决实际问题,提高学生的数学应用能力。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:导入教学目标:1. 激发学生对垂径定理的兴趣。

2. 引导学生通过实际问题发现垂径定理。

教学内容:1. 引导学生回顾圆的性质和基本概念。

2. 提出问题:在圆中,如何判断一条直线是否垂直于一条弦?教学活动:1. 利用实物或图片展示圆和直线,引导学生观察和思考。

2. 引导学生通过实际操作,尝试判断直线是否垂直于弦。

教学评估:1. 观察学生在实际操作中的表现,了解他们对垂径定理的理解程度。

第二章:探索垂径定理教学目标:1. 帮助学生理解和掌握垂径定理的内容。

2. 培养学生通过几何推理解决问题的能力。

教学内容:1. 引导学生通过几何推理,探索垂径定理。

2. 引导学生验证垂径定理的正确性。

教学活动:1. 引导学生通过画图和几何推理,探索垂径定理。

2. 组织学生进行小组讨论,分享各自的解题思路和方法。

教学评估:1. 观察学生在探索过程中的表现,了解他们的思考和解决问题的能力。

第三章:应用垂径定理教学目标:1. 帮助学生掌握垂径定理的应用方法。

2. 培养学生解决实际问题的能力。

教学内容:1. 引导学生学习和掌握垂径定理的应用方法。

2. 引导学生运用垂径定理解决实际问题。

教学活动:1. 引导学生学习和掌握垂径定理的应用方法。

2. 组织学生进行实际问题解决练习,引导学生运用垂径定理。

教学评估:1. 观察学生在实际问题解决中的表现,了解他们运用垂径定理的能力。

第四章:巩固与提高教学目标:1. 帮助学生巩固垂径定理的知识。

2. 提高学生解决实际问题的能力。

教学内容:1. 引导学生进行垂径定理的知识巩固练习。

2. 引导学生运用垂径定理解决更复杂的问题。

教学活动:1. 组织学生进行垂径定理的知识巩固练习。

2. 引导学生运用垂径定理解决更复杂的问题。

教学评估:1. 观察学生在练习中的表现,了解他们巩固垂径定理的能力。

2. 观察学生在解决更复杂问题中的表现,了解他们运用垂径定理的能力。

第五章:总结与拓展教学目标:1. 帮助学生总结垂径定理的主要内容和应用方法。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能:让学生掌握垂径定理的内容及其应用。

