初中数学二次函数的应用教案

合集下载

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。

误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。

《二次函数》教案

《二次函数》教案

《二次函数》教案《二次函数》教案篇一通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知例题学习:P166例1、例2(略)在教师的`引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习1.P167练习;2. 看谁连得准x2-y2 (x+1)29-25 x 2 y(x -y)x 2+2x+1 (3-5 x)(3+5 x)xy-y2 (x+y)(x-y)3.下列哪些变形是因式分解,为什么?(1)(a+3)(a -3)= a 2-9(2)a 2-4=( a +2)( a -2)(3)a 2-b2+1=( a +b)( a -b)+1(4)2πR+2πr=2π(R+r)学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业课本P一⑦0习题的第1、4大题。

学生自主完成通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)壹伍.4.1提公因式法例题1.因式分解的定义2.提公因式法《二次函数》教案篇二教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

初中数学_二次函数的应用教学设计学情分析教材分析课后反思

初中数学_二次函数的应用教学设计学情分析教材分析课后反思

6.3二次函数的应用教学设计一、教材的地位和作用本节课主要是在学生学习了二次函数的图像和性质的基础上,研究现实生活中抛物线型的物体的有关性质,引导学生建立适当的直角坐标系,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来求出抛物线所标示的二次函数的解析式,然后在根据具体问题、具体要求研究这个抛物线的性质。

培养学生主动学习、主动探索、合作学习的能力。

二、教学目标、重点的确定教学目标是教学的出发点和归宿。

因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

知识目标学生能将一些简单的实际问题转化为数学问题,根据题中的条件建立较为优化的二次函数模型,并求出抛物线所表示的二次函数的解析式。

能力目标学生能够运用二次函数的知识求出实际问题的最值,并能根据具体问题、具体要求研究现实生活中抛物线型物体的性质,发展问题解决能力。

情感目标通过对实际问题的研究,认识到二次函数是刻画和解决实际问题的重要工具。

学生在解决问题的过程中,学会合作、交流、分享、反思总结,学会进行解题分析。

学习过程:教学重点、难点引导学生自由建系,并求出抛物线所表示的二次函数的解析式,是本节课的重点。

根据具体问题、具体要求研究这个抛物线的性质,是本节课的难点。

关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

三、评价设计1.及时反馈学习信息,诊断学生在学习中遇到的问题;(2)及时鼓励学生,激励学生学习的积极性;(3)重视学习过程的评价。

四、教学方式我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。

而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

五、教学过程教学环节 学生活动 活动说明教学过程第一环节: 知识链接 1.说说如何求下列抛物线的解析式?2.打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,某次球的飞行高度y (单位:米)与飞行距离x (单位:百米)满足二次函数:y =-5x 2+20x .(1)这个球飞行的水平距离是1百米时距离地面的高度是米.(2)这个球飞行到最高点时移动的水平距离是 米.学生先独立思考各个问题,再就教师提出的问题进行分析和讨论,试图给出问题的解答。

初中数学八九年级下册二次函数的实际应用教案Word版

初中数学八九年级下册二次函数的实际应用教案Word版

北师大版初中数学八九年级下册《二次函数的实际应用》教案(1)【教学目标】1、知识与技能:学会把一些简单的实际生活中的二次函数问题抽象转化为数学问题,并能应用二次函数的相关性质解决问题,能进一步熟练掌握二次函数解析式的各种求法。

2、过程与方法:(1)以学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,进而使学生获得对数学理解的同时,培养学生分析问题和解决问题的能力。

(2)通过小组合作探索,获得一些研究问题与合作交流的方法与经验。

3、情感态度与价值观:体验函数知识的实际应用价值,感受数学与人类生活的密切联系,从实践动手当中,让学生产生对数学的兴趣,从而培养学生观察和推理能力,体验主动探究的成功快乐。

