垂径定理及推论教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1.2垂径定理及其推论教学设计
【教材分析】
本节是《圆》这一章的重要容,也是本章的基础。它揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;由垂径定理的得出,使学生的认识从感性到理性,从具体到抽象,有助于培养学生思维的严谨性。同时,通过本节课的教学,对学生渗透类比、转化、数形结合、方程、建模等数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和识图能力。所以它在教材中处于非常重要的位置。
【教学目标】
根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面:
知识目标:
使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。培养学生观察能力、分析能力及联想能力。
方法与过程目标:
经历探索发现圆的对称性,证明垂径定理及推论的过程,锻炼学生的思维品质,学习证明的方法。
情感态度与价值观目标:
在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。
【重点与难点】
重点:垂径定理及其推论的发现、记忆与证明。
难点:对垂径定理及其推论的探索和证明,并能应用垂径定理及推论进行简单计算或证明。
【学生分析】
九年级学生已了解圆的有关概念;但根据皮亚杰的认知发展理论:这个阶段的学生思维正处于具体思维向抽象思维发展、逻辑思维向形式思维发展、部心理上逐步朝着自我反省的思维发展。虽然他们具有一定的数学活动经验、生活经验和操作技能,会进行简单的说理,但他们的逻辑思维能力和抽象思维能力还比较薄弱。对如何从实际问题中抽象出数学问题,建立数学模型的能力较差。
【教学方法】
鉴于教材特点及九年级学生的知识基础,根据教学目标和学生的认知水平,让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。同时,在教学中,我充分利用教具和课件,提高教学效果,在实验、演示、操作、观察、练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,这符合新课程理念下的直观性与可接受性原则。
【设计理念】
在教学设计和课堂教学中应充分了解学生,研究学生,我们不仅要备教材,而且还要备学生。要真正树立以学生的发展为本的教学理念。只有这样,才能为学生提供充分的教学活动和交流的机会,使学生从单纯的的知识接受者变为数学学习的主人。
【教师准备】
《问题导读---评价单》、《问题生成---评价单》、《问题训练---评价单》
【教学过程的设计】
《24.1.2垂径定理及其推论教学设计问题导读——评价单》设计者:班级::
【教学目标】
根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面:
知识目标:
使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。培养学生观察能力、分析能力及联想能力。
方法与过程目标:
经历探索发现圆的对称性,证明垂径定理及推论的过程,锻炼学生的思维品质,学习证明的方法。
情感态度与价值观目标:
在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。
【重点与难点】
重点:垂径定理及其推论的发现、记忆与证明。
难点:对垂径定理及其推论的探索和证明,并能应用垂径定理及推论进行简单计算或证明。1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为
cm
2.如图,⊙O的直径AB垂直于弦CD ,垂足为E,若∠COD=120°,OE=3厘米,则CD=厘米
3.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.
4.过⊙O一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的
长等于 cm
5.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于
点C,且CD=l,则弦AB的长是
通过预习本节容你未解决的问题有:
O
图 4
E D C
A
自我评价:小组评价:教师评价:
《24.1.2垂径定理及推论教学设计问题生成——评价单》
请同学们在预习的基础上,将生成的问题充分交流后,在单位时间完成下列题目,并准备多元化展示.
带着问题走进丰富多彩的数学世界
1.将你手中的圆沿圆心对折,你会发现圆是一个什么图形?
2.将手中的圆沿直径向上折,你会发现折痕是圆的一条弦,这条弦被直径怎样了?
3.一个残缺的圆形物件,你能找到它的圆心吗?
4. 州桥是我国古代桥梁史的骄傲,我们能求出主桥拱的半径吗?
分析通过上述问题,学生自己动手操作可以得出圆是轴对称图形,而且对称轴是过直径的直线,由此我们可以得出垂径定理及推论
归纳垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。注意在推论里,平分的这条弦一定不能为直径,否则推论不成立。
例1.如图在⊙O中弦AB的长为8cm,圆心O到AB的距离OD=3cm,则⊙O的半径为 cm (1)连结什么可得到一个直角三形?
(2)利用什么知识可以解得半径。
(3)从中你可总结出利用垂径定理计算的什么技巧?
例2.如图,是州桥的几何示意图,若其
中AB是桥的跨度为37.4米,桥拱高CD
为7.2米,你能求出它所在的圆的主桥
拱半径吗?
O
A B
D
D
B
A