培养学生运用几何知识解决实际问题的能力。

1.2 过程与方法:通过观察、猜想、证明的过程,让学生体验数学的探究过程。

运用图形计算器或信息技术工具,帮助学生更好地理解垂径定理。

1.3 情感态度与价值观:培养学生对数学的兴趣和自信心。

培养学生合作交流的能力,提高学生的团队协作能力。

第二章:教学内容2.1 教材分析:分析教材中关于垂径定理的定义、证明和应用。

理解垂径定理在圆的性质和几何图形中的应用。

2.2 学情分析:了解学生对圆的基本知识和垂线的概念。

了解学生对几何证明的掌握程度,为学生提供必要的支持。

第三章:教学重难点3.1 教学重点:让学生掌握垂径定理的证明过程和定理的内容。

能够运用垂径定理解决相关的几何问题。

3.2 教学难点:理解并证明垂径定理。

灵活运用垂径定理解决实际问题。

第四章:教学方法与手段4.1 教学方法:采用问题驱动的教学方法,引导学生观察、猜想、证明。

运用小组合作学习,鼓励学生互相交流、讨论。

4.2 教学手段:使用图形计算器或信息技术工具,展示几何图形,帮助学生更好地理解垂径定理。

提供相关的练习题和案例,供学生实践和应用垂径定理。

第五章:教学过程5.1 导入:通过引入实际问题或情境,激发学生的兴趣和好奇心。

引导学生观察和猜想垂径定理的内容。

5.2 探究与证明:引导学生进行小组合作学习,共同探究垂径定理的证明过程。

引导学生运用几何知识和证明方法,进行逻辑推理和证明。

5.3 应用与练习:提供相关的练习题和案例,让学生运用垂径定理解决问题。

引导学生进行自主学习和合作交流,解答练习题和案例。

鼓励学生反思自己的学习过程,提出问题和建议,为后续学习做好准备。

1. 导入新课通过展示实际问题,引入垂径定理的概念和意义。

提供具体的垂径定理案例,让学生观察和分析,引导学生猜想垂径定理的内容。

第五章:垂径定理的证明通过引导学生运用已有知识,尝试证明垂径定理。

《垂径定理》教学设计教案

《垂径定理》教学设计教案

《垂径定理》教学设计教案第一章:教学目标1.1 知识与技能目标理解垂径定理的概念和意义。

学会运用垂径定理解决实际问题。

1.2 过程与方法目标通过观察和实验,发现垂径定理的规律。

学会运用几何画图工具,准确地画出垂直平分线。

1.3 情感态度与价值观目标培养学生的观察能力和思维能力。

培养学生的合作意识和解决问题的能力。

第二章:教学内容2.1 教材分析介绍垂径定理的内容和证明过程。

通过实际例题,展示垂径定理的应用。

2.2 学情分析学生已经掌握了直线、圆的基本概念和性质。

学生具备一定观察和实验的能力。

第三章:教学过程3.1 导入新课通过一个实际问题,引发学生对垂径定理的思考。

引导学生观察和实验,发现垂径定理的规律。

3.2 探究与发现学生分组进行实验,观察垂直平分线与弦的关系。

引导学生总结垂径定理的表述。

3.3 知识讲解讲解垂径定理的证明过程。

通过示例,解释垂径定理的应用。

3.4 练习与巩固学生独立完成一些练习题,巩固对垂径定理的理解。

教师引导学生互相讨论和解答问题。

第四章:教学评价4.1 课堂评价教师通过观察学生的实验和练习情况,评价学生对垂径定理的理解和应用能力。

学生之间互相评价,分享解题经验和思路。

4.2 课后评价教师布置一些相关的课后作业,检验学生对垂径定理的掌握程度。

学生通过完成作业,进一步巩固和提高垂径定理的应用能力。

第五章:教学资源5.1 教材教师使用的教材,包括课本和相关教辅材料。

5.2 实验材料学生分组进行实验所需的材料,如几何画图工具、圆规、直尺等。

5.3 多媒体教学资源利用多媒体课件和教学视频,帮助学生更好地理解和掌握垂径定理。

第六章:教学策略6.1 讲授法教师通过讲解垂径定理的证明过程和应用实例,引导学生理解和掌握知识点。

6.2 实验法学生通过分组实验,观察和验证垂径定理,培养动手能力和观察能力。

6.3 讨论法教师组织学生进行小组讨论,分享解题经验和思路,促进互动交流。

第七章:教学难点与重点7.1 教学难点学生对垂径定理的证明过程的理解和应用。

垂径定理教学案x

垂径定理教学案x
探究
引导学生通过动手实践、观察、 思考等方式,自主探究垂径定理 及其推论,并记录探究过程和结 果;
交流
组织学生进行小组交流,分享各 自的探究成果和思路,互相学习 和借鉴;
总结
引导学生对垂径定理及其推论进 行总结和归纳,形成完整的知识
体系。
活动成果展示和评价
01
02
03
成果展示
鼓励学生以多种形式展示 自己的探究成果,如口头 报告、PPT演示、数学小 论文等;
垂径与直径关系
垂径与直径的垂直关系
垂径垂直于经过圆心的直径。
垂径与直径的平分关系
垂径学
在建筑设计中,垂径定 理可用于计算圆形建筑 物的半径、弦长等参数。
工程学
在机械工程中,垂径定 理可用于计算齿轮的模
数、压力角等参数。
地理学
在地理测量中,垂径定 理可用于计算地球上两 点间的距离、方位角等
通过垂径定理可以判断直线与圆的位置关系,如相切、相交或
相离。
求解圆的半径或直径
03
在某些问题中,可以通过垂径定理求解圆的半径或直径,进而
解决其他问题。
辅助线构造技巧
作弦的垂直平分线
当需要证明某线段是圆的直径或求解 与直径相关的问题时,可以作弦的垂 直平分线,利用垂径定理进行证明或 求解。
作过圆心的垂线
3
计算机图形学中的应用 在计算机图形学中,垂径定理可以用于生成圆形 的图像或动画,以及进行圆形的碰撞检测等。
05
学生自主探究活动设计
活动目的和要求
理解和掌握垂径定理及其推论;
能够运用垂径定理解决相关问题;
培养学生的自主探究和合作学习 能力。
活动流程和安排
引入
通过实际问题或数学史话引入垂 径定理,激发学生的学习兴趣;

