逆命题与逆定理测试卷及答案

合集下载

八年级数学《2.5逆命题和逆定理》基础训练(含答案)

八年级数学《2.5逆命题和逆定理》基础训练(含答案)

2.5 逆命题和逆定理1.下列说法中,正确的是(A)A. 每一个命题都有逆命题B. 假命题的逆命题一定是假命题C. 每一个定理都有逆定理D. 假命题没有逆命题2.下列命题的逆命题为真命题的是(C)A. 直角都相等B. 钝角都小于180°C. 若x2+y2=0,则x=y=0D. 同位角相等3.下列定理中,有逆定理的是(D)A. 对顶角相等B. 同角的余角相等C. 全等三角形的对应角相等D. 在一个三角形中,等边对等角4.下列命题中,其逆命题是假命题的是(B)A. 等腰三角形的两个底角相等B. 若两个数的差为正数,则这两个数都为正数C. 若ab=1,则a与b互为倒数D. 如果|a|=|b|,那么a2=b25.写出下列命题的逆命题,并判断逆命题的真假,若是假命题,请举出反例.(1)若x=y=0,则x+y=0.【解】逆命题:若x+y=0,则x=y=0.这个逆命题是假命题.反例:当x=-1,y =1时,x+y=0,但x≠0,y≠0.(2)等腰三角形的两个底角相等.【解】逆命题:有两角相等的三角形是等腰三角形.这个逆命题是真命题.6.下列定理中,哪些有逆定理?如果有逆定理,请写出逆定理.(1)同旁内角互补,两直线平行.(2)三边对应相等的两个三角形全等.【解】(1)有逆定理,逆定理是“两直线平行,同旁内角互补”.(2)有逆定理,逆定理是“如果两个三角形全等,那么这两个三角形的三边对应相等.”(第7题)7.利用线段垂直平分线性质定理及其逆定理证明以下命题.已知:如图,AB=AC,DB=DC,点E在AD上.求证:EB=E C.【解】连结B C.∵AB=AC,∴点A在线段BC的垂直平分线上.∵DB=DC,∴点D在线段BC的垂直平分线上.∴AD是线段BC的垂直平分线(两点确定一条直线).又∵点E在AD上,∴EB=E C.8.写出命题“如果一个角的两边与另一个角的两边分别垂直,那么这两个角相等”的逆命题,并判断原命题和逆命题的真假.若是假命题,请举出反例.【解】逆命题:如果两个角相等,那么其中一个角的两边与另一个角的两边分别垂直.原命题是假命题.反例:如解图①,∠CAD的两边与∠EBF的两边分别垂直,但∠CAD=45°,∠EBF=135°,即∠CAD≠∠EBF.(第8题解)逆命题是假命题.反例:如解图②,∠CAD=∠EBF,但显然AC与BE,BF都不垂直.9.写出命题“等腰三角形底边上的中点到两腰的距离相等”的逆命题,并证明该逆命题是真命题.【解】逆命题:如果一个三角形一边上的中点到另两边的距离相等,那么这个三角形是等腰三角形.已知:如解图,在△ABC中,D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,且DE=DF.(第9题解)求证:△ABC为等腰三角形.证明:连结A D.∵D是BC的中点,∴S△ABD=S△AC D.∵DE⊥AB,DF⊥AC,∴S△ABD=12AB·DE,S△ACD=12AC·DF.又∵DE=DF,∴AB=AC,∴△ABC为等腰三角形.10.举反例说明定理“全等三角形的面积相等”没有逆定理.【解】逆命题:如果两个三角形的面积相等,那么这两个三角形全等.反例:如解图所示,l1∥l2,△ABC和△BCD同底等高,∴△ABC的面积等于△BCD的面积,但△ABC和△BCD不全等.故此定理没有逆定理.(第10题解)11.已知命题“等腰三角形底边上的中线与顶角的平分线重合”,写出它的逆命题,判断该逆命题的真假,并证明.【解】逆命题:一边上的中线与它所对角的平分线重合的三角形是等腰三角形,是真命题.(第11题解)已知:如解图,在△ABC中,BD=CD,AD平分∠BA C.求证:△ABC是等腰三角形.证明:延长AD到点E,使DE=AD,连结BE,CE.∵BD=CD,DE=DA,∠BDE=∠CDA,∴△BDE≌△CDA(SAS).∴BE=CA,∠BED=∠CA D.∵AD平分∠BAC,∴∠CAD=∠BA D.∴∠BAD=∠BE D.∴AB=BE.∴AB=A C.∴△ABC是等腰三角形.。

19.3 逆命题和逆定理(基础练+提升练)(原卷版)

19.3  逆命题和逆定理(基础练+提升练)(原卷版)

19.3 逆命题和逆定理(基础练+提升练)一、单选题1.(2021上·上海·八年级校考期末)下列命题的逆命题是真命题的是()2.(2022上·上海·八年级专题练习)下列命题的逆命题是真命题的是()A.对顶角相等B.等边三角形是轴对称图形C.全等三角形的对应角相等D.全等三角形的对应边相等3.(2022上·上海·八年级上海市民办立达中学校考阶段练习)下列命题中,其逆命题是假命题的是()=A.同旁内角互补,两直线平行B.若22=,则a ba bC.锐角与钝角互为补角D.相等的角是对顶角4.(2022上·上海黄浦·八年级校联考阶段练习)下列命题中,逆命题是假命题的是()A.等边三角形的三个内角都等于60°B.如果两个三角形全等,那么这两个三角形的对应角相等C.如果两个三角形全等,那么这两个三角形的对应边相等D.相等的两个角是对顶角5.(2023上·上海静安·八年级上海市风华初级中学校考期末)下列定理中,如果其逆命题是真命题,那么这个定理是()A.对顶角相等B.直角三角形的两个锐角互余C.全等三角形的对应角相等D.邻补角互补6.(2020上·上海·八年级校考期中)下列定理中,没有逆定理的是().A.两直线平行,同旁内角互补B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.等腰三角形两个底角相等D.同角的余角相等7.(2021上·上海浦东新·八年级校考期中)在下列各原命题中,逆命题是假命题的是()A.两直线平行,同旁内角互补;B.如果两个三角形全等,那么这两个三角形的对应边相等;C.如果两个三角形全等,那么这两个三角形的对应角相等;D.两个相等的角是对顶角.8.(2022上·上海徐汇·八年级统考期末)下列命题中,其逆命题是真命题的命题个数有()(1)全等三角形的对应边相等;(2)对顶角相等;(3)等角对等边;(4)全等三角形的面积相等.A.1个B.2个C.3个D.4个9.(2023下·上海嘉定·八年级校考开学考试)下列命题的逆命题是假命题的是()A.同位角相等,两直线平行B.在一个三角形中,等边对等角C.全等三角形三条对应边相等D.全等三角形三个对应角相等二、填空题10.(2022上·上海·八年级阶段练习)写出命题“等腰三角形两腰上的高相等”的逆命题:如三、解答题(2)写出此命题的逆命题;(3)判断此命题的逆命题是真命题还是假命题,如果是假命题,请举出一个反例进行说明.13.(2022上·全国·八年级专题练习)写出下列命题的逆命题,并判断原命题与逆命题的真假.(1)内错角相等.(2)若两个角相加等于180°,则这两个角互为邻补角.14.(2022上·八年级课时练习)下列定理中,哪些有逆定理?如果有逆定理,说出它的逆定理.(1)等腰三角形的两个底角相等.(2)内错角相等,两直线平行.(3)对顶角相等.15.(2020下·江苏泰州·七年级统考期末)(1)已知:如图,直线AB、CD、EF被直线BF所截,B F∠+∠=︒;∠=∠.求证:180∠+∠=︒,23B1180(2)你在(1)的证明过程中应用了哪两个互逆的真命题.16.(2020下·陕西渭南·八年级统考期中)用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是∠ABC的一个外角.求证:∠1=∠A+∠B.17.(2022上·浙江·八年级专题练习)写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题,若是假命题,请举出一个反例说明:(1)两直线平行,同旁内角互补;(2)垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.18.(2022上·八年级课时练习)下列定理中,哪些有逆定理?如果有逆定理,写出它的逆定理.(1)同旁内角互补,两直线平行.(2)三角形的两边之和大于第三边.。

2.5逆命题和逆定理

2.5逆命题和逆定理

B
C D E
举反例说明下列命题的逆命题是假命题:
(1)如果一个整数的个位数字是5, 那么这个整数能被5整除. (2) 对顶角相等.
本节课你学到什么?
作业:
(1)同位角相等; 相等的角是同位角. (假) 0 (2)等边三角形有一个角是600; 有一个角是60 的三角形是等边 (假) 三角形. (真) (3)轴对称图形是等腰三角形;等腰三角形是轴对称图形. (4)飞机是会飞的交通工具. 会飞的交通工具是飞机. (假)
判断下列说法是否正确?请说明理由.
(3)真命题的逆命题是真命题
A
O
B
课内练习2
求证:三角形的三条边的垂直平分线交于一点.
已知: △ABC中, AB和AC边的中垂线交于点P.
求证:点P在BC边的中垂线上.
证明:连接AP,BP,CP. ∵PD、PE分别AB、AC的中垂线 ∴AP=BP, AP=CP ∴BP=CP ∴点P在BC的中垂线上. B D A E
P
C
例2
命题 ⑴两直线平行,同位角相等. 条件 结论 真假 真
两直线平行 同位角相等
⑵同位角相等,两直线平行.
⑶如果a=b,那么a2=b2. ⑷如果a2=b2,那么a=b.
同位角相等 a=b
a2=b2
两直线平行 a2=b2
a=b
真 真

新知学习
在两个命题中,如果第一个命题的条件是第二个命题的 结论,而第一个命题的结论是第二个命题的条件,那么 这两个命题叫做互逆命题.
命题
⑴两直线平行,同位角相等. ⑵同位角相等,两直线平行. ⑶如果a=b,那么a2=b2. ⑷如果a2=b2,那么a=b.
条件
两直线平行 同位角相等 a= b a2=b2

2.4 逆命题和逆定理(解析版)

2.4 逆命题和逆定理(解析版)

