凸轮机构的应用及其分类
凸轮机构的类型应及其应用特点
凸轮机构的类型应及其应用特点凸轮机构是一种机械传动机构,通过凸轮对其它零部件施加规定的运动规律,实现机械装置的工作功能。
凸轮机构的类型较为多样,根据凸轮的形状和安装方式的不同,可以分为以下几类:平面滚动凸轮机构、空间滚动凸轮机构、球面滚动凸轮机构、曲面专门凸轮机构等等。
平面滚动凸轮机构是指凸轮在平面内做回转运动,是最常见也是应用最广泛的一类凸轮机构。
其应用特点如下:1.运动规律灵活多样:凸轮在回转运动过程中,可以根据需要设定不同的运动规律,如简谐运动、匀速运动、非对称运动等等。
2.传动精度高:凸轮机构的传动比可以通过凸轮的轮廓形状和驱动零件的尺寸比例进行调整,传动精度较高。
3.传动效率较高:由于凸轮和从动零件之间的接触面积较大,传动效率较高。
4.运动平稳性好:凸轮机构的运动平稳性较好,能够满足一些对运动平稳性要求较高的场合。
空间滚动凸轮机构是指凸轮在三维空间内做回转运动,也称为空间凸轮机构。
其应用特点如下:1.自由度更高:与平面滚动凸轮机构相比,空间凸轮机构的自由度更高,可以实现更复杂的运动模式。
2.多轨迹运动:凸轮的轨迹可以是任意的,可以实现多轨迹运动,满足一些特殊要求。
3.结构复杂:空间凸轮机构的结构较为复杂,制造和安装难度较大。
4.应用范围广泛:空间凸轮机构在机械装置、汽车制造、航空航天等领域有着广泛的应用。
球面滚动凸轮机构是指凸轮在球面上做回转运动,其特点如下:1.运动平稳:球面滚动凸轮机构的运动过程中,能够保持较好的平稳性,满足一些高速运动的需求。
2.自由度较高:球面滚动凸轮机构的自由度较高,可以实现更复杂的运动模式,满足一些特殊要求。
3.结构复杂:球面滚动凸轮机构的结构较为复杂,对制造和安装的要求较高。
4.应用范围广泛:球面滚动凸轮机构广泛应用于机械装置、船舶、航空航天等领域。
曲面专门凸轮机构是指凸轮的轮廓曲面为曲线,其特点如下:1.运动规律特殊:曲面专门凸轮机构的凸轮轮廓曲线可以是任意的,可以满足一些特殊运动规律的要求。
凸轮机构
凹 槽 凸 轮
等 宽 凸 轮
W
等 径 凸 轮 r1+r2 =const
r1 r2
主 回 凸 轮
作者:潘存云教授
它的缺点是:凸轮轮廓与从动件的接触为点或者线的接触,易于磨损,所以通常用于 凸轮机构的特点是:只需恰当的设计出凸轮轮廓曲线,便可使从动件得到任意的预期 传递不大的控制机构中。 运动规律,而且结构简单、紧凑,设计方便。
§六、 凸轮机构的应用和类型
平面连杆机构是一种低副机构,一般只能近似地实现给定的运动规律, 而且其设计也较为复杂。当从动件的位移、速度和加速度必须严格的按照 结构:三个构件、盘(柱)状曲线轮廓、从动件呈杆状。 预定规律变化时,尤其是当原动件作连续运动而从动件必须作周期性件间 歇运动时,则采用凸轮机构最为简便。
2)按推杆形状分(从动件类型):尖顶、 滚子、 平底从动件。
特点: (1)尖顶从动件 尖顶能与复杂形状的凸轮轮廓保持接触,因而能实现任 尖顶--构造简单、易磨损、用于仪表机构;
意预期的运动规律。但尖顶与凸轮是点接触,磨损快,所以只宜用于受力不大 的低速凸轮机构。 滚子――磨损小,应用广; (2)滚子从动件 如图3—3和图3—4所示,为了克服尖顶从动件的缺点, 在从动件的尖顶处安装一个滚子,即成为滚子从动件。滚子和凸轮轮廓之间为 平底――受力好、润滑好,用于高速传动。 滚动摩擦,耐磨损,可以承受较大载荷,所以是从动件中最常用的一种型式。 (1)盘形凸轮 盘形凸轮是一个绕固定轴转动并且轮廓向径变化的盘形零件,如 (3)平底从动件 如图3—1所示,这种从动件与凸轮轮廓表面接触的端面 (2)移动凸轮 当盘形凸轮的回转中心趋于无穷远时,凸轮相对机架作直线运动 为一平面。显然,平底不能与凹陷的凸轮轮廓相接触。这种从动件的优点是: (3)圆柱凸轮 将移动凸轮卷成圆柱体即成为圆柱凸轮,如图3—4所示。 当不考虑摩擦时,凸轮与从动件之间的作用力始终与从动件的平底相垂直。传 动效率较高,且接触面间易于形成油膜,利于润滑,故常用于高速凸轮机构。
凸轮机构的类型应及其应用特点
3
凸轮轴调节
凸轮轴的调节可以实现不同工作状 态下的最佳波形和气门正时。
凸轮机构在机械加工中的应用
铣削加工
凸轮机构用于控制铣削刀具 的位置和工
凸轮机构用于控制车削刀具 的位置,使其按照特定曲线 进行加工。
齿轮加工
凸轮机构用于控制齿轮加工 刀具的位置和运动路径,实 现齿轮的精密加工。
凸轮机构用于控制工 具的位置和运动路径, 实现复杂的零件加工。
凸轮机构在自动生产 线中起到关键作用, 如装配、包装和搬运 等。
凸轮机构在发动机中的应用
1
气门控制
凸轮机构控制气门的开闭时间和持
可变气门正时
2
续时间,影响燃烧过程和功率输出。
通过调整凸轮机构的形状和传动装
置的差速来改变气门的开闭时间和