垂径定理教学设计

垂径定理教学设计

垂径定理教学设计教学设计:垂径定理教学目标:1.理解垂径定理的定义和原理;2.掌握应用垂径定理解决问题的方法;3.培养学生的逻辑思维和证明能力。

教学步骤:一、导入(15分钟)1.通过提问的方式,引出垂径定理的概念和作用,激发学生对该定理的兴趣。

2.给学生展示一些实际生活中使用垂径定理的例子,如建筑设计、地理测量等,说明学习垂径定理的重要性。

二、理解垂径定理(30分钟)1.引导学生观察和发现:在一个圆内,以圆心为端点的半径与圆上条切线之间的关系。

2.引导学生总结并给出垂径定理的定义:在一个圆内,以圆心为端点的半径与圆上的切线垂直。

3.通过给出几个具体的案例,帮助学生理解垂径定理的意义和应用。

三、应用垂径定理解决问题(30分钟)1.给学生出示一些具体问题,引导他们应用垂径定理解决问题。

2.阐述解决问题的一般步骤:根据问题条件,确定圆心、半径和切线,应用垂径定理判断是否垂直。

3.给学生分组讨论解决问题的方法,并在黑板上进行总结和讨论。

四、拓展练习(30分钟)1.给学生分发一些练习题,让他们独立或小组完成,并在课堂上进行讲解和讨论。

2.引导学生思考问题的多个解法和证明的不同方法,培养他们的思考能力和证明能力。

3.鼓励学生提出疑问和讨论,引导他们思考如何应用垂径定理解决更复杂的问题。

五、总结(15分钟)1.综合学生的讨论和解答,总结垂径定理的定义、应用和解决问题的方法。

2.提出作业:让学生写一篇500字以上的短文,总结垂径定理的原理和应用,并分析具体案例。

3.回顾整个课堂内容,引导学生思考学习垂径定理的感受和收获。

教学资源:1.教师准备的课件,包括垂径定理的定义、案例和应用;2.练习题,用于课堂练习和讨论;3.学生课本和笔记本,用于记录课堂内容和思考问题。

教学评价:1.在课堂上观察学生的参与情况,检查他们对垂径定理的理解和应用;2.根据学生的讨论和解答,评价他们的思考能力和证明能力;3.根据学生的作业,评价他们对垂径定理的理解和总结能力。