2.4 逆命题和逆定理(3)举出反例即可.【详解】(1)解:此命题的条件为:a=b,结论为:|a|=|b|;(2)此命题的逆命题为:如果|a|=|b|,那么a=b;(3)此命题的逆命题是假命题,当a,b为相反数时,它们的绝对值相等,但本身不相等,如a=2,b=―2时,|2|=|―2|,而2≠―2.【点睛】本题考查的是命题与定理,用到的知识点是真假命题的定义,正确的命题叫真命题,错误的命题叫做假命题,交换命题的中题设和结论即为原命题的逆命题.考查题型二互逆定理4.下列说法正确的是()A.任何命题都有逆命题B.任何定理都有逆定理C.真命题的逆命题一定是真命题D.定理的逆命题一定是真命题【答案】A【分析】利用逆命题、逆定理的知识对各项进行判断即可得到答案.【详解】解:A.任何命题都有逆命题,故A说法正确,符合题意;B.任何定理不一定有逆定理,故B说法错误,不符合题意;C.真命题的逆命题不一定是真命题,故C说法错误,不符合题意;D. 定理的逆命题不一定是真命题,故D说法错误,不符合题意;故选:A.【点睛】本题考查了命题与定理,判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题,经过推理论证的真命题叫定理,两个命题的题设与结论为互换的命题互为逆命题.5.下列定理中,没有逆定理的是()A.同角的余角相等B.等腰三角形两个底角相等C.线段垂直平分线上的任意一点到这条线段两个端点的距离相等D.两直线平行,同旁内角互补【答案】A【分析】没有逆定理就是逆命题不正确的选项,逐一写出各选项的逆命题,判定即可.【详解】解:A、逆命题是余角相等的两个角是同一个角,不是逆定理;B、逆命题是有两个角相等的三角形是等腰三角形,是逆定理;C、到线段两端点距离相等的点在线段的垂直平分线上,是逆定理;D、逆命题是同旁内角互补,两直线平行,是逆定理;故选A.【点睛】本题考查了命题与定理的知识,解题的关键是了解这些命题的逆命题,然后判断其真假.6.下列定理中,哪些有逆定理?如果有逆定理,写出它的逆定理.(1)同旁内角互补,两直线平行.(2)三角形的两边之和大于第三边.【答案】(1)有,逆定理是:两直线平行,同旁内角互补(2)有,逆定理是:如果三条线段中,任意两条线段长度之和大于第三条线段的长度,那么这三条线段能围成三角形【分析】(1)先写出逆命题,再根据平行线的性质判断逆命题的真假,进而可得出结论;(2)先写出逆命题,再根据三角形的三边关系判断逆命题的真假,进而可得出结论.【详解】(1)解:逆命题是:两直线平行,同旁内角互补,是真命题,故原定理有逆定理:两直线平行,同旁内角互补;(2)解:逆命题为:如果三条线段中,任意两条线段长度之和大于第三条线段的长度,那么这三条线段能围成三角形,是真命题,故原定理有逆定理:如果三条线段中,任意两条线段长度之和大于第三条线段的长度,那么这三条线段能围成三角形.【点睛】本题考查了逆定理的定义、平行线的性质、三角形的三边关系,解答的关键是理解逆定理的定义:如果一个定理的逆命题被证明是真命题,那么就叫它是原定理的逆定理.∠ABC,∴∠CBD=12∴∠CBD=∠BCE,在△BCE和△CBD∠CBE=∠BCDBC=CB∠BCE=∠CBD棍EF,GD组成,D是EF的中点.寻找角的平分线时,需要调整位置,使得所分角的顶点O在GD上,同时保证T形分角仪的E,F两点正好落在所分角的两条边OA,OB上,此时OD就会平分∠AOB.为说明制作原理,请结合下边图形,用数学符号语言补全“已知”、“求证”,并写出证明过程.已知:如图,点E,F分别在∠AOB的边上,DG经过点O,__________,__________.求证:__________.证明:【答案】见解析【分析】根据题意,写出已知、证明、求证,根据垂直平分线的性质得出OE=OF,进而根据等腰三角形的性质得出OD平分∠AOB.【详解】已知:如图,点E,F分别在∠AOB的边上,DG经过点O,DG⊥EF,DE=DF(或D是EF的中点),求证:OD平分∠AOB(或∠AOD=∠BOD).证明:∵DG⊥EF,DE=DF,∴DG垂直平分EF.∴OE=OF.∵DG⊥EF,点O在DG上,∴OD平分∠EOF.即OD平分∠AOB.【点睛】本题考查了垂直平分线的性质,等腰三角形的性质与判定,熟练掌握以上知识是解题的关键.11.如图,有如下四个论断:①AC∥DE;②DC∥EF;③CD平分∠BCA;④EF平分∠BED,请你选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个正确的数学命题并证明它.【答案】见解析【分析】根据平行线的性质和角平分线的定义即可得到结论.【详解】已知:AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED.证明:如图所示,∵AC∥DE,∴∠BCA=∠BED,即∠1+∠2=∠4+∠5,∵DC∥EF,∴∠2=∠5,∵CD平分∠BCA,∴∠1=∠2,∴∠4=∠5,∴EF平分∠BED.【点睛】本题考查了命题与定理,平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键.12.作图:已知直线l1∥l2∥l3,在三条直线上各取一个点作一个等边△ABC.操作:如图,在l1上取点A,D,在l3上取点E,作等边△ADE,DE交l2于点B;在l3上点E的左侧取点C,使CE=BD,连接AC,BC,则△ABC即为所求的等边三角形.(1)完成作图并写出已知,求证;(2)证明△ABC为等边三角形.【答案】(1)见解析(2)见解析【分析】(1)根据题意作图即可;然后写出对应的已知和求证即可;(2)只需要证明△ACE ≌△ADB 得到AC =AB ,∠CAE =∠BAD ,再证∠CAE +∠EAB =∠BAD +∠EAB =60°,即∠CAB =60°,即可证明△ABC 为等边三角形.【详解】(1)解:如图,△ABC 即为完成的图形;已知:如图,已知直线l 1∥l 2∥l 3,在l 1上取点A ,D ,在l 3上取点E ,作等边△ADE ,DE 交l 2于点B ;在l 3上点E 的左侧取点C ,使CE =BD ,连接AC ,BC .求证:△ABC 为等边三角形.(2)证明:由(1)得:∵△ADE 是等边三角形,∴AD =AE ,∠EAD =∠EDA =∠AED =60°,∵l 1∥l 2∥l 3,∴∠EAD =∠CEA =60°,∴∠AEC =∠EDA ,在△ACE 和△ADB 中,AD =AE ∠AEC =∠ADB BD =CE,∴△ACE ≌△ADB (SAS ),∴AC =AB ,∠CAE =∠BAD ,∴∠CAE +∠EAB =∠BAD +∠EAB =60°,∴∠CAB =60°,∴△ABC 为等边三角形.【点睛】本题主要考查了作等边三角形,全等三角形的性质与判定,等边三角形的性质与判定,平行线的性质,写出一个命题的已知和求证,正确理解题意画出图形是解题的关键.13.写出定理“等腰三角形顶角的角平分线和底边上的高线互相重合”的逆命题,并证明这个命题是真命题.逆命题:______.已知:______.求证:______.【答案】一边上的高线与这边对角的角平分线重合的三角形是等腰三角形;如图所示,AD⊥BC,AD是△ABC的角平分线;△ABC是等腰三角形;证明见解析.【分析】根据逆命题可直接进行解答,然后写出已知求证,进而根据三角形全等进行求证即可.【详解】解:由题意可得,原命题的逆命题为:一边上的高线与这边对角的角平分线重合的三角形是等腰三角形.这个命题是真命题.已知,如图所示:AD⊥BC,AD是△ABC的角平分线,求证△ABC是等腰三角形.证明如下:∵AD⊥BC,∴∠ADB=∠ADC,∵AD是△ABC的角平分线,∴∠DAB=∠DAC,∵AD=AD,∴△ABD≌△ACD,∴AB=AC,∴△ABC是等腰三角形.故答案为:一边上的高线与这边对角的角平分线重合的三角形是等腰三角形;如图所示,AD⊥BC,AD是△ABC的角平分线;△ABC是等腰三角形.【点睛】本题主要考查逆命题、全等三角形的性质与判定及等腰三角形的判定,熟练掌握逆命题、全等三角形的性质与判定及等腰三角形的判定是解题的关键.14.如图所示,AB,CD相交于点E,连接AD,BC,①∠A=∠C,②AD=CB,③AE=CE.以这三个式子中的两个作为命题的条件,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)在构成的三个命题中,真命题有________个;(2)请选择其中一个真命题加以证明.【答案】(1)2;(2)选择①②⇒③,见解析.【分析】(1)根据全等三角形的判定定理AAS ,ASA 即可判断;(2)选择①②⇒③,根据全等三角形的判定定理AAS ,得到ΔADE≌ΔCBE (AAS ),然后即可得到AE =CE .【详解】解:(1)①②⇒③,满足全等三角形判定定理AAS ,是真命题;①③⇒②,满足全等三角形判定定理ASA ,是真命题;②③⇒①,是SSA ,不能证明三角形全等,故不能得到①成立,是假命题;故答案为2;(2)选择①②⇒③.证明:在ΔADE 和ΔCBE 中,∠AED =∠CEB (对顶角相等),∠A =∠C (已知),AD =CB (已知),∴ΔADE≌ΔCBE (AAS ).∴AE =CE (全等三角形的对应边相等).【点睛】本题考查了全等三角形的判定定理,掌握、熟练运用全等三角形的证明方法证明全等是解题的关键.。

逆命题和逆定理同步练习含答案

逆命题和逆定理同步练习含答案

逆命题和逆定理 同步练习【课堂训练】1.下列命题中,假命题...是( )A .两点之间,线段最短 B .角平分线上的点到这个角的两边的距离相等 C .两组对边分别平行的四边形是平行四边形 D .对角线相等的四边形是矩形 2. 下列命题中正确的是( ) A .矩形的对角线相互垂直 B .菱形的对角线相等 C .平行四边形是轴对称图形D .等腰梯形的对角线相等3. 分析下列命题:①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的;③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大. 其中真命题...的个数是( ) A .3B .2C .1D .04. 在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形 B .两条对角线互相垂直的四边形是菱形 C .两条对角线互相平分的四边形是平行四边形 D .两条对角线互相垂直且相等的四边形是正方形5. 已知下列命题:①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分. 其中原命题与逆命题均为真命题的个数是( ) A .1个B .2个C .3个D .4个6. 已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个. 7. 下列命题中,正确命题的个数为( )(1)若样本数据3、6、a 、4、2的平均数是4,则其方差为2(2)“相等的角是对顶角”的逆命题 (3)对角线互相垂直的四边形是菱形(4)若二次函数23(1)y x k =-+图象上有三个点1)y ,(22y ,),1()y ,则321y y y >> A .1个B .3个C .2个D .4个8.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: . 【课后训练】1.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做________.2.如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的________,这两个定理叫做_________.3.每个命题都有它的________,但每个真命题的逆命题不一定是真命题. 4.线段垂直平分线性质定理的逆定理是_____________________. 5.命题“对顶角相等”的逆命题是_____________________,是_____命题. 6.下列说法中,正确的是( )A .每一个命题都有逆命题B .假命题的逆命题一定是假命题C .每一个定理都有逆定理D .假命题没有逆命题 7.下列命题的逆命题为真命题的是( )A .如果a=b ,那么a 2=b 2 B .平行四边形是中心对称图形 C .两组对角分别相等的四边形是平行四边形 D .内错角相等8.下列定理中,有逆定理的是( )A .四边形的内角和等于360°B .同角的余角相等C .全等三角形对应角相等D .在一个三角形中,等边对等角 9.写出下面命题的逆命题,并判断其真假.10.写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;如果是假命题,请举反例说明.(1)有两边上的高相等的三角形是等腰三角形.(2)三角形的中位线平行于第三边.11.写出符合下列条件的一个原命题:(1)原命题和逆命题都是真命题.(2)原命题是假命题,但逆命题是真命题.(3)原命题是真命题,但逆命题是假命题.(4)原命题和逆命题都是假命题.12.已知在四边形ABCD中,对角线AC与BD相交于点O,①AB∥CD,②AO=CO,③,AD=BC,④∠ABC=∠ADC.(1)请从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为真命题,请对你所构造的一个真命题给予证明.(2)能否从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为假命题?若能,请写出一个满足条件的假命题,并举反例说明.参考答案1. 答案:D2. 答案:D3. 答案:C4. 答案:C5. 答案:B6. 答案:47. 答案:B8. 答案:如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直参考答案:1.互逆命题2.逆定理,互逆定理3.逆命题4.到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上5.如果两个角相等,那么它们是对顶角;假6.A 7.C 8.D9.(1)真,如果x(x-2)=0,那么x=2;假(2)真,三边对应相等的两个三角形全等;真(3)真,在一个三角形中,等角对等边;真(4)真,等边三角形是等腰三角形;假(5)假,如果两个角互补,那么这两个角是同旁内角;假10.(1)等腰三角形两腰上的高相等,是真命题,证明略(2)平行于三角形一边的线段是三角形的中位线,是假命题,反例略11.略12.(1)答案不唯一,如选①和②等,证明略(2)如选①和③,反例略逆命题和逆定理同步练习一、选择题1.下列四句话中,正确的是()A、任何一个命题都有逆命题B、任何一个定理都有逆定理C、若原命题为真,则其逆命题也为真D、若原命题为假,则其逆命题也假A、假命题的逆命题定是假命题B、定理一定有逆定理C、真命题的逆命题定是真命题D、命题一定有逆命题3.下列命题中,错误的是()A、角平分线上的点到这个角的两边的距离相等B、到线段两个端点距离相等的点,在这条线段的垂直平分线上C、任何命题都有逆命题D、任何定理都有逆定理4.下列说法错误的是()A、任意一个命题都有逆命题B、定理“全等三角形的对应角相等”有逆定理C、正方形都相似是真命题D、“画平行线”不是命题5.下列说法错误的是()A、任何命题都有逆命题B、定理都有逆定理C、命题的逆命题不一定是正确的D、定理的逆定理一定是正确的6. 下列说法正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、真命题的逆命题是假命题7. 下列说法中正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、假命题的逆命题是假命题A、真命题的逆命题是真命题B、每个定理都有逆定理C、每个命题都有逆命题D、假命题的逆命题是假命题9. 下列说法正确的是()A、每个命题都有逆命题B、真命题的逆命题是真命题C、假命题的逆命题是真命题D、每个定理都有逆定理二、填空题1.请写出定理:“全等三角形三个角相等”的逆定理,并判断命题的真假.,.2.请写出定理:“等腰三角形的两个底角相等”的逆定理..3. 写出定理“角平分线上的点到这个角两边的距离相等”的逆定理是= .4. 写出你熟悉的一个定理:,写出这个定理的逆定理:.5. 是定理“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”的逆定理.6.命题“如果一个数能被10整除,那么这个数也一定能被5整除”的逆命题是,这个逆命题为(填“真命题”或“假命题”)7. 命题“全等三角形的对应角相等”的逆命题是,这个逆命题是命题.(填“真”或“假”)三、解答题1.请你写出命题“等腰三角形的两个底角相等”的逆命题,并判断逆命题的真假;若是真命题,请写出已知、求证、证明;若是假命题,则请举反例证明.2.已知命题“等腰三角形两腰上的高相等”.(1)写出逆命题;(2)逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”,“求证”,再进行“证明”;如果是假命题,请举反例说明.3. 请写出“全等三角形的对应角相等”的逆命题,判断此逆命题的真假性,并给出证明.参考答案一、选择题1.解:A、命题的逆命题就是把原命题的题设和结论互换,故任何命题都有逆命题,故本选项正确,B、定理,逆定理都是真命题,但定理的逆命题不一定都是真命,故本选项错误,C、若原命题为真,则其逆命题不一定为真,故本选项错误,D、若原命题为假,则其逆命题不一定为真,故本选项错误.故选A.2. 解:A、假命题的逆命题定不一定是假命题,如:两个角相等三角形是等腰三角形,它的逆命题是真命题,本选项错误;B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,本选项错误;C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是相等的角是对顶角,它是假命题而不是真命题,本题错误;D、命题一定有逆命题,本选项正确;故选D.3. 解:A、∵角平分线上的点到这个角的两边的距离相等,这是正确的,故本选项错误;B、到线段两个端点距离相等的点,在这条线段的垂直平分线上,这是正确的,故本选项错误;C、任何命题都有逆命题,这是正确的,故本选项错误;D、∵任何定理不一定有逆定理,这是错误的,故本选项正确.故选D.4. 解:A、命题都有题设和结论,交换题设和结论,就得到逆命题,正确;B、定理“全等三角形的对应角相等”的逆命题是对应角相等的三角形全等,错误;C、所有正方形都相似,正确;D、画平行线是作图,没有题设与结论,不是命题,正确.故选B.5. 解:A正确;B错误,正确的命题才是定理,定理的逆命题不一定是正确的,故不能说定理都有逆定理;C正确;D正确;故选B.6. 解:A、每个命题都有逆命题,故本选项正确.B、每个定理不一定都有逆定理,故本选项错误.C、真命题的逆命题不一定是真命题,故本选项错误.D、真命题的逆命题不一定是假命题,故本选项错误.故选A.7. 解:A、每个命题都有逆命题,正确;B、每个定理都有逆定理,错误,只有正确的命题才是定理,错误;C、真命题的逆命题不一定是真命题,错误;D、假命题的逆命题不一定是假命题,错误.故选A8. 解:A、真命题的逆命题不一定是真命题,故本选项错误,B、每个定理都有逆命题,故本选项错误,C、每个命题都有逆命题,故本选项正确,D、假命题的逆命题不一定是假命题,故本选项错误,故选:C.9. 解:A、正确;B、错误,不能确定;C、错误,不能确定;D、错误,不能确定.故选A.二、填空题1.解:定理:“全等三角形三个角相等”的逆定理是三个角对应相等的两个三角形全等,三个角对应相等的两个三角形不一定全等,∴该命题为假命题,故答案为:三个角对应相等的两个三角形全等,假命题.2.有两个角相等的三角形是等腰三角形.3. 到角的两边距离相等的点在角平分线上4. 两直线平行,同位角相等同位角相等,两直线平行.5. 两条平行线被第三条直线所截,同旁内角互补6. 如果一个数能被5整除,那么这个数能被10整除假命题7.对应角相等的三角形全等假三、解答题1.2.3.。