【重点和难点】重点:理解实际问题中的问题背景,弄清问题中相关量的关系,建立适当的数学模型,并把实际问题转化为数学问题。

难点:如何把实际问题抽象转化为数学问题。

【教学方法】学生在教师创设的情景中以问题为中心进行自主探究。

【教学过程】二次函数在实际中的应用十分广泛,利润问题在我们的生活中又无处不在,它们都与二次函数密不可分,今天就让我们一起来探索与二次函数有关的实际应用问题。

(一)师生协作,探索问题。

例1:为配合科技下乡工作全面开展,市场调研部对“大棚西瓜”去年的市场行情和生产情况进行了调查,提供了如下两个信息图,如甲、乙两图。

注甲乙两图中的每个黑心点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低,甲图的图像是线段,乙图的图像是抛物线段。

请你根据图像提供的信息说明。

(1)在6月份出售这种西瓜,每千克的收益是多少元?(2)如果你是调研员,为了每千克有最大收益,你会指导瓜农最好在哪个月出售这种西瓜?说明理由。

在教师的引导下,学生自主研究、解答本题,并请学生说出解题思路以及答案,师生共同研究,引导学生解决实际问题,在此同时,培养用动态的观点看待一些事情,提高学生的建模能力,以及渗透数形结合的思想方法。

初中数学《二次函数的应用》教案

初中数学《二次函数的应用》教案

初中数学《二次函数的应用》教案2.3二次函数的应用教学目标设计1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。

能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。

2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。

情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。

2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。

教学方法设计由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。

为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。

教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。

从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!二次函数数学活动教案(热门16篇)教学工作计划能够确保教学活动有条不紊地进行,提高教师的教学效率。

初中数学_《二次函数的应用》(复习)教学设计学情分析教材分析课后反思

初中数学_《二次函数的应用》(复习)教学设计学情分析教材分析课后反思

《二次函数的应用》教学设计35321212++-=x x y 3532121-2++=x x y 教学环节教学内容 学生活动环节目标 创设情境问题引入 1.已知二次函数 ,求出抛物线的顶点坐标与对称轴。

2.已知二次函数图象的顶点坐标是(6,2.6),且经过点(0,2),求这个二次函数的表达式 。

3.抛物线 c bx x y ++=261-经过点(0,4)经过点(3,217),求抛物线的关系式。

问题:(1)求二次函数顶点坐标的方法 (2)设表达式的思路(3)如何求二次函数与x 轴及y 轴的交点坐标课前布置,独立完成,上课时没完成的继续完成,之后组内批阅,找学生上台板演,并回答老师提出的问题。

这三个小题是后面实际应用问题的答案,学生在复习二次函数基础知识的同时,把后面的计算提到前面来,便于后面把教学重点放在解题思路的分析与掌握上,减少学生的计算量。

探索交流获得新知1例题解析例 1 :这是王强在训练掷铅球时的高度y (m)与水平距离x(m)之间的函数图像,其关系式为 ,则铅球达到的最大高度是_____米,此时离投掷点的水平距离是____米。

铅球出手时的高度是_____米,此次掷铅球的成绩是____米。

2、跟踪练习:如图,排球运动员站在点O 处练习发球,将球从1、学生独立思考后回答问题答案。

2、根据图像回答解题思路。

(前面已经求过前两个空,只计算后面两个即可)引导学生得到解决问题的方法:这四个问题都是求线段的长度,共同点为已知点的一个坐标,可将其代入表达式求另一个坐标,再把坐标转化成线段的长。

O点正上方2 m的A处发出,把球看成点,出手后水平运行6米达到最大高度2.6米,(1) 运行的高度记为y(m),运行的水平距离记为x(m),建立平面平面直角坐标系如图,求y 与x的函数表达式(不要求写出自变量x的取值范围);(2) 若球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m。

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。

《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

数学教案二次备课范文初中

数学教案二次备课范文初中

数学教案二次备课范文初中教学目标:1. 了解二次函数的图像特征,能够识别二次函数的顶点、对称轴、开口方向等。

2. 理解二次函数的性质,能够运用二次函数的性质解决实际问题。

3. 培养学生的数学思维能力,提高学生对二次函数的理解和应用能力。

教学内容:1. 二次函数的图像特征2. 二次函数的性质3. 实际问题的解决教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的图像和性质。