垂径定理推论应用教学设计

垂径定理推论应用教学设计

垂径定理推论应用教学设计一、教学背景垂径定理是初中数学中的重要定理之一,是学生在几何学习中的基础内容。

该定理表明,如果一个直径上的两个点与圆上的另外两个点连线垂直且相交于一点,那么这个交点将成为一个直角。

垂径定理的推论应用较为多种多样,能够帮助学生巩固并拓展他们的几何知识。

二、教学目标1. 理解和应用垂径定理推论的概念和基本原理;2. 能够分析和解决涉及垂径定理推论的几何问题;3. 发展学生的几何思维和推理能力。

三、教学内容与过程1. 导入:通过几个简单的例子,复习和巩固学生对垂径定理的理解和应用。

引导学生思考如何利用垂径定理推论解决几何问题。

2. 理论讲解:系统性地讲解垂径定理的推论应用,包括以下几个方面:a. 推论一:垂径定理的逆命题。

如果一个直径上的两个点与圆上的另外两个点连线不垂直,那么这四个点将不共圆心,不成直角。

b. 推论二:垂径定理的逆命题。

如果一个直径上的两个点与圆上的另外两个点连线不垂直,那么这四个点将不共圆心,不成直角。

c. 推论三:两个互相垂直的直径将平分彼此。

d. 推论四:两个平分彼此的互相垂直的直径。

e. 推论五:直径的两条弦所成的角等于直径所对的弧所对的圆心角的一半。

3. 练习与讨论:提供一系列练习题,让学生运用垂径定理推论解决几何问题。

通过小组讨论和全班讨论,激发学生的思考和合作能力。

教师应及时给予指导和反馈。

4. 拓展训练:提供一些拓展性的问题,让学生扩展对垂径定理推论的应用。

鼓励学生独立思考和解决问题的能力。

四、教学评价1. 课堂表现:观察学生在课堂上对垂径定理推论应用的理解和运用情况。

包括思考问题的能力、合作交流的能力和解决问题的能力。

2. 作业评价:布置适当的作业,检验学生对垂径定理推论应用的掌握情况。

作业内容可以包括选择题、解答题和综合运用题等。

3. 小结与回顾:通过课堂小结和回顾,检查学生对垂径定理推论应用的理解程度。

提醒学生注意易错点和容易混淆的概念。

垂径定理 优秀教学设计(教案)

垂径定理  优秀教学设计(教案)

垂径定理重难点教学设计
A
B
O E C
D
弦(a )半径(r )弦心距(d ),弓高(h ) 四个量关系1、 2、 探究三:
垂径定理推论:平分非直径弦的直径_______,并且__________________。

数学语言:∵CD 是平分_____, CD 是⊙O______,
∴____=____,____=____,_____=______。

例4、已知: 在⊙O 中,弦AB 的长为24 cm ,C 为AB 中点,OC=5 cm ,求⊙O 的半径。

三、当堂训练:
1、已知圆的两条平行弦AB 、CD 长分别是 6cm 和8cm ,圆的半径为5cm ,求两条平行弦之间的距离。

2、
教师引导学生添加辅助线并分析使用方程思想,后学生到前展示答案,并简单讲解
学生复述推论内容,并总结学语言
巩固提高对定理的认
识。

直观引入定理,并上升到理论上。

能够应用。

《垂径定理》教学设计教案完整版

《垂径定理》教学设计教案完整版
02
圆的性质包括圆心到圆上任意一点 的距离都等于半径,以及圆上任意 两点间的弧长与这两点间所夹圆心 角的大小成正比。
直径、半径和弧的概念
直径是穿过圆心、连 接圆上任意两点的线 段,其长度等于两倍 的半径。
弧是圆上两点间的部 分,根据圆心角的大 小可分为优弧、劣弧 和半圆。
半径是从圆心到圆上 任意一点的线段,其 长度等于圆的半径。
分享交流探究成果
分享方式
每个小组选派一名代表, 向全班展示他们的探究 过程和成果,可以通过 口头报告、PPT演示、 板书等方式进行。
交流内容
包括问题背景、解决方 法、遇到的困难、取得 的成果以及心得体会等。
互动环节
其他小组可以提问、补 充或发表不同看法,促 进全班范围内的深入交 流和讨论。
教师点评与总结
布置适量练习题,让学生独立完 成,检验学生的学习效果。
课程引入(5分钟)
通过实例引入垂径定理的概念, 激发学生的学习兴趣。
课程总结(5分钟)
回顾本课所学内容,总结垂径定 理及其逆定理的应用方法,鼓励 学生课后继续探究相关问题。
02 基础知识回顾
圆的性质与定义
01
圆是平面上所有与定点(圆心)距 离等于定长(半径)的点的集合。
05 学生自主探究活动
分组探究垂径定理的应用
分组
将全班学生分成若干小组,每组4-6人,确保每组学生具有不同 的数学能力和背景。
探究任务
给每个小组分配一个与垂径定理相关的数学问题或应用场景,例 如求解圆的弦长、判断点与圆的位置关系等。
探究过程
学生小组内进行讨论、分析、尝试解决问题,并记录探究过程和 结果。
垂径定理的表述
在平面内,垂直于弦的直 径平分这条弦,并且平分 弦所对的两条弧。