专题26逆命题和逆定理-2021-2022学年八年级数学上(解析版)【浙教版】

专题26逆命题和逆定理-2021-2022学年八年级数学上(解析版)【浙教版】

2021-2022学年八年级数学上册尖子生同步培优题典【浙教版】专题2.6逆命题和逆定理姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021春•道外区期末)下列命题中:①形状相同的两个三角形是全等形;②在两个三角形中,相等的角是对应角,相等的边是对应边;③全等三角形的对应边相等;④全等三角形对应边上的高相等.其中真命题有()个A.1B.2C.3D.4【分析】根据全等三角形的性质和判定进行判断即可.【解析①形状相同、大小相等的两个三角形是全等形,原命题是假命题;②在两个全等的三角形中,相等的角是对应角,相等的边是对应边,原命题是假命题;③全等三角形的对应边相等,是真命题;④全等三角形对应边上的高相等,是真命题;故选:B.2.(2021春•桥西区期末)下列命题中的假命题是()A.当x=y时,有x2=y2B.相等的角是对顶角C.两直线平行,同位角相等D.平行于同一条直线的两条直线平行【分析】根据等式的性质、对顶角、平行线的性质和判定判断即可.【解析A、当x=y时,有x2=y2,是真命题;B、相等的角不一定是对顶角,原命题是假命题;C、两直线平行,同位角相等,是真命题;D、平行于同一条直线的两条直线平行,是真命题;故选:B.3.(2021春•西安期末)命题“若a>b,则a2>b2”的逆命题是()A.若a>b,则a2<b2B.若a<b,则a2>b2C.若a2>b2,则a>b D.若a2>b2,则a<b【分析】把一个命题的条件和结论互换即可得到其逆命题.【解析“若a>b,则a2>b2”的条件是“a>b”,结论是“a2>b2”,其逆命题是若a2>b2则a>b.故选:C.4.(2021春•江宁区校级月考)下列命题:①同旁内角互补,两直线平行;②等角的余角相等;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.1个B.2个C.3个D.4个【分析】利用平行线的判定、互余的定义、直角的定义及对顶角的知识分别判断后即可确定正确的选项.【解析①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,正确,是真命题,符合题意;②等角的余角相等的逆命题为余角相等的两个角相等,正确,是真命题,符合题意;③直角都相等的逆命题为相等的角都是直角,错误,为假命题,不符合题意;④相等的角是对顶角的逆命题为对顶角相等,正确,为真命题,符合题意,真命题有3个,故选:C.5.(2021春•越秀区校级期中)下列命题的逆命题不成立的是()A.两条直线平行,同旁内角互补B.全等三角形的对应边相等C.如果两个实数相等,那么它们的绝对值相等D.线段垂直平分线上的点到这条线段两个端点的距离相等【分析】先写出各个命题的逆命题,根据平行线的判定定理、全等三角形的判定定理、绝对值的性质、线段垂直平分线的判定定理判断即可.【解析A、两条直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,成立,不符合题意;B、全等三角形的对应边相等的逆命题是对应边相等的三角形全等,成立,不符合题意;C、如果两个实数相等,那么它们的绝对值相等的逆命题是如果两个实数的绝对值相等,那么这两个实数相等,不成立,符合题意;D、线段垂直平分线上的点到这条线段两个端点的距离相等的逆命题是到这条线段两个端点的距离相等的点在线段垂直平分线上,成立,不符合题意;故选:C.6.(2021春•锦江区校级期中)已知下列命题:①四边形是多边形;②对顶角相等;③两直线平行,内错角相等;④如果ab=0,那么a=0,b=0;则原命题和逆命题均为真命题的个数为()A.1个B.2个C.3个D.4个【分析】分别写出各个命题的逆命题,根据多边形的概念、对顶角的概念、平行线的判定和性质、有理数的乘法法则判断即可.【解析①四边形是多边形的逆命题是多边形是四边形,原命题是真命题,逆命题是假命题;②对顶角相等的逆命题是相等的角是对顶角,原命题是真命题,逆命题是假命题;③两直线平行,内错角相等的逆命题是内错角相等,两直线平行,原命题是真命题,逆命题是真命题;④如果ab=0,那么a=0,b=0的逆命题是如果a=0,b=0,那么ab=0,原命题是假命题,逆命题是真命题;故选:A.7.(2020秋•东阳市期末)在△ABC纸片上有一点P,且P A=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上【分析】根据线段垂直平分线的判定定理解答.【解析∵P A=PB,∴P点在在边AB的垂直平分线上,故选:B.8.(2021春•江汉区期中)下列命题:①全等三角形的对应角相等;②一个正数的绝对值等于本身;③若三角形的三边长a、b、c满足a2+b2=c2,则该三角形是直角三角形.其中逆命题是真命题的个数是()A.0B.1C.2D.3【分析】利用全等三角形的性质、绝对值的意义、勾股定理的逆定理分别判断后即可确定正确的选项.【解析①逆命题为对应角相等的两三角形全等,错误,是假命题,不符合题意;②逆命题为绝对值等于本身的数是正数,错误,是假命题,不符合题意;③逆命题为:若直角三角形的三边长a、b、c,则满足a2+b2=c2,正确,是真命题,符合题意.真命题的有1个,故选:B.9.(2021春•汝州市期末)如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=6,CF=2,则AC的长度为()A.6B.7C.8D.9【分析】根据线段的垂直平分线的性质得到F A=BF=6,结合图形计算,得到答案.【解析∵EF是AB的垂直平分线,BF=6,∴F A=BF=6,∴AC=F A+CF=6+2=8,故选:C.10.如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.7【分析】由对称得OP1=OP=2.8,OP=OP2=2.8,再根据三角形任意两边之和大于第三边,当在一条直线上取等号,即可得出结果.【解析连接OP1,OP2,P1P2,∵点P关于直线l,m的对称点分别是点P1,P2,∴OP1=OP=2.8,OP=OP2=2.8,OP1+OP2≥P1P2,0<P1P2≤5.6,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2021春•埇桥区期末)“等腰三角形的两个底角相等”这个命题的逆命题是两个角相等的三角形是等腰三角形.【分析】写出该命题的逆命题即可.【解析“等腰三角形的两个底角相等”这个命题的逆命题是两个角相等的三角形是等腰三角形;故答案为:两个角相等的三角形是等腰三角形.12.(2021春•定西期末)把命题“实数是无理数”改写成“如果…,那么…”的形式为如果一个数是实数,那么这个数是无理数.【分析】先分清命题“实数是无理数”的题设与结论,然后写成“如果…那么…”的形式.【解析如果一个数是实数,那么这个数是无理数.故答案为:如果一个数是实数,那么这个数是无理数.13.(2021春•龙山县期末)分析三个命题的逆命题:①如果两个实数都是正数,那么它们的积是正数;②两直线平行,内错角相等;③全等三角形的对应角相等.写出成立的逆命题:内错角相等,两直线平行.【分析】根据实数的乘法、平行线的性质和全等三角形的性质判断即可.【解析①如果两个实数都是正数,那么它们的积是正数,逆命题是如果两个实数的积是正数,那么它们都是正数,是假命题;②两直线平行,内错角相等的逆命题是内错角相等,两直线平行,是真命题;③全等三角形的对应角相等的逆命题是对应角相等的三角形全等,是假命题;故答案为:内错角相等,两直线平行.14.(2021春•江都区期末)命题:“任意两个负数之和是负数”的逆命题是假命题.(填“真”或“假”).【分析】写出原命题的逆命题后判断正误即可.【解析命题:“任意两个负数之和是负数”的逆命题是负数是两个负数之和,错误,为假命题,故答案为:假.15.(2021春•南海区期末)如图,△ABC中,∠B=90°,AC边上的垂直平分线DE交AB于D,交AC于E,且CD平分∠ACB,则∠A的度数等于30°.【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠A=∠DCA,根据角平分线的定义得到∠BCD=∠DCA,根据直角三角形的两锐角互余计算即可.【解析∵DE是AC边上的垂直平分线,∴DA=DC,∴∠A=∠DCA,∵CD平分∠ACB,∴∠BCD=∠DCA,∴∠A=∠DCA=∠BCD,∵∠B=90°,∴∠A=30°,故答案为:30°.16.(2021春•成都期末)如图,线段AB、AC的垂直平分线l1、l2相交于点O,若∠BOC=86°,则∠1=43°.【分析】连接OA,根据线段垂直平分线的性质得到OA=OC,进而得到∠AOE=12∠AOC,同理得到∠AOD=12∠AOB,根据平角的定义计算,得到答案.【解析连接OA,∵l2垂直平分AC,∴OA=OC,∴l2平分∠AOC,即∠AOE=12∠AOC,同理可得:∠AOD=12∠AOB,∵∠AOB+∠BOC+∠AOC=360°,∠BOC=86°,∴∠AOB+∠AOC=360°﹣86°=274°,∴∠AOD+∠AOE=12(∠AOB+∠AOC)=12×274°=137°,∴∠1=180°﹣(∠AOD+∠AOE)=180°﹣137°=43°,故答案为:43°.17.(2021春•沙坪坝区校级期末)如图,△ABC中,DE、FG分别为AB、AC的垂直平分线,DE、FG相交于M点,连接F A、EA,若∠BAC=80°,求∠EAF=20°.【分析】根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到EA=EB,F A=FC,根据等腰三角形的性质得到∠EAB=∠B,∠F AC=∠C,结合图形计算得到答案.【解析∵∠BAC=80°,∴∠B+∠C=180°﹣80°=100°,∵DE、FG分别为AB、AC的垂直平分线,∴EA=EB,F A=FC,∴∠EAB=∠B,∠F AC=∠C,∴∠EAB+∠F AC=∠B+∠C=100°,∴∠EAF=∠EAB+∠F AC﹣∠BAC=100°﹣80°=20°,故答案为:20°.18.(2021春•莱芜区期末)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,交AB于点E,交AC于点F,过点O作OD⊥AC于点D.设线段OD的长为m,下列结论中:①EF=BE+CF;②∠BOC=90°+12∠A;③点O到△ABC各边的距离相等;④设△ABC的周长为p,则S△ABC=12pm.正确的结论有①②③④.(填序号)【分析】证明△EBO和△FCO为等腰三角形,则EB=EO,FO=FC,于是可对①进行判断;利用三角形内角和对②进行判断;过O点作OH⊥AB于H,OG⊥BC于G,如图,根据角平分线的性质得到OG =OH,OG=OD,则可对③进行判断;连接OA,如图,利用三角形面积公式,根据S△ABC=S△ABO+S△BCO+S△CAO可对④进行判断.【解析∵∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠CBO,∠BCO=∠FCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠EBO=∠EOB,∠FOC=∠FCO,∴EB=EO,FO=FC,∴EF=EO+FO=BE+CF,所以①正确;∵∠ABC+∠ACB=180°﹣∠A,∴2∠OBC+2∠OCB=180°﹣∠A,∴∠OBC+∠OCB=90°−12∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°−12∠A)=90°+12∠A,所以②正确;过O点作OH⊥AB于H,OG⊥BC于G,如图,∵∠ABC和∠ACB的平分线相交于点O,∴OG=OH,OG=OD,∴OH=OG=OD,即点O到△ABC各边的距离相等,所以③正确;连接OA,如图,S△ABC=S△ABO+S△BCO+S△CAO=12OH•AB+12OG•BC+12OD•AC=12m(AB+BC+CA)=12pm,所以④正确.故答案为①②③④.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2021春•郑州期末)请写出一对互逆命题,并判断它们是真命题还是假命题.【分析】写出我们学过的一个命题,然后将结论和题设互换就变成了它的逆命题,判断真假即可.【解析同位角相等,两直线平行.两直线平行,同位角相等.这两个命题都是真命题.20.(2021春•贺兰县期中)写出命题“如果一个角的两边与另一个角的两边分别垂直,那么这两个角相等”的逆命题,并判断原命题和逆命题的真假.若是假命题,请举出反例.【分析】根据逆命题的概念分别写出各个命题的逆命题,根据四边形内角和是360°、对顶角相等证明即可.【解析命题“如果一个角的两边与另一个角的两边分别垂直,那么这两个角相等”的逆命题:如果两个角相等,那么其中一个角的两边与另一个角的两边分别垂直.原命题是假命题.反例:如图1,∠CAB的两边与∠CDB的两边分别垂直,但∠CAB+∠CDB=180°,∠CAB与∠CDB 不一定相等;逆命题是假命题.反例:如解图2,∠AOC=∠BOD,但AB与CD不一定垂直.21.(2021春•三元区校级月考)如图,在△AFD 和△CEB 中,点 A 、E 、F 、C 在同一条直线上,有下面四个选项:①AD =CB ;②AE =CF ;③DF =BE ;④AD ∥BC .请用其中三个作为条件,余下一个作为结论,编一道真命题.并写出证明过程.条件为: ①②④ (填序号).结论为: ③ (填序号).【分析】条件为:①②④,结论为:③;只需要证明△AFD ≌△CEB 即可.【解析条件为:①②④,结论为:③;(答案不唯一)已知:如图,在△AFD 和△CEB 中,点 A 、E 、F 、C 在同一条直线上,AD =CB ,AE =CF ,AD ∥BC .求证:DF =BE .证明:∵AD ∥BC ,∴∠A =∠C ,∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE ,∴在△AFD 和△CEB 中,{AD =CB ∠A =∠C AF =CE,∴△AFD ≌△CEB (SAS ),∴DF =BE .故答案为:①②④;③22.(2020秋•滦南县期末)求证:顶角是锐角的等腰三角形腰上的高与底边夹角等于其顶角的一半.(1)在图中按照下面“已知”的要求,画出符合题意的图形,并根据题设和结论,结合图形,用符号语言补充写出“已知”和“求证”.已知:在△ABC中,AB=AC,CD⊥AB于D.求证:∠BCD=12∠A.(2)证明上述命题.【分析】(1)根据题意写出已知和求证;(2)根据等腰三角形的性质用∠A表示出∠B=∠ACB,根据直角三角形的性质计算,证明结论.【解析(1)已知:在△ABC中,AB=AC,CD⊥AB于D,求证:∠BCD=12∠A.故答案为:CD⊥AB于D;∠BCD=12∠A;(2)证明:∵AB=AC,∴∠B=∠ACB=12(180°﹣∠A)=90°−12∠A,∵CD⊥AB,∴∠ACD=90°﹣∠A,∴∠BCD=∠ACB﹣∠ACD=(90°−12∠A)﹣(90°﹣∠A)=12∠A.23.(2020秋•袁州区校级月考)如图,∠ACD是∠ACB的邻补角,请你从下面的三个条件中,选出两个作为已知条件,另一个作为结论,得出一个真命题.①CE∥AB;②∠A=∠B;③CE平分∠ACD.(1)由上述条件可得哪几个真命题?请按“⊗⊗⇒⊗”的形式一一书写出来;(2)请根据(1)中的真命题,选择一个进行证明.【分析】(1)根据题意,结合平行线的性质,选择两个条件做题设,一个条件做结论,得到正确的命题.(2)任选一个命题,根据平行线的性质或角平分线的定义进行证明.【解析(1)上述问题有三种正确命题,分别是:命题1:①②⇒③;命题2:①③⇒②;命题3:②③⇒①.(2)解:选择命题2:①③⇒②.证明:∵CE∥AB,∴∠ACE=∠A,∠DCE=∠B.∵CE平分∠ACD,∴∠ACE=∠DCE.∴∠A=∠B.24.(2021春•高州市期末)如图,在四边形ABCD中,BD所在的直线垂直平分线段AC,过点A作BC的平行线AF交CD于F,延长AB、DC交于点E.求证:(1)AC平分∠EAF;(2)∠F AD=∠E.【分析】(1)根据线段垂直平分线的性质得到BA=BC,根据等腰三角形的性质得到∠BAC=∠BCA,根据平行线的性质得到∠CAF=∠BCA,等量代换证明结论;(2)根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠DCA,再根据三角形的外角性质证明即可.【解答】证明:(1)∵BD所在的直线垂直平分线段AC,∴BA=BC,∴∠BAC=∠BCA,∵BC∥AF,∴∠CAF=∠BCA,∴∠CAF=∠BAC,即AC平分∠EAF;(2)∵BD所在的直线垂直平分线段AC,∴DA=DC,∴∠DAC=∠DCA,∵∠DCA是△ACE的一个外角,∴∠DCA=∠E+∠EAC,∴∠E+∠EAC=∠F AD+∠CAF,∵∠CAF=∠EAC,∴∠F AD=∠E.。

