2021理科数学模拟试题2021高考理科数学模拟试题(一)-(27906)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021理科数学模拟试题2021高考理科数学
模拟试题(一)-(27906)
20XX高考理科数学模拟试题(一)
考试时间:120分钟
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)
1.已知集合M={x|y=x2+1},N={y|y=},则M∩N=()
A.{(0,1)}
B.{x|x≥﹣1}
C.{x|x≥0}
D.{x|x≥1}
2.复数z=的共轭复数的虚部为(
)
A.﹣i
B.﹣
C.i
D.
3.已知命题p:存在向量,,使得•=||•||,命题q:对任意的向量,,,若•=•,则=.则下列判断正确的是()A.命题p∨q是假命题
B.命题p∧q是真命题
C.命题p∨(¬q)是假命题
D.命题p∧(¬q)是真命题
4.20XX年5月30日是我们的传统节日﹣﹣”端午节”,这天小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事A=“取到的两个为同一种馅”,事
B=“取到的两个都是豆沙馅”,则P(B|A)=()A.
B.
C.
D.
5.已知锐角α的终边上一点P(sin40°,1+cos40°),则α等于()
A.10°
B.20°
C.70°
D.80°
6.已知函数,若,b=f(π),c=f(5),则()
A.c<b<a
B.c<a<b
C.b<c<a
D.a<c<b
7.阅读程序框图,如果输出的函数值在区间内,则输入的实数x的取值范围是()A.(﹣∞,﹣2]
B.[﹣2,﹣1]
C.[﹣1,2]
D.[2,+∞)
8.一个几何体的三视图如图所示,则这个几何体的体积为()A.
B.
C.
D.
9.在约束条下,当6≤s≤9时,目标函数z=x﹣y的最大值的变化范围是()
A.[3,8]
B.[5,8]
C.[3,6]
D.[4,7]
10.已知正实数a,b满足a+b=3,则的最小值为()
A.
1 B.
C.
D.
2
11.已知a∈R,若f(x)=(x+)ex在区间(0,1)上只有一个极值点,则a的取值范围为()
A.a>0
B.a≤
1 C.a>
1 D.a≤0
12.设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、
F2,其焦距为2c,点Q(c,)在椭圆的内部,点P是椭圆C上的动点,且|PF1|+|PQ|<5|F1F2|恒成立,则椭圆离心率的取值范围是() A.(,)
B.(,)
C.(,)
D.(,)第Ⅱ卷(非选择题,共90分)
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知,则二项式展开式中的常数项是
.
14.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象关于y轴对称,该函数的部分图象如图所示,△PMN是以MN为斜边的等腰直角三角形,且,则f(1)的值为.
15.在平面直角坐标系中,有△ABC,且A(﹣3,0),B (3,0),顶点C到点A与点B的距离之差为4,则顶点C的轨迹方程为
.
16.一个长,宽,高分别为1、2、3密封且透明的长方体容器中装有部分液体,如果任意转动该长方体,液面的形状都不可能是三角形,那么液体体积的取值范围是.
三、解答题(共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17.(12分)已知数列{an}满足a1=1,an+1=1﹣,其中
n∈N*.(Ⅰ)设bn=,求证:数列{bn}是等差数列,并求出{an}的通项公式an;(Ⅱ)设Cn=,数列{CnCn+2}的前n项和为Tn,是否存在正整数m,使得Tn<对于n∈N*恒成立,若存在,求出m 的最小值,若不存在,请说明理由.
18.(12分)从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到如图所示的频率分布直方图:(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
(2)若用分层抽样的方法从分数在[30,50)和[130,150]的学生中共抽取6人,该6人中成绩在[130,150]的有几人?
(3)在(2)抽取的6人中,随机抽取3人,计分数在[130,150]内的人数为ξ,求期望E(ξ).
19.(12分)如图,已知平面QBC与直线PA均垂直于
Rt△ABC所在平面,且PA=AB=AC.
(Ⅰ)求证:PA∥平面QBC;(Ⅱ)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.
20.(12分)已知椭圆C:+=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C上,点P(0,)到椭圆C的右焦点的距离为.
(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.
21.(12分)设函数f(x)=x2+aln(x+1)(a为常数)
(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;(Ⅱ)若函数y=f(x)有两个极值点
x1,x2,且x1<x2,求证:.
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分