垂径定理教学设计(共19篇)

垂径定理教学设计(共19篇)

垂径定理教学设计〔共19篇〕篇1:垂径定理教学反思垂径定理教学反思本节课的教学目的是使学生理解圆的轴对称性,掌握垂径定理,并学会运用垂径定理解决有关弦、弧、弦心距以及半径之间的证明和计算问题。

垂径定理是圆的轴对称性的重要表达,是今后解决有关计算、证明和作图问题的重要根据,它有着广泛的应用,因此,本节课的教学重点是:垂径定理及其应用。

垂径定理的推导利用了圆的轴对称性,它是一种运动变换,这种证明方法学生不常用到,与严格的逻辑推理比拟,在证明的表述上学生会发生困难,因此垂径定理的推导是本节课的难点。

这节课我通过七个环节来完本钱节课的教学目的,采用了类比,启发等教学方法。

圆是轴对称图形,每一条直径所在的直线都是对称轴。

这点学生理解的很好。

根据这个性质先按课本进展合作学习1.任意作一个圆和这个圆的任意一条直径CD;2.作一条和直径CD的垂线的弦,AB与CD相交于点E.提出问题:把圆沿着直径CD所在的直线对折,你发现哪些点、线段、圆弧重合?在学生探究的根底上,得出结论:〔先介绍弧相等的概念〕①EA=EB;②AC=BC,AD=BD.理由如下:∵∠OEA=∠OEB=Rt∠,根据圆的轴轴对称性,可得射线EA与EB重合,∴点A与点B重合,弧AC和弧BC重合,弧AD和弧BD重合。

∴EA=EB,AC=BC,AD=BD.然后把此结论归纳成命题的形式:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的`弧。

垂径定理的几何语言∵CD为直径,CD⊥AB〔OC⊥AB〕∴EA=EB,AC=BC,AD=BD.在学生掌握了垂径定理后,及时应用定理画图和解决实际问题,练习由根底到进步,层层深化,学生很有兴趣。

做完题目后总计解题的主要方法:〔1〕画弦心距是圆中常见的辅助线;〔2〕半径〔r〕、半弦、弦心距〔d〕组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长本节课缺乏之处是在处理垂径定理的推论时,应归纳相关垂径定理的五个元素:直径、弦中点、垂直、优弧中点、劣弧中点的规律:“知二得三”。

垂径定理的教学设计

垂径定理的教学设计

垂径定理的教学设计垂径定理是高中数学中的一个重要定理,也是平面几何中的基本定理之一。

教学设计的目的是帮助学生深入理解和掌握垂径定理的概念、性质和应用。

下面是一份针对高中数学教学的垂径定理教学设计,内容包括教学目标、教学过程、教学方法和评估方式。

一、教学目标1. 理解垂径定理的概念和性质。

2. 学会运用垂径定理解决相关几何问题。

3. 培养学生的几何思维能力和证明能力。

二、教学过程1. 导入(10分钟)通过引入“垂径定理”的实际例子(如建筑物中的立柱与地面),激发学生对该定理的兴趣,并询问学生是否了解或听说过垂径定理,并请学生描述该定理的内容。

2. 理解定理(15分钟)教师通过使用动态展示或示意图等形式,引导学生观察和思考,进一步深入理解垂径定理的内涵。

教师可以给出几个实际问题来引导学生思考,并共同探究垂径定理的性质。

3. 探究和发现(30分钟)教师组织学生小组活动,以小组合作的形式让学生们自主探究,发现垂径定理的相关性质。

教师可以引导学生做出以下观察和猜想:观察:a) 直线与平行线的关系;b) 垂直和平行线的关系;c) 任意一条线段和平行线的关系。

猜想:a) 如果两条线段互相垂直,这两段线段的长度是否存在某种关系?b) 如果两条平行线与一条直线相交,这三条线段的长度是否存在某种关系?c) 是否存在一个定理可以总结上述关系?学生小组进行讨论和研究,最后每个小组进行展示和总结。