逆命题与逆定理(基础)巩固练习

逆命题与逆定理(基础)巩固练习

逆命题与逆定理(基础)巩固练习【巩固练习】一.选择题1.下列语句不是命题的是().A.两点之间,线段最短 B.不平行的两条直线有一个交点C.x与y的和等于0吗? D.对顶角不相等2.在下列定理中,没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等B.直角三角形两个锐角互余C.全等三角形对应角相等D.角平分线上的点到这个角两边的距离相等3.如图,点D是线段AB与线段BC的垂直平分线的交点,∠B=40°,则∠ADC等于().A.50° B.60° C.70° D.80°4. 在下列真命题中,逆命题也是真命题的是().A.若a>0,b>0,则a+b>0 B.对顶角相等C.相反数的绝对值相等 D.等腰三角形的底角相等5.等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC的周长为17,则底BC 为()A.5 B.7 C.10 D.96.(2016•湖州)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2二.填空题7.把命题“线段垂直平分线上的点到这条线段的两个端点的距离相等”改写成“如果…,那么….”的形式_________ .8.(2015•广陵区一模)如图,已知AB=AC,DE垂直平分AB分别交AB、AC于D、E两点,若∠A=40°,则∠EBC=°.9. 三角形的三条交于一点,这个点到三角形三个顶点的距离相等.10.如图,在Rt△ABC中,∠C=90°,∠A=33°,DE是线段AB的垂直平分线,交AB于D,交AC于E,则∠EBC=.11.如图,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD 的面积是.12.如图,在△ABC中,∠B与∠C的平分线交于点E,过点E作MN∥BC,分别交AB、AC于点M、N.若AB =5,AC=4,则△AMN的周长是.三.解答题13.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.14.已知:如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.15.如图所示,在△ABC中,∠A=30°,∠C=90°,BD是∠ABC的平分线,交AC于点D.求证:点D在线段AB的垂直平分线上.【答案与解析】一.选择题1.【答案】C;【解析】C选项不是判断性语句,其他三项无论正确与否都是对一件事情做出了判断,是命题.2.【答案】C;【解析】先写出各选项的逆命题,判断出其真假即可解答.3.【答案】D;【解析】连接BD、AC.设∠1=x.根据线段垂直平分线的性质,得AD=BD,BD=CD.根据等边对等角,得∠1=∠2=x,∠4=∠ABD=40°+x.根据三角形的内角和定理,得∠ADB=180°﹣2∠4=100°﹣2x,∠BDC=180°﹣2x,进而求得∠ADC.【解析】有两个角相等的三角形必是等腰三角形.5.【答案】B;【解析】解:设AB的中点为D,∵DG为AB的垂直平分线∴GA=GB (垂直平分线上一点到线段两端点距离相等),∴三角形GBC的周长=GB+BC+GC=GA+GC+BC=AC+BC=17,又∵三角形ABC是等腰三角形,且AB=AC,∴AB+BC=17,∴BC=17﹣AB=17﹣10=7.故选B.6.【答案】C;【解析】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.二.填空题7.【答案】如果一个点在线段的垂直平分线上,那么这个点到这条线段两个端点的距离相等;8.【答案】30;【解析】解:∵DE垂直平分AB分别交AB、AC于D、E两点,∴AE=BE,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠C=70°,∴∠EBC=∠ABC﹣∠ABE=30°.故答案为:30.9.【答案】边的垂直平分线;【解析】角平分线的性质.10.【答案】24°;【解析】根据相等垂直平分线性质得出AE=BE,求出∠A=∠ABE=33°,根据三角形的内角和定理求出∠ABC,相减即可求出答案.11.【答案】1mn2;【解析】过点D作边AB边上的高,根据角平分线的性质得,此高长等于线段CD的长,再根据三角形面积公式可得所求面积.【解析】由在△ABC 中,∠B 与∠C 的平分线交于点E ,过点E 作MN ∥BC ,易证得△MBE 与△NCE 是等腰三角形,即ME =MB ,NE =NC ,继而可得△AMN 的周长等于AB+AC =9.三.解答题13.【解析】解:(1)∵DM 、EN 分别垂直平分AC 和BC ,∴AM=CM ,BN=CN ,∴△CMN 的周长=CM +MN +CN=AM +MN +BN=AB ,∵△CMN 的周长为15cm ,∴AB=15cm ;(2)∵∠MFN=70°,∴∠MNF +∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF ,∠BNE=∠MNF ,∴∠AMD +∠BNE=∠MNF +∠NMF=110°,∴∠A +∠B=90°﹣∠AMD +90°﹣∠BNE=180°﹣110°=70°,∵AM=CM ,BN=CN ,∴∠A=∠ACM ,∠B=∠BCN ,∴∠MCN=180°﹣2(∠A +∠B )=180°﹣2×70°=40°.14. 【解析】解: 如图,过点C 作CH ⊥OA 于点H ,作CI ⊥OB 于点I ,则在△OME 与△OND 中,有:=⎧⎪∠=∠⎨⎪=⎩OM ON MOE NOD OD OE所以△OME ≌△OND .∴OME OND S S ∆∆=, 即11OM CH ON CI 22=,∴CH =CI .∴点C 在∠AOB 的平分线上(角平分线的判定定理).15.【解析】证明:∵∠C =90°,∠A =30°,∴∠ABC =60°.∵BD 平分∠ABC ,∴∠ABD =∠ABC =×60°=30°.∴∠A =∠ABD ,∴DA=DB.∴点D在AB的垂直平分线上.。

逆命题和逆定理同步练习含答案

逆命题和逆定理同步练习含答案

逆命题和逆定理同步练习含答案It was last revised on January 2, 2021逆命题和逆定理 同步练习【课堂训练】1.下列命题中,假命题...是( )A .两点之间,线段最短 B .角平分线上的点到这个角的两边的距离相等 C .两组对边分别平行的四边形是平行四边形 D .对角线相等的四边形是矩形 2. 下列命题中正确的是( ) A .矩形的对角线相互垂直B .菱形的对角线相等C .平行四边形是轴对称图形D .等腰梯形的对角线相等3. 分析下列命题:①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的;③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大. 其中真命题...的个数是( ) A .3B .2C .1D .04. 在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形 B .两条对角线互相垂直的四边形是菱形C .两条对角线互相平分的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形5. 已知下列命题:①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分. 其中原命题与逆命题均为真命题的个数是( ) A .1个B .2个C .3个D .4个6. 已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个. 7. 下列命题中,正确命题的个数为( )(1)若样本数据3、6、a 、4、2的平均数是4,则其方差为2(2)“相等的角是对顶角”的逆命题 (3)对角线互相垂直的四边形是菱形(4)若二次函数23(1)y x k =-+图象上有三个点1)y ,(22y ,),1()y ,则321y y y >>A .1个B .3个C .2个D .4个8.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: . 【课后训练】1.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做________.2.如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的________,这两个定理叫做_________.3.每个命题都有它的________,但每个真命题的逆命题不一定是真命题. 4.线段垂直平分线性质定理的逆定理是_____________________. 5.命题“对顶角相等”的逆命题是_____________________,是_____命题. 6.下列说法中,正确的是( )A .每一个命题都有逆命题B .假命题的逆命题一定是假命题C .每一个定理都有逆定理D .假命题没有逆命题 7.下列命题的逆命题为真命题的是( )A .如果a=b ,那么a 2=b 2 B .平行四边形是中心对称图形 C .两组对角分别相等的四边形是平行四边形 D .内错角相等8.下列定理中,有逆定理的是( )A .四边形的内角和等于360°B .同角的余角相等C .全等三角形对应角相等D .在一个三角形中,等边对等角 9.写出下面命题的逆命题,并判断其真假.10.写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;如果是假命题,请举反例说明.(1)有两边上的高相等的三角形是等腰三角形.(2)三角形的中位线平行于第三边.11.写出符合下列条件的一个原命题:(1)原命题和逆命题都是真命题.(2)原命题是假命题,但逆命题是真命题.(3)原命题是真命题,但逆命题是假命题.(4)原命题和逆命题都是假命题.12.已知在四边形ABCD中,对角线AC与BD相交于点O,①AB∥CD,②AO=CO,③,AD=BC,④∠ABC=∠ADC.(1)请从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为真命题,请对你所构造的一个真命题给予证明.(2)能否从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为假命题?若能,请写出一个满足条件的假命题,并举反例说明.参考答案1. 答案:D2. 答案:D3. 答案:C4. 答案:C5. 答案:B6. 答案:47. 答案:B8. 答案:如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直参考答案:1.互逆命题 2.逆定理,互逆定理 3.逆命题4.到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上5.如果两个角相等,那么它们是对顶角;假6.A 7.C 8.D9.(1)真,如果x(x-2)=0,那么x=2;假(2)真,三边对应相等的两个三角形全等;真(3)真,在一个三角形中,等角对等边;真(4)真,等边三角形是等腰三角形;假(5)假,如果两个角互补,那么这两个角是同旁内角;假10.(1)等腰三角形两腰上的高相等,是真命题,证明略(2)平行于三角形一边的线段是三角形的中位线,是假命题,反例略11.略12.(1)答案不唯一,如选①和②等,证明略(2)如选①和③,反例略逆命题和逆定理同步练习一、选择题1.下列四句话中,正确的是()A、任何一个命题都有逆命题B、任何一个定理都有逆定理C、若原命题为真,则其逆命题也为真D、若原命题为假,则其逆命题也假A、假命题的逆命题定是假命题B、定理一定有逆定理C、真命题的逆命题定是真命题D、命题一定有逆命题3.下列命题中,错误的是()A、角平分线上的点到这个角的两边的距离相等B、到线段两个端点距离相等的点,在这条线段的垂直平分线上C、任何命题都有逆命题D、任何定理都有逆定理4.下列说法错误的是()A、任意一个命题都有逆命题B、定理“全等三角形的对应角相等”有逆定理C、正方形都相似是真命题D、“画平行线”不是命题5.下列说法错误的是()A、任何命题都有逆命题B、定理都有逆定理C、命题的逆命题不一定是正确的D、定理的逆定理一定是正确的6. 下列说法正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、真命题的逆命题是假命题7. 下列说法中正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、假命题的逆命题是假命题A、真命题的逆命题是真命题B、每个定理都有逆定理C、每个命题都有逆命题D、假命题的逆命题是假命题9. 下列说法正确的是()A、每个命题都有逆命题B、真命题的逆命题是真命题C、假命题的逆命题是真命题D、每个定理都有逆定理二、填空题1.请写出定理:“全等三角形三个角相等”的逆定理,并判断命题的真假., .2.请写出定理:“等腰三角形的两个底角相等”的逆定理..3. 写出定理“角平分线上的点到这个角两边的距离相等”的逆定理是 = .4. 写出你熟悉的一个定理:,写出这个定理的逆定理:.5. 是定理“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”的逆定理.6.命题“如果一个数能被10整除,那么这个数也一定能被5整除”的逆命题是,这个逆命题为(填“真命题”或“假命题”)7. 命题“全等三角形的对应角相等”的逆命题是,这个逆命题是命题.(填“真”或“假”)三、解答题1.请你写出命题“等腰三角形的两个底角相等”的逆命题,并判断逆命题的真假;若是真命题,请写出已知、求证、证明;若是假命题,则请举反例证明.2.已知命题“等腰三角形两腰上的高相等”.(1)写出逆命题;(2)逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”,“求证”,再进行“证明”;如果是假命题,请举反例说明.3. 请写出“全等三角形的对应角相等”的逆命题,判断此逆命题的真假性,并给出证明.参考答案一、选择题1.解:A、命题的逆命题就是把原命题的题设和结论互换,故任何命题都有逆命题,故本选项正确,B、定理,逆定理都是真命题,但定理的逆命题不一定都是真命,故本选项错误,C、若原命题为真,则其逆命题不一定为真,故本选项错误,D、若原命题为假,则其逆命题不一定为真,故本选项错误.故选A.2. 解:A、假命题的逆命题定不一定是假命题,如:两个角相等三角形是等腰三角形,它的逆命题是真命题,本选项错误;B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,本选项错误;C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是相等的角是对顶角,它是假命题而不是真命题,本题错误;D、命题一定有逆命题,本选项正确;故选D.3. 解:A、∵角平分线上的点到这个角的两边的距离相等,这是正确的,故本选项错误;B、到线段两个端点距离相等的点,在这条线段的垂直平分线上,这是正确的,故本选项错误;C、任何命题都有逆命题,这是正确的,故本选项错误;D、∵任何定理不一定有逆定理,这是错误的,故本选项正确.故选D.4. 解:A、命题都有题设和结论,交换题设和结论,就得到逆命题,正确;B、定理“全等三角形的对应角相等”的逆命题是对应角相等的三角形全等,错误;C、所有正方形都相似,正确;D、画平行线是作图,没有题设与结论,不是命题,正确.故选B.5. 解:A正确;B错误,正确的命题才是定理,定理的逆命题不一定是正确的,故不能说定理都有逆定理;C正确;D正确;故选B.6. 解:A、每个命题都有逆命题,故本选项正确.B、每个定理不一定都有逆定理,故本选项错误.C、真命题的逆命题不一定是真命题,故本选项错误.D、真命题的逆命题不一定是假命题,故本选项错误.故选A.7. 解:A、每个命题都有逆命题,正确;B、每个定理都有逆定理,错误,只有正确的命题才是定理,错误;C、真命题的逆命题不一定是真命题,错误;D、假命题的逆命题不一定是假命题,错误.故选A8. 解:A、真命题的逆命题不一定是真命题,故本选项错误,B、每个定理都有逆命题,故本选项错误,C、每个命题都有逆命题,故本选项正确,D、假命题的逆命题不一定是假命题,故本选项错误,故选:C.9. 解:A、正确;B、错误,不能确定;C、错误,不能确定;D、错误,不能确定.故选A.二、填空题1.解:定理:“全等三角形三个角相等”的逆定理是三个角对应相等的两个三角形全等,三个角对应相等的两个三角形不一定全等,∴该命题为假命题,故答案为:三个角对应相等的两个三角形全等,假命题.2.有两个角相等的三角形是等腰三角形.3. 到角的两边距离相等的点在角平分线上4. 两直线平行,同位角相等同位角相等,两直线平行.5. 两条平行线被第三条直线所截,同旁内角互补6. 如果一个数能被5整除,那么这个数能被10整除假命题7.对应角相等的三角形全等假三、解答题1.2.3.。