提供更高的燃烧效率。
凸轮机构的类型应及其应 用特点
凸轮机构是一种关键的机械装置,用于转换回转运动为直线或曲线运动的应 用中。本演示将介绍凸轮机构的各种类型、应用领域以及其在发动机和机械 加工中的重要性。
凸轮机构的定义和基本原理
凸轮机构是由凸轮和从动件组成的一种运动装置,通过凸轮的回转运动来控 制从动件的运动。其基本原理是通过凸轮的外形与从动件的接触来控制位置 和速度。
常见的凸轮机构类型及其特点
滚轮式凸轮机构
使用轮形凸轮和滚子从动件,适用于高速运动和重载应用。
滑块式凸轮机构
使用滑块和从动件,适用于高精度和低速运动的应用。
滑块滚轮式凸轮机构
结合滑块和滚轮的优点,广泛应用于工业生产线和机械加工中。
凸轮机构的应用领域
1 汽车工业
2 机械加工
3 工业自动化
凸轮机构在汽车发动 机中控制气门的开闭, 影响燃烧过程和动力 输出。
凸轮机构的应用及分类推杆的运动规律凸轮轮
无论是采用作图法还是解析法设计凸轮廓线,所依据的基本 原理都是反转法原理。
例 偏置直动尖顶推杆盘形凸轮机构 (1)凸轮的轮廓曲线与推杆的相对运动关系
一、凸轮机构的基本名词术语
基圆 基圆半径 r0 推程 推程运动角 δ0 远休 远休止角 δ01 回程 回程运动角 δ0′ 近休 近休止角 δ02 行程 h
尖顶直动推杆的位移曲线
二、推杆常用的运动规律
1、等速运动规律 2. 等加速等减速运动规律 3. 余弦加速度运动规律 4. 正弦加速度运动规律 5. 3-4-5多项式运动规律
(2) 空间凸轮机构
圆柱凸轮机构在 机械加工中的应用
凸轮机构在其它机器中的应用
2、按推杆形状分类
• (1)尖顶推杆: • 尖端能与任意复杂凸轮轮廓保持接触,因而能实现任意预期的运动规
律。 • 尖顶与凸轮呈点接触,易磨损,用于受力不大的场合。 • (2)滚子推杆: • 它改善了从动件与凸轮轮廓间的接触条件,耐磨损,可承受较大载荷,
凸轮机构基本尺寸的确定
为保证凸轮机构能正常运转,应使其最大压力角αmax小于临
界压力角αc, 增大l, 减小b,可以使αc值提高。
生产实际中,为了提高机构的效率,改善其受力情况, 通常 规定:凸轮机构的最大压力角αmax应小于某一许用压力角[α], 即
αmax<[α]
([α]<<αc)
许用压力角[α]的一般取值为
• (2) 空间凸轮机构:两活动构件之间的相对运动 为空间运动的凸轮机构,
(1) 平面凸轮机构
凸轮机构的作用
凸轮机构的作用凸轮机构是一种常见的机械传动装置,它主要由凸轮、摆杆、滑块等部件组成。
凸轮机构的作用是将旋转运动转化为直线运动或者将直线运动转化为旋转运动,从而实现机械设备的运动控制和动力传递。
下面将从凸轮机构的原理、分类、应用等方面展开介绍。
一、凸轮机构的原理凸轮机构的原理是利用凸轮的不规则形状,使得凸轮在旋转时,摆杆或滑块的运动轨迹呈现出规律性的变化,从而实现机械设备的运动控制。
凸轮的形状可以根据需要进行设计,常见的凸轮形状有圆形、椭圆形、心形、三角形等。
不同形状的凸轮可以实现不同的运动轨迹,从而满足不同的机械设备的运动要求。
二、凸轮机构的分类根据凸轮的形状和运动方式,凸轮机构可以分为以下几类:1. 圆柱凸轮机构:凸轮为圆柱形,摆杆或滑块在圆柱面上运动,常用于机床、自动化生产线等设备中。
2. 椭圆凸轮机构:凸轮为椭圆形,摆杆或滑块在椭圆面上运动,常用于汽车发动机、船舶等设备中。
3. 心形凸轮机构:凸轮为心形,摆杆或滑块在心形面上运动,常用于煤矿机械、冶金设备等设备中。
4. 三角凸轮机构:凸轮为三角形,摆杆或滑块在三角形面上运动,常用于纺织机械、印刷机械等设备中。
三、凸轮机构的应用凸轮机构广泛应用于各种机械设备中,主要用于实现机械设备的运动控制和动力传递。
以下是凸轮机构的一些应用:1. 机床:凸轮机构常用于机床中,用于控制刀具的进给、退刀、升降等运动。
2. 汽车发动机:汽车发动机中的凸轮机构用于控制气门的开关,从而实现汽车的正常运转。
3. 纺织机械:纺织机械中的凸轮机构用于控制纱线的张力、卷绕等运动。
4. 冶金设备:冶金设备中的凸轮机构用于控制钢水的倾倒、转移等运动。
总之,凸轮机构是一种重要的机械传动装置,它可以实现机械设备的运动控制和动力传递,广泛应用于各种机械设备中。
在实际应用中,需要根据具体的要求选择合适的凸轮形状和运动方式,从而实现最佳的运动效果。
凸轮机构的应用和分类
凸轮机构的寿命与维护
凸轮机构的寿命与运行条件、材料选择和润滑方式等有关,定期维护和保养可以延长凸轮机构的使用寿 命。
凸轮机构的保养和保养周期
凸轮机构的保养包括润滑、清洁和检查等内容,保养周期根据使用情况和负荷要求进行合理调整。
凸轮机构故障分析与排除
凸轮机构故障的原因多种多样,需要通过仔细分析和维修措施进行故障排除,以确保机械系统的正常运 行。
通过凸轮和滑块的协同运动,实现直线运动 和简单的机构功能。