4.定理的表述和证明(30分钟)通过学生小组的讨论和总结,教师向学生介绍垂径定理的准确表述,并给出该定理的证明过程。

教师可以使用带有图像的演示或幻灯片,以直观的方式向学生展示证明过程。

5. 练习和应用(25分钟)为了巩固学生对垂径定理的理解和掌握,教师提供相关的练习题和应用题,让学生进行个人或小组完成。

练习题可以包括直接运用垂径定理解决问题的计算题,也可以包括应用题例如证明题、选择题或证明前提题等。

6. 总结和拓展(15分钟)教师与学生共同总结垂径定理的概念和性质,对学生的提问进行回答,检查学生对该定理的理解和掌握程度。

3.3垂径定理(教案)

3.3垂径定理(教案)
五、教学反思
今天我们在课堂上学习了垂径定理,回顾整个教学过程,我觉得有几个方面值得反思和总结。
首先,关于课堂导入,我通过提出与日常生活相关的问题,激发了学生的好奇心和兴趣。这种方法让学生能够更快地进入学习状态,对今天的教学内容产生关注。在今后的教学中,我需要继续探索更多有趣的导入方式,让学生在轻松愉快的氛围中开始学习。
3.弓形面积的计算:利用垂径定理,推导并掌握弓形面积的计算方法。
本节课旨在让学生掌握垂径定理及其应用,培养他们的逻辑思维能力和解决问题的能力,同时为后续学习圆的相关知识打下基础。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的空间观念:通过探究垂径定理,让学生在观察、操作、思考的过程中,形成对圆中弦、直径、弧等几何元素的空间认识和感知能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解垂径定理的基本概念。垂径定理指的是,在一个圆中,垂直于弦的直径将弦平分,并且平分弦所对的两条弧。这个定理在解决与圆有关的问题时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。通过案例分析,展示垂径定理如何帮助我们求解圆中弦长、弧长等问题。
3.3垂径定理(教案)
一、教学内容
本节课选自八年级数学教材第三章第三节“垂径定理”。教学内容主要包括以下三个方面:
1.垂径定理:通过直观演示和实际操作,让学生掌握圆中弦的中垂线性质,即垂直于弦的直径平分弦,并且平分弦所对的两条弧。
2.垂径定理的应用:通过典型例题,让学生学会运用垂径定理解决实际问题,如求圆中弦长、弧长、圆心角等。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“垂径定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

垂径定理及推论教学设计

垂径定理及推论教学设计

24.1.2垂径定理及其推论教学设计【教材分析】本节是《圆》这一章的重要内容,也是本章的基础。

它揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的内在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;由垂径定理的得出,使学生的认识从感性到理性,从具体到抽象,有助于培养学生思维的严谨性。

同时,通过本节课的教学,对学生渗透类比、转化、数形结合、方程、建模等数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和识图能力。

所以它在教材中处于非常重要的位置。

【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。

因此,我把本节课的教学目标确定为以下三个方面:知识目标:使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。

培养学生观察能力、分析能力及联想能力。

方法与过程目标:经历探索发现圆的对称性,证明垂径定理及推论的过程,锻炼学生的思维品质,学习证明的方法。

情感态度与价值观目标:在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。

【重点与难点】重点:垂径定理及其推论的发现、记忆与证明。

难点:对垂径定理及其推论的探索和证明,并能应用垂径定理及推论进行简单计算或证明。

【学生分析】九年级学生已了解圆的有关概念;但根据皮亚杰的认知发展理论:这个阶段的学生思维正处于具体思维向抽象思维发展、逻辑思维向形式思维发展、内部心理上逐步朝着自我反省的思维发展。