特殊三角形—逆命题和逆定理(详细解析考点分析名师点评)

特殊三角形—逆命题和逆定理(详细解析考点分析名师点评)

逆命题、逆定理参考答案与试题解析选择题1.下列命题是真命题的是()A.三点确定一个圆B.平行四边形既是轴对称图形又是中心对称图形C.对角线相等且平分的四边形是矩形D.有两边和一角对应相等的两个三角形全等考点:命题与定理.分析:找到选项中正确的命题即可.解答:解:A、必须是不在同一条直线上的三个点确定一条圆,所以不是真命题,不符合题意;B、平行四边形不是轴对称图形,所以不是真命题,不符合题意;C、对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,是真命题,符合题意;D、有两边和一角对应相等的两个三角形不一定全等,如当满足SSA时,所以不是真命题,不符合题意;故选C.点评:本题考查了一些易错点,注意对正确判定及性质的灵活运用.2.有四个命题:①两条直线被第三条直线所截,同旁内角互补;②有两边和其中一边的对角对应相等的两个三角形全等;③菱形既是轴对称图形又是中心对称图形;④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7.其中正确的命题有()A.1个B.2个C.3个D.4个3.下列命题中,真命题有()(1)邻补角的平分线互相垂直(2)对角线互相垂直平分的四边形是正方形(3)四边形的外角和等于360°(4)矩形的两条对角线相等A.1个B.2个C.3个D.4个考点:命题与定理.分析:分析是否为真命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.解答:解:(1)由邻补角及角平分线的性质知正确;(2)对角线互相垂直平分的四边形是菱形,故错误;(3)由多边形的外角和定理知正确;(4)由矩形的性质知正确.所以有三个正确.故选C.点评:此题综合考查邻补角及角平分线的性质,菱形的判定,多边形的外角和定理及矩形的性质.4.下列命题正确的是()A.三角形内角和是200°B.只有一组对边相等的四边形,一定是平行四边形C.对顶角相等D.对角线不相等的四边形是正方形考点:命题与定理.分析:要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.解答:解:A、三角形的内角和为180°,故A错误;B、两组对边分别相等的四边形是平行四边形,所以B错误;C、根据对顶角的性质知,C正确;D、由正方形的判定,知D错误.故选C.点评:此题综合考查了三角形的内角和定理、平行四边形的判定、正方形的判定和对顶角的性质.5.下列命题中是真命题的是()A.对角线互相垂直且相等的四边形是正方形B.有两边和一角对应相等的两个三角形全等C.两条对角线相等的平行四边形是矩形D.两边相等的平行四边形是菱形考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,不能确定;C、正确,符合矩形的判定定理;D、错误,两边相等的平行四边形是平行四边形.故选C.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.下列命题中,属于假命题的是()A.三角形三个内角的和等于180°B.两直线平行,同位角相等C.矩形的对角线相等D.相等的角是对顶角考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、三角形三个内角的和等于180°,是三角形的内角和定理,正确,是真命题;B、两直线平行,同位角相等,是平行线的性质,正确,是真命题;C、矩形的对角线相等,是矩形的性质,正确,是真命题;D、应为“有公共顶点,且两边互为反向延长线的两个角是对顶角”,是假命题.故选D.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程的解是x=0;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有()A.1个B.2个C.3个D.4个考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:①由正多边形的定义知正确;②样本不具有代表性,错误;③由分式方程的解的定义知正确;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,错误.故选B.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.下列命题中,正确命题的序号是()①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线相等的四边形是矩形④对角互补的四边形内接于圆A.①②B.②③C.③④D.①④9.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是正方形B.等腰梯形既是轴对称图形又是中心对称图形C.圆的切线垂直于经过切点的半径D.垂直于同一直线的两条直线互相垂直考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于同一直线的两条直线平行.故选C.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.下列命题中,是真命题的是()A.若a•b>0,则a>0,b>0 B.若a•b<0,则a<0,b<0C.若a•b=0,则a=0,且b=0 D.若a•b=0,则a=0,或b=011.下列命题中,错误的是()A.三角形两边之和大于第三边B.三角形的外角和等于360°C.三角形的一条中线能将三角形面积分成相等的两部分D.等边三角形既是轴对称图形,又是中心对称图形考点:命题与定理.分析:根据三角形的性质即可作出判断.解答:解:A正确,符合三角形三边关系;B正确;三角形外角和定理;C正确;D错误,等边三角形既是轴对称图形,不是中心对称图形.故选D.点评:本题考查的是三角形的三边关系,外角和定理,中位线的性质及命题的真假区别.12.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③角的平分线上的点到角的两边的距离相等;④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个考点:命题与定理.专题:压轴题.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:①中a>0,b>0;则a+b>0显然原命题正确,但其逆命题不正确,如a=﹣1,b=2满足a+b>0,但不满足a>0,b>0,错误;②中当a=1,b=﹣1满足条件a≠b,但不满足a2≠b2,显然原命题不正确,错误;③原命题和逆命题是角平分线的性质和判定,正确;④原命题和逆命题是平行四边形的性质和判定,正确.故选B.点评:考查点:本题考查命题的真假性,是易错题.易错易混点:本题要求的是原命题与逆命题的真假性,学生易出现只判断原命题的真假,也就是审题不认真.13.下列命题是真命题的是()A.若a2=b2,则a=b B.若x=y,则2﹣3x>2﹣3yC.若x2=2,则x=±D.若x3=8,则x=±214.下列命题中,不正确的是()A.垂直于弦的直径平分弦B.平行四边形的对角线互相平分C.两圆相切时,圆心距等于两圆半径之和D.n边形的内角和等于(n﹣2)•180°考点:命题与定理.专题:压轴题.分析:根据垂径定理、平行四边形的性质、圆的性质、多边形的内角和公式即可作出判断.解答:解:A、符合垂径定理,正确;B、符合平行四边形的性质,正确;C、两圆相外切时,圆心距等于两圆半径之和,错误;D、正确.故选C.点评:本题综合考查了垂径定理,平行四边形的性质,两圆相切的特点及多边形的内角和定理,需同学们熟练掌握.15.下列命题中正确的是()A.矩形的对角线相互垂直B.菱形的对角线相等C.平行四边形是轴对称图形D.等腰梯形的对角线相等考点:命题与定理.专题:压轴题.分析:根据矩形、菱形、平行四边形、等腰梯形的性质进行逐一分析解答即可.解答:解:A、错误,矩形的对角线相等;B、错误,菱形的对角线相互垂直;C、错误,平行四边形是中心对称图形;D、正确,等腰梯形的对角线相等.故选D.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.下列命题,正确的是()A.如果|a|=|b|,那么a=bB.等腰梯形的对角线互相垂直C.顺次连接四边形各边中点所得到的四边形是平行四边形D.相等的圆周角所对的弧相等17.下列命题中,假命题是()A.两点之间,线段最短B.角平分线上的点到这个角的两边的距离相等C.两组对边分别平行的四边形是平行四边形D.对角线相等的四边形是矩形考点:命题与定理.分析:根据关于线段的公理、角平分线的性质、平行四边形的判定、矩形的判定即可求解.解答:解:A是真命题;B是真命题;C是真命题;D是假命题,例如等腰梯形;故选D.点评:解答此题的关键是要熟知真命题与假命题的概念.真命题:判断正确的命题叫真命题;假命题:判断错误的命题叫假命题.18.下列命题中,不正确的是()A.n边形的内角和等于(n﹣2)×180°B.边长分别为3,4,5的三角形是直角三角形C.垂直于弦的直径平分弦所对的两条弧D.两圆相切时,圆心距等于两圆半径之和考点:命题与定理.专题:压轴题.分析:根据多边形的内角和定理、勾股定理的逆定理、垂径定理、两圆相切的性质即可作出判断.解答:解:A、n边形可以化成(n﹣1)个三角形,内角和等于(n﹣2)×180°,正确;B、根据勾股定理逆定理判断,正确;C、根据垂径定理及其推论,正确;D、应为两圆相外切时,圆心距等于两圆半径之和;故选D.点评:本题考查命题的真假性,是易错题.根据命题的正确与错误来判断命题的真假.19.下列命题中错误的是()A.两组对边分别相等的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组对边平行的四边形是梯形考点:命题与定理.专题:压轴题.分析:分别根据平行四边形、菱形、矩形、梯形的判定定理进行判断即可.解答:解:A、正确,是平行四边形的判定定理;B、正确,是矩形的判定定理;C、正确,是菱形的判定定理;D、错误,有且只有一组对边平行的四边形是梯形.故选D.点评:本题考查了特殊四边形的判定及命题与定理的联系与区别.20.下列命题是假命题的是()A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线21.下列命题中正确的是()A.3x2y3﹣2xy﹣1是五次三项式B.a2•a3=a6C.如果=,则D.方程=的解是x1=8,x2=4考点:命题与定理.专题:压轴题.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:3x2y3﹣2xy﹣1有两个未知数,3项,最高是5,因此是五次三项式,A正确;同底数幂相乘指数相加,B不正确;把=转化为x=y,代入=,C不正确;中当x等于4时分母为0,D无意义.故选A.点评:本题综合考查了多项式、同底数幂相乘和分式运算的有关知识,要准确把握.22.下列命题是假命题的是()A.两点之间,线段最短B.过不在同一直线上的三点有且只有一个圆C.一组对应边相等的两个等边三角形全等D.对角线互相垂直平分的四边形是正方形考点:命题与定理.分析:分别根据两点间距离的定义、确定圆的条件、全等三角形的判定定理及矩形的性质解答.解答:解:A、真命题,是公理;B、真命题,是定理;C、真命题,符合全等三角形的判定定理;D、假命题,对角线互相垂直平分的四边形是菱形.故选D.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.23.下列命题是假命题的是()A.若x<y,则x+2008<y+2008 B.单项式的系数是﹣4C.若|x﹣1|+(y﹣3)2=0则x=1,y=3 D.平移不改变图形的形状和大小考点:命题与定理.专题:压轴题.分析:非负数的性质:几个非负数的和是0,则这几个非负数都是0;平移的性质:平移前后的两个图形全等.解答:解:A、根据等式的性质,故正确;B、单项式的系数是﹣,故错误;C、若|x﹣1|+(y﹣3)2=0,则x=1,y=3,故正确;D、平移不改变图形的形状和大小,故正确.故选B.点评:此题涉及面较广,涉及到等式的性质、非负数的性质、平移的性质及单项式的系数,是一道好题.24.给出两个命题:①两个锐角之和不一定是钝角;②各边对应成比例的两个多边形一定相似()A.①真②真B.①假②真C.①真②假D.①假②假考点:命题与定理.分析:本题可逐个分析各项,利用排除法得出答案.解答:解:两个锐角之和可能是锐角,也可能是直角或钝角,如25°+25°=50°,50°+40°=90°,70°+40°=110°,所以①是真命题;各边对应成比例,各角对应相等的两个多边形是相似多边形,但仅仅各边对应成比例不能得到两个多边形相似,如一个边为1的任意菱形和一个边为2的正方形,所以②是假命题.故选C点评:本题考查了命题的真假判断.25.下列命题中,真命题是()A.一组对边平行且有一组邻边相等的四边形是平行四边形B.顺次连接四边形各边中点所得到的四边形是矩形C.等边三角形既是轴对称图形又是中心对称图形D.对角线互相垂直平分的四边形是菱形26.下列命题正确的是()A.对角线相等且互相平分的四边形是菱形B.对角线相等且互相垂直的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.对角线相等的四边形是等腰梯形考点:命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、错误,例如等腰梯形;B、错误,例如对角线互相垂的梯形;C、正确;D、错误,例如矩形.故选C.点评:本题考查菱形、矩形和等腰梯形的判定与命题的真假区别.27.已知直线l:y=﹣x+1,现有下列3个命题:其中,真命题为()①点P(2,﹣1)在直线l上②若直线l与x轴,y轴分别交于A,B两点,则AB=;③若a<﹣1,且点M(﹣1,2),N(a,b)都在直线l上,则b>2.A.①②B.②③C.①②③D.①③考点:命题与定理.专题:压轴题.分析:要判断一个点是否在直线上,只需把点的坐标代入解析式,看是否满足直线解析式;直线与x轴的交点,即令y=0;直线与y轴的交点,即令x=0.根据勾股定理,可以求得一个点到原点的距离;根据一次函数的k值,可以判断y随x的变化规律.解答:解:①中,点P的坐标满足直线的解析式,故正确;②中,直线与x轴的交点是(1,0),与y轴的交点是(0,1),则AB=,故正确;③中,根据k<0,y随x的增大而减小,能得到b>2,故正确.故选C.点评:本题考查了点与直线的关系:若点在直线上,则点的坐标满足直线的解析式;直线与坐标轴的交点、以及一个点到原点的距离计算;一次函数值的变化规律:当k<0,y随x的增大而减小;当k>0,y随x的增大而增大.28.下列命题中真命题是()A.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖B.将2,3,4,5,6依次重复写6遍,得到这30个数的平均数是4C.碳在氧气中燃烧,生成CO2是必然事件D.为调查达州市所有初中生上网情况,抽查全市八所重点中学初中生上网情况是合理的考点:命题与定理.专题:跨学科.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、彩票中奖的概率是1%,并不能推出买100张该种彩票一定会中奖,而只是说有1%中奖的可能,故错误;B、2,3,4,5,6的平均数是4,无论重复写多少遍,都是4,故正确;C、碳在氧气中燃烧,可能生成CO2和CO两种情况,所以生成CO2不是必然事件,故错误;D、为调查达州市所有初中生上网情况,抽查全市八所重点中学初中生上网情况过于片面,是不合理的,故错误.故选B.点评:本题考查了真命题的定义.解决本题要熟悉常用的化学知识.29.已知下列命题:①若|x|=3,则x=3;②当a>b时,若c>0,则ac>bc;③直角三角形中斜边上的中线等于斜边的一半;④矩形的两条对角线相等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个考点:命题与定理.专题:压轴题.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:①、|x|=3,则x=±3,故这个命题是假命题;②、当a>b时,若c>0,则ac>bc,是真命题;③、直角三角形斜边上的中线等于斜边的一半,是真命题;其逆命题是:一边上的中线等于这边的一半的三角形是直角三角形,是真命题,故这个命题满足条件;④、矩形的两条对角线相等,是真命题;其逆命题是:两条对角线相等的四边形是矩形,是假命题.故满足条件的有②③,故选B.点评:本题综合考查绝对值,直角三角形和对角线的有关知识.30.下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差考点:命题与定理.专题:压轴题.登陆21世纪教育助您教考全无忧分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、正确;B、错误,根据中位数的概念知,中位数只有一个;C、错误,当一组数据中出现最多且次数一样的数不止一个时,就不止一个众数;D、错误,极差指一组数据中最大值与最小值的差,不等于方差.故选A.点评:本题综合考查了统计与概率及真假命题.要说明命题不是真命题,主要能举出一个反例即可.21世纪教育网精品资料·第1 页(共2 页)版权所有@21世纪教育网。