摆线凸轮机构
通过凸轮的摆线运动,实现平滑且复杂的运 动轨迹和机构功能。
在IC发动机中的应用
凸轮机构在IC发动机中起到控制气门开闭时机和时序的重要作用,影响发动 机的动力性能、燃油经济性和排放控制等方面。
在汽车传动系统中的应用
凸轮机构在汽车传动系统中被广泛应用于离合器、变速器和传动轴等部位,实现动力输出和车速调节等 功能。
凸轮机构的应用和分类
凸轮机构是一种广泛应用于机械系统中的机构,通过凸轮和可动关节的协同 运动,实现了多种复杂的动作和功能。本文将介绍凸轮机构的应用和分类。
什么是凸轮机构
凸轮机构是一种由凸轮和可动关节组成的机械系统,通过凸轮的旋转运动, 使其上的可动关节产生规定的运动轨迹,从而实现特定的功能和动作。
凸轮机构的技术发展趋势
凸轮机构在现代工程中具有广泛的应用前景,随着技术的发展,凸轮机构将 更加智能化、高效化和可持续化。
注重人性化设计的凸轮机构
在凸轮机构的设计中,需注重人机工程学和人性化设计原理,提高机器操作人员的舒适度和安全性。
生产自动化中凸轮机构的应用
凸轮机构在生产自动化领域中的应用广泛,用于自动化生产线上的工件定位、 传送和操作等。
凸轮机构现代化设计思路
凸轮机构的应用及分类
工作原理
2
车轮构成,常用于汽车传动系统。
凸轮的旋转驱动车轮,通过轮胎
与地面的摩擦力传递动力。
3
应用举例
车轮轮机构广泛应用于汽车传动 系统、自行车传动系统等领域。
曲柄摇杆机构
1 定义
曲柄摇杆机构由曲柄 和与之配合的摇杆构 成,常用于内燃机。
2 工作原理
3 应用举例
曲柄的旋转驱动摇杆, 通过连杆将旋转运动 转化为往复运动。
工作原理
凸轮的运动将动力转化 为直线或摆动运动,通 过导轨控制运动轨迹。
应用举例
曲线轮机构广泛应用于 机床、自动装配线、升 降设备等领域。
曲柄摇杆机构广泛应 用于内燃机、发电机 等领域。
双摇杆机构
定义
双摇杆机构由两个独立的摇 杆组成,常用于机械加工设 备。
工作原理
两个独立的摇杆分别由凸轮 驱动,实现不同的运动路径 和速度。
应用举例
双摇杆机构广泛应用于数控 机床、切割设备等领域。
曲线轮机构
定义
曲线轮机构由凸轮的运 动与曲线配合的导轨构 成,常用于机械驱动系 统。
凸轮机构的应用及分类
凸轮机构是一种广泛应用于机械领域的重要装置,它能够将旋转运动转化为 直线或摆动运动。本文将介绍凸轮机构的应用及分类,帮助您更好地理解和 应用这一机械原理。
直杆轮机构
1
定义
直杆轮机构由转动的凸轮和与之配合的直杆构成,常用于工程机械。
2
工作原理
凸轮转动时,直杆按一定轨迹往复运动,实现工作机构的运动。
3
应用举例
直杆轮机构广泛应用于冲床、振动筛、旋转机械等领域。交叉摇Fra bibliotek机构定义
交叉摇杆机构由两个交叉配合的摇杆组成,常用于汽车悬挂系统。
机械原理-凸轮机构及其设计
第六讲凸轮机构及其设计(一)凸轮机构的应用和分类一、凸轮机构1.组成:凸轮,推杆,机架。
2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。
缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。
二、凸轮机构的分类1.按凸轮的形状分:盘形凸轮圆柱凸轮2.按推杆的形状分尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。
易遭磨损,只适用于作用力不大和速度较低的场合滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。
不能与凹槽的凸轮轮廓时时处处保持接触。
平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。
不能与凹槽的凸轮轮廓时时处处保持接触。
3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。
(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。
4.根据凸轮与推杆接触方法不同分:(1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。
①等宽凸轮机构② 等径凸轮机构③共轭凸轮(二)推杆的运动规律一、基本名词:以凸轮的回转轴心O 为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0 称为基圆半径。
推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。
推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。