虽然他们具有一定的数学活动经验、生活经验和操作技能,会进行简单的说理,但他们的逻辑思维能力和抽象思维能力还比较薄弱。

对如何从实际问题中抽象出数学问题,建立数学模型的能力较差。

【教学方法】鉴于教材特点及九年级学生的知识基础,根据教学目标和学生的认知水平,让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。

垂径定理教学设计

垂径定理教学设计

垂径定理(第一课时(kèshí))教学设计兰甲明【教学内容】§7.3垂径定理(dìnglǐ)(初三《几何》课本P76~P78)【教学(jiāo xué)目标】1.知识(zhī shi)目标:①通过观察实验,使学生(xué sheng)理解圆的轴对称性;②掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题;③掌握辅助线的作法——过圆心作一条与弦垂直的线段。

2.能力目标:①通过定理探究,培养学生观察、分析、逻辑思维和归纳概括能力;②向学生渗透“由特殊到一般,再由一般到特殊”的基本思想方法。

3.情感目标:①结合本课教学特点,向学生进行爱国主义教育和美育渗透;②激发学生探究、发现数学问题的兴趣和欲望。

【教学重点】垂径定理及其应用。

【教学难点】垂径定理的证明。

【教学方法】探究发现法。

【教具准备】自制的教具、自制课件、实物投影仪、电脑、三角板、圆规。

【教学设计】一、实例导入,激疑引趣1.实例:同学们都学过《中国石拱桥》这篇课文(初二语文第三册第一课·茅以升),其中介绍了我国隋代工匠李春建造的赵州桥(如图)。

因它位于现在的历史文化名城河北省赵县(古称赵州)而得名,是世界上现存最早、保存最好的巨大石拱桥,距今已有1400多年历史,被誉为“华北四宝之一”,它的结构是当时世界桥梁界的首创,这充分显示了我国古代劳动人民的创造智慧。

2.导入:赵州桥的桥拱呈圆弧形的(如图1),它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦AB的距离,也叫弓高)为7.2米。

请问:桥拱的⌒半径(即AB 所在圆的半径)是多少?通过本节课的学习,我们将能很容易解决(ji ěju é)这一问题。

(图1)二、尝试(ch ángsh ì)诱导,发现定理1.复习(f ùx í)过渡:①如图2(a),弦AB 将⊙O 分成(f ēn ch én ɡ)几部分?各部分的名称是什么? ②如图2(b),将弦AB 变成直径(zh íj ìng),⊙O 被分成的两部分各叫什么? ③在图2(b)中,若将⊙O 沿直径AB 对折,两部分是否重合?(a) (b) (a) (b) (c) (图2) (图3)2.实验验证:让学生将准备好的一张圆形纸片沿任一直径对折,观察两部分是否重合;教师用电脑演示重叠的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1.2垂径定理及其推论教学设计
【教材分析】
本节是《圆》这一章的重要容,也是本章的基础。

它揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;由垂径定理的得出,使学生的认识从感性到理性,从具体到抽象,有助于培养学生思维的严谨性。

同时,通过本节课的教学,对学生渗透类比、转化、数形结合、方程、建模等数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和识图能力。

所以它在教材中处于非常重要的位置。

【教学目标】
根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。

因此,我把本节课的教学目标确定为以下三个方面:
知识目标:
使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。

培养学生观察能力、分析能力及联想能力。

方法与过程目标:
经历探索发现圆的对称性,证明垂径定理及推论的过程,锻炼学生的思维品质,学习证明的方法。

情感态度与价值观目标:
在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。

【重点与难点】
重点:垂径定理及其推论的发现、记忆与证明。

难点:对垂径定理及其推论的探索和证明,并能应用垂径定理及推论进行简单计算或证明。

【学生分析】
九年级学生已了解圆的有关概念;但根据皮亚杰的认知发展理论:这个阶段的学生思维正处于具体思维向抽象思维发展、逻辑思维向形式思维发展、部心理上逐步朝着自我反省的思维发展。

虽然他们具有一定的数学活动经验、生活经验和操作技能,会进行简单的说理,但他们的逻辑思维能力和抽象思维能力还比较薄弱。

对如何从实际问题中抽象出数学问题,建立数学模型的能力较差。

【教学方法】
鉴于教材特点及九年级学生的知识基础,根据教学目标和学生的认知水平,让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。