第04讲 逆命题与逆定理(知识解读+真题演练+课后巩固)(原卷版)

第04讲  逆命题与逆定理(知识解读+真题演练+课后巩固)(原卷版)

第04讲逆命题与逆定理1.理解定理、命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.考点命题、定理、证明【题型1 命题的辨析】【典例1】(2023春•太和县期末)下列语句是命题的是()A.你喜欢数学吗?B.小明是男生C.太和香椿D.加强体育锻炼【变式1-1】(2023春•江都区期末)下列选项是命题的是()A.作直线AB∥CD B.今天的天气好吗?C.连接A、B两点D.同角的余角相等【题型2 命题的改写】【典例2】(2023春•江津区期中)把命题“对顶角相等”改写成“如果…那么…”的形式:.【变式2-1】(2023春•鼓楼区校级期末)把命题“同位角相等”改写成“如果…那么…”的形式为.【变式2-2】(2023春•新华区期末)把命题“在同一平面内,垂直于同一条直线的两条直线互相平行”写出“如果…,那么…”的形式是:在同一平面内,如果,那么.【变式2-3】(2023春•昆明期末)把命题“同角的补角相等”改写成“如果…,那么…”的形式.【题型3 命题真假的判断】【典例3】(2023春•西城区期末)下列命题中,是假命题的是()A.如果两个角相等,那么它们是对顶角B.同旁内角互补,两直线平行C.如果a=b,b=c,那么a=cD.负数没有平方根【变式3-1】(2023春•永川区期末)有下列四个命题,其中所有正确的命题是()①如果两条直线都与第三条直线平行,那么这两条直线也相互平行②两条直线被第三条直线所截同旁内角互补③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直④在同一平面内,过一点由且只有一条直线与已知直线垂直.A.①②B.①④C.②③D.③④【变式3-2】(2023春•广陵区期末)下列命题是真命题的是()A.同角的补角相等B.三角形的一个外角等于两个内角的和C.若a2=b2,则a=bD.同位角相等【变式3-3】(2023春•顺义区期末)下列命题是真命题的是()A.一个正数与一个负数的和是负数B.两个锐角的和是钝角C.同角(或等角)的余角相等D.有理数的绝对值是正数【变式3-4】(2023春•沙坪坝区校级期末)下列语句:①在同一平面内,若三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A.①②是真命题B.②③是真命题C.①③是真命题D.以上结论皆是假命题【题型4 命题的解答题综合】【典例4】(2023春•盐山县期末)图形的世界丰富且充满变化,用数学的眼光观察它们,奇妙无比.(1)如图,EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小丽添加的条件:∠B+∠BDG=180°.请你帮小丽将下面的证明过程补充完整.证明:∵EF∥CD(已知)∴∠BEF=()∵∠B+∠BDG=180°(已知)∴BC∥()∴∠CDG=()∴∠BEF=∠CDG(等量代换)(2)拓展:如图,请你从三个选项①DG∥BC,②DG平分∠ADC,③∠B=∠BCD中任选出两个作为条件,另一个作为结论,组成一个真命题,并加以证明.①条件:,结论:(填序号).②证明:.【变式4-1】(2023春•吉林月考)如图,在三角形ABC中,点D在边BC的延长线上,射线CE在∠DCA的内部.给出下列信息:①AB∥CE;②CE平分∠DCA;③∠A=∠B.请选择其中的两条信息作为条件,余下的一条信息作为结论组成一个真命题,并说明理由.【变式4-2】(2022秋•惠济区校级期末)如图,在△AFD和△CEB中,点A、E、F、C在同一条直线上,有下面四个选项:①AD=CB;②AE=CF;③DF=BE;④AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道真命题.并写出证明过程.条件为:(填序号).结论为:(填序号).【变式4-3】(2023春•双辽市期中)(1)如图,DE∥BC,∠1=∠3,CD⊥AB,试说明FG⊥AB;(2)若把(1)中的题设中的“DE∥BC”与结论“FG⊥AB”对调,所得命题是否为真命题?试说明理由.【题型5 判断逆命题的真假判】【典例5-1】(2023春•南山区期中)下列命题的逆命题正确的是()A.两条直线平行,内错角相等B.若两个实数相等,则它们的绝对值相等C.全等三角形的对应角相等D.若两个实数相等,则它们的平方也相等【典例5-2】(2023春•泉州期末)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,说明它是假命题的反例可以是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=40°,∠2=40°D.∠1=∠2=45°【变式5-1】(2023•凤台县校级三模)若实数a,b,c(a,b,c均不为0)满足a+c=b.且bc+ac﹣ab=0.则下列命题为假命题的是()A.若b>c>0.则a>0B.若c=1.则a(a﹣1)=1C.若a2﹣c2=2,则ac=2D.若bc=1,则a=1【变式5-2】(2022秋•宁波期末)能说明命题“一个钝角与一个锐角的差一定是锐角”是假命题的反例是()A.∠1=91°,∠2=50°B.∠1=89°,∠2=1°C.∠1=120°,∠2=40°D.∠1=102°,∠2=2°【变式5-3】(2023春•浦城县期中)下列各命题的逆命题成立的是()A.对顶角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是90°,那么这两个角相等1.(2022•上海)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题2.(2022•无锡)下列命题中,是真命题的有()①对角线相等且互相平分的四边形是矩形②对角线互相垂直的四边形是菱形③四边相等的四边形是正方形④四边相等的四边形是菱形A.①②B.①④C.②③D.③④3.(2022•梧州)下列命题中,假命题是()A.﹣2的绝对值是﹣2B.对顶角相等C.平行四边形是中心对称图形D.如果直线a∥c,b∥c,那么直线a∥b4.(2022•盘锦)下列命题不正确的是()A.经过直线外一点,有且只有一条直线与这条直线平行B.负数的立方根是负数C.对角线互相垂直的四边形是菱形D.五边形的外角和是360°5.(2022•台州)如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是()A.若AB=AC,AD⊥BC,则PB=PCB.若PB=PC,AD⊥BC,则AB=ACC.若AB=AC,∠1=∠2,则PB=PCD.若PB=PC,∠1=∠2,则AB=AC6.(2021•浙江)能说明命题“若x为无理数,则x2也是无理数”是假命题的反例是()A.x=﹣1B.x=+1C.x=3D.x=﹣7.(2022•无锡)请写出命题“如果a>b,那么b﹣a<0”的逆命题:.1.(2023•吉阳区一模)下列命题是真命题的是()A.邻补角相等B.两直线平行,同旁内角互补C.内错角相等D.垂直于同一条直线的两直线平行2.(2023春•大名县期末)对于命题“如果a2>b2,那么a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=4,b=﹣3B.a=﹣3,b=4C.a=﹣4,b=3D.a=4,b=3 3.(2023春•红安县期末)下列命题中是假命题的是()A.两点的所有连线中,线段最短B.两条直线被第三条直线所截,同位角相等C.等式两边加同一个数,结果仍相等D.不等式两边加同一个数,不等号的方向不变4.(2023春•盐山县期末)下列命题:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③同旁内角互补;④垂直于同一条直线的两条直线垂直.其中的假命题有()A.4个B.3个C.2个D.1个5.(2023春•鼓楼区校级期末)下列命题属于真命题的是()A.同旁内角相等,两直线平行B.相等的角是对顶角C.平行于同一条直线的两条直线平行D.同位角相等6.(2023春•清丰县校级期末)下列命题中:①两个角的和等于平角时,这两个角互为补角,②同位角相等,③两条平行线被第三条直线所截,内错角相等,其中是真命题的个数是()A.0个B.1个C.2个D.3个7.(2023春•郾城区期末)下列命题中是真命题的是()A.在同一平面内的三条直线a、b、c,若a⊥b,b∥c,则a⊥cB.过一点有且只有一条直线与已知直线平行C.平行于同一条直线的两条直线互相垂直D.垂直于同一条直线的两条直线互相平行8.(2022秋•李沧区期末)要说明命题“若|a|>5,则a>5”是假命题,可以举的一个反例是()A.a=5B.a=﹣5C.a=6D.a=﹣6 9.(2023春•舞阳县期中)如图,下列命题:①若∠1=∠2,则∠D=∠4;②若∠C=∠D,则∠4=∠C;③若∠A=∠F,则∠1=∠2;④若∠1=∠2,∠C=∠D,则∠A=∠F;⑤若∠C=∠D,∠A=∠F,则∠1=∠2.其中正确的个数有()个.A.1B.2C.3D.4 10.(2023春•盐城期末)“对顶角相等”的逆命题是.(用“如果…那么…”的形式写出)11.(2022秋•宁德期末)“两条直线被第三条直线所截,内错角相等”是命题.(填“真”或“假”)12.(2023春•东海县期末)命题“直角三角形的两个锐角互余”的逆命题是命题.(填“真”或“假”)13.(2023春•吴忠期末)命题“等角的余角相等”的题设是,结论是.14.(2021秋•渠县期末)如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.15.(2022春•前进区期末)(1)完成下面的推理说明:已知:如图,BE∥CF,BE、CF分别平分∠ABC和∠BCD.求证:AB∥CD.证明:∵BE、CF分别平分∠ABC和∠BCD(已知),∴∠1=∠,∠2=∠().∵BE∥CF(),∴∠1=∠2().∴∠ABC=∠BCD().∴∠ABC=∠BCD(等式的性质).∴AB∥CD().(2)说出(1)的推理中运用了哪两个互逆的真命题.。