回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。
休止:推杆处于静止不动的阶段。
推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角二、推杆常用的运动规律1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。
第三章凸轮机构
作图:
四.摆线运动规律(正弦运动规律):
s hh[1/[10 csoisn2(2(//0]0/)/(02)]
a2h12 sin2(/0)/02
速度、加速度均连 续没有突变,无冲击。 可用于高速传动。
冲击。用于中、低
速场合。
V0=0,
等加速等减速
s
1 2
at 2
当时间为→ 位移为 →
1 1
: :
2 4
: :
3 9
:4 :16
作图: (推程)
前半行程(h/2)→等加速 →将每半行程时 →位 1 : 4 : 9 :16 后半行程(h/2)→等减速 间分为χ(4) 份 移 16 : 9 : 4 : 1
3.3 凸轮机构的压力角
凸轮机构中的作用力与凸轮机构压力角
压力角:从动件运动方向与受力方向 夹角的锐角。 压力角越小,机构传动效率越好。 压力角过大,机构将处于自锁状态。 许用压力角:推程[α]=30°-40°
max
压力角与凸轮机构尺寸的关系
tanPCOP OC
BC BC
OCe
BCs r02e2
凸轮的轮廓线是按照从动件的运动规律来设计的
§3-2从动件的常用运动规律 p.41
(一)凸轮运动常用术语:图3-5 p.42
基圆:以轮廓的最小向径所作的圆r0-基圆半径 推程:从动件从离回转中心最近→最远的这一过程。 升程h:推程所移动的距离。
推程运动角φ0 : 与推程对应的凸轮转角
远休止角φS: 从动件在最远位置不动时对应的凸轮转角
凸轮机构及其设计
h
1
作者:潘存云教授
δ
δ
δ
-∞
2).二次多项式(等加等减速)运动规律 位移曲线为一抛物线。加、减速各占一半。
推程加速上升段边界条件:
起始点:δ =0,
中间点:δ =δ
1
s=0, v= 0 /2,s=h/2
求得:C0=0, C1=0,C2=2h/δ21 加速段推程运动方程为:
s =2h/δ21 δ2 v =4hω /δ21 δ a =4hω2 /δ21
在平面连杆机构中,导杆机构的α=?
ω r0
O n
2)导杆机构 传动角恒等于90° 有效分力: F’ =Fsinγ
复习:平面连杆机构的压力角和传动角 压力角:从动件上受力点的速度方向与该点的受力方向 之间所夹锐角。用α表示 切向分力 : F’= Fcosα ( 有效分力) α → F ’↑ 法向分力: F”= Fsinα 传动角:压力角的余角。 用γ表示 B
2)理论轮廓为外凸曲线
ρ rT ρ
a
轮廓正常
ρ > rT ρa=ρ-rT >0 轮廓变尖
rT
ρ
轮廓失真
rT
ρ
作者:潘存云教授
设计:潘存云
ρ = rT ρ <r T ρa=ρ-rT=0 ρa=ρ-rT<0 对于外凸轮廓,要保证正常工作,应使: ρ min> rT=0.4 r0
-ω
ω
作者:潘存云教授
9’ 11’ 12’
13’ 14’ 9 11 13 15
理论轮廓
设计:潘存云
实际轮廓 设计步骤小结: ①选比例尺μ l作基圆r0。 ②反向等分各运动角。原则是:陡密缓疏。 ③确定反转后,从动件尖顶在各等份点的位置。 ④将各尖顶点连接成一条光滑曲线。 基圆半径 ⑤作各位置滚子圆的内(外)包络线。
凸轮机构的应用及其分类
二)按从动件上高副元素的几何形状分
1、尖顶从动件 2、滚子从动件 3、平底从动件
三)、根据从动件的运动形式分
1、移动从动件凸轮机构
对
心
偏
心
2、摆动从动件凸轮机构
表中给出了从动件的运动方式及其 与凸轮接触形式的分类和特点。
四)按机构封闭性质分
⑴ 力封闭式 利用弹簧力或
从动件重力使从动件与凸轮 保持接触,如右图所示。
⑵ 形封闭式 利用凸轮或从
动件的特殊形状而始终保持 接触。如下图所示。
五)按从动件导路与凸轮的相对位置分
⑴ 对心凸轮机构
一偏置距离。 从动件导路中心线通过凸轮回转中心。
⑵ 偏心凸轮机构 从动件导路中心线不通过凸轮回转中心,而存在
内燃机
本章完
凸轮机构主要是由机架,凸轮和从动件组 成,凸轮和从动件之间形成高副。 凸轮机构的特点是:结构简单、紧凑,设 计 容易且能实现任意复杂的运动规律。 但 因凸轮与从动件之间系点、线接触, 易于 磨损,故只用于受力不大的场合。
二、凸轮机构的分类
一)按凸轮的形状分
1、盘形凸轮 2、移动凸轮 3、圆柱凸轮
§3-1
凸轮机构的应用和类型
一、凸轮机构的组成及应用
凸轮机构是一种结构简单且容易实现各种复杂运
动规律的高副机构,广泛应用于自动化及半自动