同时,在教学中,我充分利用教具和课件,提高教学效果,在实验、演示、操作、观察、练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,这符合新课程理念下的直观性与可接受性原则。

【设计理念】
在教学设计和课堂教学中应充分了解学生,研究学生,我们不仅要备教材,而且还要备学生。

要真正树立以学生的发展为本的教学理念。

只有这样,才能为学生提供充分的教学活动和交流的机会,使学生从单纯的的知识接受者变为数学学习的主人。

【教师准备】
《问题导读---评价单》、《问题生成---评价单》、《问题训练---评价单》
【教学过程的设计】
《24.1.2垂径定理及其推论教学设计问题导读——评价单》设计者:班级::
【教学目标】
根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。

因此,我把本节课的教学目标确定为以下三个方面:
知识目标:
使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。

培养学生观察能力、分析能力及联想能力。

方法与过程目标:
经历探索发现圆的对称性,证明垂径定理及推论的过程,锻炼学生的思维品质,学习证明的方法。

情感态度与价值观目标:
在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。

【重点与难点】
重点:垂径定理及其推论的发现、记忆与证明。

难点:对垂径定理及其推论的探索和证明,并能应用垂径定理及推论进行简单计算或证明。

1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为
cm
2.如图,⊙O的直径AB垂直于弦CD ,垂足为E,若∠COD=120°,OE=3厘米,则CD=厘米
3.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.
4.过⊙O一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的
长等于 cm
5.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于
点C,且CD=l,则弦AB的长是
通过预习本节容你未解决的问题有:
O
图 4
E D C
A
自我评价:小组评价:教师评价:
《24.1.2垂径定理及推论教学设计问题生成——评价单》
请同学们在预习的基础上,将生成的问题充分交流后,在单位时间完成下列题目,并准备多元化展示.
带着问题走进丰富多彩的数学世界
1.将你手中的圆沿圆心对折,你会发现圆是一个什么图形?
2.将手中的圆沿直径向上折,你会发现折痕是圆的一条弦,这条弦被直径怎样了?
3.一个残缺的圆形物件,你能找到它的圆心吗?
4. 州桥是我国古代桥梁史的骄傲,我们能求出主桥拱的半径吗?
分析通过上述问题,学生自己动手操作可以得出圆是轴对称图形,而且对称轴是过直径的直线,由此我们可以得出垂径定理及推论
归纳垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

注意在推论里,平分的这条弦一定不能为直径,否则推论不成立。

例1.如图在⊙O中弦AB的长为8cm,圆心O到AB的距离OD=3cm,则⊙O的半径为 cm (1)连结什么可得到一个直角三形?
(2)利用什么知识可以解得半径。

(3)从中你可总结出利用垂径定理计算的什么技巧?
例2.如图,是州桥的几何示意图,若其
中AB是桥的跨度为37.4米,桥拱高CD
为7.2米,你能求出它所在的圆的主桥
拱半径吗?
O
A B
D
D
B
A
小组评价: 教师评价:
《24.1.2垂径定理及推论教学设计问题训练——评价单》
设计者: 班级: :
1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( )
A .4
B .6
C .7
D .8
2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5
3.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心
D .在一个圆平分一条弧和它所对的弦的直线必经过这个圆的圆心
4.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )
A .5米
B .8米
C .7米
D .
53米
5.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm
6.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是
7、已知⊙O 的半径长为50cm ,弦AB 长50cm. 求:(1)点O 到AB 的距离;(2)∠AOB 的大小
B A P
O
y
x
《24.1.2垂径定理及其推论教学设计问题导读——评价单》答案
1、5 cm
2、、 cm 4 5、6
《24.1.2垂径定理及其推论教学设计问题训练——评价单》答案【夯实基础】
1、D
2、B
3、D
4、B
5、D
【拓展提升】
60
6、(6,0)
7、(1)(2)0。

相关文档
最新文档