八年级数学逆命题、逆定理同步练习

八年级数学逆命题、逆定理同步练习

13.9逆命题、逆定理1.下列语言是命题的是( )A.画两条相等的线段B.等于同一个角的两个角相等吗C.延长线段AD到C,使OC=OAD.两直线平行,内错角相等2.下列命题中真命题的个数是( )①已知直角三角形的面积为2,两直角边的比为1:2,则其斜边为10;、②直角三角形的最大边长为3,最小边长为1,则另一边长为2;③在直角三角形中,若两直角边边长为9和40,则斜边长为41;④等腰三角形的面积为12,底边上的高为4,则腰长为5.A.1个B.2个c.3个D.4个3.下列命题的逆命题是真命题的是( )A.直角都相等B.钝角都小于180。

C.如果x2+y2=0,那么x=y=0D.对顶角相等4.下列说法中,正确的是( )A.一个定理的逆命题是正确的B.命题“如果x<0,y>0,那么xy<0”的逆命题是正确的C.任何命题都有逆命题D.定理、公理都应经过证明后才能用5.下列这些真命题中,其逆命题也真的是( )A.全等三角形的对应角相等B.两个图形关于轴对称,则这两个图形是全等形C.等边三角形是锐角三角形D.直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半6.以下列各组数为边长,能组成直角三角形的是( )A.8,15,17 B.4,5,6 C.5,8,10 D.8,39,407.证明一个命题是假命题的方法有__________.8.将命题“所有直角都相等”改写成“如果……那么…”的形式为___________。

9.举例说明“两个锐角的和是锐角”是假命题。

10.如图1所示,已知△ABC的三边长分别为a,b,c,且a+b=4,ab=1,c=14。

试判断△ABC的形状.11.下列说法中,正确的是( )A.每个命题不一定都有逆命题B.每个定理都有逆定理c.真命题的逆命题仍是真命题D.假命题的逆命题未必是假命题12.下列定理中,没有逆定理的是( )A.内错角相等,两直线平行B.直角三角形中两锐角互余c.相反数的绝对值相等D.同位角相等,两直线平行13.已知:如图2所示,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.14.如图3所示,△ABC中,∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P到各边的距离都相等,则这个距离是多少?15.下列命题中的真命题是( )A.锐角大于它的余角B.锐角大于它的补角c.钝角大于它的补角D.锐角与钝角之和等于平角16.已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为( )A.0个B.1个C.2个D.3个17.小明家、小红家、学校的距离如图4所示,学校在小明家的正东方向,那么小红家在小明家哪个方向?18.某民航飞机在大连海域失事,为调查失事原因,决定派海军潜水员打捞飞机上的黑匣子.如图5所示,一潜水员在A处以每小时8海里的速度向正东方向划行,在A处测得黑匣子B在北偏东60。

2.5 逆命题和逆定理 练习卷A答案

2.5 逆命题和逆定理  练习卷A答案

2.5 逆命题和逆定理练习卷A答案解析部分一、单选题1.【答案】C【考点】命题与定理【解析】【解答】两点确定一条直线,垂线段最短,同位角相等都是命题,而作角A的平分线为描述性语言,它不是命题.故答案为:C.【分析】根据命题的定义对各选项分别进行判断.2.【答案】D【考点】命题与定理【解析】【解答】解:命题“锐角小于90度”的逆命题是小于90°的角是锐角.故答案为:D.【分析】如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,即可求解。

3.【答案】C【考点】命题与定理【解析】【解答】A. 将27开立方,没有做出判断,不是命题;B. 任意三角形的三条中线相交于一点吗? 没有做出判断,不是命题;C. 锐角小于直角,将锐角和直角比较,作出了大小判断,故是命题;D. 做一条直线和已知直线垂直,没有做出判断,不是命题;故选C.【分析】判断一件事情的语句叫做命题,由此即可判断.4.【答案】C【考点】命题与定理【解析】【解答】用来证明命题“若a>b,则a2>b2是假命题的反例可以是:a=﹣1,b=﹣2,因为﹣1>﹣2,但是(﹣1)2<(﹣2)2,所以C正确;故选:C.【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.5.【答案】D【考点】命题与定理【解析】【解答】解:当a=3,b=2时,a>b,而a2=9,b2=4,a2>b2成立,故A选项无法确定原命题是假命题;当a=−3,b=2时,a<b,a,b的数值不符合条件,所以无法确定原命题是假命题;当a=3,b=−1时,a>b,而a2=9,b2=1,a2>b2成立,故C选无法确定原命题是假命题;当D. a=−3,b=−4时,a>b,而a2=9,b2=16,a2<b2,故D选项能确定原命题是假命题;故选:D.【分析】说明命题为假命题,即a、b的值满足a>b,但a2>b2不成立,把四个选项中的a、b的值分别代入验证即可.6.【答案】D【考点】命题与定理【解析】【解答】分析选项A、B、C,可知这3个选项均为正数,若a>0,则a>−a,这是个真命题,然而若a<0,则a<−a,故若要证命题“对于任意实数a,a>-a”是假命题,只需要a为负值即可,综上,只有D选项符合题意。

13.5逆命题与逆定理互逆命题与互逆定理专题练习题含答案

13.5逆命题与逆定理互逆命题与互逆定理专题练习题含答案

华东师大版八年级数学上册第13章全等三角形 13.5 逆命题与逆定理互逆命题与互逆定理专题练习题1.已知命题:全等三角形的面积相等,则其逆命题是( )A.不全等三角形的面积不相等 B.面积不相等的两个三角形不全等C.面积相等的两个三角形全等 D.全等三角形的面积相等2.下列命题的逆命题是真命题的是( )A.对顶角相等 B.如果a=b,那么a2=b2C.四边形是多边形 D.两直线平行,同旁内角互补3.下列命题的逆命题不正确的是( )A.若a+b>0,则a>0,b>0B.两直线平行,内错角相等C.直角三角形的两个锐角互余D.对顶角相等4.命题:“等腰三角形的两个底角相等”的逆命题是__________________________________,是________命题.(填“真”或“假”)5.命题:“平行于同一直线的两直线互相平行”的逆命题是_____________________________,是________命题.(填“真”或“假”)6.写出下列命题的逆命题,这些逆命题都成立吗?(1)两直线平行,同位角相等;(2)如果实数a=b,那么|a|=|b|;(3)两个锐角的和是钝角;(4)直角都相等.7.下列定理中,有逆定理的是( )A.相反数的绝对值相等 B.两个全等三角形的对应角相等C.直角三角形的两个锐角互余 D.末位数是2的整数被2整除8.下列定理中,逆定理不存在的是( )A.等边三角形的三个内角都等于60°B.在一个三角形中,如果两边相等,那么它们所对的角相等C.同位角相等,两直线平行D.同角的余角相等9.写出定理:“等腰三角形的两个底角相等”的逆定理.10.下列命题与逆命题都正确的是( )A.自然数是整数 B.若a>b,则|a|>|b|C.互补的角为邻补角 D.三个角相等的三角形是等边三角形11.下列说法正确的是( )A.真命题的逆命题也是真命题 B.每个命题都有逆命题C.每个定理都有逆定理 D.假命题没有逆命题12.已知下列命题:①若a≤0,则|a|=-a;②若ma2>na2,则m>n;③两直线平行,内错角相等;④若a-b>0,则|a|>|b|.其中原命题与逆命题均为真命题的个数是( )A.1个 B.2个 C.3个 D.4个13.写出你熟悉的一个定理:_______________________________,写出这个定理的逆定理:_________________________________.14.举例说明下列命题的逆命题是假命题.(1)0和1的立方根等于它本身;(2)如果两个角是直角,那么这两个角互补;(3)如果三角形有一个内角是钝角,那么其余的两个角都是锐角.15.写出命题“如果一个三角形是直角三角形,那么它的两个锐角的角平分线所夹的锐角是45°”的逆命题,并证明这个命题是真命题.16.写出命题:“等腰三角形两腰上的高相等”的逆命题,并证明其逆命题是真命题.答案:1---3 CDD4. 在一个三角形中,如果有两个角相等,那么这两个角所对的边也相等真5. 两平行直线中,有一条直线与第三条直线平行,则另一直线也与第三条直线平行真6. (1)逆命题为:同位角相等,两直线平行,成立,是真命题(2)逆命题为:如果实数|a|=|b|,那么a=b,不成立,是假命题(3)逆命题为:如果两个角的和是钝角,那么这两个角都是锐角,不成立,是假命题(4)逆命题为:如果两个角相等,那么它们都为直角,不成立,是假命题7. C8. D9. 有两个角相等的三角形是等腰三角形10. D11. B12. B13. 两直线平行,同位角相等同位角相等,两直线平行14. (1)-1的立方根是-1(2)锐角α=60°,钝角β=120°,则α+β=180°(3)△ABC 中,∠A =40°,∠B =80°,则∠C =60°15. 逆命题是:如果一个三角形的两个角的角平分线所夹的锐角是45°,那么这个三角是直角三角形.已知,如图,△ABC 中,BE 是∠ABC 的角平分线,交AC 于E ,AD 是∠CAB 的角平分线,交BC 于D ,BE 和AD 相交于O 点,且∠EOA =45°.求证:△ABC 是直角三角形.证明:∵BE 是∠ABC 的角平分线,AD 是∠CAB 的角平分线,∴∠OAB =12∠CAB ,∠OBA =12∠CBA ,∴∠OAB +∠OBA =12(∠CAB +∠CBA),∴180°-∠AOB =12(180°-∠C),∴∠AOE =90°-12∠C ,又∵∠EOA =45°,∴∠C =90°,∴△ABC 是直角三角形 16. 逆命题是:一个三角形两边上的高相等,则这个三角形是等腰三角形,已知:如图,△ABC 中,BD ⊥AC 于点D ,CE ⊥AB 于点E ,且BD =CE ,求证:△ABC 是等腰三角形.证明:∵BD ⊥AC ,CE ⊥AB.∴∠BDC =∠CEB =90°,又∵BD =CE ,BC =CB ,∴Rt △BCD ≌Rt △CBE(H .L .),∴∠BCD =∠CBE ,∴AB =AC ,即△ABC 是等腰三角形。

初二数学逆命题与逆定理试题

初二数学逆命题与逆定理试题

初二数学逆命题与逆定理试题1.(2014•金华模拟)要证明命题“若a>b,则a2>b2”是假命题,下列a,b的值不能作为反例的是()A.a=1,b=﹣2B.a=0,b=﹣1C.a=﹣1,b=﹣2D.a=2,b=﹣1【答案】D【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,分别代入数据算出即可.解:∵a=1,b=﹣2时,a=0,b=﹣1时,a=﹣1,b=﹣2时,a>b,则a2<b2,∴说明A,B,C都能证明“若a>b,则a2>b2”是假命题,故A,B,C不符合题意,只有a=2,b=﹣1时,“若a>b,则a2>b2”是真命题,故此时a,b的值不能作为反例.故选:D.点评:此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.2.(2013•温州模拟)选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°【答案】A【解析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.解:用反证法证明命题“∠A,∠B中至少有一个角不大于45°”时,应先假设∠A>45°,∠B>45°.故选:A.点评:此题主要考查了反证法,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口.3.(2013•北仑区二模)用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°【答案】D【解析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.故选D.点评:正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,会运用反证法证明命题的真假.4.(2013•江东区模拟)要说明命题:“一组对边平行且对角线相等的四边形是矩形”是假命题,可以举的反例是()A.等腰梯形B.矩形C.菱形D.直角梯形【答案】A【解析】根据等腰梯形的性质举出反例即可得出答案.解:“一组对边平行且对角线相等的四边形是矩形”是假命题,可以举的反例是:等腰梯形.故选:A.点评:此题主要考查了等腰梯形的性质,熟练掌握等腰梯形的性质是解题关键.5.(2012•温州)下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2B.a=﹣1C.a=1D.a=2【答案】A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.点评:此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.6.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交【答案】D【解析】用反证法解题时,要假设结论不成立,即假设a与b不平行,即a与b相交.解:∵原命题“在同一平面内,若a⊥c,b⊥c,则a∥b”,用反证法时应假设结论不成立,即假设“a与b相交”.故选D.点评:此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.7.用反证法证明“若a⊥c,b⊥c,则a∥b”,第一步应假设()A.a∥b B.a与b垂直C.a与b不一定平行D.a与b相交【答案】D【解析】根据反证法的步骤,直接得出即可.解:∵用反证法证明“若a⊥c,b⊥c,则a∥b”,∴第一步应假设:若a⊥c,b⊥c,则a、b相交.故选:D.点评:此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.8.下列能够说明“任何数的立方都是非负数”是假命题的反例是()A.﹣3B.0C.D.3.5【答案】A【解析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.解:A、﹣3,∵(﹣3)3=﹣27<0,∴可以用来说明命题“任何数的立方都是非负数”是假命题,所以﹣3是说明“任何数的立方都是非负数”是假命题的反例;B、0,∵03=0,∴不能作为假命题的反例;∴0不是说明“任何数的立方都是非负数”是假命题的反例;C、,∵=>0,∴不是说明“任何数的立方都是非负数”是假命题的反例;D、3.5,∵3.53>0,∴3.5不是说明“任何数的立方都是非负数”是假命题的反例.故选:A.点评:此题主要考查了反证法的意义,在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.用反证法证明:a,b至少有一个为0,应该假设()A.a,b没有一个为0B.a,b只有一个为0C.a,b至多一个为0D.a,b两个都为0【答案】A【解析】根据命题:“a、b至少有一个为0”的反面是:“a、b没有一个为0”,可得假设内容.解:由于命题:“a、b至少有一个为0”的反面是:“a、b没有一个为0”,故用反证法证明:“a、b至少有一个为0”,应假设“a、b没有一个为0”,故选A.点评:此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.10.用反证法证明“a>b”时应假设()A.a>b B.a<b C.a=b D.a≤b【答案】D【解析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断;需注意的是a>b的反面有多种情况,应一一否定.解:a,b的大小关系有a>b,a<b,a=b三种情况,因而a>b的反面是a≤b.因此用反证法证明“a>b”时,应先假设a≤b.故选D.点评:本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.。