化机械中。 如图所示为内燃机配气凸轮机构 。凸轮1以等 角速度回转,驱动从动件2按预期的运动规律启闭 阀门。
动画
一、凸轮机构的组成:
机架3 从动件2
1 O1
但易于一按凸轮的形件2滚子从动件3平底从动件二按从动件上高副元素的几何形状分三根据从动件的运动形式分1移动从动件凸轮机构对心偏心2摆动从动件凸轮机构表中给出了从动件的运动方式及其与凸轮接触形式的分类和特点
机械设计-凸轮机构的应用和分类
凸轮机构的应 用和分类
1 凸轮机构的组成
2 凸轮机构的特点及应用
3 凸轮机构的分类
一、凸轮机构的组成
1.凸轮机构的组成 凸轮机构是由凸轮、从动件和机架组成的高副机构。
凸轮机构
机架 从动件
高副
凸轮
作用:将凸轮的转动或移动转换成从动件的移动或摆 动
二、凸轮机构的特点及应用
1.凸轮机构的特点
➢ 可使从动件实现各种复杂的运动规律 ➢ 结构结构简单紧凑,易于设计 ➢ 凸轮机构是高副机构,易于磨损, ➢ 凸轮轮廓加工比较困难。
2.凸轮机构的应用: 运用于各种机械设备,尤其在半自动和自动机械中运用较为普遍,用于传递运动,
但由于凸轮机构是高副机构,易于磨损,因此只适用于传递动力构的命名:般凸轮机构的命名原则: 布置形式+运动形式+推杆形状+凸轮形状
对心直动尖顶从动件盘形凸轮机构
偏置直动滚子从动件盘形凸轮机构
小结
1.凸轮的组成 2.凸轮机构的特点及应用 3.凸轮机构的分类
感谢您的观看
车床靠模机构
凸轮绕线机构
进刀机构
内燃机配气机构
三、凸轮机构的分类
1.按照凸轮的形状不同可把凸轮分为以三种:盘形凸轮机构、移动凸轮机构和圆柱凸轮机构
盘形凸轮
移动凸轮
圆柱凸轮
2.按照从动件形状分为以下几种
尖顶从动件
滚子从动件
平底从动件
3.按从动件的运动形式分为:移动(摆动)从动件和摆动从动件
移动从动件
凸轮机构的应用及其分类
凸轮机构在其他领域的应用
除了发动机和机械加工,凸轮机构还被广泛应用于自动化生产线上的物料搬运机器人,实现物料的精确定位和 传递。
凸轮机构的基本构造和原理
凸轮轴
凸轮轴是凸轮机构的核心部件, 用于传递旋转运动和控制运动 轨迹。
凸轮轮廓
凸轮轮廓决定随动件的运动规 律和廓的接触, 实现旋转运动向直线或曲线运 动的转换。
凸轮机构的分类及典型应用
1 按工作特点分类
周期运动凸轮机构、非周期运动凸轮机构、径向平移凸轮机构。
2 按运动形式分类
简单凸轮机构、复杂凸轮机构、单转轴转子式凸轮机构。
3 典型应用
发动机中的配气机构、机械加工中的进给装置、工业生产线上的物料搬运机器人。
常见的凸轮机构分类介绍
周期运动凸轮机构
适用于需要定时、周期性运动 的机械装置,如发动机中的配 气机构。
复杂凸轮机构
由多个凸轮轮廓和随动件组成, 实现多种复杂的运动形式。
单转轴转子式凸轮机 构
用于实现多组凸轮传动的机构, 可实现复杂的运动轨迹。
凸轮机构在发动机中的应用
凸轮机构在发动机中扮演着重要角色,控制气门的开闭,调节燃烧室内气体 流动,实现高效燃烧和动力输出。
凸轮机构在机械加工中的应用
凸轮机构在机械加工中的主要应用是进给装置,通过凸轮的旋转,驱动加工 工件进行线性或曲线运动,实现工件的加工。
凸轮机构的应用及其分类
凸轮机构是一种常用的机械装置,用于将旋转运动转化为直线或曲线运动。 本节将介绍凸轮机构的定义、作用以及基本构造和原理。
凸轮机构的定义和作用
凸轮机构是一种能将旋转运动转化为直线、曲线或往复运动的机械装置。它 以凸轮轴为基础,通过凸轮轮廓和随动件之间的接触与相对运动来实现运动 的转换。
第一讲 凸轮机构的应用和分类及从动件常用运动规律
形状锁合
22
第一讲 凸轮机构的类型及其常用运动规律
凸轮机构分类示例
滚子移动式圆柱凸轮机构
23
第一讲 凸轮机构的类型及其常用运动规律
凸轮机构分类示例
凸轮机构
内燃机
力锁合
24
第一讲 凸轮机构的类型及其常用运动规律
三. 凸轮机构的应用和特点
应用:广泛地应用于各种机械,特别是自动机械、自动
第一讲凸轮机构的类型及其常用运动规律19凸轮机构分类示例尖顶从动件移动式摆动式第一讲凸轮机构的类型及其常用运动规律20凸轮机构分类示例滚子从动件移动式摆动式第一讲凸轮机构的类型及其常用运动规律21凸轮机构分类示例平底从动件移动式摆动式第一讲凸轮机构的类型及其常用运动规律22凸轮机构分类示例滚子摆动式圆柱凸轮机构形状锁合第一讲凸轮机构的类型及其常用运动规律23凸轮机构分类示例滚子移动式圆柱凸轮机构第一讲凸轮机构的类型及其常用运动规律24凸轮机构分类示例内燃机力锁合凸轮机构力锁合凸轮机构第一讲凸轮机构的类型及其常用运动规律25三
3
第一讲 凸轮机构的类型及其常用运动规律
§11-1 凸轮机构的应用和分类
4
第一讲 凸轮机构的类型及其常用运动规律
上次课教学内容复习
解答学生问题,提出问题:
1. 平面四杆机构的演化机构基本型式有哪些 ? 2. 为什么说导杆机构有较好的传力性能 ?