2. 提问:二次函数的图像有什么特点?二次函数的性质有哪些?二、新课讲解(15分钟)1. 讲解二次函数的图像特征:顶点、对称轴、开口方向。

2. 讲解二次函数的性质:单调性、最大值或最小值、对称性。

3. 通过例题讲解如何运用二次函数的性质解决实际问题。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固对二次函数图像和性质的理解。

2. 解答学生提出的问题,给予个别指导。

四、拓展与应用(15分钟)1. 让学生思考如何将二次函数的性质应用到实际问题中,如抛物线运动、 optimization problems等。

2. 选取几个实际问题,让学生分组讨论并给出解决方案。

五、总结与反思(5分钟)1. 让学生总结二次函数图像和性质的重点知识点。

2. 让学生反思自己在学习过程中的优点和不足,提出改进措施。

教学评价:1. 课堂练习的完成情况,考察学生对二次函数图像和性质的理解。

2. 实际问题的解决能力,考察学生对二次函数性质的应用能力。

3. 学生的总结和反思,考察学生的数学思维能力。

教学资源:1. 教学PPT,展示二次函数图像和性质的相关知识点。

2. 练习题,巩固学生对二次函数图像和性质的理解。

3. 实际问题案例,供学生讨论和解决。

教学反思:本节课通过讲解二次函数的图像和性质,让学生了解二次函数的特点和应用。

在教学过程中,注意引导学生思考实际问题,培养学生的数学思维能力。

同时,通过课堂练习和拓展应用,让学生巩固对二次函数图像和性质的理解,并能够运用到实际问题中。

数学《二次函数》优秀教案(精选8篇)

数学《二次函数》优秀教案(精选8篇)

数学《二次函数》优秀教案数学《二次函数》优秀教案(精选8篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。

优秀的教案都具备一些什么特点呢?下面是小编收集整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。

数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根。

2、进一步发展估算能力。

(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。

(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、能够利用二次函数的图象求一元二次方程的近似根。

教学难点利用二次函数的图象求一元二次方程的近似根。

教学方法学生合作交流学习法。

教具准备投影片三张第一张:(记作§2.8.2A)第二张:(记作§2.8.2B)第三张:(记作§2.8.2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。

但是在图象上我们很难准确地求出方程的解,所以要进行估算。

本节课我们将学习利用二次函数的图象估计一元二次方程的根。

数学《二次函数》优秀教案篇2一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

人教版二次函数教案

人教版二次函数教案

人教版二次函数教案【篇一:新人教版九年级数学二次函数教案】二○一四年秋季学期东皇镇中学集体备课教案学科:数学班级:九____班授课教师:__________12二○一四年秋季学期东皇镇中学集体备课教案学科:数学班级:九____班授课教师:__________34二○一四年秋季学期东皇镇中学集体备课教案学科:数学班级:九____班授课教师:__________5【篇二:人教版初中数学教案二次函数】第二十六章二次函数二次函数(第一课时)教学目标:知识与技能能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围;过程与方法通过设置问题、类比、归纳等方法,引导学生思考、合作、交流,从而获得新知;情感态度价值观注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。

教学重难点:重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

难点:寻找、发现实际生活中二次函数问题。

教学过程:一、创设情境,激发求知1.设用篱笆围成的矩形花圃的垂直于墙的一边ab的长为xm,先取x的一些值,算出矩形的2另一边bc2.x的值是否可以任意取?有限定范围吗?3.我们发现,当ab的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,对于1,可让学生根据表中给出的ab的长,填出相应的bc的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当ab的长为25cm,bc的长为10m时,围成的矩形面积最大;最大面积为50m。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。

形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。

对于3,教师可提出问题,(1)当ab=xm时,bc长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。

初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。

二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。

同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。

进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。

而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。

所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。

5.8二次函数的应用--冯耀进

5.8二次函数的应用--冯耀进

第四届全国中小学“教学中的互联网搜索”优秀教学案例评选昌乐外国语学校冯耀进全国中小学“教学中的互联网搜索”优秀教学案例评选教案设计一、教学课题:5.8二次函数的应用二、教学背景:1、面向学生:初中九年级2、学科:数学3、课时:第1课时4、学生课前准备:利用百度搜索引擎在搜索关键词“二次函数”进行全方面了解并把一些自己认为和这节课联系比较大的资料记录下来以便上课一起分享5、上课地点:多媒体教室三、教材分析:1、教学内容:青岛教育出版社义务教育课程标准试验教科书《数学》九年级下册学情分析:本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。