19.3 逆命题和逆定理

19.3 逆命题和逆定理

19.3 逆命题和逆定理第一组19-191、如果一个定理A的逆命题B也是一个定理,则B是A的()A、逆命题B、逆定理C、互逆命题D、互逆定理2、下列定理中,有逆定理的是()A、同旁内角互补,两直线平行B、直角三角形中没有钝角C、互为相反数的数绝对值相等D、若a=b,则a2=b23、以下说法正确的是()A、每个命题都有逆定理B、一个定理一定有逆命题C、真命题的逆命题都是真命题D、定理的逆命题是真命题4、以下命题的逆命题为真命题的是()A、三个角相等的三角形是等边三角形B、同角的余角相等C、在三角形中,钝角所对的边最长D、对顶角相等5、以下说法不正确的是()A、定理和命题一样有真有假B、定理的逆命题有真有假C、逆定理一定是逆命题D、逆命题不一定是逆定理6、以下说法正确的有()个。

①逆定理一定是真命题;②一个定理一定有逆定理;③互逆命题一定是互逆定理;④互逆定理一定是互逆命题A、1B、2C、3D、47、命题“如果m,那么n”的逆命题是,所以所有命题都有。

8、定理“全等三角形对应边相等”的逆命题是,它们互逆定理(填“是”或“不是”)9、写出一个有逆定理的定理。

10、下列命题中,是互逆命题的有。

①如果a2=b2,那么a=b;②等腰三角形的两条腰上的高相等;③直角都相等;④相等的角都是直角;⑤如果a=b,那么a2=b2;⑥如果一个三角形的两边上的高相等,那么这个三角形是等腰三角形11、写出下列命题的逆命题,并判断逆命题的真假。

(1)若a+b=0,则ab=0;(2)若ab>0,则a>0,b>0;(3)若a>b,则a2>b2;>1。

(4)若x<1,则1x12、写出以下命题的逆命题。

(1)直角三角形两锐角互余;(2)直角三角形斜边上的中线等于斜边的一半;(3)线段垂直平分线上的点和这条线段的两个端点的距离相等;(4)角平分线上任意一点到这个角两边的距离相等。

13、写出以下命题的逆命题,并判断逆命题的真假。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ⅲ.(一)必记概念1.在两个命题中,如果第一个命题的题设是第二个命题的,而第一个命题的结论是第二个命题的,那么这两个命题叫做命题.如果把其中一个命题叫做原命题,那么另一命题就叫做它的 .(二)必记定理1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边(简写成“”).2.等腰三角形的性质定理,等腰三角形的两个底角(简写成“”).3.等腰三角形的、、互相重合.(简写成“等腰三角形的三线合一”).4.斜边、直角边定理:如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形.5.角平分线上的点到这个角的相等.6.到一个角的两边距离相等的点在 .7.线段的垂直平分线上的点到这条线段的两个端点的距离.8.到一条线段的两个端点的距离相等的点,在 .9.勾股定理:直角三角形两直角边的平方和等于 .10.勾股定理的逆定理:如果三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是 .逆命题与逆定理单元小节测试卷(120分 100分钟)一、基础题(8题7分,其余每题各4分,共35分)1.在两个直角三角形中,有两条边分别对应相等,这两个直角三角形一定全等吗?如果不一定全等,请举出一个反例.2.写出下列命题的逆命题,并判断这些命题的真假.(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果一个三角形的两个内角相等,那么这两个内角所对的边相等.3.已知:如图,在五边形ABCDE中,∠B=∠E=90°,BC=ED,∠ACD=∠ADC.求证:AB=AE.4.已知:如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BD=CD .求证:AB=AC .5.已知:如图,AC ⊥CD ,BD ⊥CD ,AB 的垂直平分线EF 交AB 于E ,交CD 于F ,且AC=FD .求证:△ABF 是等腰直角三角形.6.判断由线段a 、b 、c 组成的三角形是不是直角三角形.(1)a=7,b=24,c=25;(2)a=1.5,b=2.5;(3)a=45,b=1,c=32.7.在△ABC 中,AC=2a ,BC=a 2+1,AB=a 2-1,其中a ﹥1,△ABC 是不是直角三角形?如果是,那么哪一个角是直角?8.如图,在四边形ABCD 中,AB=1,BC=3,CD=DA=2,∠D=90°,求∠BAD 的度数.二、学科内综合题(5分)9.已知等腰△ABC 的底边BC=8cm ,且|AC-BC|=2cm ,则腰AC 的长为( )A .10cm 或6cmB .10cmC .6cmD .8cm 或6cm三、学科间综合题(5分)10.一平面镜以与水平成45°角固定在水平桌面上,如图,小球以1米/秒的速度沿桌面向平面镜匀速滚去,则小球在平面镜里所成的像( )A.以1米/秒的速度,做竖直向上运动B.以l米/秒的速度,做竖直向下运动C.以2米/秒的速度,做竖直向上运动D.以2米/秒的速度,做竖直向下运动四、应用题(10分)11.如图,河南区一个工厂在公路西侧,到公路的距离与到河岸的距离相等,到河上公路桥较近桥头(图中A点)的距离与到公路东侧学校(图中B点)的距离也相等,试在图上标出工厂的位置.五、创新题(每题10分,共40分)(一)教材中的变型题12.(课本原题)(1)在△ABC中,∠C=90°,AB=2AC,AD为∠BAC的平分线.求证:D 在AB的垂直平分线上.(2)如图,在△ABC中,AB=AC,AB的垂直平分线,交AB于D,交AC于E,∠EBC=30°求∠A的度数.(二)一题多解13.如图所示,已知△ABC中,AB=AC,BD=BC,AD=DE=EB,求∠A的度数.(三)一题多变14.如左图所示,在△ABC 中,BC 的垂直平分线交AC 于E ,垂足为D ,△ABE 的周长是15cm ,BD=6cm ,求△ABC 的周长.(1)一变:如右图所示,在△ABC 中AB =AC ,DE 是AB 的垂直平分线,D 为垂足,交AC 于E .若AB=a ,△ABC 的周长为b ,求△BCE 的周长.(四)开放题15.如果两个等腰三角形 ,那么这两个等腰三角形全等.(只填一种能使结论成立的条件即可)六、中考题(13分)16.(2分)如下图左,Rt △ABC 中,∠C=90°,斜边AB 的垂直平分线交AB 于点D ,交BC 于点E ,AE 平分∠BAC ,那么下列关系不成立的是( ) A .∠B=∠CAE B .∠DEA=∠CEA C .∠B=∠BAE D .AC=2EC17.(2分)如上图中所示,在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F .给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③S 四边形AEPF =21S △ABC ;④EF=AP.当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论始终正确的有( )A .1个B .2个C .3个D .4个18.(2分)如上图右所示,△ABC 中,AB=AC ,要使AD=AE ,需要添加的一个条件是 .19.(2分)若等腰三角形的一个底角是30°,则这个等腰三角形的顶角是 .20.(2分)如下图,AM 是△ABC 的角平分线,N 为BM 的中点,NE ∥AM ,交AB 于D ,交CA的延长线于E,下列结论正确的是()A.BM=MC B.AE=BD C.AM=DE D.DN=BN21.(3分)若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为()A.30°B.75°C.30°或60°D.75°或15°七、实验题(12分)22.把18根火柴首尾相接围成一个等腰三角形,试问最多能围成种不同的等腰三角形.加试题:竞赛趣味题(6分)(2002,全国初中数学联赛预赛)已知:如下图左,AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作两个等边三角形APC和BPD,则线段CD的长度的最小值是()A.4 B.5 C.6 D.35-5Ⅵ.探究题1.如上图右,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O,给出下列四个条件:①∠EBO=DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)从这4个条件中选出2个条件,能判定△ABC是等腰三角形的方法用种.(2)选择(1)中的一种情形,证明△ABC是等腰三角形.2.已知a、b、c是直角三角形的三条边,c是斜边,且a、b、c都是正整数.当a=5时,b、c只能是12,13;当a=7时,b,c只能是24,25;当a=9时,b,c可以是40,41,也可以是12,15.你能求出当a=15时,b,c可能取的值吗?课堂内外勾股计算尺如下图,两把直尺,在尺上各贴一条坐标纸.以一个端点为0,以1mm为单位长,在0的右方1mm处标上1,表示12;在0的右方4mm处标上2;表示22;在0的右方9mm处标上3,16mm处标上4,分别表示32,42等等.用这种尺,可以在已知直角三角形两边的情况下,求出第三边.例如,已知两条直角边a=3,b=4,求斜边.先将上尺的0与下尺的3对齐,在上尺找到4,4在下尺所对的数5,便是所求的c的长.如果已知斜边c=5,一条直角边a=3,求另一条直角边,仍然是先将上尺的0与下尺的3对齐,然后在下尺上找到5,5在上尺上所对的数,就是另一条直角边的长.请你用勾股计算尺,求一条直角边长是5,斜边长为13的直角三角形的另一条直角边长.必记答案:1.也相等;等角对等边2.相等;等边对等角3.顶角的角平分线;底边上的中线;底边上的高 4.全等5.两边的距离 6.这个角的平分线上 7.相等8.在这条线段的垂直平分线上9.斜边的平方10.直角三角形单元小节测试答案:一、1.不一定全等,反例如图D27-2-2.2.(1)逆命题:如果∠α+∠β=180°,那么∠α与∠β是邻补角.这是假命题.(2)逆命题:如果一个三角形的两条边相等,那么这两条边所对的内角相等.这是真命题.3.证明:由∠ACD=∠ADC,得AC=AD.再由△ABC≌△AED,得AB=AE.4.证明:由已知,可得DE=DF.于是可证Rt△BDE≌Rt△CDF,∠B=∠C.故AB=AC.5.证明:由EF垂直平分AB,可得FA=FB.再由Rt△BDE≌Rt△CDF,可得∠CAF=∠DFB.而∠CAF+∠CFA=90°,故∠DFB+∠CFA=90°,∠AFB=90°,即△AFB为等腰直角三角形.6.(1)是;(2)是;(3)不是.7.解:是.因为AC2+AB2=(2a)2+(a2-1)2=(a2+1)2=BC2,因此,△ABC是直角三角形,且BC边所对的角是直角.8.解:连结AC.由CD=DA=2,∠D=90°,得AC=22,∠CAD=45°.由AC2+AB2=(22)2+12=9=BC2,得∠CAB=90°.故∠BAD=135°.二、9.A 点拨:当AC﹥BC时,|AC-BC|=AC-BC=2cm,所以AC=10cm.当AC﹤BC时,|AC-BC|=BC-AC=2cm,所以AC=6cm.因此腰AC的长为10cm或6cm.本题用到绝对值方程知识,体现了代数与几何的综合.三、10.B四、11.点拨:用交轨法.工厂的位置是公路与河岸夹角的角平分线与连结河上公路桥较近桥头与公路东侧学校的线段的垂直平分线的交点.五、(一)12.(1)证明:∵在△ABC中,∠C=90°,AB=2AC,∴∠BAC=60°,∠ABC=30°.∵AD平分∠BAC,∴∠BAD=30°.∴∠BAD=∠ABC.∴BD=AD.∴D在AB的垂直平分线上.(2)解:∵DE是线段AB的垂直平分线,∴AE=BE.∴∠A=∠EBD.∵∠ABC=∠A+30°,又∵AB=AC ,∴∠C=∠A+30°.∴∠A+30°+∠A+30°+∠A=180°(三角形的内角和定理).∴∠A=40°.(三)13.解法一:∵AB=AC.∴∠C=∠ABC.同理∠C=∠BDC ,∠A=∠AED ,∠EBD=∠EDB.∵∠A=180°-2∠C=180°-2∠BDC ,∠BDC=∠EBD+∠A=∠EBD+∠AED ,∠AED=∠DBA+∠EDB=2∠DBA.,∴∠A=180°-2∠BDC=180°-2∠A-2∠DBA=180°-2∠A-∠A.∴A=45°.解法二:设∠A=x.依题意,有∠AED=∠A=x ,∠DBA=21∠AED=21x , ∠C=∠BDC=∠A+∠DBA=23x ,∠ABC=∠C=23x. ∵∠A+∠ABC+∠C=180°,∴x+23x+23x=180°.∴x=45°.∴∠A=45°. 点拨:“等腰三角形的两底角相等”是等腰三角形的常用性质之一,它在几何计算中应用较广,常与“三角形的内角和等于180°”一起使用,用来求三角形的某些内角的度数.本例提供的两种解法,都运用了上述的知识点,但解法二显然比较简捷,它是通过设未知数,利用等腰三角形的性质,找到图中某个三角形(如本题中的△ABC )的各个内角与未知数间的关系,再利用“三角形内角和等于180°”列方程来解,这种几何问题的代数解法值得同学们借鉴.(三)14.解:∵DE 是BC 的垂直平分线,∴BE=EC ,BC=2BD=2×6=12(cm ). ∵△ABE 的周长是15cm ,即AE+BE+AB=15cm ,∴CE+AE+AB=15cm ,即AE+BE+AB=15cm ,又∵BC=12cm ,∴△ABC 的周长是27cm.(1)∵DE 是AB 的垂直平分线,∴AE=BE.∵AB=a ,△ABC 的周长为b ,∴AC+BC=AE+CE+BC=b-a ,即BE+CE+BC=b-a.∴△BEC 的周长为b-a.(四)15.腰与顶角分别对应相等(腰与底角分别对应相等,或腰与底边分别对应相等) 六、16.D 17.C 18.略. 19.120° 20.B 21.D七、22.4 点拨:设每根火柴的长度为1,且腰长为x ﹥0,x 可取5,6,7,8. 加试题:B 点拨:当P 为AB 的中点时,CD 取得最小值5.故选B.Ⅵ.1.(1)①③,①④,②③,②④(2)选择①④,可证∠OBC=∠OCB ,∠ABC=∠ACB.2.解:当a=15时,a 2=c 2-b 2=(c-b)(c+b)=152,152=225=1×225=3×75=5×45=9×25=15×15.当225=1×225时,c-b=1,c+b=225,故b=112,c=113.同理,还可得b=36,c=39,或b=20,c=25,或b=8,c=17.。

相关文档
最新文档