5
第一讲 凸轮机构的类型及其常用运动规律
新课导入:
2. 按从动件的形状分类
(3) 平底从动件: 从动件与凸轮轮廓的接触一端为一平面。若不考虑摩 擦,凸轮对从动件的作用力始终垂直于端平面,传动效率 高,且接触面间容易形成油膜,利于润滑,故常用于高速 凸轮机构。它的缺点是不能用于凸轮轮廓有凹曲线的凸轮 机构中。 (4) 曲面从动件:
凸轮机构的应用和分类
凸轮机构的应用和分类凸轮机构是一种常见于机械工程领域的机构,它被广泛应用于各种机械系统中,如汽车发动机、起重机、工业生产线等。
凸轮机构是一种能够将旋转运动转化为直线运动的装置,它利用凸轮的运动,带动相应的机构运动。
凸轮机构的应用和分类,是一个非常重要的机械工程知识点,下面我们就来详细讨论一下这个问题。
凸轮机构的应用:凸轮机构在机械工程中的应用非常广泛,以下列举几个例子:1.汽车发动机中,凸轮机构用于控制气门的开闭。
2.起重机中,凸轮机构用于控制臂的升降和伸缩。
3.工业生产线中,凸轮机构用于控制机械手臂的运动。
4.印刷机中,利用凸轮机构控制覆盖印刷部件的橡皮辊的平移和压力。
5.普通柴油机中,利用凸轮机构控制喷油泵的柱塞运动。
凸轮机构的分类:凸轮机构可以根据凸轮的类型、传动方式、运动形式等多种方式进行分类,下面我们分别进行介绍:1.按照凸轮类型分类:(1)圆柱凸轮机构:凸轮为圆柱形,常见于发动机的气门机构。
(2)球柱凸轮机构:凸轮为球柱形,常见于重型机械的伸缩臂等。
(3)椭圆凸轮机构:凸轮为椭圆形,可以控制机械构件的速度和加速度,常用于机械加工。
(4)凸缘凸轮机构:凸轮为凸缘形,和环形凸轮不同的是,它的凸轮周长不是圆周,可以通过改变凸轮的外形来控制机构运动。
2.按照传动方式分类:(1)平面副凸轮机构:凸轮的轴线和从动件的轴线在同一平面内,例如喷油泵的凸轮机构。
(2)空间副凸轮机构:凸轮的轴线和从动件的轴线不在同一个平面内,例如空间伸缩臂。
3.按照运动形式分类:(1)转角运动凸轮机构:凸轮可以带动从动件做角度转动,例如喷油泵。
(2)轴向运动凸轮机构:凸轮可以带动从动件做轴向运动,例如发动机气门机构。
(3)直线运动凸轮机构:凸轮可以带动从动件做直线运动,例如冲压机的工作台。
总结:凸轮机构是机械工程中非常常见的机构之一,它具有将旋转运动转化为直线运动的功能,可以控制机械装置的运动,广泛应用于各种机械系统中,如汽车发动机、起重机、工业生产线等。
凸轮机构的类型及应用
0.010.1 0.2 0.30.40.50.60.81.0
2.0 3.0 6.0
200 300 350
0.01 0.1 0.2 0.4 0.6 1.0 2.0 5.0 5 0.01 0.1 0.2 0.3 0.40.6 1.0 2.0 5.0 85 5 85 hrb 等加速等减速运动 hrb 余弦加速度运动 10 80 80 10 15 15 75 75 20 最大压力角 最大压力角max max 20 70 70 25 25 65 65 30 30 60 60 35 40 35 40 55 55 50 45 45 50
■ 靠模车削机构
工件1回转,凸轮3作为 靠模被固定在床身上, 刀 架2 在弹簧作用下与凸轮 轮廓紧密接触。 当拖板4纵向移动时,刀 架2 在靠模板(凸轮)曲线 轮廓的推动下作横向移动, 从而切削出与靠模板曲线 一致的工件。
■自动送料机构
2
3
1
凸轮机构是由凸轮、从动件和机架三个
基本构件组成的高副机构。
20 15
35 40 50 60 25 30 70
凸轮转角 hro 等速运动
80 90 100
20 15 10 200 300 5 350 0.01
35 40 25 30
50 60
凸轮机构
凸轮是一种具有曲线轮廓或凹槽的构件,在运 动时可使从动件获得连续或间歇的任意运动规律。
凸轮机构广泛用于传递动力不大的各种机器和
机构中。
凸轮机构概述
一、凸轮机构的应用 ■ 内燃机配气机构 盘形凸轮1匀速转动,通 过其曲线轮廓向径的变化, 驱动从动件2 按内燃机工 作循环的要求有规律地开 启和闭合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当不计凸轮与从动件之 间的摩擦 时,凸轮给予从 动件的力F是沿法线方向, 从动件运动方向与力F之间 的锐角α即压力角 压力角。凸轮压 压力角 力角α是反映机构传力特性 α 的一个重要参数。如图所示, 力F可分解为沿从动件运动 方向的有用分力F′和使从件 紧压导路的有害分力F″,且 F″=F′tgα