函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。

2、学情分析:学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。

四、教学目标1、知识与技能:使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y =ax的关系式。

2、过程与方法:使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

3、情感、态度、价值观:让学生体验二次函数的函数关系式的应用,提高学生用数学意识。

教学重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是教学的重点。

教学难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。

教学策略与手段1、学法:探究式、讨论法。

2、教法:创设情境,网络教学、启发引导、分析。

五、教学准备教学之前用百度在网上搜索《5.8二次函数的应用》的相关教学材料,找了很多教案教学设计、课件参考,了解到教学的重点、难点,确定课堂教学形式和方法,根据课堂教学需要,下载相关图片、PPT演示课件,同时利用百度搜索找到相关的图片和视频。

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点:各种性质的应用。

教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。

课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

二次函数教学设计(精选9篇)

二次函数教学设计(精选9篇)

二次函数教学设计(精选9篇)《二次函数》数学教案篇一教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交次函数教案篇二教学目标熟练地掌握二次函数的最值及其求法。

初中数学《二次函数》课程教学设计以及思维导图

初中数学《二次函数》课程教学设计以及思维导图

初中数学《二次函数》课程教学设计以及思维导图一、教学设计1. 教学目标- 理解二次函数的定义及性质;- 掌握二次函数的图像特征和基本变换;- 能够求解二次函数的零点和最值;- 运用二次函数解决实际问题。

2. 教学内容- 二次函数的定义及性质;- 二次函数的图像特征和基本变换;- 二次函数的零点和最值;- 二次函数在实际问题中的应用。

3. 教学方法- 组织讲解:通过讲解二次函数的定义和性质,介绍二次函数的图像特征和基本变换;- 案例分析:通过具体案例分析,引导学生探索二次函数的零点和最值的求解方法;- 实际应用:引导学生运用二次函数解决实际问题,提高他们的数学建模能力。

4. 教学步骤第一步:导入- 通过引入一个与学生生活相关的问题,激发学生对二次函数的兴趣和思考,如:小明从家里出发骑自行车去学校,他的行程可以用二次函数表示吗?第二步:讲解- 介绍二次函数的定义和性质,包括二次函数的标准形式、顶点形式和描点法;- 解释二次函数的图像特征,包括开口方向、顶点坐标和对称轴;- 讲解二次函数的基本变换,包括平移、伸缩和翻转。

第三步:案例分析- 通过具体案例分析,引导学生探索二次函数的零点和最值的求解方法,包括利用图像、代数方法和函数性质等;- 给学生一些练习题,让他们独立思考和解决问题。

第四步:实际应用- 引导学生运用二次函数解决一些实际问题,如:抛物线的应用、物体的抛射运动等;- 鼓励学生分组合作,进行数学建模和实际问题求解。

第五步:总结与拓展- 对本节课所学内容进行总结,强调关键概念和解题方法;- 提供一些拓展性问题,让学生进一步思考和探索。

5. 教学评价- 通过学生课堂表现、小组讨论、个人作业等方式进行评价;- 评估学生对二次函数定义及性质的理解程度;- 评估学生对二次函数图像特征和基本变换的掌握程度;- 评估学生对二次函数零点和最值求解方法的应用能力;- 评估学生在实际问题中运用二次函数解决问题的数学建模能力。

初中数学_二次函数的应用教学设计学情分析教材分析课后反思

初中数学_二次函数的应用教学设计学情分析教材分析课后反思

《二次函数的应用》教学设计教学目标:知识与技能目标:会运用二次函数的知识解决现实生活中的实际问题.方法与过程目标:提高自主探索的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想.情感态度目标:培养学生独立探索精神和合作交流意识,提高探索能力,激发学生学习的兴趣和欲望教学重点:建立适当的平面直角坐标系,二次函数的表达式。

教学难点:会运用二次函数的知识解决现实生活中的实际问题.教学过程:一、情境导入,引出问题师:同学们,你们喜欢上体育课吗?推铅球时,铅球经过的路线是什么形状的?怎样测量你的铅球成绩?出示引例:在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图像的一部分(如图),若这个男生出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为B(6,5)。