5
6 4’ 3’ 2’ 1’ 5’ 6’
1
O v
1
2
3
4
5
6
ϕ
o a
ϕ
o
ϕ
(三)正弦加速度规律
2p a=csin(w t)=csin( j) 1 1 F F 2p v= ∫adt =-c1 cos( j)+c2 2pw F F2 2p j s= ∫vdt =-c1 2 2 sin( j)+c2 +c3 4p w F w
⑶ 远休止角——从动件在距凸轮轴心最远位置处静止不动所 远休止角 对应的凸轮转角δs称为远休止角。 回程、回程运动角 回程运动角——从动件在凸轮轮廓的作用下由距凸 ⑷ 回程 回程运动角 轮轴心最远位置回到距凸轮轴心最近位置的过程称为从动件 的回程,回程中凸轮转过的角度δh称为回程运动角,如图所 , 示。 近休止角——从动件在距凸轮轴心最近位置处静止不动所 ⑸ 近休止角 对应的凸轮转角δs′称为近休止角。
n
F a
F’
v F” e
O
S
p
c
ω
rmin
n
上式表明,驱动从动件的有用分力F′一定时, 压力角α 越大,则有害分力F″越大,机构的效率 越低。 当α增大到一定程度,以致F″在导路中所引起 的摩擦阻力大于有用分力F′时,无论凸轮加给从 动件的作用力多大,从动件都不能运动,这种现 象称为自锁。
从减小推力和避免自锁的观点来看,压 力角愈小愈好。
二)按从动件上高副元素的几何形状分
1、尖顶从动件 2、滚子从动件 3、平底从动件 、 、 、
三)、根据从动件的运动形式分 )、根据从动件的运动形式分
1、移动从动件凸轮机构 、
对
心
偏
心
2、摆动从动件凸轮机构 、
表中给出了从动件的运动方式及其 与凸轮接触形式的分类和特点。
四)按机构封闭性质分 按机构封闭性质分
1、对于中、低速运动的 凸轮机构,要求从动件 、对于中、 凸轮机构, 的位移曲线在衔接处相切, 的位移曲线在衔接处相切,以保证速度曲线的 连续。 连续。 2、对于中、高速运动的凸轮机构则还要求从动 、对于中、 件的速度曲线在衔接处相切, 件的速度曲线在衔接处相切,以保证加速度曲 的连续。 的连续。
三、从动件运动规律设计: 从动件运动规律设计:
s
作图步骤:
1、建立坐标系,并将横 坐标6等分,以从动件 h 3 推成h作为直径作半圆, 2 并将其6等分。分别记 作1、2、3、4、5、6。 2、分别作这些等分点关 于ϕ轴和s轴的垂线,分 别俩俩对应相交于1‘、2’ 3‘、4‘、5’、6‘。 3、光滑的连接1‘、2’ 3‘、4‘、5’、6‘,所 形成的曲线即为从 动件的位移线图。 4
h
0
作图步骤:
1、建立坐标系,并将横 坐标6等分,分别记作1、 2、3、4、5、6,以o为端 点 作一射线并按平方关 系描点记为1、4、9、4、 1、0。 2、连接0点与推成h最高 点c ,并过点1、4、9、4、 1分别作其平行线,再过这 些点作s轴的垂线,和过点 1、2、3、4、5、6作ϕ轴 ϕ 的垂线相交与1’、2’…. 3、光滑的连接1‘、2’ 3‘、4‘、5’、6‘,所 形成的曲线即为从 动件的位移线图。
动画
如图为弹子锁与钥匙组成的凸轮机构,钥匙是凸轮,插入 弹子锁的锁芯中,凸轮廓线将不同长度的弹子2推到同样的 高度,即每一对弹子(2与7)的分界面与锁芯和锁体的分界 面相齐,则通过锁体可以转动锁芯,拨开琐闩4。
下图为自动送刀机构, 当带有凹槽的凸轮1转动时,通过槽 中的滚子,驱使推杆2作往复移动。凸轮每转过一周,推杆 即从储料器中推出一个毛坯,送到加工位置。
凸轮廓线上不同点处的压力角是不同的。为保证凸 轮机构能正常运转,设计时应使最大压力角不超过 许用压力角[α],即αmax≤[α] ,对于直动从动件凸 轮机构,建议取许用压力角[α]=30°;对于摆动从 动件凸轮机构,建议取许用压力角[α]=45°。
⑴ 力封闭式 利用弹簧力或
从动件重力使从动件与凸轮 保持接触,如右图所示。
⑵ 形封闭式 利用凸轮或从
动件的特殊形状而始终保持 接触。如下图所示。
五)按从动件导路与凸轮的相对位置分 按从动件导路与凸轮的相对位置分
⑴ 对心凸轮机构
一偏置距离。 从动件导路中心线通过凸轮回转中心。
⑵ 偏心凸轮机构 从动件导路中心线不通过凸轮回转中心,而存在
vmax
a max
冲击特性 刚性 柔性 柔性 无
适用范围 低速轻载 中速轻载 中速中载 高速轻载
等加速等减速
余弦加速度 正弦加速度
1.0 2.0 1.57 2.00
∞ 4.00 4.93 6.28
s
h
0 v
Φ ϕ
0
Φ ϕ Φ
+∞
0 a=0
a
改进型等速运动规律
−∞
ϕ
§3-3 凸轮机构的基本尺寸的确定
v = hω Φ
h S = ϕ Φ
a=0
等速运动规律
s
h
v
+∞
0
a
amax
0
Φ 刚性冲 击 Φ a=0 − ∞
−∞
-amax
vmax
0
Φ
从加速度线上可 2、 n=2的运动规律 、 的运动规律 以看出,在从动 件运动的始末两 s 点,理论上加速 2 度值由零突变为 从图可以看出,从 s = c0 + c1ϕ + c2ϕ 无穷大,致使从 动件的加速度发 v= 动件受的惯性力 ω c1 + 2ω c2ϕ 0 生突变的点,其 Φ ϕ 也由零变为无穷= 2ω 2 c av 惯性力亦有突 2 ϕ大。而实际上材 料有弹性,加速 变,但因为该突 ϕ =Φ 2,s =h 2 ϕ = 0, s = 0, v = 0 度和推力不致无 变有限,古所引起 0 Φ ϕ =Φ, 穷大,但仍将造= h 2 ϕ = Φ 2, s 的冲击亦是有限s =h,v =0 ϕ 成巨大的冲击, a 的,这里特称其为 这种冲击称为刚 Φ 2 h 柔性冲击 2 h 2 ϕ性冲击。 0柔性冲击. (F- j) s = h- 2 ϕ 性冲击。 2 j 2 s = F F j 4 hw 柔性冲击 4 hw v = + ∞ 柔性冲击 j v = F2 (F- j) + ∞ 2 F 等加速等减速运动规律 4h 2 4 h 2 a=- 2 w Φ ϕ ϕ a = F 2 0w F
动画
自动机床的进刀机构
冲压机
(动画)
凸轮机构主要是由机架,凸轮和从动件组 成,凸轮和从动件之间形成高副。 凸轮机构的特点是:结构简单、紧凑,设 计 容易且能实现任意复杂的运动规律。 但 因凸轮与从动件之间系点、线接触, 易于 磨损,故只用于受力不大的场合。
二、凸轮机构的分类
一)按凸轮的形状分
1、盘形凸轮 、 2、移动凸轮 、 3、圆柱凸轮
cos(
Φ
ϕ) + c
ϕ ω
2
+ c3
v 0 a 0 j 0 ϕ ϕ ϕ
ϕ = 0, s = 0, v = 0 ϕ =Φ s =h ,
s= h p 1- c s o( j) 2 F p w h p v= s ( in j) 2F F 2 2 p h w p a= c s o( j) 2 F 2F
⑴基圆、基圆半径——以凸轮轮廓最小向径rmin为半径所作的圆 基圆、基圆半径 称为凸轮的基圆, rmin 称为基圆半径。如图所示。 从动件推程、 升程、 推程运动角——从动件在凸轮轮廓的作 ⑵ 从动件推程 、 升程 、 推程运动角 用下由距凸轮轴心最近位置被推到距凸轮轴心最远位置的过程 称为从动件的推程,在推程中从动件所走过的距离称为从动件 的升程h,推程对应的凸轮转角 δt称为推程运动角,如图所示。 ,
§3-2 常用从动件运动规律
凸轮机构设计的根本任务
是根据工作要求 选定合适的凸轮机构的型式及从动件的运动规律,并 合理地确定基圆等基本尺寸,然后根据选定的从动件 的运动规律设计出凸轮应具有的凸轮轮廓曲线。其中, 根据工作要求选定从动件的运动规律,乃是凸轮轮廓 设计的前提。
一、凸轮机构运动分析
1. 凸轮机构的基本名词术语
1 4 9 4
s c 4’ 3’ 2’ 1 o v 1’ 1 2 3 4 5 6 ϕ 5’ 6’
o a
ϕ
o
ϕ
(二)余弦加速度规律
a = c1 cosωt = c1 cos( v = adt = c1
s 0
π π
Φ ϕ
∫
Φ
Φ
ϕ)
2
πω
sin(
2
s = vdt = −c1
∫
Φ
2
Φ
ϕ) + c π
πω
2
ϕ = 0, s = 0 ϕ = Φ,s = h
2 π ϕ 1 sin( ϕ) s = h − π Φ Φ 2 v= a=
ω π h 2 1−cos( ϕ) Φ Φ πω 2 h 2
Φ
2
sin(
π 2
Φ
ϕ)
二、组合运动规律简介
运动规律组合应遵循的原则: 运动规律组合应遵循的原则:
作用在从动件上的驱动力与该力作用点绝对速度 之间所夹的锐角称为压力角。在不计摩擦时,高副 中构件间的力是沿法线方向作用的,因此,对于高构, 压力角也即是接触轮廓法线与从动件速度方向 所夹的锐角。
一、凸轮机构中的作用力与凸轮机构的压力角