(1)求此二次函数的解析式。

(2)该男同学把铅球推出去多远?(精确到0.01米,根号15=3.873)出示课件后,师生共同分析解题思路和方法二、合作探究、解决问题探究一:如图是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下。

建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),求该抛物线的表达式。

如果不考虑其他因素,那么水池的半径至少多少米,才能使喷出的水流不致落到池外。

教师精讲点拨思路方法,找一生说解题过程,教师板书。

牛刀小试:如图,隧道的横截面由抛物线和一个矩形的三条边构成,矩形的长是8m,宽是2m,在如图所示的坐标系中,抛物线可以用y=-1/4x2+4表示。

(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道的路面是双车道,那么这辆卡车是否可以通过?教师巡视指导。

学生独立完成后,把一个学生的解答过程投影在黑板上,自我矫正探究二:如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学《二次函数的应用》教案 2.3二次函数的应用
教学目标设计1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。

能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。

2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。

情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。

2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。

教学方法设计
由于本节课是应用问题,重在通过学习总结解决问题的方页1 第
法,故而本节课以“启发探究式”为主线开展教学活动,解
决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。

为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。

教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在
学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。

从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

页 2 第
(一)前情回顾:
1.复习二次函数y=ax2+bx+c(a0)的图象、顶点坐标、对
称轴和最值
2.(1)求函数y=x2+ 2x-3的最值。

(2)求函数y=x2+2x-3的最值。

(0 3)3、抛物线在什么位置取最值?
(二)适当点拨,自主探究 1.在创设情境中发现问题:请你画一个周长为40厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?
2、在解决问题中找出方法
:某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大?(问题设计思路:把前面矩形的周长40厘米改为40米,变成一个实际问题,目的在于让学生体会其应用价值我们要学有用的数学知识。

学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑页 3 第
定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方
法基础。


3、在巩固与应用中提高技能
例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大?
(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。


解:设垂直于墙的边AD=x米,则AB=(32-2x)米,设矩形面积为y米2,得到:
页 4 第
Y=x(32-2x)= -2x2+32x
[错解]由顶点公式得: x=8米时,y最大=128米2而实
际上定义域为11x ﹤16,由图象或增减性可知x=11米时, y 最大=110米2
(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。

)(三)总结交流:
(1)同学们经历刚才的探究过程,想想解决此类问题的思路是什么?.
引导学生分析解题循环图:
(2)在探究发现这些判定方法的过程中运用了什么样的数学方法?
(四)掌握应用:图中窗户边框的上半部分是由四个全等页5 第
扇形组成的半圆,下部分是矩形。

如果制作一个窗户边框的材料总长为15米,那么如何设计这个窗户边框的尺寸,使
透光面积最大(结果精确到0.01m2)?(设计思路:先出示如图图形,然后引伸到课本中的图形,让学生有一个思考递进的空间。


(五)我来试一试:如图在Rt△ABC中,点P在斜边AB上移动,PMBC,PNAC,M,N分别为垂足,已知AC=1,AB=2,求:
(1)何时矩形PMCN的面积最大,把最大面积是多少?(2)当AM平分CAB时,矩形PMCN的面积.
(六)智力闯关:如图,用长20cm的篱笆,一面靠墙围成一个长方形的园子,怎样围才能使园子的面积最大?最大面积是多少?
作业:课本随堂练习、习题1,2,3
板书设计二次函数的应用面积最大问题
课后反思二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。

新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实页 6 第
际问题。

本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流,让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。

教材中设计先探索最大利润问题,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。

从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

所以在例题的处理中适当的降低了梯度,让学生思维有一个拓展的空间,也有收获快乐和成就感。

在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高。

同时也注重对解题方法与解题模式的归纳与总结,并适当地渗透
转化、化归、数形结合等数学思想方法。

就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中,今后继续发扬从学生出发,从学生的
页 7 第
需要出发,把问题梯度降低,设计让学生在能力范围内掌握新知识,有了足够的热身运动之后再去拓展延伸。

页 8 第。

相关文档
最新文档